Chapter 11

Output Analysis for a Single Model
Contents

• Types of Simulation
• Stochastic Nature of Output Data
• Measures of Performance
• Output Analysis for Terminating Simulations
• Output Analysis for Steady-state Simulations
Purpose

- Output analysis: examination of the data generated by a simulation

- Objective:
 - Predict performance of system
 - Compare performance of two (or more) systems

- If θ is the system performance, the result of a simulation is an estimator $\hat{\theta}$

- The precision of the estimator $\hat{\theta}$ can be measured by:
 - The standard error of $\hat{\theta}$
 - The width of a confidence interval (CI) for θ
Purpose

- **Purpose of statistical analysis:**
 - To estimate the **standard error** and/or **confidence interval**
 - To figure out the **number of observations** required to achieve a desired error or confidence interval

- **Potential issues to overcome:**
 - **Autocorrelation**, e.g., arrival of subsequent packets may lack statistical independence.

 - **Initial conditions**, e.g., the number of packets in a router at time 0 would most likely influence the performance/delay of packets arriving later.
Types of Simulations
Types of Simulations

- Two types of simulation:
 - Terminating (transient)
 - Non-terminating (steady state)
Types of Simulations:

Terminating Simulations

- **Terminating (transient) simulation:**
 - Runs for some duration of time T_E, where E is a specified event that stops the simulation.
 - Starts at time 0 under well-specified initial conditions.
 - Ends at the stopping time T_E.
 - Bank example: Opens at 8:30 am (time 0) with no customers present and 8 of the 11 teller working (initial conditions), and closes at 4:30 pm (Time $T_E = 480$ minutes).
 - The simulation analyst chooses to consider it a terminating system because the object of interest is one day’s operation.
 - T_E may be known from the beginning or it may not
 - Several runs may result in $T^1_E, T^2_E, T^3_E, \ldots$
 - Goal may be to estimate $E(T_E)$
Types of Simulations:
Non-terminating Simulations

- Non-terminating simulation:
 - Runs continuously or at least over a very long period of time.
 - Examples: assembly lines that shut down infrequently, hospital emergency rooms, telephone systems, network of routers, Internet.
 - Initial conditions defined by the analyst.
 - Runs for some analyst-specified period of time T_E.
 - Objective is to study the **steady-state** (long-run) properties of the system, properties that are not influenced by the initial conditions of the model.
Types of Simulations

- Whether a simulation is considered to be **terminating** or **non-terminating** depends on both
 - The objectives of the simulation study and
 - The nature of the system
Stochastic Nature of Output Data
Stochastic Nature of Output Data

- Model output consists of one or more random variables because the model is an input-output transformation and the input variables are random variables.

- M/G/1 queueing example:
 - Poisson arrival rate = 0.1 per time unit and service time \(\sim N(\mu = 9.5, \sigma^2 = 1.75^2) \).
 - System performance: long-run mean queue length, \(L_Q(t) \).
 - Suppose we run a single simulation for a total of 5000 time units.
 - Divide the time interval \([0, 5000)\) into 5 equal subintervals of 1000 time units.
 - Average number of customers in queue from time \((j-1)1000\) to \(j(1000)\) is \(Y_j\).

\[
L_Q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{\rho^2}{1 - \rho}
\]
Stochastic Nature of Output Data

- M/G/1 queueing example (cont.):
 - Batched average queue length for 3 independent replications:

<table>
<thead>
<tr>
<th>Batching Interval</th>
<th>Batch j</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0, 1000)</td>
<td>1</td>
<td>Y_{1j}</td>
</tr>
<tr>
<td>[1000, 2000)</td>
<td>2</td>
<td>Y_{2j}</td>
</tr>
<tr>
<td>[2000, 3000)</td>
<td>3</td>
<td>Y_{3j}</td>
</tr>
<tr>
<td>[3000, 4000)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>[4000, 5000)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>[0, 5000)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

- Inherent variability in stochastic simulation both within a single replication and across different replications.
- The average across 3 replications, $\bar{Y}_{1\cdot}, \bar{Y}_{2\cdot}, \bar{Y}_{3\cdot}$, can be regarded as independent observations, but averages within a replication, $Y_{11}, ..., Y_{15}$, are not.
Stochastic Nature of Output Data
Measures of performance
Measures of performance

