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Abstract. In-network data processing and event detection on resource-
constrained devices are widely regarded as distinctive and novel features
of wireless sensor networks. The vision is that through cooperation of
many sensor nodes the accuracy of event detection can be greatly im-
proved. On the practical side however, little real-world experience exists
in how far these goals can be achieved.

In this paper, we present the results of a small deployment of sensor
nodes attached to a fence with the goal of collaboratively detecting and
reporting security relevant incidents, such as a person climbing over the
fence. Based on experimental data we discuss in detail the process of in-
network event detection both from the conceptual side and by evaluating
the results obtained. Reusing the same traces in a simulated network, we
also look into the impact of multi-hop event reporting.

Keywords: Wireless sensor networks, in-network data processing, event
detection, experimental evaluation, use case, fence monitoring.

1 Introduction, Goals and Motivation

The close cooperation of individual sensor nodes in order to achieve a common
goal is a key feature of wireless sensor networks (WSNs). While a wealth of
distributed algorithms has been proposed and evaluated in the areas of medium
access and routing, the situation is different for distributed event detection:
Several theoretical approaches have been described [1,2,3], but to the best of our
knowledge none of them has been evaluated in a real-world experiment.

On the other hand, several high-profile deployments of WSNs have been un-
dertaken and evaluated by various research groups [4,5,6]. However, they all have
in common that they are largely data-agnostic and limit themselves to reporting
raw data as collected by the sensor nodes deployed in the field. Only recently
we have seen first evaluations of the accuracy of the readings and attempts to
perform complex in-network data aggregation and event detection [7,8]. One of
the key features of WSNs – in-network data processing and event detection – is
thus still widely unexplored in practice.
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Fig. 1. Patio of institute
with construction fence

Fig. 2. Sensor node at-
tached to the fence

Fig. 3. Casing of a sensor
node

In this paper, we present the results of a real-world experiment on in-network
event detection. Our experiment is built around the example of a fence mon-
itoring application whose task it is to detect and report any security related
incidents that may occur on a fence, in our case a person climbing over the fence
and entering a supposedly restricted area. The focus of this application is thus
clearly different from those of other deployments which were mostly concerned
with some flavor of environmental monitoring.

Furthermore, fence monitoring is an excellent example for the demand for in-
network data processing: Similar to the questions raised in [9], the sheer volume
of raw data caused by a single event makes it impractical to transmit the com-
plete data to a base station for processing, especially when keeping energy consid-
erations in mind. Further, the sensor readings caused by a security-related event
can be expected to differ sufficiently from those of common every-day events,
and thus there should be a reasonable chance for a distributed, in-network event
detection algorithm to succeed.

Summing things up, the primary goals of our fence monitoring use case are:

– to establish whether fence monitoring is feasible with current WSN technol-
ogy by setting up a working system,

– to quantify the accuracy of our event detection algorithm with a special focus
on differences between node-local and distributed event detection, thereby
putting a number to the value added by networked sensors, and

– to develop and describe a systematic approach to building a robust event
detection and reporting algorithm that performs reliably even in a multi-
hop scenario.

To these ends, and as shown in Figures 1-3, we deployed a construction fence
in the patio of our institute. To each element of the fence we attached a Scatter-
Web sensor node equipped with an accelerometer to measure its movement. We
then first calibrated the sensors to respond to the typical movements of fence
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Fig. 4. The ScatterWeb 3.x software architecture

elements, and proceeded afterwards to gather samples of raw data corresponding
to different types of events. Based on these, we isolated distinctive features of
the raw data corresponding to different types of events, and implemented and
evaluated a distributed event detection algorithm.

After a brief introduction into the WSN platform and tools we used in our
experiments in Section 2, we present the details of our deployment and the
software architecture of our distributed event detection algorithm in Section 3.
In Section 4, we thoroughly evaluate this algorithm based on both real-world
experiments and simulations. Finally, in Section 5 we review related work and
in Section 6 we conclude and point out directions for future research.

2 The ScatterWeb WSN Platform

For setting up our experiment, we used a new version of the ScatterWeb research
hardware [10], which has been recently developed with a focus on modularity:
The Modular Sensor Board (MSB) as already depicted in Figure 3 consists of
a core communication module, add-on sensor modules and an optional interface
board. The core communication module consists of the TI MSP430 16-bit micro-
controller, the Chipcon CC1020 868MHz radio transceiver, and connectors for
analog and digital sensors and actuators. Furthermore, a Freescale Semiconduc-
tor MMA7260Q accelerometer is soldered directly onto the board.

