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Abstract – Recently, approaches to DHT-style key-based 
routing explicitly designed for the use in mobile ad hoc networks 
(MANETs) have been proposed. However, as DHTs are usually 
no applications as such, a very practical distributed application 
running on top of such mobile DHTs could be resource discovery. 

Therefore, in this paper, a DHT-based approach to resource 
discovery – MAPNaS – will be described in detail and thoroughly 
evaluated through simulations. We aim at gaining a first insight 
into the question under which network conditions it is 
meaningful to perform DHT-based resource discovery and when 
it would be more advisable to opt for a less complex – e.g. a 
simple broadcast-based – approach instead. 
 

Index Terms – DHT, MANETs, Peer-to-Peer, Service discovery 
 

I. INTRODUCTION 
The invisible omnipresence of the Domain Name System 

(DNS) in the Internet shields one of the most fundamental 
challenges from network applications and users: How to bind 
a resource, for example a file or a service, to a specific 
network address. It is, in fact, essential for a network 
application to resolve a given resource (e.g. by its name) to the 
concrete network address of the node where the desired 
resource actually resides. 

In order to cope with scalability issues associated with static 
DNS servers, a number of peer-to-peer based name services 
have been proposed recently for the domain of the Internet: 
[13, 3, 4, 19, 1]. Instead of the static and hierarchical DNS 
infrastructure, these approaches use structured P2P networks, 
also known as DHTs ([14, 17, 15, 23]) to efficiently distribute 
and discover resources in the network. 

MANETs are highly dynamic and self-organizing networks 
that are formed among wireless mobile devices. Due to this 
lack of a fixed infrastructure, there are no dedicated resource 
directories available in MANETs. Obviously MANETs and 
P2P networks share a good number of key characteristics, 
hence, it would be intuitive to deploy the P2P-based name 
services mentioned above in MANETs to provide resource 
discovery. However, those approaches rely on DHTs designed 
for the Internet that are ill-suited for the use in MANETs [21]. 

Therefore, in the short paper [22], the concepts of a DHT-
based approach explicitly designed for resource discovery in 
MANETs – MAPNaS – were briefly outlined. In this paper, 
MAPNaS will be described in detail and its performance will 
be evaluated thoroughly in various network environments. We 

will try to answer the question under which conditions it is 
worthwhile to perform DHT-based resource discovery and 
when it might be more advisable to opt for a less complex (for 
example a broadcast-based approach with practical no 
maintenance overhead) approach. 

The remainder of this paper is organized as follows. 
Section II provides a brief overview of the mobile DHT 
substrate MADPastry on which MAPNaS is based. Section III 
describes in detail the concept and architecture of MAPNaS. 
In Section IV, extensive simulation results are presented for 
MAPNaS and a reference broadcast application. Section V 
discusses related work. Finally, Section VI concludes this 
paper and provides a brief outlook on our future work. 

II. MADPASTRY – BRIEF OVERVIEW 
A large body of work exists on direct routing in mobile ad 

hoc networks: [5, 7, 8, 11] to name but a few. These ad hoc 
routing protocols deliver a packet from a source node to a 
predefined destination node. However, indirect routing – or 
key-based routing – differs from direct routing in that packets 
are no longer routed based on the destination node's address 
but on a key instead. The packet is then to be delivered to the 
node that is responsible for the packet's key. In other words, 
the actual address of the final destination node is usually 
unknown to the sender. For this purpose, MADPastry (Mobile 
Ad Hoc Pastry) [21] has been proposed. 

MADPastry is a DHT substrate particularly designed for 
mobile ad hoc networks. It combines AODV ad hoc routing 
[11] and Pastry overlay routing [15] at the network layer to 
provide an efficient primitive for key-based routing in 
MANETs. 

Abiding by the concept of structured P2P overlays (DHTs), 
each node in a MADPastry network assigns itself a unique 
overlay ID (for example by hashing its IP address, etc.), which 
defines its logical position on the virtual overlay ID ring [15]. 
Furthermore, in MADPastry, a message's packet header 
contains a message key. MADPastry then routes the message 
to that node in the network that is currently responsible for the 
message key – i.e. to the node whose overlay ID is currently 
the numerically closest to the message key among all 
MADPastry nodes in the network. To avoid message 
broadcasts whenever possible (e.g. for route discovery), 
MADPastry explicitly considers physical locality in the 
construction of its routing tables. 