• Consider the estimation of a performance parameter, \(\theta \) (or \(\phi \)), of a simulated system.
 • Discrete time data: \(\{Y_1, Y_2, ..., Y_n\} \), with ordinary mean: \(\theta \)
 • Continuous-time data: \(\{Y(t), 0 \leq t \leq T_E\} \) with time-weighted mean: \(\phi \)

• Point estimation for discrete time data.
 • The point estimator:
 \[
 \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Y_i
 \]
 • Is unbiased if its expected value is \(\theta \), that is if: \(E(\hat{\theta}) = \theta \)
 • Is biased if: \(E(\hat{\theta}) \neq \theta \) and \(E(\hat{\theta}) - \theta \) is called bias of \(\hat{\theta} \)
Measures of performance: Point Estimator

- Point estimation for continuous-time data.
 - The point estimator:
 \[\hat{\phi} = \frac{1}{T_E} \int_{0}^{T_E} Y(t) dt \]
 - Is biased in general where: \(E(\hat{\phi}) \neq \phi \)
 - An unbiased or low-bias estimator is desired.
Measures of performance:

Point Estimator

- Usually, system performance measures can be put into the common framework of θ or ϕ:
 - Example: The proportion of days on which sales are lost through an out-of-stock situation, let:
 \[
 Y(i) = \begin{cases}
 1, & \text{if out of stock on day } i \\
 0, & \text{otherwise}
 \end{cases}
 \]
 - Example: Proportion of time that the queue length is larger than k_0:
 \[
 Y(t) = \begin{cases}
 1, & \text{if } L_Q(t) > k_0 \\
 0, & \text{otherwise}
 \end{cases}
 \]
Measures of performance:
Point Estimator

- Performance measure that does not fit: quantile or percentile: $P(Y \leq \theta) = p$

- Estimating quantiles: the inverse of the problem of estimating a proportion or probability.

- Consider a histogram of the observed values Y:
 - Find $\hat{\theta}$ such that 100p% of the histogram is to the left of (smaller than) $\hat{\theta}$.

- A widely used performance measure is the median, which is the 0.5 quantile or 50-th percentile.
Measures of performance: Confidence-Interval Estimation

- Suppose X_1, X_2, \ldots, X_n are an independent sample from a normally distributed population with mean μ and variance σ^2.
- Given the sample mean and sample variance as

 $$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 $$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

- Then $T = \frac{\bar{X} - \mu}{S / \sqrt{n}}$ has Student’s t-distribution with $n-1$ degrees of freedom.

- If c is the p-th quantile of this distribution, then $P(-c < T < c) = p$
- Consequently

 $$P\left(\bar{X} - c \frac{S}{\sqrt{n}} < \mu < \bar{X} + c \frac{S}{\sqrt{n}} \right) = p$$
Measures of performance:
Confidence-Interval Estimation

- To understand confidence intervals fully, distinguish between measures of error and measures of risk:
 - confidence interval versus prediction interval

- Suppose the model is the normal distribution with mean θ, variance σ^2 (both unknown).
 - Let Y_i be the average cycle time for parts produced on the i-th replication of the simulation (its mathematical expectation is θ).
 - Average cycle time will vary from day to day, but over the long-run the average of the averages will be close to θ.
 - Sample variance across R replications:

$$S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_{i.} - Y_{..})^2$$
Measures of performance: Confidence-Interval Estimation

- Confidence Interval (CI):
 - A measure of error.
 - Where Y_i are normally distributed.

$$
\overline{Y} \pm t_{\alpha/2,R-1} \frac{S}{\sqrt{R}}
$$

- We cannot know for certain how far \overline{Y} is from θ but CI attempts to bound that error.
- A CI, such as 95%, tells us how much we can trust the interval to actually bound the error between \overline{Y} and θ.
- The more replications we make, the less error there is in \overline{Y} (converging to 0 as R goes to infinity).
Measures of performance: Confidence-Interval Estimation

