

Hands-on course
„Mobile Communications“

Summer 2008

Material and Assignments in the areas of:

Medium Access in Wireless Networks

Freie Universität Berlin

Institute of Computer Systems & Telematics

A. Liers, H. Ritter, M. Baar, J. Schiller

http://cst.mi.fu-berlin.de/

Content

Content ... 1

1 Introduction .. 1

2 868 MHz Radio Communication ... 3

2.1 Technical References .. 3

2.1.1 USB-to-Serial Converter ... 4

2.1.2 Microcontroller.. 4

2.1.3 868 MHz Transceiver .. 4

2.2 Software Interface ... 4

2.3 Communication using the 868 MHz module .. 4

2.3.1 Features and requirements of the 868 MHz transceiver .. 4

2.3.2 Features and requirements of the 868 MHz transceiver .. 5

2.3.3 Lowest Level Framing .. 5

2.3.4 Higher level protocols ... 6

1

1 Introduction

To give you deeper insights into some of the aspects of the wide area of mobile communications,

the hands-on course “mobile communications” was initially set up in the year 2002. Based on the

network-related lectures “Telematics” and “Mobile Communications”, the course is meant to give a

better understanding of central concepts of mobile networks and future mobile services.

The course is divided into three parts that cover the different layers of the classical communication

layer model:

 Medium Access in wireless networks using the license-free 868 MHz band

 Routing in wireless ad-hoc networks

 Application development and service usage with mobile devices

As it is the second time that we offer this hands-on course, we have improved on some aspects of

the content and documentation of this course. Nevertheless, hands-on courses are always a moving

target, as technology advances and interesting new things come up. So feel free to help us to im-

prove even more. And finally, we hope that you will have some fun with testing and programming

mobile communications stuff!

Achim Liers, Hartmut Ritter, Min Tian, Michael Baar, Jochen Schiller

3

2 868 MHz Radio Communication

This part of the course deals with problems of medium access and protocols for data transfer; based

on the license-free 868 MHz frequency band. In the next sections you will find technical references,

programming hints, a proposal for a common frame format and practical assignments.

2.1 Technical References

The hardware used in this course provides consists of an USB stick with an onboard 868 MHz ra-

dio transceiver (= transmitter and receiver). Depending on the used driver, the USB stick provides

you with a virtual serial port connection from the PC to the transceiver. A picture of the USB stick

is given in Figure 1.

Figure 1: The USB stick provided for the course

It consists of four parts: A chip for the USB interface (from FTDI), a microcontroller (TI MSP430)

mainly for purposes of flow control, and the transceiver module with attached antenna. This is

sketched in Figure 2.

USB-

to-seria l

m icro-

contro ller

868 M Hz

transceiver

chip

antenna

Figure 2: The parts of the USB stick

868 MHz Radio Communication

4

Though you don’t need to understand the software running on the microcontroller for this practical

course, in the following the parts of the USB stick will be explained in short.

2.1.1 USB-to-Serial Converter

The USB-to-Serial converter, realised with a chip from FTDI (cf. www.ftdichip.com), transports

packets from the USB interface to the microcontroller and vice versa. The Windows driver handles

initialization of the converter and provides a virtual serial port on the PC. The USB-to-Serial con-

verter itself is connected on board of the USB stick with the microcontroller again over a serial

connection.

2.1.2 Microcontroller

The microcontroller, a Texas Instruments MSP430 (cf. www.ti.com), performs only simple tasks in

this setup. It has to carry out flow control, as it acts as a gateway between the stream-oriented

868 MHz transceiver interface and the block-oriented USB-to-Serial converter. An incoming byte

stream from the transceiver interface has to be buffered by the MSP, until the USB-to-serial con-

verter encapsulates the bytes in one packet of limited maximum size after another.

2.1.3 868 MHz Transceiver

The 868 MHz transceiver module (TR1001 of RFM, cf. www.rfm.com) provides a very simple

serial bitstream interface for sending and receiving bytes in the license-free 868 MHz frequency

band. The transceiver module acts completely transparent: It takes the bytes that are provided at the

input and sends them at 868 MHz, using On-Off-Keying. If it receives a signal above a certain

threshold, it demodulates it and sends the bytes to the microcontroller. Note, that the transceiver

implicitly acts in a half-duplex way: Either it transmits or it receives at any given moment. The

default state is receiving.

2.2 Software Interface

The software interface at the PC is a serial port (“COM port”). Which port number is assigned,

depends on the further installed hardware at the PC. You can find out using the Windows Device

Manager (Start->Settings->Control Panel->System->Hardware), looking for the FU Funkboard at

the COM and LPT port tab.

2.3 Communication using the 868 MHz module

In this section, some problems related to the special kind of radio module that is used in the course

are discussed.

