Chapter 11

Output Analysis for a Single Model
Contents

- Types of Simulation
- Stochastic Nature of Output Data
- Measures of Performance
- Output Analysis for Terminating Simulations
- Output Analysis for Steady-state Simulations
Purpose

• Output analysis: examination of the data generated by a simulation

• Objective:
 • Predict performance of system
 • Compare performance of two (or more) systems

• If \(\theta \) is the system performance, the result of a simulation is an estimator \(\hat{\theta} \)

• The precision of the estimator \(\hat{\theta} \) can be measured by:
 • The standard error of \(\hat{\theta} \)
 • The width of a confidence interval (CI) for \(\theta \)
Purpose

- Purpose of statistical analysis:
 - To estimate the **standard error** and/or **confidence interval**
 - To figure out the **number of observations** required to achieve a desired error or confidence interval

- Potential issues to overcome:
 - **Autocorrelation**, e.g., arrival of subsequent packets may lack statistical independence.
 - **Initial conditions**, e.g., the number of packets in a router at time 0 would most likely influence the performance/delay of packets arriving later.
Types of Simulations
Types of Simulations

Terminating (transient)

Non-terminating (steady state)
Types of Simulations: Terminating Simulations

• Terminating (transient) simulation:
 • Runs for some duration of time T_E, where E is a specified event that stops the simulation.
 • Starts at time 0 under well-specified initial conditions.
 • Ends at the stopping time T_E.
 • Bank example: Opens at 8:30 am (time 0) with no customers present and 8 of the 11 teller working (initial conditions), and closes at 4:30 pm (Time $T_E = 480$ minutes).
 • The simulation analyst chooses to consider it a terminating system because the object of interest is one day’s operation.
 • T_E may be known from the beginning or it may not
 • Several runs may result in $T_{E1}^1, T_{E2}^2, T_{E3}^3, ...$
 • Goal may be to estimate $E(T_E)$
Types of Simulations:
Non-terminating Simulations

- Non-terminating simulation:
 - Runs continuously or at least over a very long period of time.
 - Examples: assembly lines that shut down infrequently, hospital emergency rooms, telephone systems, network of routers, Internet.
 - Initial conditions defined by the analyst.
 - Runs for some analyst-specified period of time T_E.
 - Objective is to study the **steady-state** (long-run) properties of the system, properties that are not influenced by the initial conditions of the model.
Types of Simulations

- Whether a simulation is considered to be terminating or non-terminating depends on both:
 - The objectives of the simulation study and
 - The nature of the system

Diagram:

- Simulation
 - Goal of study? Nature of system?
 - Terminating
 - Non-Terminating
Stochastic Nature of Output Data
Stochastic Nature of Output Data

- Model output consist of one or more random variables because the model is an input-output transformation and the input variables are random variables.
- M/G/1 queueing example:
 - Poisson arrival rate $= 0.1$ per time unit and service time $\sim N(\mu = 9.5, \sigma^2 = 1.75^2)$.
 - System performance: long-run mean queue length, $L_Q(t)$.
 - Suppose we run a single simulation for a total of 5000 time units.
 - Divide the time interval $[0, 5000)$ into 5 equal subintervals of 1000 time units.
 - Average number of customers in queue from time $(j-1)1000$ to $j(1000)$ is Y_j.

\[L_Q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{\rho^2}{1 - \rho} \]
Stochastic Nature of Output Data

- **M/G/1 queueing example (cont.):**
 - Batched average queue length for 3 independent replications:

<table>
<thead>
<tr>
<th>Batching Interval</th>
<th>Batch j</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1000)</td>
<td>1</td>
<td>Y_{1j}</td>
</tr>
<tr>
<td>[1000, 2000)</td>
<td>2</td>
<td>Y_{2j}</td>
</tr>
<tr>
<td>[2000, 3000)</td>
<td>3</td>
<td>Y_{3j}</td>
</tr>
<tr>
<td>[3000, 4000)</td>
<td>4</td>
<td>Y_{1j}</td>
</tr>
<tr>
<td>[4000, 5000)</td>
<td>5</td>
<td>Y_{2j}</td>
</tr>
<tr>
<td>[0, 5000)</td>
<td></td>
<td>Y_{3j}</td>
</tr>
</tbody>
</table>

- Inherent variability in stochastic simulation both within a single replication and across different replications.
- The average across 3 replications, \(\overline{Y_{11}}, \overline{Y_{22}}, \overline{Y_{33}} \), can be regarded as independent observations, but averages within a replication, \(Y_{11}, ..., Y_{15} \), are not.
Stochastic Nature of Output Data