- **Prediction Interval (PI):**
 - A measure of **risk**.
 - A good guess for the average cycle time on a particular day is our estimator but it is unlikely to be exactly right.
 - PI is designed to be wide enough to contain the actual average cycle time on any particular day with high probability.
 - Normal-theory prediction interval:
 \[
 \bar{Y}_{..} \pm t_{\alpha, R-1} S \sqrt{1 + \frac{1}{R}}
 \]
 - The length of PI will not go to 0 as \(R \) increases because we can never simulate away risk.
 - Prediction Intervals limit is: \(\theta \pm z_{\alpha} \sigma \)
Measures of performance:
Confidence-Interval Estimation
Measures of performance:
Confidence-Interval Estimation
Output Analysis for Terminating Simulations
Output Analysis for Terminating Simulations

- A terminating simulation: runs over a simulated time interval $[0, T_E]$.
- A common goal is to estimate:

\[
\theta = E\left(\frac{1}{n} \sum_{i=1}^{n} Y_i\right), \quad \text{for discrete output}
\]

\[
\phi = E\left(\frac{1}{T_E} \int_{0}^{T_E} Y(t) dt\right), \quad \text{for continuous output } Y(t), \quad 0 \leq t \leq T_E
\]

- In general, independent replications are used, each run using a different random number stream and independently chosen initial conditions.
Statistical Background

• Important to distinguish within-replication data from across-replication data.

• For example, simulation of a manufacturing system
 • Two performance measures of that system: cycle time for parts and work in process (WIP).
 • Let Y_{ij} be the cycle time for the j-th part produced in the i-th replication.
 • Across-replication data are formed by summarizing within-replication data \overline{Y}_i.

<table>
<thead>
<tr>
<th>Within-Replication Data</th>
<th>Across-Rep. Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{11} Y_{12} \cdots Y_{1n_1}</td>
<td>$\overline{Y}_{1\cdot}$, S_1^2, H_1</td>
</tr>
<tr>
<td>Y_{21} Y_{22} \cdots Y_{2n_2}</td>
<td>$\overline{Y}_{2\cdot}$, S_2^2, H_2</td>
</tr>
<tr>
<td>\vdots \vdots \vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>Y_{R1} Y_{R2} \cdots Y_{Rn_R}</td>
<td>$\overline{Y}_{R\cdot}$, S_R^2, H_R</td>
</tr>
<tr>
<td>\vdots \vdots \vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$Y_{\cdot\cdot}$</td>
<td>$\overline{Y}_{\cdot\cdot}$, S^2, H</td>
</tr>
</tbody>
</table>

Within replication performance measure
Across replication performance measure
Statistical Background

- **Across Replication:**
 - Discrete time data
 - The average: \(\bar{Y}_{..} = \frac{1}{R} \sum_{i=1}^{R} Y_{i..} \)
 - The sample variance: \(S^2 = \frac{1}{R-1} \sum_{i=1}^{R} (Y_{i..} - \bar{Y}_{..})^2 \)
 - The confidence-interval half-width: \(H = t_{\frac{\alpha}{2}, R-1} \frac{S}{\sqrt{R}} \)

- **Within replication:**
 - Continuous time data
 - The average: \(\bar{Y}_{i..} = \frac{1}{T_{E_i}} \int_{0}^{T_{E_i}} Y_i(t) dt \)
 - The sample variance: \(S_{i..}^2 = \frac{1}{T_{E_i}} \int_{0}^{T_{E_i}} (Y_i(t) - \bar{Y}_{i..})^2 dt \)
Statistical Background

- Overall sample average, \bar{Y}, and the interval replication sample averages, \bar{Y}_i, are always unbiased estimators of the expected daily average cycle time or daily average WIP.

- **Across-replication** data are **independent** and **identically distributed**
 - Same model
 - Different random numbers for each replications

- **Within-replication** data are **not independent** and not identically distributed
 - One random number stream is used within a replication
Output Analysis for Terminating Simulations
Confidence Intervals with Specified Precision
Confidence Intervals with Specified Precision

- The half-length \(H \) of a \(100(1 - \alpha)\% \) confidence interval for a mean \(\theta \), based on the \(t \) distribution, is given by:

\[
H = t_{\frac{\alpha}{2}, R-1} \frac{S}{\sqrt{R}}
\]

- Suppose that an error criterion \(\varepsilon \) is specified with probability \(1 - \alpha \), a sufficiently large sample size should satisfy:

\[
P\left(\left|\bar{Y}_r - \theta\right| < \varepsilon\right) \geq 1 - \alpha
\]
Confidence Intervals with Specified Precision

- Assume that an initial sample of size R_0 (independent) replications has been observed.
- Obtain an initial estimate S_0^2 of the population variance σ^2.

