
Performance Evaluation of a DHT-based Approach to
Resource Discovery in Mobile Ad Hoc Networks

Thomas Zahn

INRIA
Rocquencourt, France

Jochen Schiller
Institute of Computer Science

Freie Universität Berlin, Germany

Abstract – Recently, approaches to DHT-style key-based
routing explicitly designed for the use in mobile ad hoc networks
(MANETs) have been proposed. However, as DHTs are usually
no applications as such, a very practical distributed application
running on top of such mobile DHTs could be resource discovery.

Therefore, in this paper, a DHT-based approach to resource
discovery – MAPNaS – will be described in detail and thoroughly
evaluated through simulations. We aim at gaining a first insight
into the question under which network conditions it is
meaningful to perform DHT-based resource discovery and when
it would be more advisable to opt for a less complex – e.g. a
simple broadcast-based – approach instead.

Index Terms – DHT, MANETs, Peer-to-Peer, Service discovery

I. INTRODUCTION
The invisible omnipresence of the Domain Name System

(DNS) in the Internet shields one of the most fundamental
challenges from network applications and users: How to bind
a resource, for example a file or a service, to a specific
network address. It is, in fact, essential for a network
application to resolve a given resource (e.g. by its name) to the
concrete network address of the node where the desired
resource actually resides.

In order to cope with scalability issues associated with static
DNS servers, a number of peer-to-peer based name services
have been proposed recently for the domain of the Internet:
[13, 3, 4, 19, 1]. Instead of the static and hierarchical DNS
infrastructure, these approaches use structured P2P networks,
also known as DHTs ([14, 17, 15, 23]) to efficiently distribute
and discover resources in the network.

MANETs are highly dynamic and self-organizing networks
that are formed among wireless mobile devices. Due to this
lack of a fixed infrastructure, there are no dedicated resource
directories available in MANETs. Obviously MANETs and
P2P networks share a good number of key characteristics,
hence, it would be intuitive to deploy the P2P-based name
services mentioned above in MANETs to provide resource
discovery. However, those approaches rely on DHTs designed
for the Internet that are ill-suited for the use in MANETs [21].

Therefore, in the short paper [22], the concepts of a DHT-
based approach explicitly designed for resource discovery in
MANETs – MAPNaS – were briefly outlined. In this paper,
MAPNaS will be described in detail and its performance will
be evaluated thoroughly in various network environments. We

will try to answer the question under which conditions it is
worthwhile to perform DHT-based resource discovery and
when it might be more advisable to opt for a less complex (for
example a broadcast-based approach with practical no
maintenance overhead) approach.

The remainder of this paper is organized as follows.
Section II provides a brief overview of the mobile DHT
substrate MADPastry on which MAPNaS is based. Section III
describes in detail the concept and architecture of MAPNaS.
In Section IV, extensive simulation results are presented for
MAPNaS and a reference broadcast application. Section V
discusses related work. Finally, Section VI concludes this
paper and provides a brief outlook on our future work.

II. MADPASTRY – BRIEF OVERVIEW
A large body of work exists on direct routing in mobile ad

hoc networks: [5, 7, 8, 11] to name but a few. These ad hoc
routing protocols deliver a packet from a source node to a
predefined destination node. However, indirect routing – or
key-based routing – differs from direct routing in that packets
are no longer routed based on the destination node's address
but on a key instead. The packet is then to be delivered to the
node that is responsible for the packet's key. In other words,
the actual address of the final destination node is usually
unknown to the sender. For this purpose, MADPastry (Mobile
Ad Hoc Pastry) [21] has been proposed.

MADPastry is a DHT substrate particularly designed for
mobile ad hoc networks. It combines AODV ad hoc routing
[11] and Pastry overlay routing [15] at the network layer to
provide an efficient primitive for key-based routing in
MANETs.

Abiding by the concept of structured P2P overlays (DHTs),
each node in a MADPastry network assigns itself a unique
overlay ID (for example by hashing its IP address, etc.), which
defines its logical position on the virtual overlay ID ring [15].
Furthermore, in MADPastry, a message's packet header
contains a message key. MADPastry then routes the message
to that node in the network that is currently responsible for the
message key – i.e. to the node whose overlay ID is currently
the numerically closest to the message key among all
MADPastry nodes in the network. To avoid message
broadcasts whenever possible (e.g. for route discovery),
MADPastry explicitly considers physical locality in the
construction of its routing tables.

