
A Survey of Current Directions in Service Placement in Mobile Ad-hoc Networks

<u>Georg Wittenburg</u> and Jochen Schiller Freie Universität Berlin

Middleware Support for Pervasive Computing Workshop (PerWare '08) Hong Kong, China

Motivation

Service Request Recall (location factor = 0)-0.5 90%-100% Request Frequency (s -1) 80%-90% **70%-80%** 60%-70% -0.1 **50%-60% 40%-50% 30%-40%** 20%-30% -0.05 **10%-20%** 0%-10% -0.01

4000 / 8.2

5000 / 6.0

2000 / 21.5 3000 / 12.5 Area Width (m) / Average Node Degree

1000 / 43.9

- Dynamically adapt location of services to changing network topology and service demand of clients:
 - Decide on suitable number of service instances
 - Identify appropriate nodes to act as servers
 - Migrate and/or replicate service instances
- Minimize cost of providing service to client nodes:
 - Network traffic, radio interference, energy expenditure, ...
 - Availability, latency, ...
- Key questions:
 - *Where* to place service instances?
 - *How many* service instances for cost optimal operation?
 - *When* to adapt current configuration of services?
 - *How* to transfer services between nodes?

Outline

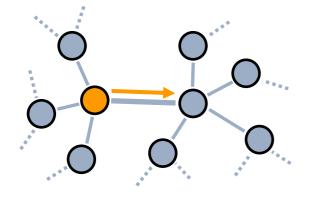
- Background
 - Services
 - Applicability
 - Facility Location Theory
- State of the Art
 - Brief Summaries of Surveyed Approaches
 - Classification by Communication Cost
 - Classification by Context of Research
 - Evaluation
- Conclusion

- Term "service" in this context:
 - Software component executed on one or several nodes
 - Reacts to service requests received from clients through well-defined interface according to service-specific protocol
 - Several different services may be active simultaneously
- Classification of services:
 - Node-specific vs. node-independent
 - Centralized vs. distributed
 - Monolithic vs. composite
 - Message-based vs. streaming

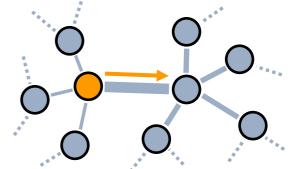
- Network properties:
 - Changing topology, i.e. subject to mobility and/or churn
 - Changing regional service demand
 - Limited heterogeneity of devices
- Types of services:
 - Data dissemination or processing:
 - Directory services
 - Multimedia streaming
 - Network topology:
 - Cluster heads
 - Landmark nodes

Facility Location Theory

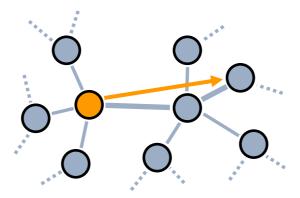
- Two theoretical problems related to service placement:
 - Common input:
 - Sets of facilities and clients (bipartite graph)
 - Cost functions for service provisioning and new facilities
 - *k*-Median Problem:
 - Place k facilities so that total service cost is minimized
 - Decision on placement of a given number of service instances
 - Special case: Placement of a centralized service (k=1)
 - Facility Location Problem:
 - Choose number and location of facilities so that sum of service cost and facility cost is minimized
 - Decision on number and placement of service instances
- Both problems are NP-hard
- Approximations exist, but commonly require exact knowledge about inputs

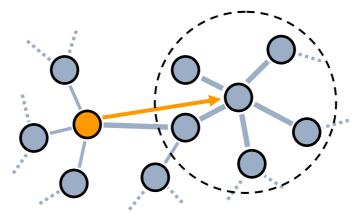


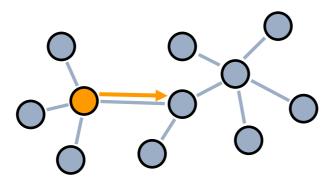
Survey of following publications:


- P. Bellavista, A. Corradi, and E. Magistretti. REDMAN: An Optimistic Replication Middleware for Read-only Resources in Dense MANETs. *Journal on Pervasive and Mobile Computing*, 1(3):279– 310, Aug. 2005.
- C. Frank and K. Römer. Distributed Facility Location Algorithms for Flexible Configuration of Wireless Sensor Networks. In *3rd IEEE Intl. Conf. on Distributed Computing in Sensor Systems*, Santa Fe, USA, June 2007.
- 3. T. Furuta, M. Sasaki, F. Ishizaki, A. Suzuki, and H. Miyazawa. A New Clustering Algorithm Using Facility Location Theory for Wireless Sensor Networks. Technical Report NANZAN-TR-2006-04, Nanzan Academic Society, Mar. 2007.
- 4. D. Krivitski, A. Schuster, and R. Wolff. A Local Facility Location Algorithm for Large-Scale Distributed Systems. *Journal of Grid Computing*, 2006.
- N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis, and A. Bestavros. Distributed Placement of Service Facilities in Large-Scale Networks. In *26th Annual IEEE Conf. on Computer Communications*, Anchorage, USA, May 2007.
- 6. B. Li and K. H. Wang. NonStop: Continuous Multimedia Streaming in Wireless Ad Hoc Networks with Node Mobility. *IEEE Journal on Selected Areas in Communications*, 21(10):1627–1641, Dec. 2003.
- 7. H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer. Design and Implementation of a Single System Image Operating System for Ad Hoc Networks. In *3rd Intl. Conf. on Mobile Systems, Applications, and Services*, Seattle, USA, June 2005.
- 8. T. Moscibroda and R. Wattenhofer. Facility Location: Distributed Approximation. In *24th ACM Symp. on the Principles of Distributed Computing*, Las Vegas, USA, July 2005.
- 9. K. Oikonomou and I. Stavrakakis. Scalable Service Migration: The Tree Topology Case. In 5th Annual Mediterranean Ad Hoc Networking Workshop, Lipari, Italy, June 2006.
- 10. F. Sailhan and V. Issarny. Scalable Service Discovery for MANET. In *3rd IEEE Intl. Conf. on Pervasive Computing and Communications*, Kauai, USA, Mar. 2005.

Freie Universität

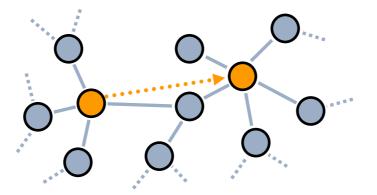

• Migrate service to neighbor that routes most traffic [7]


 Migrate service to neighbor that routes more than half of the traffic [9]

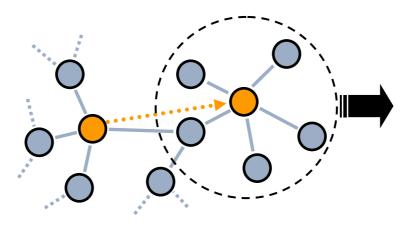

• Migrate service to node that causes most traffic [7]

• Migrate service to one-hop cluster that causes most traffic [7]

 Migrate service one hop towards most distant node until topological center of network is reached [1]



Freie Universität


Berlin

• Replicate service maximizing number of new clients [10]

• Replicate service instance per mobility group [6]

- Centralized solutions to facility location problem:
 - Centrally collect all information [3]
 - Calculate service demand by local enquiries and estimating demand of distant nodes [5]
 - Demand of distant nodes is mapped to nodes n hops away
- Distributed solutions to facility location problem:
 - Iteratively reach agreement between potential servers and clients on optimal mapping [2]
 - Potential servers send advertise to clients
 - Clients reply to most cost-efficient advertisement
 - Server is started if replies match advertisements
 - Distributed hill climbing using majority votes [4]
 - Nodes agree on next step of hill climbing approximation using a low-overhead majority voting primitive
 - Round-based fractional linear program [8]
 - > Iteratively approximate parameters of primal and dual problem

Supported type of service Main protocol mechanism	Centralized service	Distributed service
Passive monitoring	[9]	
Piggybacking	[7]	[3 ¹ , 6 ²]
Limited broadcasts		[10 ³]
Iterative limited broadcasts	[1]	[2, 4, 5]
Iterative unlimited broadcasts		[8]

¹Service placement algorithm is run centrally on base station ²Places service instance on any node within mobility group ³Only supports placement of one service instance per neighborhood Berlin

Two major approaches in service placement research:

- Middleware:
 - Service abstraction in existing component system
 - Service placement as additional feature
 - Tend to consider simple cases (e.g. centralized service) using heuristics
- Facility Location Theory:
 - Networking as application of theory, but centralized approximations do not work in distributed systems
 - Complex service placement with focus on algorithmic correctness and complexity
 - Tend to neglect cost of communication (service discovery, route discovery, shared media access, ...)

Berlin

Evaluation

- Placement of single centralized service just by monitoring service requests
- Placement of distributed service instances requires active exchange of information via iterative limited broadcasts
- Mostly self-contained studies, few comparisons
- Quantitative evaluation only against systems without placement
- Not explicitly considered so far:
 - Several disjoint services on same network
 - Traffic between service instances
 - Timing of placement decisions
 - Integration with service location or routing protocols

- Service placement is beneficial for certain MANETs.
 - Scenarios with node-independent services
 - Dynamically changing regional network conditions
 - "Ad-hoc load balancing"
- Current approaches deal with establishing the optimal location and (in part) number of service instances.
 - Tradeoff between quality of approximation and communication overhead
- Critical open question is *when* to adapt configuration.
 - Transient changes in regional demand
 - Overhead of migration/replication and service/route discovery