\[H = t_{\alpha/2, R-1} \frac{S_0}{\sqrt{R}} \leq \varepsilon \]

- Then, choose sample size R such that $R \geq R_0$
- Solving for R

\[R \geq \left(\frac{t_{\alpha/2, R-1} S_0}{\varepsilon} \right)^2 \]
Confidence Intervals with Specified Precision

- Since $t_{a/2,R-1} \geq z_{a/2}$, an initial estimate for R is given by

$$R \geq \left(\frac{z_{a/2} S_0}{\varepsilon} \right)^2$$

$z_{a/2}$ is the standard normal distribution.

- For large R, $t_{a/2,R-1} \approx z_{a/2}$

- R is the smallest integer satisfying $R \geq R_0$

- Collect $R - R_0$ additional observations.

- The $100(1 - \alpha)\%$ confidence interval for θ:

$$\bar{Y} \pm t_{a/2,R-1} \frac{S}{\sqrt{R}}$$
Confidence Intervals with Specified Precision

- Call Center Example: estimate the agent’s utilization ρ over the first 2 hours of the workday.
- Initial sample of size $R_0 = 4$ is taken and an initial estimate of the population variance is $S_0^2 = (0.072)^2 = 0.00518$.
- The error criterion is $\varepsilon = 0.04$ and confidence coefficient is $1-\alpha = 0.95$, hence, the final sample size must be at least:

$$\left(\frac{z_{0.025}S_0}{\varepsilon} \right)^2 = \frac{1.96^2 \times 0.00518}{0.04^2} = 12.44$$

- For the final sample size:

<table>
<thead>
<tr>
<th>R</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{0.025, R-1}$</td>
<td>2.18</td>
<td>2.16</td>
<td>2.14</td>
</tr>
<tr>
<td>$(t_{\alpha/2,R-1}S_0 / \varepsilon)^2$</td>
<td>15.39</td>
<td>15.1</td>
<td>14.83</td>
</tr>
</tbody>
</table>

- $R = 15$ is the smallest integer satisfying the error criterion so $R - R_0 = 11$ additional replications are needed.
- After obtaining additional outputs, half-width should be checked.
Output Analysis for Terminating Simulations

Quantiles
Quantiles

- Here, a proportion or probability is treated as a special case of a mean.
- When the number of independent replications $Y_1, ..., Y_R$ is large enough that $t_{\alpha/2,R-1} \approx z_{\alpha/2}$, the confidence interval for a probability p is often written as:

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{R-1}}$$

- A quantile is the inverse of the probability estimation problem:

Find θ such that $P(Y \leq \theta) = p$
Quantiles

- The best way is to sort the outputs and use the \((R \times p)\)-th smallest value, i.e., find \(\theta\) such that \(100p\%\) of the data in a histogram of \(Y\) is to the left of \(\theta\).
- Example: If we have \(R=10\) replications and we want the \(p = 0.8\) quantile, first sort, then estimate \(\theta\) by the \((10)(0.8) = 8\)-th smallest value (round if necessary).

<table>
<thead>
<tr>
<th>Sorted Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
</tr>
<tr>
<td>7.1</td>
</tr>
<tr>
<td>8.8</td>
</tr>
<tr>
<td>8.9</td>
</tr>
<tr>
<td>9.5</td>
</tr>
<tr>
<td>9.7</td>
</tr>
<tr>
<td>10.1</td>
</tr>
<tr>
<td>12.2</td>
</tr>
<tr>
<td>12.5</td>
</tr>
<tr>
<td>12.9</td>
</tr>
</tbody>
</table>

\(\Rightarrow\) sorted data

\(\Rightarrow\) this is our point estimate
Quantiles

- Confidence Interval of Quantiles: An approximate \((1-\alpha)100\%\) confidence interval for \(\theta\) can be obtained by finding two values \(\theta_l\) and \(\theta_u\).
 - \(\theta_l\) cuts off \(100p_l\%\) of the histogram (the \(R \times p_l\) smallest value of the sorted data).
 - \(\theta_u\) cuts off \(100p_u\%\) of the histogram (the \(R \times p_u\) smallest value of the sorted data).

\[
\begin{align*}
 p_\ell &= p - z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}} \\
 p_u &= p + z_{\alpha/2} \sqrt{\frac{p(1-p)}{R-1}}
\end{align*}
\]
Quantiles

Example: Suppose $R = 1000$ replications, to estimate the $p = 0.8$ quantile with a 95% confidence interval.