Measures of performance
Measures of performance

• Consider the estimation of a performance parameter, θ (or ϕ), of a simulated system.
 • Discrete time data: $\{Y_1, Y_2, \ldots, Y_n\}$, with ordinary mean: θ
 • Continuous-time data: $\{Y(t), 0 \leq t \leq T_E\}$ with time-weighted mean: ϕ

• Point estimation for discrete time data.
 • The point estimator:

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

 • Is unbiased if its expected value is θ, that is if: $E(\hat{\theta}) = \theta$
 • Is biased if: $E(\hat{\theta}) \neq \theta$ and $E(\hat{\theta}) - \theta$ is called bias of $\hat{\theta}$
Measures of performance:

Point Estimator

- Point estimation for continuous-time data.
 - The point estimator:

\[\hat{\phi} = \frac{1}{T_E} \int_0^{T_E} Y(t) dt \]

- Is biased in general where: \(E(\hat{\phi}) \neq \phi \)
- An unbiased or low-bias estimator is desired.
Measures of performance:
Point Estimator

• Usually, system performance measures can be put into the common framework of θ or ϕ:
 • Example: The proportion of days on which sales are lost through an out-of-stock situation, let:

\[
Y(i) = \begin{cases}
1, & \text{if out of stock on day } i \\
0, & \text{otherwise}
\end{cases}
\]

• Example: Proportion of time that the queue length is larger than k_0

\[
Y(t) = \begin{cases}
1, & \text{if } L_Q(t) > k_0 \\
0, & \text{otherwise}
\end{cases}
\]
Measures of performance:
Point Estimator

- Performance measure that does not fit: quantile or percentile: \(P(Y \leq \theta) = p \)

- Estimating quantiles: the inverse of the problem of estimating a proportion or probability.

- Consider a histogram of the observed values \(Y \):
 - Find \(\hat{\theta} \) such that 100p% of the histogram is to the left of (smaller than) \(\hat{\theta} \).

- A widely used performance measure is the median, which is the 0.5 quantile or 50-th percentile.
Measures of performance:
Confidence-Interval Estimation

- Suppose X_1, X_2, \ldots, X_n are an independent sample from a normally distributed population with mean μ and variance σ^2.
- Given the sample mean and sample variance as
 \[
 \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2
 \]
- Then $T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$ has Student's t-distribution with $n-1$ degrees of freedom
- If c is the p-th quantile of this distribution, then $P(-c < T < c) = p$
- Consequently
 \[
P\left(\bar{X} - c \frac{S}{\sqrt{n}} < \mu < \bar{X} + c \frac{S}{\sqrt{n}} \right) = p
 \]
Measures of performance:
Confidence-Interval Estimation

- To understand confidence intervals fully, distinguish between measures of error and measures of risk:
 - confidence interval versus prediction interval
- Suppose the model is the normal distribution with mean θ, variance σ^2 (both unknown).
 - Let Y_i be the average cycle time for parts produced on the i-th replication of the simulation (its mathematical expectation is θ).
 - Average cycle time will vary from day to day, but over the long-run the average of the averages will be close to θ.
- Sample variance across R replications:

\[
S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_{i\cdot} - \bar{Y}_{\cdot\cdot})^2
\]
Measures of performance:
Confidence-Interval Estimation

• **Confidence Interval (CI):**
 - A measure of **error**.
 - Where \(Y_i \) are normally distributed.

\[
\bar{Y}_n \pm t_{\alpha, R-1} \frac{S}{\sqrt{R}}
\]

- We cannot know for certain how far \(\bar{Y}_n \) is from \(\theta \) but CI attempts to bound that error.
- A CI, such as 95%, tells us how much we can trust the interval to actually bound the error between \(\bar{Y}_n \) and \(\theta \).
- The more replications we make, the less error there is in \(\bar{Y}_n \) (converging to 0 as \(R \) goes to infinity).
Measures of performance:
Confidence-Interval Estimation

- **Prediction Interval (PI):**
 - A measure of **risk**.
 - A good guess for the average cycle time on a particular day is our estimator but it is unlikely to be exactly right.
 - PI is designed to be wide enough to contain the actual average cycle time on any particular day with high probability.
 - Normal-theory prediction interval:

\[
\bar{Y}_n \pm t_{\frac{a}{2}, R-1} S \sqrt{1 + \frac{1}{R}}
\]

- The length of PI will not go to 0 as \(R \) increases because we can never simulate away risk.
- Prediction Intervals limit is: \(\theta \pm z_{\frac{a}{2}} \sigma \)
Measures of performance:
Confidence-Interval Estimation
Measures of performance:
Prediction-Interval Estimation
Measures of performance:
Confidence-Interval Estimation

\[z_{1 - \frac{\alpha}{2}} \]

\[t_{n-1, 1 - \frac{\alpha}{2}} \]
Measures of performance:
Confidence-Interval Estimation

Prof. Dr. Mesut Güneş • Ch. 11 Output Analysis for a Single Model
Output Analysis for Terminating Simulations
Output Analysis for Terminating Simulations

• A terminating simulation: runs over a simulated time interval \([0, T_E]\).