Clusters. Standard (Internet-based) DHTs are largely 
oblivious of the actual physical topology so that two overlay 
neighbors can be located arbitrarily far from each other in 
terms of the underlying physical network. This can lead to a 
large overlay stretch (i.e. the ratio between the length of the 
physical route traveled during an overlay key lookup 
compared to the direct physical path from the source to the 
eventual target node) as subsequent overlay hops can literally 
crisscross the physical network. Due to the volatile nature of 
physical routes in MANETs, this effect is especially 
prohibitive in such environments. 

To exploit physical locality in the construction and 
maintenance of its overlay, MADPastry uses Random 
Landmarking [20]. Instead of having fixed landmark nodes – 
which simply are not available in MANETs – fixed landmark 
keys are used. These keys divide the logical overlay id space 
into equal sections (e.g. 16 keys with hexadecimal ids 
"0800…000", "1800…000", "2800…000", ... , "E800…000", 
"F800…000", etc.). The nodes whose overlay IDs are 
currently numerically closest to the landmark keys temporarily 
become landmark nodes and periodically issue beacon 
messages. Nodes overhear these beacon messages and 
periodically determine the physically closest temporary 
landmark node (e.g. in terms of hops). If need be, a node 
assigns itself a new overlay ID sharing the same prefix with 
the closest temporary landmark node. It would then (re-)join 
the network under its new ID. This leads to physically close 
nodes forming overlay regions, or clusters, with common id 
prefixes. In other words, nodes that are close to each other in 
the logical overlay ID space are also likely to be close to one 
another physically. This is demonstrated by Figure 1 which 
shows the spatial distribution of overlay ID prefixes in a 250 
node MADPastry network. Equal symbols of equal shades 
represent equal overlay ID prefixes. 

Routing Tables. MADPastry maintains three different 

routing tables: a standard AODV routing table for physical 
routes from a node to specific target nodes, as well as a sparse 
Pastry routing table and a standard Pastry leaf set for indirect 
routing. The Pastry routing table only needs to contains as 
many entries as are necessary to keep a "finger" entry into 
each MADPastry cluster (i.e. one entry for each distinct 
cluster overlay prefix). 

Routing Table Maintenance. To avoid the prohibitive 
overhead induced by routing table maintenance, the only 
proactive routing table maintenance that a MADPastry node 
performs is the periodic pinging of its "left" (i.e. the node who 
has the largest overlay ID smaller than the node's own) and 
"right" (i.e. the node who has the smallest overlay ID larger 
than the node's own) leaf as this is necessary to guarantee 
overlay routing convergence. All other routing entries are 
gained or updated implicitly by overhearing data packets. 

Routing. MADPastry routes packets based on a key. When 
a node wants to send a packet to a specific key, it consults its 
Pastry routing and/or leaf set to determine the closest prefix 
match, as stipulated by standard Pastry. Next, it consults its 
AODV routing table for the physical route (or, rather, the next 
physical hop on the route) to execute this overlay hop. 
Intermediate nodes on the physical path of an overlay hop 
consult their AODV table for the corresponding next physical 
hop. When a packet thus reaches the destination of an overlay 
hop, that node again consults its Pastry routing table and/or 
leaf set to determine the next overlay hop. This process 
continues until the packet reaches the eventual target node that 
is responsible for the packet key – i.e. whose overlay ID is the 
numerically closest to the packet key. 

III. THE MAPNAS NAME SERVICE 
In MAPNaS, a resource (e.g. a file, a service, etc) is 

identified by a unique resource key that is mapped into the 
logical MADPastry ID space. Due to the lack of a fixed 
network topology in MANETs, there are no dedicated 
resource directory servers. Instead, true to the P2P paradigm, 
every node functions both as a resource host (of its own files, 

Figure 1. Spatial distribution of overlay ID prefixes 
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services, etc.) and as a resource directory for certain remote 
resources. As determined by MADPastry, every node keeps 
track of the network addresses of those resources whose 
resource keys it is responsible for. This design of MAPNaS is 
outlined in Figure 2. Nodes store the resource descriptors (the 
resource key along with the specific network address of the 
resource) they are responsible for in their local MAPNaS 
repository. Furthermore, every node advertises its own 
resources that it is willing to share through MAPNaS. 

