Chapter 12

Comparison and Evaluation of Alternative System Designs
Contents

• For two-system comparisons
 • Independent sampling
 • Correlated sampling (common random numbers)

• For multiple system comparisons
 • Bonferroni approach: confidence-interval estimation, screening, and selecting the best

• Metamodels
Purpose

• Purpose: comparison of alternative system designs.
• Approach: discuss a few of many statistical methods that can be used to compare two or more system designs.
• Statistical analysis is needed to discover whether observed differences are due to:
 • Differences in design or
 • The random fluctuation inherent in the models
Comparison of Two System Designs
Comparison of Two System Designs

- **Goal:** compare two possible configurations of a system
 - Two possible ordering policies in a supply-chain system, two possible scheduling rules in a job shop
 - Two routing protocols in a network
 - Two different congestion control algorithms on the transport layer
 - Two MAC protocols

- **Approach:** the method of replications is used to analyze the output data

- The mean performance measure for system i
 - Denoted by θ_i, $i = 1, 2, \ldots$
 - To obtain point and interval estimates for the difference in mean performance, namely $\theta_1 - \theta_2$
Comparison of Two System Designs

- Vehicle-safety inspection example:
 - The station performs 3 jobs: (1) brake check, (2) headlight check, and (3) steering check.
 - Vehicles arrival: Poisson with rate = 9.5/hour.
 - Present system:
 - Three stalls in parallel (one attendant makes all 3 inspections at each stall).
 - Service times for the 3 jobs: normally distributed with means 6.5, 6.0 and 5.5 minutes, respectively.
 - Alternative system:
 - Each attendant specializes in a single task, each vehicle will pass through three work stations in series.
 - Mean service times for each job decreases by 10% (5.85, 5.4, and 4.95 minutes).
 - Performance measure: mean response time per vehicle (total time from vehicle arrival to its departure).
Comparison of Two System Designs

- From replication r of system i, the analyst obtains an estimate Y_{ir} of the mean performance measure θ_i.

- Assuming that the estimators Y_{ir} are (at least approx.) unbiased:

 $\theta_1 = E(Y_{1r})$, \hspace{1cm} r = 1, \ldots, R_1$

 $\theta_2 = E(Y_{2r})$, \hspace{1cm} r = 1, \ldots, R_2$

- Goal: Compute a confidence interval for $\theta_1 - \theta_2$ to compare the two system designs.
Comparison of Two System Designs

- If CI is totally to the left of 0, strong evidence for the hypothesis that $\theta_1 - \theta_2 < 0$ ($\theta_1 < \theta_2$)

 - If CI is totally to the right of 0, strong evidence for the hypothesis that $\theta_1 - \theta_2 > 0$ ($\theta_1 > \theta_2$)

- If CI contains 0, no strong statistical evidence that one system is better than the other

 If enough additional data were collected (i.e., R_i increased), the CI would most likely shift, and definitely shrink in length, until conclusion of $\theta_1 < \theta_2$ or $\theta_1 > \theta_2$ would be drawn.
Comparison of Two System Designs

- In this chapter:
 - A two-sided $100(1-\alpha)\%$ CI for $\theta_1 - \theta_2$ always takes the form of:

$$
\left(\bar{Y}_1 - \bar{Y}_2 \right) \pm t_{\alpha/2,\upsilon} \cdot \text{s.e.}(\bar{Y}_1 - \bar{Y}_2)
$$

- All three techniques assume that the basic data Y_{ir} are approximately normally distributed.
Comparison of Two System Designs

- Statistically significant versus practically significant
 - Statistical significance: is the observed difference $\bar{Y}_1 - \bar{Y}_2$ larger than the variability in $\bar{Y}_1 - \bar{Y}_2$?
 - Practical significance: is the true difference $\theta_1 - \theta_2$ large enough to matter for the decision we need to make?

- Confidence intervals do not answer the question of practical significance directly, instead, they bound the true difference within the range:

$$\left(\bar{Y}_1 - \bar{Y}_2\right) - t_{\alpha/2, \nu} \cdot s.e.(\bar{Y}_1 - \bar{Y}_2) \leq \theta_1 - \theta_2 \leq \left(\bar{Y}_1 - \bar{Y}_2\right) + t_{\alpha/2, \nu} \cdot s.e.(\bar{Y}_1 - \bar{Y}_2)$$

- Whether a difference within these bounds is practically significant depends on the particular problem.
Comparison of Two System Designs
Independent Sampling
Independent Sampling with Equal Variances

- Different and independent random number streams are used to simulate the two systems
 - All observations of simulated system 1 are statistically independent of all the observations of simulated system 2.