• A common goal is to estimate:

\[
\theta = E\left(\frac{1}{n} \sum_{i=1}^{n} Y_i\right), \quad \text{for discrete output}
\]

\[
\phi = E\left(\frac{1}{T_E} \int_{0}^{T_E} Y(t) \, dt\right), \quad \text{for continuous output } Y(t), \ 0 \leq t \leq T_E
\]

• In general, independent replications are used, each run using a different random number stream and independently chosen initial conditions.
Statistical Background

• Important to distinguish *within-replication* data from *across-replication* data.

• For example, simulation of a manufacturing system
 • Two performance measures of that system: cycle time for parts and work in process (WIP).
 • Let Y_{ij} be the cycle time for the j-th part produced in the i-th replication.
 • Across-replication data are formed by summarizing within-replication data $ar{Y}_i$.

<table>
<thead>
<tr>
<th>Within-Replication Data</th>
<th>Across-Rep. Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{11} Y_{12} ... Y_{1n_1}</td>
<td>\bar{Y}_1, S_1^2, H_1</td>
</tr>
<tr>
<td>Y_{21} Y_{22} ... Y_{2n_2}</td>
<td>\bar{Y}_2, S_2^2, H_2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Y_{R1} Y_{R2} ... Y_{Rn_R}</td>
<td>\bar{Y}_R, S_R^2, H_R</td>
</tr>
</tbody>
</table>
| $\bar{Y}_{..}$, S^2, H | }
Statistical Background

- **Across Replication:**
 - Discrete time data
 - The average: \(\bar{Y}_r = \frac{1}{R} \sum_{i=1}^{R} Y_{i_r} \)
 - The sample variance: \(S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_{i_r} - \bar{Y}_r)^2 \)
 - The confidence-interval half-width: \(H = t_{\frac{\alpha}{2}, R-1} \frac{S}{\sqrt{R}} \)

- **Within replication:**
 - Continuous time data
 - The average: \(\bar{Y}_{i_t} = \frac{1}{T_{E_i}} \int_{0}^{T_{E_i}} Y_i(t) dt \)
 - The sample variance: \(S_{i_t}^2 = \frac{1}{T_{E_i}} \int_{0}^{T_{E_i}} \left(Y_i(t) - \bar{Y}_{i_t}\right)^2 dt \)
Statistical Background

- Overall sample average, \bar{Y}, and the interval replication sample averages, \bar{Y}_i, are always unbiased estimators of the expected daily average cycle time or daily average WIP.

- **Across-replication** data are **independent** and **identically distributed**
 - Same model
 - Different random numbers for each replications

- **Within-replication** data are **not independent** and not identically distributed
 - One random number stream is used within a replication
Output Analysis for Terminating Simulations
Confidence Intervals with Specified Precision
Confidence Intervals with Specified Precision

• The half-length H of a $100(1 - \alpha)\%$ confidence interval for a mean θ, based on the t distribution, is given by:

$$H = t_{\frac{\alpha}{2}, R-1} \frac{S}{\sqrt{R}}$$

S^2 is the sample variance
R is the number of replications

• Suppose that an error criterion ε is specified with probability $1-\alpha$, a sufficiently large sample size should satisfy:

$$P\left(\left|\bar{Y}_{..} - \theta\right| < \varepsilon\right) \geq 1 - \alpha$$
Confidence Intervals with Specified Precision

- Assume that an initial sample of size R_0 (independent) replications has been observed.
- Obtain an initial estimate S_0^2 of the population variance σ^2.

\[H = t_{\frac{\alpha}{2}, R-1} \frac{S_0}{\sqrt{R}} \leq \varepsilon \]

- Then, choose sample size R such that $R \geq R_0$
- Solving for R

\[R \geq \left(\frac{t_{\alpha/2, R-1} S_0}{\varepsilon} \right)^2 \]
Confidence Intervals with Specified Precision

- Since \(t_{\alpha/2, R-1} \geq z_{\alpha/2} \), an initial estimate for \(R \) is given by

\[
R \geq \left(\frac{z_{\alpha/2} S_0}{\varepsilon} \right)^2, \quad z_{\alpha/2} \text{ is the standard normal distribution.}
\]

- For large \(R \) \(t_{\alpha/2, R-1} \approx z_{\alpha/2} \)
- \(R \) is the smallest integer satisfying \(R \geq R_0 \)

- Collect \(R - R_0 \) additional observations.