A. Resource Advertisement 
When a node A in a MADPastry network wants to make a 

local resource (e.g. a service, a file, etc.) available to other 
nodes in the network, it needs to assign a hash key to that 
resource, e.g. by hashing the resource's name. Using that key, 
node A will then construct a resource descriptor consisting of 
the resource key and the physical network address (e.g. IP 
address) of the resource provider (in this case node A's 
address). Using MADPastry, the descriptor is routed to the 
node currently responsible for the resource key. That recipient 
node will then store the resource descriptor in its local 
repository. 

Figure 3 shows an example of a resource advertisement. 
Node 17, whose current overlay ID is 75A1FFE2, wants to 
advertise its resource with the name "file123". Hashing that 
file name yields the hash key B7E9A578. Node 17 now 
constructs a resource descriptor containing the resource key 
and the network address of the host: {B7E9A578, 17}. This 
advertisement packet will then be routed to the responsible 
node using MADPastry. At node 17, the closest entry in its 
MADPastry routing table is node 4 with overlay ID 
B207D11F. This first overlay hop (as indicated by dotted 
arrow) takes 5 physical hops (as indicated by the solid black 
arrows) to be completed and delivers the packet from the 
source cluster already to the target cluster (as indicated by the 
two shaded regions). Node 4 will then consult its MADPastry 
routing table to determine the next node to forward the 
advertisement packet to – in this case node 35 with overlay ID 
B7E1C101. This second overlay hop consists of two physical 

hops. For the final overlay hop, node 35 consults its 
MADPastry leaf set to forward the packet to node 79 (overlay 
ID B7E9A014) who is responsible for the resource key and 
who will store the resource descriptor. 

B. Resource Discovery 
Resource discovery with MAPNaS works analogous to the 

resource advertisement process. When a node needs to look up 
a resource, it will simply hash the resource name and send a 
request to the node currently responsible for that hash key. 
This request is routed using MADPastry in the same indirect 
manner as described above for the resource advertisements. 
The eventual destination node will check its local repository 
and send back the matching resource descriptor. 

Figure 4 illustrates the resource discovery process with 
MAPNaS. Following up the example from above, suppose 
now node 63 (overlay ID A101D11F) is interested in the 
resource "file123" that is provided by node 17. Unfortunately, 
node 63 has no idea which node provides the desired resource. 
Therefore, node 63 hashes the name of the file, which yields 
the hash key B7E9A578 as it did for node 17 for its 
advertisement. Next, node 63 simply sends a request for a 
matching resource descriptor towards the hash key using 
MADPastry. Thus, in the first overlay hop, the request will be 
delivered to node 35 with overlay ID B7E1C101. Node 35 
will then forward the request to node 79 with overlay ID 
B7E9A014 who, as before with the resource advertisement, is 
responsible for the given hash key. Upon reception of the 
request, node 79 will check its local repository and send a 
response containing the resource descriptor {B7E9A578, 17} 
back to the requester, node 63. 

C. Local Replications 
For the scalability and feasibility of a MANET, it is 

essential to restrict network traffic to local regions as much as 
possible [6, 10]. Therefore, MAPNaS makes use of 
MADPastry's clusters to store local replications of resource 
descriptors. 

When a node intends to advertise a resource, it will now 
insert the resource descriptor under two different keys. The 
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first key is the regular hash key and the resource descriptor is 
inserted into the network as described in A. To obtain the 
second key under which the resource descriptor will be stored, 
the regular resource key is altered to make sure the descriptor 
will be stored in the resource host's own MADPastry cluster. 
For this purpose, the resource key's prefix is replaced with the 
host's own cluster prefix. In a MADPastry network with 16 
landmark keys (i.e. 16 prefix-based clusters), node 17 from the 
previous example would store the descriptor for its resource 
"file123" first under its key B7E9A578 somewhere in the 
network. Additionally, it would also insert the resource under 
the local key 77E9A578 into its own MADPastry cluster. 

