Telematics
Chapter 2

The Internet as a Blackbox: Terminology & Concepts

Dr. habil. Emmanuel Baccelli
INRIA / Freie Universität Berlin

Institute of Computer Science
Computer Systems and Telematics (CST)
Contents

● The Big Picture: Internet as a Bit Delivery Service
 ● Virtual Pipe

● Basic Terminology
 ● Data vs. Information vs. Signal
 ● Communication Protocol

● Basic Concepts
 ● Evaluation Communication Quality
 ● Client-Server Architecture
 ● Peer-to-Peer Architecture
Back to a String and Tin Cans
Back to a String and Tin Cans
Back to a String and Tin Cans

Duplex Channel
Connecting Two Individuals?

Duplex Channel
Connecting Two Sites?

Problem: Waste of resources! How can we share resources?
Ressource Sharing: Multiplexing, Addressing

NEEDS OPTIMIZATION!
Sharing Communication Resources

- Sharing resources saves costs:
 - By communication, one can access resources of other parties
 - Several institutions can share expensive resources
- Requirements:
 - Efficient mechanisms for data exchange between components of a distributed system
 - Efficient mechanisms to minimize blocking due to multiplexing

- The “driving power” for the enormous increase of data communication:
 - Decreasing costs for hardware...
 ... while the computing power increases.
 - Jevons paradox
Circuit Switching vs. Packet Switching

- **Circuit switching** establishes dynamically a dedicated communication channel before communication starts
 - Explicit communication channel => transmitted data don’t need to carry addresses
 - Provides full bandwidth of the channel to the parties
 - Disadvantages? What happens with the reserved resources during silence?
Packet switching allows parallel sharing of the same resource for different communication endpoints

- Overhead: Transmitted data need to carry address
- Buffers introduce variable delay but are required. Why?
The Internet as a Bit Delivery Service

- Port numbers are coded on 16 bits, from 0 to 65535
- IPv4 addresses are coded on 32 bits, represented as four octets A.B.C.D
The Internet as a Bit Delivery Service

• Port numbers are coded on 16 bits, from 0 to 65535
• IPv6 addresses are coded on 128 bits, represented in colon hex notation
The Internet as a Bit Delivery Service

- **Port** allows application multiplexing on a single host
- **Application Programming Interface (API)** allows developers to access other services
Contents

● The Big Picture: Internet as a Bit Delivery Service
 ● Virtual Pipe

● Basic Terminology
 ● Data vs. Information vs. Signal
 ● Communication Protocol

● Basic Concepts
 ● Evaluation Communication Quality
 ● Client-Server Architecture
 ● Peer-to-Peer Architecture
What are we sending/receiving?

Data (File, Stream...)

Digital Data (= Binary Data)

Digital Data Communication = processing and transport of digital data between interconnected computers
The Term of Data

- An apple can be represented by:
 - The word “apple”
 - The drawing of an apple
 - etc.

- A definition for “data”:
 - **Representation** of facts, concepts, and statements in a formal way which is **suitable for communication, interpretation, and processing** by human beings or technical means.

- Examples for data representation
 - Spoken language
 - Sign language
 - Written language

Objects of thought
- Facts, Concepts, Ideas, Models, etc.

Representation in a formal way

Conventions for the representation of objects of thought.
Example Data: ASCII Characters

- American Standard Code for Information Interchange (ASCII)
- Character encoding (English characters only)
- Printable, non-printable, and control characters