- The 100(1- \(\alpha \)\)% confidence interval for \(\theta \):

\[
\bar{Y} \pm t_{\alpha/2, R-1} \frac{S}{\sqrt{R}}
\]
Confidence Intervals with Specified Precision

- Call Center Example: estimate the agent’s utilization ρ over the first 2 hours of the workday.
 - Initial sample of size $R_0 = 4$ is taken and an initial estimate of the population variance is $S_0^2 = (0.072)^2 = 0.00518$.
 - The error criterion is $\varepsilon = 0.04$ and confidence coefficient is $1 - \alpha = 0.95$, hence, the final sample size must be at least:
 \[
 \left(\frac{z_{0.025}S_0}{\varepsilon} \right)^2 = \frac{1.96^2 \times 0.00518}{0.04^2} = 12.44
 \]

- For the final sample size:

<table>
<thead>
<tr>
<th>R</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{0.025,R-1}$</td>
<td>2.18</td>
<td>2.16</td>
<td>2.14</td>
</tr>
<tr>
<td>$\left(\frac{t_{\alpha/2,R-1}S_0}{\varepsilon} \right)^2$</td>
<td>15,39</td>
<td>15,1</td>
<td>14,83</td>
</tr>
</tbody>
</table>

- $R = 15$ is the smallest integer satisfying the error criterion so $R - R_0 = 11$ additional replications are needed.
- After obtaining additional outputs, half-width should be checked.
Output Analysis for Terminating Simulations

Quantiles
Quantiles

- Here, a proportion or probability is treated as a special case of a mean.
- When the number of independent replications Y_1, \ldots, Y_R is large enough that $t_{\alpha/2, R-1} \approx z_{\alpha/2}$, the confidence interval for a probability p is often written as:

$$
\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{R - 1}}
$$

- A quantile is the inverse of the probability estimation problem:

Find θ such that $P(Y \leq \theta) = p$
Quantiles

- The best way is to sort the outputs and use the \((R \times p)\)-th smallest value, i.e., find \(\theta\) such that \(100p\%\) of the data in a histogram of \(Y\) is to the left of \(\theta\).

- Example: If we have \(R=10\) replications and we want the \(p = 0.8\) quantile, first sort, then estimate \(\theta\) by the \((10)(0.8) = 8\)-th smallest value (round if necessary).

5.6	←sorted data
7.1	
8.8	
8.9	
9.5	
9.7	
10.1	
12.2	←this is our point estimate
12.5	
12.9	
Quantiles

- Confidence Interval of Quantiles: An approximate \((1-\alpha)100\%\) confidence interval for \(\theta\) can be obtained by finding two values \(\theta_l\) and \(\theta_u\).
 - \(\theta_l\) cuts off \(100p_l\)% of the histogram (the \(R \times p_l\) smallest value of the sorted data).
 - \(\theta_u\) cuts off \(100p_u\)% of the histogram (the \(R \times p_u\) smallest value of the sorted data).

\[
\begin{align*}
\text{where } p_\ell &= p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}} \\
\text{and } p_u &= p + z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}}
\end{align*}
\]
Quantiles

● Example: Suppose $R = 1000$ replications, to estimate the $p = 0.8$ quantile with a 95% confidence interval.

 • First, sort the data from smallest to largest.
 • Then estimate of θ by the $(1000)(0.8) = 800$-th smallest value, and the point estimate is 212.03.
 • And find the confidence interval:

\[
p_l = 0.8 - 1.96 \sqrt{\frac{0.8(1 - 0.8)}{1000 - 1}} = 0.78
\]

\[
p_u = 0.8 + 1.96 \sqrt{\frac{0.8(1 - 0.8)}{1000 - 1}} = 0.82
\]

The CI is the 780th and 820th smallest values

 • The point estimate is 212.03
 • The 95% CI is [188.96, 256.79]
Output Analysis for Steady-State Simulation
Output Analysis for Steady-State Simulation

- Consider a single run of a simulation model to estimate a steady-state or long-run characteristics of the system.
- The single run produces observations Y_1, Y_2, \ldots (generally the samples of an autocorrelated time series).
- Performance measure:

\[
\theta = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i, \quad \text{for discrete measure} \quad \text{(with probability 1)}
\]

\[
\phi = \lim_{T_E \to \infty} \frac{1}{T_E} \int_0^{T_E} Y(t) dt, \quad \text{for continuous measure} \quad \text{(with probability 1)}
\]

- Independent of the initial conditions.
Output Analysis for Steady-State Simulation

- The sample size is a design choice, with several considerations in mind:
 - Any bias in the point estimator that is due to artificial or arbitrary initial conditions (bias can be severe if run length is too short).
 - Desired precision of the point estimator.
 - Budget constraints on computer resources.