- First, sort the data from smallest to largest.
- Then estimate of θ by the $(1000)(0.8) = 800$-th smallest value, and the point estimate is 212.03.
- And find the confidence interval:

 \[
 p_l = 0.8 - 1.96 \sqrt{\frac{0.8(1 - 0.8)}{1000 - 1}} = 0.78
 \]
 \[
 p_u = 0.8 + 1.96 \sqrt{\frac{0.8(1 - 0.8)}{1000 - 1}} = 0.82
 \]

 The CI is the 780th and 820th smallest values.

- The point estimate is 212.03
- The 95% CI is $[188.96, 256.79]$
Output Analysis for Steady-State Simulation
Output Analysis for Steady-State Simulation

• Consider a single run of a simulation model to estimate a steady-state or long-run characteristics of the system.

• The single run produces observations Y_1, Y_2, \ldots (generally the samples of an autocorrelated time series).

• Performance measure:

\[
\theta = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i,
\]

for discrete measure (with probability 1)

\[
\phi = \lim_{T_E \to \infty} \frac{1}{T_E} \int_{0}^{T_E} Y(t) dt,
\]

for continuous measure (with probability 1)

• Independent of the initial conditions.
Output Analysis for Steady-State Simulation

- The sample size is a design choice, with several considerations in mind:
 - Any bias in the point estimator that is due to artificial or arbitrary initial conditions (bias can be severe if run length is too short).
 - Desired precision of the point estimator.
 - Budget constraints on computer resources.

- Notation: the estimation of θ from a discrete-time output process.
 - One replication (or run), the output data: $Y_1, Y_2, Y_3, ...$
 - With several replications, the output data for replication r: $Y_{r1}, Y_{r2}, Y_{r3}, ...$
Output Analysis for Steady-State Simulation

Initialization Bias
Initialization Bias

• Methods to reduce the point-estimator bias caused by using artificial and unrealistic initial conditions:
 • Intelligent initialization.
 • Divide simulation into an initialization phase and data-collection phase.

• Intelligent initialization
 • Initialize the simulation in a state that is more representative of long-run conditions.
 • If the system exists, collect data on it and use these data to specify more nearly typical initial conditions.
 • If the system can be simplified enough to make it mathematically solvable, e.g., queueing models, solve the simplified model to find long-run expected or most likely conditions, use that to initialize the simulation.
Initialization Bias

- Divide each simulation into two phases:
 - An *initialization phase*, from time 0 to time T_0.
 - A *data-collection phase*, from T_0 to the stopping time $T_0 + T_E$.
- The choice of T_0 is important:
 - After T_0, system should be more nearly representative of steady-state behavior.
- System has reached steady state: the probability distribution of the system state is close to the steady-state probability distribution (bias of response variable is negligible).

![Diagram showing initialization and data-collection phases](image)
Initialization Bias

- M/G/1 queueing example: A total of 10 independent replications were made.
 - Each replication begins in the empty and idle state.
 - Simulation run length on each replication: $T_0 + T_E = 15000$ time units.
 - Response variable: queue length, $L_Q(t,r)$ (at time t of the r-th replication).
 - Batching intervals of 1000 minutes, batch means
 \[
 Y_{rj} = \int_{(j-1)1000}^{j1000} L_Q(t,r) dt
 \]

- Ensemble averages:
 - To identify trend in the data due to initialization bias
 - The average corresponding batch means across replications:
 \[
 \overline{Y}_{.j} = \frac{1}{R} \sum_{r=1}^{R} Y_{rj}
 \]
Initialization Bias

- A plot of the ensemble averages, \bar{Y}_j, versus $1000j$, for $j = 1, 2, \ldots, 15$.