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hex</th>
<th>Oct</th>
<th>Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Oct</th>
<th>Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Oct</th>
<th>Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Oct</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>0</td>
<td>[space]</td>
<td>32</td>
<td>20</td>
<td>40</td>
<td></td>
<td>64</td>
<td>40</td>
<td>100</td>
<td>@</td>
<td>96</td>
<td>60</td>
<td>140</td>
<td>`</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>1</td>
<td></td>
<td>33</td>
<td>21</td>
<td>41</td>
<td>!</td>
<td>65</td>
<td>41</td>
<td>101</td>
<td>A</td>
<td>97</td>
<td>61</td>
<td>141</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>2</td>
<td></td>
<td>34</td>
<td>22</td>
<td>42</td>
<td>"</td>
<td>66</td>
<td>42</td>
<td>102</td>
<td>B</td>
<td>98</td>
<td>62</td>
<td>142</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>3</td>
<td></td>
<td>35</td>
<td>23</td>
<td>43</td>
<td>#</td>
<td>67</td>
<td>43</td>
<td>103</td>
<td>C</td>
<td>99</td>
<td>63</td>
<td>143</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td>4</td>
<td></td>
<td>36</td>
<td>24</td>
<td>44</td>
<td>$</td>
<td>68</td>
<td>44</td>
<td>104</td>
<td>D</td>
<td>100</td>
<td>64</td>
<td>144</td>
<td>d</td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td>5</td>
<td></td>
<td>37</td>
<td>25</td>
<td>45</td>
<td>%</td>
<td>69</td>
<td>45</td>
<td>105</td>
<td>E</td>
<td>101</td>
<td>65</td>
<td>145</td>
<td>e</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>6</td>
<td></td>
<td>38</td>
<td>26</td>
<td>46</td>
<td>&</td>
<td>70</td>
<td>46</td>
<td>106</td>
<td>F</td>
<td>102</td>
<td>66</td>
<td>146</td>
<td>f</td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td>7</td>
<td></td>
<td>39</td>
<td>27</td>
<td>47</td>
<td>'</td>
<td>71</td>
<td>47</td>
<td>107</td>
<td>G</td>
<td>103</td>
<td>67</td>
<td>147</td>
<td>g</td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td>8</td>
<td></td>
<td>40</td>
<td>28</td>
<td>50</td>
<td>(</td>
<td>72</td>
<td>48</td>
<td>110</td>
<td>H</td>
<td>104</td>
<td>68</td>
<td>150</td>
<td>h</td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td>9</td>
<td></td>
<td>41</td>
<td>29</td>
<td>51</td>
<td>)</td>
<td>73</td>
<td>49</td>
<td>111</td>
<td>I</td>
<td>105</td>
<td>69</td>
<td>151</td>
<td>i</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>A</td>
<td></td>
<td>42</td>
<td>2A</td>
<td>52</td>
<td>*</td>
<td>74</td>
<td>4A</td>
<td>112</td>
<td>J</td>
<td>106</td>
<td>6A</td>
<td>152</td>
<td>j</td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td>B</td>
<td></td>
<td>43</td>
<td>2B</td>
<td>53</td>
<td>+</td>
<td>75</td>
<td>4B</td>
<td>113</td>
<td>K</td>
<td>107</td>
<td>6B</td>
<td>153</td>
<td>k</td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td>C</td>
<td></td>
<td>44</td>
<td>2C</td>
<td>54</td>
<td>,</td>
<td>76</td>
<td>4C</td>
<td>114</td>
<td>L</td>
<td>108</td>
<td>6C</td>
<td>154</td>
<td>l</td>
</tr>
<tr>
<td>13</td>
<td>0D</td>
<td>D</td>
<td></td>
<td>45</td>
<td>2D</td>
<td>55</td>
<td>-</td>
<td>77</td>
<td>4D</td>
<td>115</td>
<td>M</td>
<td>109</td>
<td>6D</td>
<td>155</td>
<td>m</td>
</tr>
<tr>
<td>14</td>
<td>0E</td>
<td>E</td>
<td></td>
<td>46</td>
<td>2E</td>
<td>56</td>
<td>.</td>
<td>78</td>
<td>4E</td>
<td>116</td>
<td>N</td>
<td>110</td>
<td>6E</td>
<td>156</td>
<td>n</td>
</tr>
<tr>
<td>15</td>
<td>0F</td>
<td>F</td>
<td></td>
<td>47</td>
<td>2F</td>