- Notation: the estimation of θ from a discrete-time output process.
 - One replication (or run), the output data: Y_1, Y_2, Y_3, \ldots
 - With several replications, the output data for replication r: $Y_{r1}, Y_{r2}, Y_{r3}, \ldots$
Output Analysis for Steady-State Simulation

Initialization Bias
Initialization Bias

- Methods to reduce the point-estimator bias caused by using artificial and unrealistic initial conditions:

1. Intelligent initialization.

2. Divide simulation into an initialization phase and data-collection phase.
Initialization Bias

- Intelligent initialization

- Initialize the simulation in a state that is more representative of long-run conditions.

- If the system exists, collect data on it and use these data to specify more nearly typical initial conditions.

- If the system can be simplified enough to make it mathematically solvable, e.g., queueing models, solve the simplified model to find long-run expected or most likely conditions, use that to initialize the simulation.
Initialization Bias

- Divide each simulation into two phases:
 - An initialization phase, from time 0 to time T_0.
 - A data-collection phase, from T_0 to the stopping time $T_0 + T_E$.
- The choice of T_0 is important:
 - After T_0, system should be more nearly representative of steady-state behavior.
- System has reached steady state: the probability distribution of the system state is close to the steady-state probability distribution (bias of response variable is negligible).

![Diagram showing initialization and data-collection phases with specified initial conditions and steady-state initial conditions, with times T_0 and $T_0 + T_E$.](image-url)
Initialization Bias: Example

- M/G/1 queueing example: A total of 10 independent replications were made.
 - Each replication begins in the empty and idle state.
 - Simulation run length on each replication: $T_0 + T_E = 15000$ time units.
 - Response variable: queue length, $L_Q(t,r)$ (at time t of the r-th replication).
 - Batching intervals of 1000 minutes, batch means
 \[Y_{rj} = \int_{(j-1)1000}^{j1000} L_Q(t,r)dt \]

- Ensemble averages:
 - To identify trend in the data due to initialization bias
 - The average corresponding batch means across replications:
 \[\bar{Y}_{.j} = \frac{1}{R} \sum_{r=1}^{R} Y_{rj} \]
Initialization Bias: Example

- A plot of the ensemble averages, \bar{Y}_j, versus $1000j$, for $j = 1, 2, \ldots, 15$.

![Graph showing the ensemble averages \bar{Y}_j versus $1000j$, for $j = 1, 2, \ldots, 15$.]
Initialization Bias: Example

- Cumulative average sample mean (after deleting d observations):

$$
\bar{Y}_{\cdot}(n,d) = \frac{1}{n-d} \sum_{j=d+1}^{n} \bar{Y}_{\cdot,j}
$$

- Not recommended to determine the initialization phase.
- It is apparent that downward bias is present and this bias can be reduced by deletion of one or more observations.
Initialization Bias

• No widely accepted, objective and proven technique to guide how much data to delete to reduce initialization bias to a negligible level.

• Plots can be misleading but they are still recommended
 • Ensemble averages reveal a smoother and more precise trend as the number of replications (R) increases.
 • Ensemble averages can be smoothed further by plotting a moving average.
 • Cumulative average becomes less variable as more data are averaged.
 • The more correlation present, the longer it takes for \bar{Y}_j to approach steady state.
 • Different performance measures could approach steady state at different rates ➔ What to do?
Output Analysis for Steady-State Simulation

Error Estimation
Error Estimation

- If \(\{Y_1, \ldots, Y_n\} \) are not statistically independent, then \(S^2/n \) is a biased estimator of the true variance.
 - Almost always the case when \(\{Y_1, \ldots, Y_n\} \) is a sequence of output observations from within a single replication (autocorrelated sequence, time-series).

- Suppose the point estimator \(\theta \) is the sample mean

\[
\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \quad V(\bar{Y}) = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \text{cov}(Y_i, Y_j)
\]

- Variance of \(\bar{Y} \) is very hard to estimate.