- The variance of the sample mean \bar{Y}_i is:

$$V(\bar{Y}_i) = \frac{V(Y_i)}{R_i} = \frac{\sigma_i^2}{R_i}, \quad i = 1, 2$$

- For independent samples:

$$V(\bar{Y}_1 - \bar{Y}_2) = V(\bar{Y}_1) + V(\bar{Y}_2) = \frac{\sigma_1^2}{R_1} + \frac{\sigma_2^2}{R_2}$$
Independent Sampling with Equal Variances

- If it is reasonable to assume that $\sigma^2_1 = \sigma^2_2$ (approx.) or if $R_1 = R_2$, a two-sample-t confidence-interval approach can be used:
 - The point estimate of the mean performance difference is: $\bar{Y}_1 - \bar{Y}_2$
 - The sample variance for system i is:
 \[
 S_i^2 = \frac{1}{R_i - 1} \sum_{r=1}^{R_i} (Y_{ri} - \bar{Y}_i)^2 = \frac{1}{R_i - 1} \sum_{r=1}^{R_i} Y_{ri}^2 - R_i \bar{Y}_i^2
 \]
 - The pooled estimate of σ^2 is:
 \[
 S_p^2 = \frac{(R_1 - 1)S_1^2 + (R_2 - 1)S_2^2}{R_1 + R_2 - 2}, \text{ where } \nu = R_1 + R_2 - 2 \text{ degrees of freedom}
 \]
 - CI is given by:
 \[
 \left(\bar{Y}_1 - \bar{Y}_2\right) \pm t_{\alpha/2, \nu} \text{s.e.}(\bar{Y}_1 - \bar{Y}_2)
 \]
 - Standard error:
 \[
 \text{s.e.}(\bar{Y}_1 - \bar{Y}_2) = S_p \sqrt{\frac{1}{R_1} + \frac{1}{R_2}}
 \]
Independent Sampling with Unequal Variances

- If the assumption of equal variances cannot safely be made, an approximate $100(1-\alpha)\%$ CI can be computed as:

$$s.e.(\bar{Y}_1 - \bar{Y}_2) = \sqrt{\frac{S_1^2}{R_1} + \frac{S_2^2}{R_2}}$$

- With degrees of freedom:

$$v = \frac{\left(\frac{S_1^2}{R_1} + \frac{S_2^2}{R_2}\right)^2}{\left(\frac{S_1^2}{R_1}\right)^2 + \left(\frac{S_2^2}{R_2}\right)^2}, \quad \text{round to an integer}$$

- In this case, the minimum number of replications $R_1 > 7$ and $R_2 > 7$ is recommended.
Comparison of Two System Designs
Common Random Numbers (CRN)
Common Random Numbers (CRN)

• For each replication, the same random numbers are used to simulate both systems ➔ $R_1 = R_2 = R$.
• For each replication r, the two estimates, Y_{r1} and Y_{r2}, are correlated.
• However, independent streams of random numbers are used on different replications, so the pairs (Y_{r1}, Y_{s2}) are mutually independent for $r \neq s$.

• Purpose: induce positive correlation between $\overline{Y}_1, \overline{Y}_2$ (for each r) to reduce variance in the point estimator of $\overline{Y}_1 - \overline{Y}_2$.

$$V(\overline{Y}_1 - \overline{Y}_2) = V(\overline{Y}_1) + V(\overline{Y}_2) - 2 \text{cov}(\overline{Y}_1, \overline{Y}_2)$$

$$= \frac{\sigma_1^2}{R} + \frac{\sigma_2^2}{R} - \frac{2 \rho_{12} \sigma_1 \sigma_2}{R}$$

Correlation: ρ_{12} is positive
Common Random Numbers (CRN)

- Compare variance from independent sampling with variance from CRN:

\[V_{CRN} = V_{IND} - \frac{2 \rho_{12} \sigma_1 \sigma_2}{R} \]

- Variance of \(\bar{Y}_1 - \bar{Y}_2 \) arising from CRN is less than that of independent sampling (with \(R_1 = R_2 \)).
Common Random Numbers (CRN)

- The estimator based on CRN is more precise, leading to a shorter confidence interval for the difference.
- Sample variance of the differences $\bar{D} = \bar{Y}_1 - \bar{Y}_2$

$$S_D^2 = \frac{1}{R-1} \sum_{r=1}^{R} (\overline{D}_r - \overline{D})^2 = \frac{1}{R-1} \left(\sum_{r=1}^{R} D_r^2 - R\overline{D}^2 \right)$$

where $D_r = Y_{r1} - Y_{r2}$ and $\overline{D} = \frac{1}{R} \sum_{r=1}^{R} D_r$, with degrees of freedom $\nu = R-1$

- Standard error:

$s.e.(\overline{D}) = s.e.(\bar{Y}_1 - \bar{Y}_2) = \frac{S_D}{\sqrt{R}}$
Common Random Numbers (CRN)

- It is never enough to simply use the same seed for the random-number generator(s):

 - The random numbers must be synchronized: each random number used in one model for some purpose should be used for the same purpose in the other model.