An add-on board allows for a broad variety of sensors if needed, ranging from
luminosity to motion and from sound to GPS. The core module and the sensors
of the add-on board can be powered either by a 3V battery or by the interface
board which in addition also provides a flash interface and a USB connection for
debugging and power supply.

On the software side, we were able to depend on the broad range of features al-
ready available for this platform. These include the ScatterWeb system software,
which is responsible for supporting basic tasks such as interrupt handling, packet
handling, medium access, management of run levels and debugging options, as
well as a rich application programming interface (API) as depicted in Figure 4.
Aside from the work on the ScatterWeb core, extensive efforts have been under-
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taken to supply tool support with the ScatterWeb Software Development Kit
(SDK) which is based on Microsoft Visual Studio 2005.

The experiments run on top of the FACTS middleware, a framework especially
designed for WSNs and implemented on top of the ScatterWeb platform [11].
Capturing the intrinsic challenges of dealing with low-resource devices and event-
centric programming at the language level, the core of FACTS is built around
the rule-based Ruleset Definition Language (RDL). Using RDL, a developer is
able to specify sets of interacting rules to define node and network behavior. At
runtime, these rules are evaluated locally against the fact repository, a central
data storage entity on a sensor node, by a sandboxed execution environment.

Currently RDL supports standard operations for fact manipulation, filtering,
comparison and different flavors of aggregation. Support for running native code,
e.g. to efficiently implement complex mathematical computations or to access
hardware directly, is integrated into the language. The design of FACTS aims
towards low resource consumption, thus a lot of work has been spent on reducing
the memory footprint down to 8KB in terms of the middleware components
installed on the sensor nodes.

3 Experimental Setup and Software Architecture

Based on the available hard- and software components introduced in the previous
section, we will now present how our construction fence testbed was set up and
which types of events we considered in our experiments. We will then continue
to describe the architecture of our distributed event detection algorithm.

(a) Kick event (b) Lean event (c) Shake (short) event

(d) Shake (long) event (e) Peek event (f) Climb event

Fig. 5. Raw data of different event types



Fence Monitoring – Experimental Evaluation of a Use Case for WSNs 167

3.1 Construction Fence Deployment

As already illustrated in Figure 1, we deployed a ten-element construction fence
in the patio of our institute. Each fence element is 3.5m wide and 2m high. The
exact layout of this deployment is shown in Figure 8. We rigged this installation
with one ScatterWeb MSB sensor node per fence element, each node attached to
the right hand side of the element at a height of 1.65m (Figure 2). Weather-proof
junction boxes with a size of 80mm × 40mm served as casing of the sensor nodes
(Figure 3). It is however worth noting that the sensor nodes themselves fit nicely
into the hollow metal frame of a fence element, a location at which they would
be even more protected from the environment, possibly at the expense of radio
transmission quality.

3.2 Types of Events

In our experiments, we considered the following six events as typical scenarios
that a fence monitoring system will be exposed to:

Kick: A person kicks against the fence.
Lean: A person gently leans against the fence.
Shake (short): A person shakes the fence for a short period of time.
Shake (long): Same as above, but for a prolonged period of time.
Peek: A person climbs up the fence with the intention to take a look into the

restricted area.
Climb: A person climbs over the fence.

Assuming that a person climbing over a fence is the only event with security im-
plications, the important question is how a WSN can be programmed to reliably
identify this single type of event that is worth reporting. We did not consider
telling the other events apart to keep our use case as realistic as possible, al-
though this would have been possible with additional rules similar to the one
shown in Listing 1.1.

We programmed a ScatterWeb MSB sensor node to sample its accelerometer
at 10Hz with a sensitivity setting of 1.5g. In Figure 5, we show the raw data in
terms of the sum of the differences of elements between the previous three dimen-
sional acceleration vector −→v last and the current vector −→v cur. In the following,
we will refer to this scalar quantity as the intensity I of an event.