- For systems with steady state, produce an output process that is approximately covariance stationary (after the transient phase).
 - The covariance between two random variables in the time series depends only on the lag, i.e., the number of observations between them.
Error Estimation

- For a covariance stationary time series, \(\{Y_1, \ldots, Y_n\} \):
 - Lag-\(k \) autocovariance is: \(\gamma_k = \text{cov}(Y_1, Y_{1+k}) = \text{cov}(Y_i, Y_{i+k}) \)
 - Lag-\(k \) autocorrelation is: \(\rho_k = \frac{\gamma_k}{\sigma^2} \), \(-1 \leq \rho_k \leq 1 \)
 - If a time series is covariance stationary, then the variance of \(\bar{Y} \) is:
 \[
 V(\bar{Y}) = \frac{\sigma^2}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]
 \]
 - The expected value of the variance estimator is:
 \[
 E\left(\frac{S^2}{n} \right) = B \cdot V(\bar{Y}), \quad \text{where } B = \frac{n/c - 1}{n - 1}
 \]
Error Estimation

(a) $\rho_k > 0$ for most k

Stationary time series Y_i exhibiting positive autocorrelation.

- Series slowly drifts above and then below the mean.

(b) $\rho_k < 0$ for most k

Stationary time series Y_i exhibiting negative autocorrelation.

(c) Non-stationary time series with an upward trend
Error Estimation

• The expected value of the variance estimator is:

\[
E\left(\frac{S^2}{n} \right) = B \cdot V(\bar{Y}), \quad \text{where } B = \frac{n/c - 1}{n - 1} \text{ and } V(\bar{Y}) \text{ is the variance of } \bar{Y}
\]

• If \(Y_i \) are independent \(\Rightarrow \rho_k = 0 \), then \(S^2/n \) is an unbiased estimator of \(V(\bar{Y}) \).

• If the autocorrelation \(\rho_k \) are primarily positive, then \(S^2/n \) is biased low as an estimator of \(V(\bar{Y}) \).

• If the autocorrelation \(\rho_k \) are primarily negative, then \(S^2/n \) is biased high as an estimator of \(V(\bar{Y}) \).
Output Analysis for Steady-State Simulation

Replication Method
Replication Method

- Use to estimate point-estimator variability and to construct a confidence interval.
- Approach: make \(R \) replications, initializing, and deleting from each one the same way.
- Important to do a thorough job of investigating the initial-condition bias:
 - Bias is **not affected by the number of replications**, instead, it is affected only by deleting more data (i.e., increasing \(T_0 \)) or extending the length of each run (i.e. increasing \(T_E \)).
- Basic raw output data \(\{Y_{rj}, r = 1, ..., R; j = 1, ..., n\} \) is derived by:
 - Individual observation from within replication \(r \).
 - Batch mean from within replication \(r \) of some number of discrete-time observations.
 - Batch mean of a continuous-time process over time interval \(j \).

<table>
<thead>
<tr>
<th>Replication</th>
<th>Observations</th>
<th>Replication Averages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (\cdots) d (\cdots) n</td>
<td>(\bar{Y}_*,(n,d))</td>
</tr>
<tr>
<td>1</td>
<td>(Y_{1,1}) (\cdots) (Y_{1,d}) (Y_{1,d+1}) (\cdots) (Y_{1,n})</td>
<td>(\bar{Y}_1,(n,d))</td>
</tr>
<tr>
<td>2</td>
<td>(Y_{2,1}) (\cdots) (Y_{2,d}) (Y_{2,d+1}) (\cdots) (Y_{2,n})</td>
<td>(\bar{Y}_2,(n,d))</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots (\cdots) \vdots (\cdots) \vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(R)</td>
<td>(Y_{R,1}) (\cdots) (Y_{R,d}) (Y_{R,d+1}) (\cdots) (Y_{R,n})</td>
<td>(\bar{Y}_R,(n,d))</td>
</tr>
<tr>
<td>(\bar{Y}_1) (\cdots) (\bar{Y}d) (\bar{Y}{(d+1)}) (\cdots) (\bar{Y}_n)</td>
<td>(\bar{Y}_*,(n,d))</td>
<td></td>
</tr>
</tbody>
</table>
Replication Method

• Each replication is regarded as a single sample for estimating θ. For replication r:

$$\overline{Y}_{n,d}(r) = \frac{1}{n-d} \sum_{j=d+1}^{n} Y_{rj}$$

• The overall point estimator:

$$\overline{Y}_{..}(n,d) = \frac{1}{R} \sum_{r=1}^{R} \overline{Y}_{r..}(n,d) \quad \text{and} \quad \mathbb{E}[\overline{Y}_{..}(n,d)] = \theta_{n,d}$$

• If d and n are chosen sufficiently large:

 • $\theta_{n,d} \sim \theta$.