![Chart showing initialization bias](image)
Initialization Bias

- Cumulative average sample mean (after deleting d observations):

$$
\bar{Y}_*(n, d) = \frac{1}{n-d} \sum_{j=d+1}^{n} \bar{Y}_j
$$

- Not recommended to determine the initialization phase.
- It is apparent that downward bias is present and this bias can be reduced by deletion of one or more observations.
Initialization Bias

- No widely accepted, objective and proven technique to guide how much data to delete to reduce initialization bias to a negligible level.
- Plots can, at times, be misleading but they are still recommended.
 - Ensemble averages reveal a smoother and more precise trend as the number of replications, \(R \), increases.
 - Ensemble averages can be smoothed further by plotting a moving average.
 - Cumulative average becomes less variable as more data are averaged.
 - The more correlation present, the longer it takes for \(\bar{Y}_j \) to approach steady state.
 - Different performance measures could approach steady state at different rates.
Output Analysis for Steady-State Simulation

Error Estimation
Error Estimation

- If \(\{Y_1, ..., Y_n\} \) are not statistically independent, then \(S^2/n \) is a biased estimator of the true variance.
 - Almost always the case when \(\{Y_1, ..., Y_n\} \) is a sequence of output observations from within a single replication (autocorrelated sequence, time-series).

- Suppose the point estimator \(\theta \) is the sample mean

\[
\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \\
V(\bar{Y}) = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \text{cov}(Y_i, Y_j)
\]

- Variance of \(\bar{Y} \) is very hard to estimate.
- For systems with steady state, produce an output process that is approximately covariance stationary (after passing the transient phase).
 - The covariance between two random variables in the time series depends only on the lag, i.e., the number of observations between them.
Error Estimation

• For a covariance stationary time series, \(\{Y_1, \ldots, Y_n\} \):

 • Lag-\(k \) autocovariance is: \(\gamma_k = \text{cov}(Y_1, Y_{1+k}) = \text{cov}(Y_i, Y_{i+k}) \)

 • Lag-\(k \) autocorrelation is: \(\rho_k = \frac{\gamma_k}{\sigma^2}, \; -1 \leq \rho_k \leq 1 \)

• If a time series is covariance stationary, then the variance of \(\bar{Y} \) is:

\[
V(\bar{Y}) = \frac{\sigma^2}{n} \left[1 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) \rho_k \right]
\]

• The expected value of the variance estimator is:

\[
E \left(\frac{S^2}{n} \right) = B \cdot V(\bar{Y}), \; \text{where } B = \frac{n/c - 1}{n - 1}
\]
Error Estimation

(a) $\rho_k > 0$ for most k
Stationary time series Y_i exhibiting positive autocorrelation.
• Series slowly drifts above and then below the mean.

(b) $\rho_k < 0$ for most k
Stationary time series Y_i exhibiting negative autocorrelation.

(c) Non-stationary time series with an upward trend
Error Estimation

- The expected value of the variance estimator is:

\[
E\left(\frac{S^2}{n}\right) = B \cdot V(\bar{Y}), \text{ where } B = \frac{n/c - 1}{n-1} \text{ and } V(\bar{Y}) \text{ is the variance of } \bar{Y}
\]

- If \(Y_i \) are independent \(\Rightarrow \rho_k = 0 \), then \(S^2/n \) is an unbiased estimator of \(V(\bar{Y}) \).

- If the autocorrelation \(\rho_k \) are primarily positive, then \(S^2/n \) is biased low as an estimator of \(V(\bar{Y}) \).

- If the autocorrelation \(\rho_k \) are primarily negative, then \(S^2/n \) is biased high as an estimator of \(V(\bar{Y}) \).
Output Analysis for Steady-State Simulation

Replication Method
Replication Method

- Use to estimate point-estimator variability and to construct a confidence interval.

- Approach: make R replications, initializing and deleting from each one the same way.

- Important to do a thorough job of investigating the initial-condition bias:
 - Bias is not affected by the number of replications, instead, it is affected only by deleting more data (i.e., increasing T_0) or extending the length of each run (i.e. increasing T_E).

- Basic raw output data $\{Y_{rj}, r = 1, ..., R; j = 1, ..., n\}$ is derived by:
 - Individual observation from within replication r.
 - Batch mean from within replication r of some number of discrete-time observations.
 - Batch mean of a continuous-time process over time interval j.