Clusters. Standard (Internet-based) DHTs are largely
oblivious of the actual physical topology so that two overlay
neighbors can be located arbitrarily far from each other in
terms of the underlying physical network. This can lead to a
large overlay stretch (i.e. the ratio between the length of the
physical route traveled during an overlay key lookup
compared to the direct physical path from the source to the
eventual target node) as subsequent overlay hops can literally
crisscross the physical network. Due to the volatile nature of
physical routes in MANETs, this effect is especially
prohibitive in such environments.

To exploit physical locality in the construction and
maintenance of its overlay, MADPastry uses Random
Landmarking [20]. Instead of having fixed landmark nodes –
which simply are not available in MANETs – fixed landmark
keys are used. These keys divide the logical overlay id space
into equal sections (e.g. 16 keys with hexadecimal ids
"0800…000", "1800…000", "2800…000", ... , "E800…000",
"F800…000", etc.). The nodes whose overlay IDs are
currently numerically closest to the landmark keys temporarily
become landmark nodes and periodically issue beacon
messages. Nodes overhear these beacon messages and
periodically determine the physically closest temporary
landmark node (e.g. in terms of hops). If need be, a node
assigns itself a new overlay ID sharing the same prefix with
the closest temporary landmark node. It would then (re-)join
the network under its new ID. This leads to physically close
nodes forming overlay regions, or clusters, with common id
prefixes. In other words, nodes that are close to each other in
the logical overlay ID space are also likely to be close to one
another physically. This is demonstrated by Figure 1 which
shows the spatial distribution of overlay ID prefixes in a 250
node MADPastry network. Equal symbols of equal shades
represent equal overlay ID prefixes.

Routing Tables. MADPastry maintains three different

routing tables: a standard AODV routing table for physical
routes from a node to specific target nodes, as well as a sparse
Pastry routing table and a standard Pastry leaf set for indirect
routing. The Pastry routing table only needs to contains as
many entries as are necessary to keep a "finger" entry into
each MADPastry cluster (i.e. one entry for each distinct
cluster overlay prefix).

Routing Table Maintenance. To avoid the prohibitive
overhead induced by routing table maintenance, the only
proactive routing table maintenance that a MADPastry node
performs is the periodic pinging of its "left" (i.e. the node who
has the largest overlay ID smaller than the node's own) and
"right" (i.e. the node who has the smallest overlay ID larger
than the node's own) leaf as this is necessary to guarantee
overlay routing convergence. All other routing entries are
gained or updated implicitly by overhearing data packets.

Routing. MADPastry routes packets based on a key. When
a node wants to send a packet to a specific key, it consults its
Pastry routing and/or leaf set to determine the closest prefix
match, as stipulated by standard Pastry. Next, it consults its
AODV routing table for the physical route (or, rather, the next
physical hop on the route) to execute this overlay hop.
Intermediate nodes on the physical path of an overlay hop
consult their AODV table for the corresponding next physical
hop. When a packet thus reaches the destination of an overlay
hop, that node again consults its Pastry routing table and/or
leaf set to determine the next overlay hop. This process
continues until the packet reaches the eventual target node that
is responsible for the packet key – i.e. whose overlay ID is the
numerically closest to the packet key.

III. THE MAPNAS NAME SERVICE
In MAPNaS, a resource (e.g. a file, a service, etc) is

identified by a unique resource key that is mapped into the
logical MADPastry ID space. Due to the lack of a fixed
network topology in MANETs, there are no dedicated
resource directory servers. Instead, true to the P2P paradigm,
every node functions both as a resource host (of its own files,

Figure 1. Spatial distribution of overlay ID prefixes

MADPastry

Local
Repository

Own
Resources

Application

MAPNaS

Network

MADPastry

Local
Repository

Own
Resources

Application

MAPNaS

Network
Figure 2. The MAPNaS architecture.

services, etc.) and as a resource directory for certain remote
resources. As determined by MADPastry, every node keeps
track of the network addresses of those resources whose
resource keys it is responsible for. This design of MAPNaS is
outlined in Figure 2. Nodes store the resource descriptors (the
resource key along with the specific network address of the
resource) they are responsible for in their local MAPNaS
repository. Furthermore, every node advertises its own
resources that it is willing to share through MAPNaS.