I = | (vx last − vx cur) | + | (vy last − vy cur) | + | (vz last − vz cur) |

Looking at the figures, we note that each event has a more or less unique pattern
which may be used for event detection. To prevent problems possibly arising from
limited memory resources, we chose not to implement a pattern matching algo-
rithm based on raw data. Instead, we propose a layered architecture to handle
this task.
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Fig. 6. Layers of the distributed event detection algorithm

3.3 A Layered Software Architecture for Event Detection

The different layers of our architecture implement a distributed, multi-step event
detection algorithm. In the lowest layer, raw sensor readings are isolated from
background noise and aggregated into a set of characteristic properties. The
next layer checks whether known patterns appear in these aggregated values
and identifies them as event candidates. In the next layer, the sensor nodes
collaboratively decide whether a noteworthy event has in fact occurred within an
n-hop neighborhood by exchanging information about recently observed event
candidates. Finally, the uppermost layer reports confirmed events to the base
station of the deployment. Figure 6 illustrates how these layers interact and the
level of abstraction at which they process data.

We first introduce the exact functionality of each layer in this section, while
returning to calibration parameters and implementation details in the following
section.

Raw Data Aggregation: This layer periodically retrieves the current accel-
eration vector from the accelerometer and converts it into the intensity as
described above. As soon as the intensity surpasses a predetermined thresh-
old value, the sampling rate is increased and new intensity values are aggre-
gated upon retrieval from the sensor. Once the intensity falls below a second
threshold value, the sampling rate is decreased for energy efficiency and a
tuple of the aggregated data values is reported to the local event detection
layer. In the following, we will refer to this tuple of aggregated data values
as basic event. Typical aggregated data items are the minimum, average,
and maximum of all intensity values sampled during the basic event, as well
as the total duration of the basic event. Depending on the nature of the
event patterns to be recognized, additional aggregated data items may also
be considered.
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The advantages of this design for the raw data aggregation layer are twofold:
Memory usage is kept at a minimum by aggregating sensor readings as they
are being sampled, and excessive energy consumption is avoided during in-
tervals in which no events occur. The drawback is that the raw data itself is
not available for event detection. However, we regard this as unproblematic
given the right selection of data items to aggregate.

Local Event Detection: Based on the basic events reported by the raw data
aggregation layer, this layer matches the aggregated data contained in the
basic events against previously established patterns. The goal of this pro-
cedure is to aggregate one or many basic events into an event candidate,
i.e. to infer the action that just occurred at the fence from patterns in the
aggregated data.
To ensure reliable event detection, patterns in the aggregated data contained
in the basic events must be sufficiently distinctive. This of course depends
largely on the application and on the types of events that may occur. Hence,
the patterns in basic events that lead to event candidates need to be estab-
lished carefully by the means of either a manual or automatic process before
the WSN can be deployed. Once identified, the event candidates are handed
up to the neighborhood event detection layer.

Neighborhood Event Detection: In this layer, event candidates are propa-
gated within an n-hop neighborhood of the sensor node that originated the
candidate. While theoretically this procedure involves multi-hop communi-
cation, given the fact that for the fence monitoring application the radio
range of current sensor nodes exceeds the area in which sensors gather data
related to an event, we limit ourselves to communication within the one-hop
neighborhood.
Upon receiving an event candidate, each sensor node evaluates its own cur-
rently available basic events and event candidates and depending on the
settings of the distributed aggregation algorithm sends an acknowledgement
to the originating node. Similar to the local event detection layer, the pa-
rameters of whether to acknowledge an event candidate or not depend on the
application and need to be carefully established before an actual deployment.
If the sensor node that originally broadcasted the event candidate within
its neighborhood receives enough positive replies within a certain period of
time, it may safely regard the event candidate as a confirmed event, and thus
send it to the base station.

Event Reporting: The event reporting layer is not an intrinsic part of in-
network event detection and we include it in our model merely for architec-
tural completeness. The task of this layer is to route the confirmed events
from the sensor nodes that reported them to the base station. A great variety
of routing algorithms for WSNs have been proposed and we omit a thorough
evaluation for brevity. In our implementation, we have used a simple spanning
tree routing algorithm with the base station being the root of the tree.

At each layer, several parameters need to be configured in order to reliably
identify basic events, event candidates, and confirmed events. For different ap-
plication scenarios, e.g. different types of fence elements, these parameters need
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to be carefully established, possibly as part of a calibration phase before the
system becomes operational. During this calibration phase, one should keep in
mind that event detection must be triggered locally on at least one sensor node.
Therefore, the calibration should aim at setting the detection threshold rather
low for local event detection and only afterwards try to eliminate false positive
event candidates in the neighborhood event detection layer.

3.4 Design Alternatives and Robustness Considerations

There are several ways to refine parts of the event detection architecture de-
scribed in the previous section which we did not implement in our experiments
for simplicity. Most of them are related to increasing the robustness of the dis-
tributed event detection algorithm with regard to packet loss on the wireless
medium.

