19589 - PS Telematik-Projekt: Wireless Embedded Systems

Course Introduction

Bastian Blywis, Dr. Achim Liers

Department of Mathematics and Computer Science
Institute of Computer Science
08. October, 2008
1. About the Course

2. Course Requirements

3. Required Skills and Knowledge

4. Schedule

5. Wireless Sensor Networks

6. Task 1

7. Task 2

8. Detailed Schedule

9. Equipment and Documentation

10. What you will learn
About the Course

- Prerequisite: Bachelor or Vordiplom
- Supervised lab course
- Half of work to be done outside of lab hours
- Projectseminar → Choose the type of your “Schein”
- ECTS-Credits: 10
- Task given at start of term
- Two students per team

Michael Faraday in his laboratory at the Royal Institution. From a painting by Harriet Moore.
Course Requirements

- No exam
- No talk/presentation
- Develop software to solve task
- Evaluate software via experiments
- Two written technical reports, each 6 pages
- Mandatory attendance in lab hours
- Minimum of 150 work hours ($150 \text{ h}/17 \approx 8.83 \text{ h}$)
- Meet deadlines
- Revision of reports as necessary
- Collaborative milestone talks
Required Skills and Knowledge

- Lecture *Telematics*
- Lecture *Mobile Communications*
- Protocols and Protocolstacks
- Basic OS related knowledge
- Programming in C
- Doxygen
- Subversion
- \LaTeX2e
- October 8th, 2008
 - Course introduction
- October 15th, 2008
 - Team forming
 - Introduction to the ScatterWeb² firmware
- October 22nd - December 17th, 2008
 - Supervised lab hours
- December 17th, 2008
 - First deadline
 - First technical report
- January 7th - February 11th, 2008
 - Supervised lab hours
- February 11th, 2008
 - Second deadline
 - Second technical report

Time: 17 weeks total
Wireless Sensor Networks

- Spatially distributed autonomous devices
- Equipped with various sensors
- Cooperative monitoring and computation
- Origin: military
- Embedded systems: pervasive, ubiquitous
- Wireless ad-hoc networks
- Network size: from a dozen to 10,000 nodes

Sorry, no Linux based mesh routers this term.
Routing layer

- Implement a (simple) routing protocol
 - DSDV,
 - OLSR,
 - or DSR
- Develop test scenario to evaluate implementation
- Measure throughput and delay
- Write first technical report
 - Description of routing protocol
 - Test scenario description and discussion
 - Data evaluation
- Document source code

Time: 8 weeks
Transport layer

- Implement a (simple) transport layer protocol which ensures
 - acknowledged end-to-end communication,
 - reliability,
 - flow control,
 - and order of data

- Develop test scenario to evaluate implementation

- Measure throughput and delay

- Write second technical report
 - Description of transport protocol, RFC-style
 - Test scenario description and discussion
 - Data evaluation

- Document source code

Time: 6 Weeks
<table>
<thead>
<tr>
<th>3 Weeks</th>
<th>08.10.</th>
<th>15.10.</th>
<th>22.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Meeting</td>
<td>First Steps</td>
<td>C Programming, Subversion</td>
<td></td>
</tr>
<tr>
<td>8 Weeks</td>
<td>29.10.</td>
<td>05.11.</td>
<td>12.11.</td>
</tr>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routing P.</td>
<td>Testing</td>
<td>Writing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Weeks</td>
<td>07.01.</td>
<td>14.01.</td>
<td>21.01.</td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport P.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction | **Collaborative Talk** | **Programming** | **Writing** | **Experiments** | **Other**
- Barebone ScatterWeb2 operating system
- Open source compiler toolchain (MSPGCC)
- Sensor nodes, cables, and flash interface
 - Lent for the whole semester
 - Do not lose!!
- Protocol specifications, introductory documents
What you will learn

- Embedded system programming
- Routing protocol implementation
- Transport protocol implementation
- Evaluation by experiment using test scenarios
- Technical writing

→ Preparation for your Diploma/Master thesis.
Thank you for your attention.

Questions?
Tools and Documents

Tools
- Doxygen
- \texttt{\LaTeX}TEX
- MSPGCC
- Subversion

Documents & Papers
- Building Protocol State Machines in UML 2 (UML 2 For Dummies)
- Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers
- Mobile Communications Script
- RFC 793 (TCP)
- RFC 3626 (OLSR)
- RFC 4728 (DSR)
- RFC 4960 (SCTP)
- ScatterWeb API
Books and Articles

Books
- C - kurz & gut (ISBN-13 978-3897212381)

Articles (online)
- ANSI C Reference Card
- The C Book
- C Elements of Style
- Everything you need to know about pointers in C
- Frequently Asked Questions in comp.lang.c (C FAQ)
- FMM - Frequently Made Mistakes [in technical writing]
- Memory Management in C
- William Strunk, Jr. - The Elements of Style [in technical writing]
- Byun - A Tool Support for Design and Validation of Communication Protocol using State Transition Diagrams and Patterns
- Darroch - Implementing Protocol State Machines
- Schmidt, et al - \LaTeX2e-Kurzbeschreibung
- McKinney - TCP/IP State Transition Diagram