A. Resource Advertisement
When a node A in a MADPastry network wants to make a

local resource (e.g. a service, a file, etc.) available to other
nodes in the network, it needs to assign a hash key to that
resource, e.g. by hashing the resource's name. Using that key,
node A will then construct a resource descriptor consisting of
the resource key and the physical network address (e.g. IP
address) of the resource provider (in this case node A's
address). Using MADPastry, the descriptor is routed to the
node currently responsible for the resource key. That recipient
node will then store the resource descriptor in its local
repository.

Figure 3 shows an example of a resource advertisement.
Node 17, whose current overlay ID is 75A1FFE2, wants to
advertise its resource with the name "file123". Hashing that
file name yields the hash key B7E9A578. Node 17 now
constructs a resource descriptor containing the resource key
and the network address of the host: {B7E9A578, 17}. This
advertisement packet will then be routed to the responsible
node using MADPastry. At node 17, the closest entry in its
MADPastry routing table is node 4 with overlay ID
B207D11F. This first overlay hop (as indicated by dotted
arrow) takes 5 physical hops (as indicated by the solid black
arrows) to be completed and delivers the packet from the
source cluster already to the target cluster (as indicated by the
two shaded regions). Node 4 will then consult its MADPastry
routing table to determine the next node to forward the
advertisement packet to – in this case node 35 with overlay ID
B7E1C101. This second overlay hop consists of two physical

hops. For the final overlay hop, node 35 consults its
MADPastry leaf set to forward the packet to node 79 (overlay
ID B7E9A014) who is responsible for the resource key and
who will store the resource descriptor.

B. Resource Discovery
Resource discovery with MAPNaS works analogous to the

resource advertisement process. When a node needs to look up
a resource, it will simply hash the resource name and send a
request to the node currently responsible for that hash key.
This request is routed using MADPastry in the same indirect
manner as described above for the resource advertisements.
The eventual destination node will check its local repository
and send back the matching resource descriptor.

Figure 4 illustrates the resource discovery process with
MAPNaS. Following up the example from above, suppose
now node 63 (overlay ID A101D11F) is interested in the
resource "file123" that is provided by node 17. Unfortunately,
node 63 has no idea which node provides the desired resource.
Therefore, node 63 hashes the name of the file, which yields
the hash key B7E9A578 as it did for node 17 for its
advertisement. Next, node 63 simply sends a request for a
matching resource descriptor towards the hash key using
MADPastry. Thus, in the first overlay hop, the request will be
delivered to node 35 with overlay ID B7E1C101. Node 35
will then forward the request to node 79 with overlay ID
B7E9A014 who, as before with the resource advertisement, is
responsible for the given hash key. Upon reception of the
request, node 79 will check its local repository and send a
response containing the resource descriptor {B7E9A578, 17}
back to the requester, node 63.

C. Local Replications
For the scalability and feasibility of a MANET, it is

essential to restrict network traffic to local regions as much as
possible [6, 10]. Therefore, MAPNaS makes use of
MADPastry's clusters to store local replications of resource
descriptors.

When a node intends to advertise a resource, it will now
insert the resource descriptor under two different keys. The

75A1FFE2

B207D11F

B7E1C101

B7E9A014

17

4

35

79

75A1FFE2

B207D11F

B7E1C101

B7E9A014

adv
adv

adv
adv

adv

adv

adv

adv

Figure 3. Indirect routing of a MAPNaS resource advertisement using
MADPastry – the outer circle represents the overlay ID space.

75A1FFE2

B7E1C101

B7E9A014

17

35

79

A101D11F

B7E1C101

B7E9A014

A101D11F

63
req

req

req

req
res

res

res

Figure 4. Resource discovery.

first key is the regular hash key and the resource descriptor is
inserted into the network as described in A. To obtain the
second key under which the resource descriptor will be stored,
the regular resource key is altered to make sure the descriptor
will be stored in the resource host's own MADPastry cluster.
For this purpose, the resource key's prefix is replaced with the
host's own cluster prefix. In a MADPastry network with 16
landmark keys (i.e. 16 prefix-based clusters), node 17 from the
previous example would store the descriptor for its resource
"file123" first under its key B7E9A578 somewhere in the
network. Additionally, it would also insert the resource under
the local key 77E9A578 into its own MADPastry cluster.