As described in Section II, MADPastry clusters are made up 
of nodes that share a common overlay ID prefix so that they 
are close to each other in the overlay ID space. These overlay 
neighbors are also likely to be close to one another in the 
physical network. Hence, intra-cluster communication can be 
expected to travel only short physical paths. Therefore, when a 
node needs to look up the address of a certain resource, it will 
generate the resource key (by hashing the resource name, etc) 
as described above. However, before engaging in a potentially 
cross-network indirect routing process to find the 
corresponding resource descriptor, the node will first replace 
the descriptor key's prefix with its own cluster prefix. To 
restrict the lookup process – if possible – to nodes in its 
physical vicinity, the lookup request is then first routed to the 
appropriate local cluster member to see whether a matching 
descriptor can already be found in the local cluster. This 
might, for example, be the case with popular files or standard 
services that are hosted by multiple nodes. Only if this local 
lookup provides no answer, will the node engage in a regular 
network-wide lookup process. 

D. Handovers 
When a MADPastry node moves from one cluster to 

another, it will eventually join the new cluster by assigning 
itself a new overlay ID that shares a common prefix with its 
cluster members. Therefore, when a MADPastry node running 
MAPNaS changes its cluster membership, it needs to pass the 
resource descriptors that are in its local repository to its old 
"left" and "right" leaf set members as those two nodes will 
now be numerically closest to the corresponding resource 
descriptor keys. Furthermore, when the rejoin process under 
its new overlay ID is completed, it needs to acquire from its 
new "left" and "right" leaf set members those resource 
descriptors whose keys it has now become responsible for. 
This handover process does not require indirect routing, 
though, since the network address of the corresponding leaf 
set members must be known (as these leaf set members are 
proactively maintained by MADPastry). 

Since a handover packet could be lost – e.g. due to 
collision, etc. – a node can potentially end up having some 
resource descriptors in its local repository that it is actually not 
responsible for (any longer). To take care of such incidences, 
each node periodically checks its local repository for such 
descriptors and hands them over, if need be, to the best 
candidates as proposed by its Pastry leaf set or routing table. 

IV. SIMULATION RESULTS 
To evaluate the performance of MAPNaS, we implemented 

a MAPNaS reference application running on top of a 
MADPastry routing agent in ns-2. All simulations that we 
carried out modeled wireless networks over the course of one 
(simulated) hour. Nodes are always moving around according 
to the Random Waypoint model with 0s pause time (constant 
movement). For data transmission, nodes are using the 802.11 
communication standard with a transmission range of 250m. 
The node density in the networks that we investigate is always 
100 nodes/km². 

The question to be answered in MANETs when dealing 
with more complex approaches such as MAPNaS running on 
top of MADPastry is whether the effort of maintaining the 
data structures is really worthwhile. In the case of MAPNaS, 
is there really anything to be gained from going through the 
process of advertising resources, handing over resource 
descriptors, maintaining MADPastry's routing tables, etc.? Or, 
would it be perfectly sufficient if nodes did not advertise their 
resources and if resource discovery requests were simply 
broadcast through the network? For this purpose, we also 
implemented a reference application in ns-2 where nodes do 
not advertise their own resources and resource discovery 
requests are simply broadcast (already forwarded requests will 
not be forwarded a second time). Every receiving node checks 
its own resources and, if there is a match, it sends back a direct 
response using AODV. For such unicasts, we are using the 
AODV-UU implementation 0.9.1 for ns-2. 

For all simulations, each node provided 5 resources. 
Equally, each node periodically issued a discovery request for 
a randomly selected resource every 10 seconds. Furthermore, 
MAPNaS nodes cache overheard resource descriptors (e.g. 
from handover or response packets) for a duration of 30s. 

 
The following two metrics are analyzed: 
 
Success Rate. This figure represents the percentage of 

random lookups that eventually deliver a response containing 
the correct resource descriptor back to the requesting node. In 
other words, this is the round-trip (request + response) success 
rate of all lookups. 

Overall Traffic. Since many different packet types (e.g. 
AODV route requests, MADPastry packets, resource 
advertisements, handover packets, etc.) of various packet 
lengths are transmitted during a simulation run, we are not 
evaluating the total packet count. Instead, we are considering 
the total network traffic (in kilo bytes) that is created during 
the simulated hour. Whenever a node forwards a packet, this 
figure is increased by the packet size. Again, this figure 
includes all routing and application level packet types 
(AODV, MADPastry and MAPNaS packets). 