 - Example: if the i-th random number is used to generate a service time at work station 2 for the 5-th arrival in model 1, the i-th random number should be used for the very same purpose in model 2.
Common Random Numbers (CRN): Example

- Vehicle inspection example:
 - 4 input random variables:
 - A_n interarrival time between vehicle n and vehicle $n+1$,
 - $S_{n}^{(i)}$ inspection time for task i for vehicle n in model 1 ($i=1,2,3$; refers to brake, headlight and steering task, respectively).

- When using CRN:
 - Same values should be generated for A_1, A_2, A_3, \ldots in both models.
 - However, mean service time for model 2 is 10% less.
 - Two possible approaches to obtain correlated service times:
 - Let $S_{n}^{(i)}$ be the service times generated for model 1, use:
 $$S_{n}^{(i)} - 0.1E[S_{n}^{(i)}]$$
 - Let $Z_{n}^{(i)}$ as the standard normal variate, $\sigma = 0.5$ minutes, use:
 $$E[S_{n}^{(i)}] + \sigma Z_{n}^{(i)}$$
 - For synchronized runs: the service times for a vehicle were generated at the instant of arrival and stored as its attribute and used as needed.
Common Random Numbers (CRN): Example

- Each replication run of 16 hours

<table>
<thead>
<tr>
<th>Replication</th>
<th>Average Response Time for Model</th>
<th>Observed Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>29.59</td>
<td>51.62</td>
</tr>
<tr>
<td>2</td>
<td>23.49</td>
<td>51.91</td>
</tr>
<tr>
<td>3</td>
<td>25.68</td>
<td>45.27</td>
</tr>
<tr>
<td>4</td>
<td>41.09</td>
<td>30.85</td>
</tr>
<tr>
<td>5</td>
<td>33.84</td>
<td>56.15</td>
</tr>
<tr>
<td>6</td>
<td>39.57</td>
<td>28.82</td>
</tr>
<tr>
<td>7</td>
<td>37.04</td>
<td>41.30</td>
</tr>
<tr>
<td>8</td>
<td>40.20</td>
<td>73.06</td>
</tr>
<tr>
<td>9</td>
<td>61.82</td>
<td>23.00</td>
</tr>
<tr>
<td>10</td>
<td>44.00</td>
<td>28.44</td>
</tr>
</tbody>
</table>

Sample mean: 37.63, 43.04; Sample variance: 118.90, 244.33; Standard error: 6.03, 4.57
Common Random Numbers (CRN): Example

- Compare the two systems using independent sampling and CRN where $R = R_1 = R_2 = 10$:

 - Independent sampling: $\bar{Y}_1 - \bar{Y}_2 = -5.4$ minutes

 with $\nu = 17$, $t_{0.05, 17} = 2.11$, $S_1^2 = 118.9$ and $S_2^2 = 244.3$, CI: $-18.1 \leq \theta_1 - \theta_2 \leq 7.3$

 - CRN without synchronization: $\bar{Y}_1 - \bar{Y}_2 = -1.9$ minutes

 with $\nu = 9$, $t_{0.05, 9} = 2.26$, $S_D^2 = 208.9$, CI: $-12.3 \leq \theta_1 - \theta_2 \leq 8.5$

 - CRN with synchronization: $\bar{Y}_1 - \bar{Y}_2 = 0.4$ minutes

 with $\nu = 9$, $t_{0.05, 9} = 2.26$, $S_D^2 = 1.7$, CI: $-0.50 \leq \theta_1 - \theta_2 \leq 1.30$
CRN with Specified Precision

- **Goal:** The error in our estimate of $\theta_1 - \theta_2$ to be less than ϵ
- **Approach:** determine the # of replications R such that the half-width of CI:
 \[
 H = t_{\alpha/2, \nu} s.e. (\bar{Y}_1 - \bar{Y}_2) \leq \epsilon
 \]
- **Vehicle inspection example (cont.):**
 - $R_0 = 10$, complete synchronization of random numbers yield 95% CI: 0.4 ± 0.9 minutes
 - Suppose $\epsilon = 0.5$ minutes for practical significance, we know R is the smallest integer satisfying $R \geq R_0$ and:
 \[
 R \geq \left(\frac{t_{\alpha/2, R-1} S_D}{\epsilon} \right)^2
 \]
 - Since $t_{\alpha/2, R-1} \leq t_{\alpha/2, R_0 - 1}$, a conservation estimate of R is:
 - Hence, 35 replications are needed (25 additional).
Comparison of Several System Designs
Comparison of Several System Designs