As described in Section II, MADPastry clusters are made up
of nodes that share a common overlay ID prefix so that they
are close to each other in the overlay ID space. These overlay
neighbors are also likely to be close to one another in the
physical network. Hence, intra-cluster communication can be
expected to travel only short physical paths. Therefore, when a
node needs to look up the address of a certain resource, it will
generate the resource key (by hashing the resource name, etc)
as described above. However, before engaging in a potentially
cross-network indirect routing process to find the
corresponding resource descriptor, the node will first replace
the descriptor key's prefix with its own cluster prefix. To
restrict the lookup process – if possible – to nodes in its
physical vicinity, the lookup request is then first routed to the
appropriate local cluster member to see whether a matching
descriptor can already be found in the local cluster. This
might, for example, be the case with popular files or standard
services that are hosted by multiple nodes. Only if this local
lookup provides no answer, will the node engage in a regular
network-wide lookup process.

D. Handovers
When a MADPastry node moves from one cluster to

another, it will eventually join the new cluster by assigning
itself a new overlay ID that shares a common prefix with its
cluster members. Therefore, when a MADPastry node running
MAPNaS changes its cluster membership, it needs to pass the
resource descriptors that are in its local repository to its old
"left" and "right" leaf set members as those two nodes will
now be numerically closest to the corresponding resource
descriptor keys. Furthermore, when the rejoin process under
its new overlay ID is completed, it needs to acquire from its
new "left" and "right" leaf set members those resource
descriptors whose keys it has now become responsible for.
This handover process does not require indirect routing,
though, since the network address of the corresponding leaf
set members must be known (as these leaf set members are
proactively maintained by MADPastry).

Since a handover packet could be lost – e.g. due to
collision, etc. – a node can potentially end up having some
resource descriptors in its local repository that it is actually not
responsible for (any longer). To take care of such incidences,
each node periodically checks its local repository for such
descriptors and hands them over, if need be, to the best
candidates as proposed by its Pastry leaf set or routing table.

IV. SIMULATION RESULTS
To evaluate the performance of MAPNaS, we implemented

a MAPNaS reference application running on top of a
MADPastry routing agent in ns-2. All simulations that we
carried out modeled wireless networks over the course of one
(simulated) hour. Nodes are always moving around according
to the Random Waypoint model with 0s pause time (constant
movement). For data transmission, nodes are using the 802.11
communication standard with a transmission range of 250m.
The node density in the networks that we investigate is always
100 nodes/km².

The question to be answered in MANETs when dealing
with more complex approaches such as MAPNaS running on
top of MADPastry is whether the effort of maintaining the
data structures is really worthwhile. In the case of MAPNaS,
is there really anything to be gained from going through the
process of advertising resources, handing over resource
descriptors, maintaining MADPastry's routing tables, etc.? Or,
would it be perfectly sufficient if nodes did not advertise their
resources and if resource discovery requests were simply
broadcast through the network? For this purpose, we also
implemented a reference application in ns-2 where nodes do
not advertise their own resources and resource discovery
requests are simply broadcast (already forwarded requests will
not be forwarded a second time). Every receiving node checks
its own resources and, if there is a match, it sends back a direct
response using AODV. For such unicasts, we are using the
AODV-UU implementation 0.9.1 for ns-2.

For all simulations, each node provided 5 resources.
Equally, each node periodically issued a discovery request for
a randomly selected resource every 10 seconds. Furthermore,
MAPNaS nodes cache overheard resource descriptors (e.g.
from handover or response packets) for a duration of 30s.

The following two metrics are analyzed:

Success Rate. This figure represents the percentage of

random lookups that eventually deliver a response containing
the correct resource descriptor back to the requesting node. In
other words, this is the round-trip (request + response) success
rate of all lookups.

Overall Traffic. Since many different packet types (e.g.
AODV route requests, MADPastry packets, resource
advertisements, handover packets, etc.) of various packet
lengths are transmitted during a simulation run, we are not
evaluating the total packet count. Instead, we are considering
the total network traffic (in kilo bytes) that is created during
the simulated hour. Whenever a node forwards a packet, this
figure is increased by the packet size. Again, this figure
includes all routing and application level packet types
(AODV, MADPastry and MAPNaS packets).