A. Network Size 
In a first set of simulations, we are comparing MAPNaS on 

top of MADPastry against the simple broadcast approach with 
AODV for varying network sizes (50, 100, 150, 200, and 250 
nodes). For all network sizes, nodes were always moving at a 



constant speed (Random Waypoint, 0s pause time) of 1.4 m/s 
– a quick walking pace. To measure the basic results of both 
systems, MAPNaS nodes always used the global resource keys 
and did not first query their own cluster for possible 
replications. 

Figure 5 compares the success rates of MAPNaS against the 
broadcast approach. As can be observed, for all considered 
network sizes, MAPNaS achieves success rates of well above 
90%. The broadcast-based approach, on the other hand, can 
only keep up with MAPNaS in small networks of 50 and 100 
nodes. For larger networks, its success rate deteriorates 
drastically. 

There are two main reasons for MAPNaS's much better 
performance. First of all the broadcast application produces 
significantly more traffic (roughly 4 times as much) than 
MAPNaS over MADPastry does, as Figure 6 demonstrates. 
Because of this higher traffic, there are clearly more packet 
losses in the broadcast approach due to collisions and 
interference. Thus request and responses are often dropped 
before they reach the appropriate destination. Secondly, the 
overall traffic of the broadcast application is entirely made up 
of broadcast requests, AODV packets, and response messages, 
all of which usually affect the entire network. With MAPNaS 
on the other hand, a sizable portion of the overall traffic stems 
from MADPastry and is thus often restricted to certain 
clusters. 

B. Node Velocity 
Another parameter that certainly influences the performance 

of applications in MANETs is the node velocity. Therefore, in 
the next set of simulations, we considered a 250-node network 
with varying node velocities (0.1, 0.6, 1.4, 2.5, and 5.0 m/s). 
Again, all nodes provided 5 resources and issued requests for 
randomly selected resources every 10 seconds. 

Figure 7 shows the success rates of the two resource 
discovery approaches. Not surprisingly, the broadcast-based 
approach is scarcely affected by the node velocity as its 
network-wide discovery requests do not rely on any 
established routes that could break. Of course, the AODV-
unicast replies are affected by different node velocities, but 
since they constitute only a small fraction of the overall traffic 
(success rates around 20%), the effect really only becomes 
noticeable in almost stable networks (node velocity 0.1 m/s). 

MAPNaS can maintain success rates of above 90% up to a 
node velocity of 1.4 m/s. For higher node velocities, it 
becomes more and more difficult for MADPastry to maintain 
its overlay clusters. This results in high numbers of cluster 
membership changes, which, in turn, trigger an ever growing 
amount of necessary handover traffic – as becomes visible in 
Figure 8, which, again, depicts the overall traffic produced by 
the respective resource discovery approaches. 

C. Local Replications 
Next, we examine the impact of local replications on the 
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overall performance. We employ a simple traffic pattern 
where 50%, 60%, 70%, 80%, or 90% of all resource requests 
can be satisfied locally. Otherwise, a 250-node network with a 
node velocity of 1.4 m/s is used. 

As there are no overlay clusters in the broadcast application 
that would allow for a deterministic way of inserting local 
replicas and since requests are always broadcast throughout 
the network, it is hard to compare the performance of 
MAPNaS with local replications against the broadcast 
application in a fair and meaningful manner. For the sake of 
simplicity, we are merely providing the result of the 
broadcast-based approach from the previous section as a 
reference line. 

Figure 9 and Figure 10 show the success rate and the 
overall network traffic in reference to the locality rate. As can 
be expected, a high locality rate furthers boosts the 
performance of MAPNaS, as shorter physical routes (intra-
cluster communication) are not as vulnerable as cross-network 
routes. For MAPNaS, the success rate can be increased to over 
96% for high locality rates. 

V. RELATED WORK 
Another approach that proposes the integration of a 

conventional DHT with an ad hoc routing protocol to provide 
indirect routing in MANETs is Ekta [12]. Ekta, like 
MADPastry, is based on Pastry [15], but it uses DSR [8] for 
its route discoveries. Also like MADPastry it is not a name 
service or resource discovery application on its own, but 
instead it is a DHT substrate for MANETs that could be used 
to build such applications. 