<td>57</td>
<td>/</td>
<td>79</td>
<td>4F</td>
<td>117</td>
<td>O</td>
<td>111</td>
<td>6F</td>
<td>157</td>
<td>o</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td></td>
<td>48</td>
<td>30</td>
<td>60</td>
<td>0</td>
<td>80</td>
<td>50</td>
<td>120</td>
<td>P</td>
<td>112</td>
<td>70</td>
<td>160</td>
<td>p</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>11</td>
<td></td>
<td>49</td>
<td>31</td>
<td>61</td>
<td>1</td>
<td>81</td>
<td>51</td>
<td>121</td>
<td>Q</td>
<td>113</td>
<td>71</td>
<td>161</td>
<td>q</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>12</td>
<td></td>
<td>50</td>
<td>32</td>
<td>62</td>
<td>2</td>
<td>82</td>
<td>52</td>
<td>122</td>
<td>R</td>
<td>114</td>
<td>72</td>
<td>162</td>
<td>r</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>13</td>
<td></td>
<td>51</td>
<td>33</td>
<td>63</td>
<td>3</td>
<td>83</td>
<td>53</td>
<td>123</td>
<td>S</td>
<td>115</td>
<td>73</td>
<td>163</td>
<td>s</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>14</td>
<td></td>
<td>52</td>
<td>34</td>
<td>64</td>
<td>4</td>
<td>84</td>
<td>54</td>
<td>124</td>
<td>T</td>
<td>116</td>
<td>74</td>
<td>164</td>
<td>t</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>15</td>
<td></td>
<td>53</td>
<td>35</td>
<td>65</td>
<td>5</td>
<td>85</td>
<td>55</td>
<td>125</td>
<td>U</td>
<td>117</td>
<td>75</td>
<td>165</td>
<td>u</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>16</td>
<td></td>
<td>54</td>
<td>36</td>
<td>66</td>
<td>6</td>
<td>86</td>
<td>56</td>
<td>126</td>
<td>V</td>
<td>118</td>
<td>76</td>
<td>166</td>
<td>v</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>17</td>
<td></td>
<td>55</td>
<td>37</td>
<td>67</td>
<td>7</td>
<td>87</td>
<td>57</td>
<td>127</td>
<td>W</td>
<td>119</td>
<td>77</td>
<td>167</td>
<td>w</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>18</td>
<td></td>
<td>56</td>
<td>38</td>
<td>70</td>
<td>8</td>
<td>88</td>
<td>58</td>
<td>130</td>
<td>X</td>
<td>120</td>
<td>78</td>
<td>170</td>
<td>x</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>19</td>
<td></td>
<td>57</td>
<td>39</td>
<td>71</td>
<td>9</td>
<td>89</td>
<td>59</td>
<td>131</td>
<td>Y</td>
<td>121</td>
<td>79</td>
<td>171</td>
<td>y</td>
</tr>
<tr>
<td>26</td>
<td>1A</td>
<td>A</td>
<td></td>
<td>58</td>
<td>3A</td>
<td>72</td>
<td>:</td>
<td>90</td>
<td>5A</td>
<td>132</td>
<td>Z</td>
<td>122</td>
<td>7A</td>
<td>172</td>
<td>z</td>
</tr>
<tr>
<td>27</td>
<td>1B</td>
<td>B</td>
<td></td>
<td>59</td>
<td>3B</td>
<td>73</td>
<td>;</td>
<td>91</td>
<td>5B</td>
<td>133</td>
<td>{</td>
<td>123</td>
<td>7B</td>
<td>173</td>
<td>{</td>
</tr>
<tr>
<td>28</td>
<td>1C</td>
<td>C</td>
<td></td>
<td>60</td>
<td>3C</td>
<td>74</td>
<td><</td>
<td>92</td>
<td>5C</td>
<td>134</td>
<td>}</td>
<td>124</td>
<td>7C</td>
<td>174</td>
<td>}</td>
</tr>
<tr>
<td>29</td>
<td>1D</td>
<td>D</td>
<td></td>
<td>61</td>
<td>3D</td>
<td>75</td>
<td>=</td>
<td>93</td>
<td>5D</td>
<td>135</td>
<td>^</td>
<td>125</td>
<td>7D</td>
<td>175</td>
<td>^</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>E</td>
<td></td>
<td>62</td>
<td>3E</td>
<td>76</td>
<td>></td>
<td>94</td>
<td>5E</td>
<td>136</td>
<td>~</td>
<td>126</td>
<td>7E</td>
<td>176</td>
<td>~</td>
</tr>
<tr>
<td>31</td>
<td>1F</td>
<td>F</td>
<td></td>
<td>63</td>
<td>3F</td>
<td>77</td>
<td>?</td>
<td>95</td>
<td>5F</td>
<td>137</td>
<td>_</td>
<td>127</td>
<td>7F</td>
<td>177</td>
<td>_</td>
</tr>
</tbody>
</table>
The Term of Information