2.3.1 Features and requirements of the 868 MHz transceiver

The setting you need for access to the COM port are:

http://www.ftdichip.com/
http://www.ti.com/
http://www.rfm.com/

868 MHz Radio Communicatio

5

 19200 bit/s

 8 bits, no parity, 1 stop bit

 Hardware flow control on

2.3.2 Features and requirements of the 868 MHz transceiver

There are two modes of the 868 MHz module

 Receive mode:

This is the default mode of the module. In receive mode, data from the air interface is passed as

a bit stream to the serial interface. This is valid as long as a carrier is detected (as indicated by

the carrier detect LED). If the receiver just receives noise, it is not passed to the serial interface.

 Send mode

If the module receives data from the serial port, it immediately switches to the send mode and

sends the data. It does not wait until no carrier is detected on the air interface. Therefore, colli-

sion avoidance has to be implemented by software.

The radio transceiver requires a bit stream, that

 contains – on average – as many high as low bits (DC balance, “Gleichstromfreiheit”)

 begins with a preamble enabling synchronization of the oscillator on board of the radio module.

There are different possibilities to fulfil these hardware requirements. The next section presents the

solution that is to be deployed in this course.

2.3.3 Lowest Level Framing

A frame format that fulfils the hardware requirements is presented in Figure 3. It starts with the

preamble five times AAh (10101010b) for synchronization of the radio part and twice FFh for the

synchronization of the UART (universal asynchronous receiver and transmitter, basic chip of

nearly any serial interface).

Figure 3 Format of lowest level frame

AA FF FF payload
type

destination
address . .

source
address .

length
of data payload

Coding from this point: AA
(“ Gleichstromfreiheit ”)
Coding from this point: AA
(“ Gleichstromfreiheit ”)

1 byte 1 byte 1 byte 1 byte five times 1 byte

checksum

868 MHz Radio Communication

6

The remainder of the frame contains data that is structured by the higher level: The payload type

denotes the type of data that is contained in the payload field, destination address and source ad-

dress have to be interpreted by higher layers as well, and finally the data length field gives the size

of the payload.

Beginning with the destination address, all data bytes are sent twice: Immediately after the data

byte, the inverted data byte is sent. Example: If the destination address is 0x01, the data that is

really sent is 0x01h 0xFEh.

The checksum is to be calculated as Check(i) = Modulo(NOT Check(i – 1) + Bytei,255) with

Check(0) = 0xAA and i between 1 and #Bytes on the complete packet (starting from payload type).

Protocol Type Name Description CRC

0x01 RTS Ready to send primitive no

0x02 CTS Clear to send primitive no

0x03 PING Pong request no

0x04 PONG Pong reply no

0x10 SAbP Protocol Payload is SAbP data yes

0x11 ASCII Payload is Ascii Text yes

0x12 UNICODE Payload is Unicode Text yes

0x40 .. 0xFF User defined

Table 1: Protocol Type

Address User Description

0x00 Lecturer Listener Node

0x10 … 0xEF Students Use 0x10 + PC-Number

0xFF Broadcast Use with care!

Table 2: Protocol Address

Note 1: Please follow these format rules as otherwise a communication between different

modules of different groups will obviously not be possible!

Note 2: In your own interest, keep the implementation of these lowest-level framing simple

and transparent and write separate methods for encapsulation and decapsulation. You will

need these functions later on when running IP over the 868 MHz transceivers.

2.3.4 Higher level protocols

868 MHz communication is typically used for wireless sensor devices. Examples are remote sen-

sors for home automation, like temperature sensors in the garden that can be read while sitting on

the couch. Another example is remote controls for cars built into the key. In all these cases, the

communication pattern is a typical master/slave pattern.

Therefore, we propose a simple, partly ASCII-based protocol called SAbP shown in Figure 4. Any

node that wants to start communication, acts as a master. There are two primitives: A simple

“PING” message to find out whether a node at a specific destination address is reachable. And a

“DATA_REQ” primitive that allows to request data from another node.

868 MHz Radio Communicatio

7

Figure 4:Simple ASCII-based protocol SAbP for 868 MHz communication

Note: The proposed protocol again builds the basis for any communication between nodes of

different groups, so you should stick to it. Nevertheless, feel free to augment it, as long as you

are backward-compatible – and your software can deal with unknown protocol primitives as

well!

SAbP File Transfer protocol:

Master Slave

If currently no data is available the slave shall reply with the NO_DATA command.

header (see above) payload

frame format:

Ping/Pong protocol:

user data 0x0

0x1 control commands

Master Slave

0x1|PING

0x1|PONG

11 bytes
1 byte

checksum

0x0|FILE_DATA_BLOCK <1>

0x0|FILE_DATA_BLOCK <n>

0x1|NO_DATA

0 ≤ n ≤ filesize/254

0x1|DATA_REQ

868 MHz Radio Communication

8

Command Value Description

PING 0x01 Pong request

PONG 0x02 Ping reply

DATA_REQ 0x03

NO_DATA 0x04

Table 3: SAbP Control Commands

Field Position [Byte] Description

Offset 0..3 Byte offset of data following

File Data 4..254 Part of the file starting at <off-

set>

Table 4: File Data Block