• To compare K alternative system designs
 • Based on some specific performance measure, θ_i, of system i, for $i = 1, 2, \ldots, K$

• Procedures are classified as:
 • Fixed-sample-size procedures: predetermined sample size is used to draw inferences via hypothesis tests of confidence intervals
 • Sequential sampling (multistage): more and more data are collected until an estimator with a prespecified precision is achieved or until one of several alternative hypotheses is selected

• Some goals/approaches of system comparison:
 • Estimation of each parameter θ
 • Comparison of each performance measure θ_i to a control θ_1
 • All pair wise comparisons $\theta_i - \theta_j$ for $i \neq j$
 • Selection of the best θ_i
Bonferroni Approach

• To make statements about several parameters simultaneously, where all statements are true simultaneously.
• Bonferroni inequality:

\[P(\text{all statements } S_i \text{ are true, } i = 1, \ldots, C) \geq 1 - \sum_{j=1}^{C} \alpha_j = 1 - \alpha_E \]

- Overall error probability, provides an upper bound on the probability of a false conclusion

• The smaller \(\alpha_j \) is, the wider the \(j\text{-th} \) confidence interval will be.

• Major advantage: inequality holds whether models are run with independent sampling or CRN
• Major disadvantage: width of each individual interval increases as the number of comparisons increases.
Bonferroni Approach

- Should be used only for a small number of comparisons
 - Practical upper limit: about 20 comparisons

- There are 3 possible applications:
 1. Individual CI’s: Construct a $100(1- \alpha_j)%$ CI for parameter θ_i, where number of comparisons $= K$.

 2. Comparison to an existing system: Construct a $100(1-\alpha_j)%$ CI for parameter $\theta_i - \theta_1$ ($i = 2, 3, \ldots, K$), number of comparisons $= K - 1$.

 3. All pairwise: For any 2 different system designs, construct a $100(1-\alpha_j)%$ CI for parameter $\theta_i - \theta_j$.
 Hence, total number of comparisons $= K(K - 1)/2$.
Comparison of Several System Designs
Bonferroni Approach to Selecting the Best
Bonferroni Approach to Selecting the Best

- Among K system designs, to find the best system
 - “Best” = the maximum expected performance, where the i-th design has expected performance θ_i.

- Focus on parameters: $\theta_i - \max_{j \neq i} \{\theta_j\}$ for $i = 1, 2, ..., K$
 - If system design i is the best, it is the difference in performance between the best and the second best.
 - If system design i is not the best, it is the difference between system i and the best.

- Goal: the probability of selecting the best system is at least $1 - \alpha$, whenever $\theta_i - \max_{j \neq i} \{\theta_j\} \geq \varepsilon$
 - Hence, both the probability of correct selection $1 - \alpha$, and the practically significant difference ε, are under our control.

- A two-stage simulation procedure

Prof. Dr. Mesut Güneş • Ch. 12 Comparison and Evaluation of Alternative System Designs
Bonferroni Approach to Selecting the Best

• **First stage**
 - Obtain R0 replications from each system
 - Delete (screen out) the statistically inferior systems
 - If only one system survives, stop!

• **Second stage**
 - More than one system survived
 - Do additional replications to select the best
Metamodeling
Metamodelling

- Goal: describe the relationship between variables and the output response.
- The simulation output response variable, Y, is related to k independent variables $x_1, x_2, ..., x_k$ (the design variables).
- The true relationship between variables Y and x is represented by a (complex) simulation model.
- Approximate the relationship by a simpler mathematical function called a metamodel, some metamodel forms:
 - Linear regression.
 - Multiple linear regression.
Simple Linear Regression

• Suppose the true relationship between Y and x is assumed to be linear, the expected value of Y for a given x is:

$$E(Y \mid x) = \beta_0 + \beta_1 x$$

where β_0 is the intercept on the Y axis, and β_1 is the slope.