 • $\overline{Y}_{..}(n,d)$ is an approximately unbiased estimator of θ.

Prof. Dr. Mesut Güneş • Ch. 11 Output Analysis for a Single Model
Replication Method

- To estimate the standard error of \(\bar{Y}_{\cdot \cdot} \), compute the sample variance and standard error:

\[
S^2 = \frac{1}{R-1} \sum_{r=1}^{R} (\bar{Y}_{r \cdot} - \bar{Y}_{\cdot \cdot})^2 = \frac{1}{R-1} \left(\sum_{r=1}^{R} \bar{Y}_{r \cdot}^2 - R \bar{Y}_{\cdot \cdot}^2 \right)
\]

and

\[
s.e.(\bar{Y}_{\cdot \cdot}) = \frac{S}{\sqrt{R}}
\]

Mean of the undeleted observations from the r-th replication.

Mean of \(\bar{Y}_{1 \cdot}(n,d), \ldots, \bar{Y}_{R \cdot}(n,d) \)

Standard error
Replication Method

- Length of each replication \((n)\) beyond deletion point \((d)\):
 \[
 (n - d) > 10d \quad \text{or} \quad T_E > 10T_0
 \]

- Number of replications \((R)\) should be as many as time permits, up to about 25 replications.

- For a fixed sample size \((n)\), as fewer data are deleted \((\downarrow d)\):
 - Confidence interval shifts: greater bias.
 - Standard error of \(\bar{Y}_n(n,d)\) decreases: decrease variance.

Reducing bias \(\leftrightarrow\) Increasing variance

Trade off
Replication Method: Example

- M/G/1 queueing example:
- Suppose $R=10$, each of length $T_E = 15000$ time units, starting at time 0 in the empty and idle state, initialized for $T_0 = 2000$ time units before data collection begins.
- Each batch means is the average number of customers in queue for a 1000-time-unit interval.
- The 1-st two batch means are deleted ($d=2$).

- The point estimator and standard error are:
 $$\bar{Y}_{..}(15,2) = 8.43 \quad \text{and} \quad s.e.(\bar{Y}_{..}(15,2)) = 1.59$$

- The 95% CI for long-run mean queue length is:
 $$\bar{Y}_{..} - t_{\alpha/2,R-1} \frac{S}{\sqrt{R}} \leq \theta \leq \bar{Y}_{..} + t_{\alpha/2,R-1} \frac{S}{\sqrt{R}}$$
 $$8.43 - 2.26(1.59) \leq L_Q \leq 8.43 + 2.26(1.59)$$

- A high degree of confidence that the long-run mean queue length is between 4.84 and 12.02 (if d and n are “large” enough).

<table>
<thead>
<tr>
<th>Replication, (r)</th>
<th>(\bar{Y}_r,(15,0))</th>
<th>(\bar{Y}_r,(15,1))</th>
<th>(\bar{Y}_r,(15,2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.27</td>
<td>3.24</td>
<td>3.25</td>
</tr>
<tr>
<td>2</td>
<td>16.25</td>
<td>17.20</td>
<td>17.83</td>
</tr>
<tr>
<td>3</td>
<td>15.19</td>
<td>15.72</td>
<td>15.43</td>
</tr>
<tr>
<td>4</td>
<td>7.24</td>
<td>7.28</td>
<td>7.71</td>
</tr>
<tr>
<td>5</td>
<td>2.93</td>
<td>2.98</td>
<td>3.11</td>
</tr>
<tr>
<td>6</td>
<td>4.36</td>
<td>4.82</td>
<td>4.91</td>
</tr>
<tr>
<td>7</td>
<td>8.44</td>
<td>8.96</td>
<td>9.45</td>
</tr>
<tr>
<td>8</td>
<td>5.06</td>
<td>5.32</td>
<td>5.27</td>
</tr>
<tr>
<td>9</td>
<td>6.33</td>
<td>6.14</td>
<td>6.24</td>
</tr>
<tr>
<td>10</td>
<td>10.10</td>
<td>10.48</td>
<td>11.07</td>
</tr>
</tbody>
</table>

- For replication \(r=1\), the sample mean is \(7.94\) with \(S^2 = 826.20\).
- For replication \(r=2\), the sample mean is \(8.21\) with \(S^2 = 894.68\).
- For replication \(r=3\), the sample mean is \(8.43\) with \(S^2 = 938.34\).
Output Analysis for Steady-State Simulation

Sample Size
Sample Size

- To estimate a long-run performance measure, θ, within $\pm \varepsilon$ with confidence $100(1-\alpha)\%$.