A. Network Size
In a first set of simulations, we are comparing MAPNaS on

top of MADPastry against the simple broadcast approach with
AODV for varying network sizes (50, 100, 150, 200, and 250
nodes). For all network sizes, nodes were always moving at a

constant speed (Random Waypoint, 0s pause time) of 1.4 m/s
– a quick walking pace. To measure the basic results of both
systems, MAPNaS nodes always used the global resource keys
and did not first query their own cluster for possible
replications.

Figure 5 compares the success rates of MAPNaS against the
broadcast approach. As can be observed, for all considered
network sizes, MAPNaS achieves success rates of well above
90%. The broadcast-based approach, on the other hand, can
only keep up with MAPNaS in small networks of 50 and 100
nodes. For larger networks, its success rate deteriorates
drastically.

There are two main reasons for MAPNaS's much better
performance. First of all the broadcast application produces
significantly more traffic (roughly 4 times as much) than
MAPNaS over MADPastry does, as Figure 6 demonstrates.
Because of this higher traffic, there are clearly more packet
losses in the broadcast approach due to collisions and
interference. Thus request and responses are often dropped
before they reach the appropriate destination. Secondly, the
overall traffic of the broadcast application is entirely made up
of broadcast requests, AODV packets, and response messages,
all of which usually affect the entire network. With MAPNaS
on the other hand, a sizable portion of the overall traffic stems
from MADPastry and is thus often restricted to certain
clusters.

B. Node Velocity
Another parameter that certainly influences the performance

of applications in MANETs is the node velocity. Therefore, in
the next set of simulations, we considered a 250-node network
with varying node velocities (0.1, 0.6, 1.4, 2.5, and 5.0 m/s).
Again, all nodes provided 5 resources and issued requests for
randomly selected resources every 10 seconds.

Figure 7 shows the success rates of the two resource
discovery approaches. Not surprisingly, the broadcast-based
approach is scarcely affected by the node velocity as its
network-wide discovery requests do not rely on any
established routes that could break. Of course, the AODV-
unicast replies are affected by different node velocities, but
since they constitute only a small fraction of the overall traffic
(success rates around 20%), the effect really only becomes
noticeable in almost stable networks (node velocity 0.1 m/s).

MAPNaS can maintain success rates of above 90% up to a
node velocity of 1.4 m/s. For higher node velocities, it
becomes more and more difficult for MADPastry to maintain
its overlay clusters. This results in high numbers of cluster
membership changes, which, in turn, trigger an ever growing
amount of necessary handover traffic – as becomes visible in
Figure 8, which, again, depicts the overall traffic produced by
the respective resource discovery approaches.

C. Local Replications
Next, we examine the impact of local replications on the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

Number of nodes

S
uc

ce
ss

 r
at

e

MAPNaS
Broadcast

Figure 5. Success rates vs. number of nodes.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

0 50 100 150 200 250

Number of nodes

O
ve

ra
ll

tra
ffi

c
[k

b]

MAPNaS
Broadcast

Figure 6. Overall traffic vs. number of nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 1.0 2.0 3.0 4.0 5.0

Node velocity [m/s]

Su
cc

es
s

ra
te

MAPNaS
Broadcast

Figure 7. Success rate vs. node velocity.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

0.0 1.0 2.0 3.0 4.0 5.0

Node velocity [m/s]

O
ve

ra
ll

tra
ffi

c
[k

b]

MAPNaS
Broadcast

Figure 8. Overall traffic vs. node velocity.

overall performance. We employ a simple traffic pattern
where 50%, 60%, 70%, 80%, or 90% of all resource requests
can be satisfied locally. Otherwise, a 250-node network with a
node velocity of 1.4 m/s is used.

As there are no overlay clusters in the broadcast application
that would allow for a deterministic way of inserting local
replicas and since requests are always broadcast throughout
the network, it is hard to compare the performance of
MAPNaS with local replications against the broadcast
application in a fair and meaningful manner. For the sake of
simplicity, we are merely providing the result of the
broadcast-based approach from the previous section as a
reference line.

Figure 9 and Figure 10 show the success rate and the
overall network traffic in reference to the locality rate. As can
be expected, a high locality rate furthers boosts the
performance of MAPNaS, as shorter physical routes (intra-
cluster communication) are not as vulnerable as cross-network
routes. For MAPNaS, the success rate can be increased to over
96% for high locality rates.