<table>
<thead>
<tr>
<th>Replication</th>
<th>Observations</th>
<th>Replication Averages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$Y_{1,1}$</td>
<td>$\bar{Y}_{1,*}$, (n,d)</td>
</tr>
<tr>
<td>2</td>
<td>$Y_{1,d}$</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>$Y_{1,d+1}$</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>$Y_{1,n}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y_{d}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y_{d+1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y_{n}</td>
<td>$\bar{Y}_{n,*}$, (n,d)</td>
</tr>
</tbody>
</table>

Prof. Dr. Mesut Güneş • Ch. 11 Output Analysis for a Single Model
Replication Method

- Each replication is regarded as a single sample for estimating \(\theta \).

 For replication \(r \):

 \[
 \bar{Y}_{r.*}(n,d) = \frac{1}{n-d} \sum_{j=d+1}^{n} Y_{rj}
 \]

- The overall point estimator:

 \[
 \bar{Y}_{..}(n,d) = \frac{1}{R} \sum_{r=1}^{R} \bar{Y}_{r.*}(n,d) \quad \text{and} \quad E[\bar{Y}_{..}(n,d)] = \theta_{n,d}
 \]

- If \(d \) and \(n \) are chosen sufficiently large:
 - \(\theta_{n,d} \sim \theta \).
 - \(\bar{Y}_{..}(n,d) \) is an approximately unbiased estimator of \(\theta \).
Replication Method

- To estimate the standard error of \bar{Y}_y, compute the sample variance and standard error:

$$S^2 = \frac{1}{R-1} \sum_{r=1}^{R} (\bar{Y}_{y,r} - \bar{Y}_y)^2 = \frac{1}{R-1} \left(\sum_{r=1}^{R} \bar{Y}_{y,r}^2 - R\bar{Y}_y^2 \right) \quad \text{and} \quad s.e.(\bar{Y}_y) = \frac{S}{\sqrt{R}}$$

Mean of the undeleted observations from the r-th replication.

Mean of $\bar{Y}_{y,n,d}, \ldots, \bar{Y}_{y,R}(n,d)$

Standard error
Replication Method

- Length of each replication \((n)\) beyond deletion point \((d)\):
 \[
 (n - d) > 10d \quad \text{or} \quad T_E > 10T_0
 \]
- Number of replications \((R)\) should be as many as time permits, up to about 25 replications.
- For a fixed total sample size \((n)\), as fewer data are deleted \((\downarrow d)\):
 - Confidence interval shifts: greater bias.
 - Standard error of \(\bar{Y}_{\cdot \cdot}(n,d)\) decreases: decrease variance.

Reducing bias \(\Rightarrow\) Increasing variance

Trade off
Replication Method

- **M/G/1 queueing example:**
 - Suppose \(R = 10 \), each of length \(T_E = 15000 \) time units, starting at time 0 in the empty and idle state, initialized for \(T_0 = 2000 \) time units before data collection begins.
 - Each batch means is the average number of customers in queue for a 1000-time-unit interval.
 - The 1-st two batch means are deleted \((d=2)\).
 - The point estimator and standard error are:
 \[
 \bar{Y}_{r,.}(15,2) = 8.43 \quad \text{and} \quad s.e.(\bar{Y}_{r,.}(15,2)) = 1.59
 \]
 - The 95% CI for long-run mean queue length is:
 \[
 \bar{Y}_{r,.} - t_{\alpha/2,R-1} \frac{S}{\sqrt{R}} \leq \theta \leq \bar{Y}_{r,.} + t_{\alpha/2,R-1} \frac{S}{\sqrt{R}}
 \]
 \[
 8.43 - 2.26(1.59) \leq L_{\theta} \leq 8.43 + 2.26(1.59)
 \]
 - A high degree of confidence that the long-run mean queue length is between 4.84 and 12.02 (if \(d \) and \(n \) are “large” enough).
Output Analysis for Steady-State Simulation

Sample Size
Sample Size

- To estimate a long-run performance measure, θ, within $\pm \varepsilon$ with confidence $100(1-\alpha)\%$.
- M/G/1 queuing example (cont.):
 - We know: $R_0 = 10$, $d = 2$ deleted and $S_0^2 = 25.30$.
 - To estimate the long-run mean queue length, L_Q, within $\varepsilon = 2$ customers with 90% confidence ($\alpha = 10\%$).
 - Initial estimate:
 \[R \geq \left(\frac{z_{0.05}S_0}{\varepsilon} \right)^2 = \frac{1.645^2 \times 25.30}{2^2} = 17.1 \]

 - Hence, at least 18 replications are needed, next try $R = 18, 19, \ldots$

 using
 \[R \geq \left(\frac{t_{0.05,R-1}S_0}{\varepsilon} \right)^2 \]
 We found that:
 \[R = 19 \geq \left(\frac{t_{0.05,19-1}S_0}{\varepsilon} \right)^2 = 1.73^2 \times \frac{25.3}{4} = 18.93 \]

 - Additional replications needed is $R - R_0 = 19 - 10 = 9$.
Sample Size

• An alternative to increasing R is to increase total run length $T_0 + T_E$ within each replication.