- M/G/1 queuing example (cont.):
 - We know: $R_0 = 10$, $d = 2$ deleted and $S_0^2 = 25.30$.
 - To estimate the long-run mean queue length, L_Q, within $\varepsilon = 2$ customers with 90% confidence ($\alpha = 10\%$).
 - Initial estimate:
 \[
 R \geq \left(\frac{z_{0.05}S_0}{\varepsilon} \right)^2 = \frac{1.645^2 \times 25.30}{2^2} = 17.1
 \]
 - Hence, at least 18 replications are needed, next try $R = 18, 19, \ldots$
 - Using $R \geq \left(\frac{t_{0.05,R-1}S_0}{\varepsilon} \right)^2$. We found that:
 \[
 R = 19 \geq \left(\frac{t_{0.05,19-1}S_0}{\varepsilon} \right)^2 = 1.73^2 \times \frac{25.3}{4} = 18.93
 \]
 - Additional replications needed is $R - R_0 = 19 - 10 = 9$.

Prof. Dr. Mesut Güneş • Ch. 11 Output Analysis for a Single Model
Sample Size

• An alternative to increasing R is to increase total run length $T_0 + T_E$ within each replication.

• Approach:
 • Increase run length from $(T_0 + T_E)$ to $(R/R_0)(T_0 + T_E)$, and
 • delete additional amount of data, from time 0 to time $(R/R_0)T_0$.

• Advantage: any residual bias in the point estimator should be further reduced.

• However, it is necessary to have saved the state of the model at time $T_0 + T_E$ and to be able to restart the model.
Output Analysis for Steady-State Simulation

Batch Means
Batch Means for Interval Estimation

- **Using a single, long replication:**
 - Problem: data are dependent so the usual estimator is biased.
 - Solution: batch means.

- **Batch means:** divide the output data from 1 replication (after appropriate deletion) into a few large batches and then treat the means of these batches as if they were independent.

- **A continuous-time process**, \{Y(t), T_0 \leq t \leq T_0 + T_E\}:
 - \(k\) batches of size \(m = T_E / k\), batch means:
 \[
 \bar{Y}_j = \frac{1}{m} \int_{(j-1)m}^{jm} Y(t + T_0) dt \quad j = 1, 2, \ldots, k
 \]

- **A discrete-time process**, \{Y_i, i = d+1, d+2, \ldots, n\}:
 - \(k\) batches of size \(m = (n - d)/k\), batch means:
 \[
 \bar{Y}_j = \frac{1}{m} \sum_{i=(j-1)m+1}^{jm} Y_{i+d} \quad j = 1, 2, \ldots, k
 \]
Batch Means for Interval Estimation

Starting either with continuous-time or discrete-time data, the variance of the sample mean is estimated by:

\[
S^2 = \frac{1}{k} \sum_{j=1}^{k} \frac{(\bar{Y}_j - \bar{Y})^2}{k-1} = \sum_{j=1}^{k} \frac{\bar{Y}_j^2}{k(k-1)}
\]

If the batch size is sufficiently large, successive batch means will be approximately independent, and the variance estimator will be approximately unbiased.

No widely accepted and relatively simple method for choosing an acceptable batch size \(m \). Some simulation software does it automatically.
The Art of Data Presentation
The art of data presentation

- Always get the following statistical sample data
 - Min
 - Max
 - Mean
 - Median
 - Standard deviation
 - Confidence interval half width
 - 1st-quartile
 - 3rd-quartile
Histograms
Box Plot

- Various types of Box Plots
 - Standard
 - Variable-width Box Plot
 - Notched Box Plot
 - Variable-width Notched Box Plot
Box Plot

- Min
- Quartile
- Median
- Mean
- Quartile
- Max
Box Plot
Mean with confidence interval
Summary

- Stochastic discrete-event simulation is a statistical experiment.
 - Purpose of statistical experiment: obtain estimates of the performance measures of the system.
 - Purpose of statistical analysis: acquire some assurance that these estimates are sufficiently precise.
- Distinguish simulation runs with respect to output analysis:
 - Terminating simulations and
 - Steady-state simulations.
- Steady-state output data are more difficult to analyze
 - Decisions: initial conditions and run length
 - Possible solutions to bias: deletion of data and increasing run length
- Statistical precision of point estimators are estimated by standard-error or confidence interval
- Method of independent replications was emphasized.
- Batch mean for a long run replication
- Art of data representation