• Each observation of Y can be described by the model:

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

where ε is the random error with mean zero and constant variance σ^2
Simple Linear Regression

- Suppose there are n pairs of observations, the method of least squares is commonly used to estimate β_0 and β_1.
- The sum of squares of the deviation between the observations and the regression line is minimized.

$$E(y_i - x_i) = \beta_0 + \beta_1 x_i$$

$$y = \beta_0 + \beta_1 x + \epsilon_i$$
Simple Linear Regression

- The individual observation can be written as:
 \[Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \]
 where \(\varepsilon_1, \varepsilon_2 \ldots \) are assumed to be uncorrelated random variables

- Rewrite:
 \[Y_i = \beta_0' + \beta_1(x_i - \bar{x}) + \varepsilon_i \]
 where \(\beta_0' = \beta_0 + \beta_1 \bar{x} \) and \(\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \)

- The least-square function (the sum of squares of the deviations):
 \[L = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (Y_i - \beta_0' - \beta_1 x_i)^2 = \sum_{i=1}^{n} \left[Y_i - \beta_0' - \beta_1 (x_i - x) \right]^2 \]

- To minimize \(L \), find \(\frac{\partial L}{\partial \beta_0'} \) and \(\frac{\partial L}{\partial \beta_1} \), set each to zero, and solve for:
 \[
 \hat{\beta}_0' = \bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n} \quad \text{and} \quad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{n} Y_i (x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
 \]

- \(S_{xy} \) corrected sum of cross products of \(x \) and \(Y \)
- \(S_{xx} \) corrected sum of squares of \(x \)
Test for Significance of Regression

• The adequacy of a simple linear relationship should be tested prior to using the model.

• Testing whether the order of the model tentatively assumed is correct, commonly called the “lack-of-fit” test.

• The adequacy of the assumptions that errors are (normally and independent) $NID(0, \sigma^2)$ can and should be checked by residual analysis.
Test for Significance of Regression

- Hypothesis testing: \(H_0 : \beta_1 = 0 \) and \(H_1 : \beta_1 \neq 0 \)
 - Failure to reject \(H_0 \) indicates no linear relationship between \(x \) and \(Y \).

- If \(H_0 \) is rejected, implies that \(x \) can explain the variability in \(Y \), but there may be in higher-order terms.
Test for Significance of Regression

- The appropriate test statistics:
 \[
 t_0 = \frac{\hat{\beta}_1}{\sqrt{MS_E / S_{xx}}}
 \]

- The mean squared error is:
 \[
 MS_E = \sum_{i=1}^{n} \frac{e_i^2}{n-2} = \frac{S_{yy} - \hat{\beta}_1 S_{xy}}{n-2}
 \]
 which is an unbiased estimator of \(\sigma^2 = V(\varepsilon_i) \)

- \(t_0 \) has the \(t \)-distribution with \(n-2 \) degrees of freedom.
- Reject \(H_0 \) if \(|t_0| > t_{\alpha/2, n-2} \)
Multiple Linear Regression

• Suppose simulation output Y has several independent variables (decision variables).
• The possible relationship forms are:

\[Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_m x_m + \varepsilon \]

\[Y = \beta_0 + \beta_1 x_1 + \beta_2 x^2 + \varepsilon \]

\[Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon \]
Random-Number Assignment for Regression

- Independent sampling:
 - Assign a different seed or stream to different design points.
 - Guarantees that the responses Y from different design points will be significantly independent.

- CRN:
 - Use the same random number seeds or streams for all of the design points.
 - A fairer comparison among design points (subjected to the same experimental conditions)
 - Typically reduces variance of estimators of slope parameters, but increases variance of intercept parameter
Optimization via Simulation
Optimization via Simulation

- Optimization usually deals with problems with certainty, but in stochastic discrete-event simulation, the result of any simulation run is a random variable.

- Let x_1, x_2, \ldots, x_m be the m controllable design variables and $Y(x_1, x_2, \ldots, x_m)$ be the observed simulation output performance on one run:

- To optimize $Y(x_1, x_2, \ldots, x_m)$ with respect to x_1, x_2, \ldots, x_m is to maximize or minimize the mathematical expectation (long-run average) of performance

$$E[Y(x_1, x_2, \ldots, x_m)]$$
Optimization via Simulation

- Example: select the material handling system that has the best chance of costing less than \$D to purchase and operate.

- Objective: maximize \(Pr(Y(x_1, x_2, \ldots, x_m) \leq D) \).

- Define a new performance measure:

 - Maximize \(E(Y'(x_1, x_2, \ldots, x_m)) \) instead

\[
Y'(x_1, x_2, \ldots, x_m) = \begin{cases}
1, & \text{if } Y(x_1, x_2, \ldots, x_m) \leq D \\
0, & \text{otherwise}
\end{cases}
\]
Summary

• Basic introduction to comparative evaluation of alternative system design:
 • Emphasized comparisons based on confidence intervals.
 • Discussed the differences and implementation of independent sampling and common random numbers.
 • Introduced concept of metamodels.