- Generally, **information** is whatever is capable of causing a human mind to change its opinion about the current state of the real world. Formally, and especially in science and engineering, information is whatever **contributes to a reduction in the uncertainty of the state of a system**; in this case, uncertainty is usually expressed in an objectively measurable form.

 (Oxford Reference Online)

- The communication or reception of knowledge or intelligence

- Information has to be distinguished from any **medium** that is capable of **carrying** it

- Humans and machines can handle **data**, however only humans can handle **information**
The Term of Signal

- A signal is the physical representation of data by **spatial** or **timely variation** of physical characteristics.

- The variable parameter that contains information and by which information is transmitted in an electronic system or circuit.

- The signal is often a **voltage source** in which the **amplitude**, **frequency**, and **waveform** can be varied.

- Signal is the real physical representation of an abstract representation.
Contents

● The Big Picture: Internet as a Bit Delivery Service
 ● Virtual Pipe

● Basic Terminology
 ● Data vs. Information vs. Signal
 ● Communication Protocol

● Basic Concepts
 ● Evaluation Communication Quality
 ● Client-Server Architecture
 ● Peer-to-Peer Architecture
What is a Protocol?

- Human protocols:
 - “What’s the time?”
 - “I have a question”
 - Introductions

- Network protocols:
 - Machines rather than humans
 - All communication activities in the Internet is governed by protocols

- In General
 - … specific messages sent
 - … specific actions taken when messages received or other events happen

- In General
 - Protocols define format, order of messages sent and received among network entities, and actions taken on message transmission and receipt
What is a Protocol?

Hi

Hi

Time?

11:00

connection request

connection response

get page X

page X
Why Protocols?

To enable understanding in communication, all communication partners have to speak the same “language”.

Protocol

A protocol is a set of unambiguous specifications defining how processes communicate with one another through a connection (wire, radio etc.).

- Types of message
- Syntax of messages
- Semantics of messages
- When/how to send a message
- When/how to respond to a message
- Control/multiplexing over media access
- Priorities
- Handling of transmission errors
- Sequence control / Fragmentation
- ...
Contents

● The Big Picture: Internet as a Bit Delivery Service
 ● Virtual Pipe

● Basic Terminology
 ● Data vs. Information vs. Signal
 ● Communication Protocol

● Basic Concepts
 ● Evaluation Communication Quality
 ● Client-Server Architecture
 ● Peer-to-Peer Architecture
Communication Quality

- Characteristics of the bit delivery service?

- Need for quantitative, measurable parameters, such as:
 - Technical Performance
 - Required transmission performance, delay, jitter, throughput, data rate, etc.
 - Costs
 - Investment costs, cost of operation, etc.
 - Reliability
 - Fault tolerance, system stability, immunity, availability, 99999
 - Security and Protection
 - Eavesdropping, authentication, denial of service, etc.

- Dedicated term in the tech lingo: QoS (Quality of Service)
 - ITU standard Recommendation ITU-T E.800: definition of terms related to QoS
QoS: Latency Aspect

- **(One-way) Delay**
 - Measured in seconds [s]
 \[d_1 = t'_1 - t_1 \]

- **Round-trip-time (RTT)**
 - Measured in seconds [s]
 \[r_1 = t_2 - t_1 \]

- RTT *should* also integrate the processing time in B
 - Usually negligible compared to delay
QoS: Stability Aspect

- Jitter: fluctuation between successive arrivals
 - Measured in seconds [s]
 - First calculate delay as
 \[d_1 = t'_1 - t_1 \]
 \[d_2 = t'_2 - t_2 \]
 \[d_i = t'_i - t_i \]
 - Afterwards derive the jitter
 \[j_1 = d_2 - d_1 \]
 \[j_2 = d_3 - d_2 \]
 \[j_i = d_{i+1} - d_i \]

- Irregular arrivals are difficult to deal with.
 - e.g. need to buffer before start of video stream, to playback at constant speed.
 Optimal buffer size?
QoS: Capacity Aspect

- **Throughput**
 - Measured in bits per second (bit/s)
 - \[T = \sum \frac{data_i}{\Delta t} \]

- **Goodput**
 - useful throughput from the user perspective (i.e. throughput minus control traffic overhead).