V. RELATED WORK
Another approach that proposes the integration of a

conventional DHT with an ad hoc routing protocol to provide
indirect routing in MANETs is Ekta [12]. Ekta, like
MADPastry, is based on Pastry [15], but it uses DSR [8] for
its route discoveries. Also like MADPastry it is not a name
service or resource discovery application on its own, but
instead it is a DHT substrate for MANETs that could be used
to build such applications.

The main difference to MADPastry is that Ekta does not
explicitly consider physical proximity in its DHT routing
table. Instead, it merely tries to optimize its DHT entries by
overhearing packets and replacing physically remote entries
by nearer ones. Ekta has no notion of overlay clusters of
physically close nodes. Thus, the routes traveled during its
overlay routing process may be expected to be less efficient
than those in the cluster-based MADPastry. This should
become even more pronounced as the network size increases.

Most recently, Virtual Ring Routing (VRR) [2] has been
proposed. With VRR, each node maintains an AODV-style
route to each of its r virtual neighbor nodes. When a node

wants to send a packet with a given key, it selects from its
routing table the entry numerically closest to the packet's key.
The packet is then forwarded to that node using the next hop
information from the routing table entry. This process
continues until the packet reaches the node whose virtual
identifier is numerically closest to the packet's key.

VRR also has some drawbacks. First of all, since nodes set
up physical paths to new virtual neighbors via existing
physical neighbors, the physical paths thus set up between
virtual neighbors during the bootstrap process are likely not
shortest physical paths. Also, there is no correlation between
physical locality of nodes and their virtual neighbors. Thus, a
key lookup can be expected to zigzag through the physical
network. This is further aggravated by that fact that the source
routes of the individual overlay hops are quite likely to be
suboptimal – in other words: not only can a key lookup be
expected to zigzag through the physical network, but the
individual legs of the zigzag course will also quite likely be
unnecessarily long.

Furthermore, a large number of approaches have been
proposed for resource discovery in MANETs, for example
[16, 9, 18]. A comprehensive summary of all existing
approaches is clearly beyond the scope of this paper. In brief,
existing approaches have been using all sorts of techniques
such as centralized servers, multicasting, geographic routing,
piggybacking, secondary service directory overlays, etc., etc.
However, it is the purpose of MAPNaS to demonstrate how to
implement resource discovery for MANETs based on a mobile
DHT (MADPastry).

VI. CONCLUSION
In this paper, we have described in detail the architecture of

MAPNaS, a peer-to-peer based resource discovery approach
for MANETs. MAPNaS runs on top of MADPastry, a general-
purpose DHT substrate for MANETs. Instead of having a
number of dedicated directory servers, every MAPNaS node
serves both as a resource directory for certain remote
resources and as a host of its own resources.

Through extensive simulations, we have observed that
MAPNaS on top of MADPastry achieves significantly better
discovery success rates than a simple broadcast-based
reference application does for most network environments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random 50% 60% 70% 80% 90%

Percentage of local requests

S
uc

ce
ss

 r
at

e

MAPNaS
Broadcast

Figure 9. Success rate vs. locality rate.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

random 50% 60% 70% 80% 90%

Percentage of local requests

O
ve

ra
ll

tr
af

fic
 [k

MAPNaS
Broadcast

Figure 10. Overall traffic vs. locality rate.

considered. Furthermore, MAPNaS achieves its better success
rates while producing markedly lower amounts of network
traffic. The results presented in this paper indicate that DHT-
based resource discovery can be performed efficiently under
many MANET conditions. As a "casual" rule-of-thumb, DHT-
based resource discovery appears very promising in larger
MANETs (≥ 100 nodes) with medium node velocity (walking
speeds). In smaller networks, one does not necessarily need to
maintain DHT structures but could use less complex
approaches as well. In very volatile networks (e.g. high node
velocities), it becomes more and more challenging to maintain
the DHT structures so that approaches with small structural
overhead – such as broadcasting – might be preferable over
DHT-based approaches.

It should be pointed out at this point that it is not the
purpose of this paper to proclaim MAPNaS to be the resource
discovery of choice for all conceivable MANET
configurations. Instead, its purpose is to demonstrate under
which network conditions it is feasible to build resource
discovery efficiently on top of a DHT substrate such as
MADPastry. The presented results look promising in this
regard.