The main difference to MADPastry is that Ekta does not 
explicitly consider physical proximity in its DHT routing 
table. Instead, it merely tries to optimize its DHT entries by 
overhearing packets and replacing physically remote entries 
by nearer ones. Ekta has no notion of overlay clusters of 
physically close nodes. Thus, the routes traveled during its 
overlay routing process may be expected to be less efficient 
than those in the cluster-based MADPastry. This should 
become even more pronounced as the network size increases. 

Most recently, Virtual Ring Routing (VRR) [2] has been 
proposed. With VRR, each node maintains an AODV-style 
route to each of its r virtual neighbor nodes. When a node 

wants to send a packet with a given key, it selects from its 
routing table the entry numerically closest to the packet's key. 
The packet is then forwarded to that node using the next hop 
information from the routing table entry. This process 
continues until the packet reaches the node whose virtual 
identifier is numerically closest to the packet's key. 

VRR also has some drawbacks. First of all, since nodes set 
up physical paths to new virtual neighbors via existing 
physical neighbors, the physical paths thus set up between 
virtual neighbors during the bootstrap process are likely not 
shortest physical paths. Also, there is no correlation between 
physical locality of nodes and their virtual neighbors. Thus, a 
key lookup can be expected to zigzag through the physical 
network. This is further aggravated by that fact that the source 
routes of the individual overlay hops are quite likely to be 
suboptimal – in other words: not only can a key lookup be 
expected to zigzag through the physical network, but the 
individual legs of the zigzag course will also quite likely be 
unnecessarily long. 

Furthermore, a large number of approaches have been 
proposed for resource discovery in MANETs, for example 
[16, 9, 18]. A comprehensive summary of all existing 
approaches is clearly beyond the scope of this paper. In brief, 
existing approaches have been using all sorts of techniques 
such as centralized servers, multicasting, geographic routing, 
piggybacking, secondary service directory overlays, etc., etc. 
However, it is the purpose of MAPNaS to demonstrate how to 
implement resource discovery for MANETs based on a mobile 
DHT (MADPastry). 

VI. CONCLUSION 
In this paper, we have described in detail the architecture of 

MAPNaS, a peer-to-peer based resource discovery approach 
for MANETs. MAPNaS runs on top of MADPastry, a general-
purpose DHT substrate for MANETs. Instead of having a 
number of dedicated directory servers, every MAPNaS node 
serves both as a resource directory for certain remote 
resources and as a host of its own resources. 

Through extensive simulations, we have observed that 
MAPNaS on top of MADPastry achieves significantly better 
discovery success rates than a simple broadcast-based 
reference application does for most network environments 
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considered. Furthermore, MAPNaS achieves its better success 
rates while producing markedly lower amounts of network 
traffic. The results presented in this paper indicate that DHT-
based resource discovery can be performed efficiently under 
many MANET conditions. As a "casual" rule-of-thumb, DHT-
based resource discovery appears very promising in larger 
MANETs (≥ 100 nodes) with medium node velocity (walking 
speeds). In smaller networks, one does not necessarily need to 
maintain DHT structures but could use less complex 
approaches as well. In very volatile networks (e.g. high node 
velocities), it becomes more and more challenging to maintain 
the DHT structures so that approaches with small structural 
overhead – such as broadcasting – might be preferable over 
DHT-based approaches. 

It should be pointed out at this point that it is not the 
purpose of this paper to proclaim MAPNaS to be the resource 
discovery of choice for all conceivable MANET 
configurations. Instead, its purpose is to demonstrate under 
which network conditions it is feasible to build resource 
discovery efficiently on top of a DHT substrate such as 
MADPastry. The presented results look promising in this 
regard. 

In the future, it would be interesting to see how other DHTs 
for MANETs such as Ekta or VRR would impact the 
performance of MAPNaS. An aspect of particular interest, 
here, would be the trade-off between considering physical 
locality but having handovers (MADPastry) and not 
considering physical locality without the need for handovers 
(Ekta, VRR). Additionally, it would be appealing to compare 
the performance of MAPNaS to other existing, more elaborate 
resource discovery approaches. We also plan to further 
investigate the impact of other traffic patterns. So far, we 
considered all resources equally popular. Other distributions, 
e.g. Zipf, would be interesting here. 
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