- Do not use "bandwidth" as a synonym for throughput!!
QoS: More Complex Aspects

\[\text{Delay-Throughput-Product} = \text{Storing capacity of the line} \]

Example: Store capacity of the transmission line
- With a connection of 1 Mbps, 200 ms delay: \(1 \text{ Mbps} \times 0.2 \text{ s} = 200 \text{ kbit} \)
- With a connection of 100 Mbps, 100 ms: \(100 \text{ Mbps} \times 0.1 \text{ s} = 10 \text{ Mbit} \)
QoS: Security & Privacy Aspects

- Safety measures
 - Encryption (cryptographic codes)
 - Trustworthy systems (Authentication, Authorization)

Normal Data Flow

Data Source → Data Destination

Passive:
- Eavesdropping

Active:
- Modifying
- Masquerade
- Interruption
QoS: More Basic Aspects

- Packet loss rate

- Bit error rate
 - ‘Finer-grained’ characteristic for the bit delivery service
Implications of QoS Requirements

- QoS requirements may impact the choice of communication architecture

Example 1
- You want to increase the availability of a service.
- Which architecture will be the cheapest to achieve that?

Example 2
- You want to offer online storage service.
- What are the alternatives in terms of architecture?
The Big Picture: Internet as a Bit Delivery Service
 ● Virtual Pipe

Basic Terminology
 ● Data vs. Information vs. Signal
 ● Communication Protocol

Basic Concepts
 ● Evaluation Communication Quality
 ● Client-Server Architecture
 ● Peer-to-Peer Architecture
Resource Sharing: Client/Server Architecture

Advantages of the Client/Server Principle

- Cost reduction
- Better usage of resources
- Modular extensions
- Reliability by redundancy
Resource Sharing: Client/Server Architecture

● **Server**
 ● Program (process) which offers a service over a network. Servers receive requests and return a result to the inquiring party. The services offered include simple operations (e.g. name server) or a complex set of operations (e.g. web server).

● **Client**
 ● Program (process) which uses a service offered by a server.

Examples for Client/Server Systems

<table>
<thead>
<tr>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Browser</td>
<td>Web Server</td>
</tr>
<tr>
<td>E-Mail Program</td>
<td>Domain Name System (DNS)</td>
</tr>
<tr>
<td>FTP Client</td>
<td>FTP Server</td>
</tr>
</tbody>
</table>
Contents

● The Big Picture: Internet as a Bit Delivery Service
 ● Virtual Pipe

● Basic Terminology
 ● Data vs. Information vs. Signal
 ● Communication Protocol

● Basic Concepts
 ● Evaluation Communication Quality
 ● Client-Server Architecture
 ● Peer-to-Peer Architecture
Serverless Resource Sharing: Peer-to-Peer

- The Peer-to-Peer (P2P) concept:
 - No fixed client and server roles
 - Direct connections between any pair of computers
P2P

● Advantages
 ● No expensive servers
 ● No central point of failure
 ● No central point of control

● Drawbacks
 ● Everyone needs to dedicate resources
 ● Somewhat more complex

Examples Using the P2P Paradigm
 ▪ BitTorrent (filesharing)
 ▪ Skype, SIP
 ▪ Ad-Hoc Networks, Spontaneous Wireless Networks
 ▪ Some botnets
Communication with More than One Peer

- **Unicast**: Two peers communicate.

- **Broadcast**: One sender transmits to *all other peers* in the network.

- **Multicast**: One sender transmits to a *set of peers*, which are known. Similar to **Publish-Subscribe**

- Other concepts: Anycast, Convergecast, Geocast...