• Approach:
 • Increase run length from $(T_0 + T_E)$ to $(R/R_0)(T_0 + T_E)$, and
 • delete additional amount of data, from time 0 to time $(R/R_0)T_0$.

• Advantage: any residual bias in the point estimator should be further reduced.

• However, it is necessary to have saved the state of the model at time $T_0 + T_E$ and to be able to restart the model.
Output Analysis for Steady-State Simulation
Batch Means
Batch Means for Interval Estimation

- **Using a single, long replication:**
 - Problem: data are dependent so the usual estimator is biased.
 - Solution: batch means.

- **Batch means:** divide the output data from 1 replication (after appropriate deletion) into a few large batches and then treat the means of these batches as if they were independent.

- **A continuous-time process**, \(\{Y(t), T_0 \leq t \leq T_0 + T_E\} \):
 - \(k \) batches of size \(m = T_E/k \), batch means:
 \[
 \bar{Y}_j = \frac{1}{m} \int_{(j-1)m}^{jm} Y(t + T_0) dt \quad j = 1, 2, \ldots, k
 \]

- **A discrete-time process**, \(\{Y_i, i = d+1, d+2, \ldots, n\} \):
 - \(k \) batches of size \(m = (n - d)/k \), batch means:
 \[
 \bar{Y}_j = \frac{1}{m} \sum_{i=(j-1)m+1}^{jm} Y_{i+d} \quad j = 1, 2, \ldots, k
 \]
Batch Means for Interval Estimation

\[
Y_1, \ldots, Y_d, \underbrace{Y_{d+1}, \ldots, Y_{d+m}}_{\text{deleted}}, Y_{d+m+1}, \ldots, Y_{d+2m}, \ldots, Y_{d+(k-1)m+1}, \ldots, Y_{d+km}
\]

\[
\bar{Y}_1, \bar{Y}_2, \bar{Y}_k
\]

- Starting either with continuous-time or discrete-time data, the variance of the sample mean is estimated by:

\[
S^2 = \frac{1}{k} \sum_{j=1}^{k} \left(\bar{Y}_j - \bar{Y} \right)^2 = \frac{k}{k-1} \sum_{j=1}^{k} \bar{Y}_j^2 - k\bar{Y}^2 = \frac{\sum_{j=1}^{k} \bar{Y}_j^2 - k\bar{Y}^2}{k(k-1)}
\]

- If the batch size is sufficiently large, successive batch means will be approximately independent, and the variance estimator will be approximately unbiased.

- No widely accepted and relatively simple method for choosing an acceptable batch size \(m\). Some simulation software does it automatically.
The Art of Data Presentation
The art of data presentation

- Always get the following statistical sample data
 - Min
 - Max
 - Mean
 - Median
 - Standard deviation
 - Confidence interval half width
 - 1st-quartile
 - 3rd-quartile
Histograms
Box Plot

- Various types of Box Plots
 - Standard
 - Variable-width Box Plot
 - Notched Box Plot
 - Variable-width Notched Box Plot
Box Plot

Quartile
Quartile
Median
Mean
Min
Max
Box Plot
Mean with confidence interval
Summary

• Stochastic discrete-event simulation is a statistical experiment.
 • Purpose of statistical experiment: obtain estimates of the performance measures of the system.
 • Purpose of statistical analysis: acquire some assurance that these estimates are sufficiently precise.
• Distinguish simulation runs with respect to output analysis:
 • Terminating simulations and
 • Steady-state simulations.
• Steady-state output data are more difficult to analyze
 • Decisions: initial conditions and run length
 • Possible solutions to bias: deletion of data and increasing run length
• Statistical precision of point estimators are estimated by standard-error or confidence interval
• Method of independent replications was emphasized.
• Batch mean for a long run replication
• Art of data representation