In the future, it would be interesting to see how other DHTs
for MANETs such as Ekta or VRR would impact the
performance of MAPNaS. An aspect of particular interest,
here, would be the trade-off between considering physical
locality but having handovers (MADPastry) and not
considering physical locality without the need for handovers
(Ekta, VRR). Additionally, it would be appealing to compare
the performance of MAPNaS to other existing, more elaborate
resource discovery approaches. We also plan to further
investigate the impact of other traffic patterns. So far, we
considered all resources equally popular. Other distributions,
e.g. Zipf, would be interesting here.

REFERENCES
[1] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I.

Stoica, and M. Walfish. "A Layered Naming Architecture for the
Internet". In Proc. of ACM SIGCOMM, August 2004.

[2] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, and A. Rowstron.
"Virtual Ring Routing: Network routing inspired by DHTs". In Proc. of
ACM SIGCOMM'06, September 2006.

[3] M. Castro, P. Druschel, A.-M. Kermerrec, and A. Rowstron. "One Ring
to Rule them All: Service Discovery and Binding in Structured Peer-to-
Peer Overlay Networks". In Proc. of SIGOPS, September 2002.

[4] R. Cox, A. Muthitacharoen, and R.T. Morris. "Serving DNS using a
Peer-to-Peer Lookup Service". In Proc. of IPTPS, February 2002.

[5] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and L.
Viennot. "Optimized Link State Routing Protocol for Ad Hoc
Networks". In Proc. of IEEE INMIC, December 2001.

[6] P. Gupta and P. R. Kumar. "The Capacity of Wireless Networks". In
IEEE Transactions on Information Theory, Vol. 46, No. 2, March 2000

[7] Z. J. Haas, M.R. Pearlman, and P. Samar. "The Zone Routing Protocol
(ZRP) for Ad Hoc Networks". In Internet Draft RFC
(http://www.ietf.org/proceedings/02nov/I-D/draft-ietf-manet-zone-zrp-
04.txt), July 2002.

[8] D. B. Johnson and D. A. Maltz. "Dynamic Source Routing in Ad Hoc
Wireless Networks". Kluwer Academic, 1996.

[9] U.C. Kozat and L. Tassiulas. "Network Layer Support for Service
Discovery in Mobile Ad Hoc Networks". In Proc. of IEEE INFOCOM.
March 2004.

[10] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris. "Capacity of
Ad Hoc Wireless Networks". In Proc. of ACM SIGMOBILE, July 2001.

[11] C. E. Perkins and E. M. Royer. "Ad hoc on-demand distance vector
routing". In Proc. of IEEE WMCSA, February 1999.

[12] H. Pucha, S. M. Das, and Y. C. Hu. "Ekta: An Efficient DHT Substrate
for Distributed Applications in Mobile Ad Hoc Networks". In Proc. of
IEEE WMCSA. December 2004.

[13] V. Ramasubramanian and E.G. Sirer. "The Design and Implementation
of a Next Generation Name Service for the Internet". In Proc. of ACM
SIGCOMM, August 2004.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. "A
Scalable Content-Addressable Network". In Proc. of ACM SIGCOMM,
August 2001.

[15] A. Rowstron and P. Druschel. "Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems". In Proc. of
Middleware, November 2001.

[16] F. Sailhan and V. Issarny. "Scalable Service Discovery for MANET". In
Proc. of PerCom, March 2005.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
"Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications". In Proc. of ACM SIGCOMM, August 2001.

[18] J.B. Tchakarov and N.H. Vaidya. "Efficient Content Location in Mobile
Ad hoc Networks". In Proc. of MDM, January 2004.

[19] M. Walfish, H. Balakrishnan, and S. Shenker. "Untangling the Web
from DNS". In Proc. of NSDI, March 2004.

[20] R. Winter, T. Zahn, and J. Schiller. "Random Landmarking in Mobile,
Topology-Aware Peer-to-Peer Networks". In Proc. of FTDCS, May
2004.

[21] T. Zahn and J. Schiller. " MADPastry: A DHT Substrate for Practicably
Sized MANETs". In Proc. of ASWN, June 2005.

[22] T. Zahn and J. Schiller. "MAPNaS: A Lightweight, Locality-Aware
Peer-to-Peer Based Name Service for MANETs". Short paper in Proc.
of LCN 2005, November 2005.

[23] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. "Tapestry: An
Infrastructure for Fault-Resilient Wide-area Location and Routing".
UCB Tech. Report UCB/CSD-01-1141, April 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