In our current implementation, there is no mechanism to ensure reliable de-
livery of event candidates within the neighborhood. As a result, if an event
candidate is not delivered due to a packet collision on the wireless medium, no
ACKs are sent and a possibly valid event candidate is discarded. The way to solve
this issue is by replying to all event candidates with either an ACK as described
above or with a NACK in case local data fails to confirm that this event occurred.
The originating sensor node can then count the number of ACKs and NACKs re-
ceived and retransmit the event candidate if this number is below a threshold.
This procedure incurs an increase in communication which may well have side
effects on energy consumption and packets collisions.

Similar to the problem lined out above, it may also occur that confirmed
events are lost on their way to the base station. This may either be solved as
part of the routing protocol, or alternatively the sensor node may retransmit the
event if no ACK was received from the base station after a certain time interval.
Further, it would be desirable to only report exactly one confirmed event to the
base station for each real-world event.

4 Deployment and Experimental Results

We conducted over 40 test runs comprising all possible events described in Sec-
tion 3.2 on the deployed construction fence equipped with our fence monitoring
WSN. Each of these runs included one event occurrence per type, thus the frac-
tion of climb events per run is 1

6 . Ten of these runs were used for the calibration
of the raw data aggregation layer and 15 runs for the local event detection layer
respectively.

4.1 Calibration Values and Implementation Details

From the raw data already presented in Figure 5, we concluded that an intensity
threshold of 200 nicely filters out background noise and minor events. As soon as
the intensity value surpasses this threshold, the sampling rate is increased from
1Hz to 10Hz, and the values of the accelerometer are aggregated into basic events.
Each basic event contains the duration of its sampling period in milliseconds and
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(a) Number of events (b) Combined duration

(c) Maximal intensity (d) Minimal intensity

Fig. 7. Aggregated data of different event types on one node

the average intensity during this time. The data did not warrant using a different
second threshold value for the hysteresis, hence the sampling rate is reduced to
1Hz again once the intensity falls below the same threshold.

The motivation for chosing the duration and the average intensity as param-
eters of the basic events is related to the distinctive patterns in different aggre-
gated data values. In Figure 7, we show a selection of these patterns for some of
the aggregated data values we considered. For both the number of basic events
and their combined duration (Figures 7(a) and 7(b)), we note that the values for
climb events differ from all others. On the other hand, no clear pattern can be
observed for maximal or minimal intensity (Figures 7(c) and 7(d)). Therefore,
on the local event detection layer, the number of basic events produced by the
lower layer and their combined duration are suitable values for event detection
while maximal and minimal intensity are not. Also note that the average inten-
sity is not used for event detection on this layer, but rather passed to the upper
layers for later evaluation.

While there are several options on how to implement our layered event de-
tection architecture, we opted for a rule-based implementation supported by
our middleware. Rules such as the one shown in Listing 1.1 suit this particular
application because the event-centric semantics of the programming language
map nicely to the problem of event detection. For instance, the rule shown will
trigger as soon as three conditions evaluate to true: The number of basic events
generated has to be greater or equal to three (line 2), the sum of the duration of
these events has to be greater or equal to 0.49s (line 3) and smaller or equal to
1.71s (line 4). Once again, we derived these values by studying trace files, thus
manually calibrating the local event detection layer. Once all conditions are
met and this rule fires, an event candidate is generated which also records the
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Listing 1.1. Ruled-based local event detection

1 rule aggregateBasicEvents 100

2 <- eval ((count {basicEvent }) >= 3)

3 <- eval ((sum {basicEvent duration }) >= 0.49)

4 <- eval ((sum {basicEvent duration }) <= 1.71)

5 -> define eventCandidate [intensity = (max {basicEvent

intensity })]

6 -> retract {basicEvent}

maximal intensity of the basic events that trigger its creation (line 5) and all
basic events are retracted from the system (line 6). The entire event detection
ruleset, including for example the rule that purges unused basic events from
the system after 30s, consists of 15 rules and has a memory footprint of 1.4KB.
A full introduction into the Ruleset Definition Language (RDL) and the exact
semantics of the FACTS runtime environment are available in [11].

In the neighborhood event detection layer, we programmed a sensor node to
broadcast an event candidate within its one-hop neighborhood since this range
covers all nodes that may have been exposed to the possible climb event. Upon
reception of an event candidate and given sufficient local information that an
event occurred, a node confirms this by sending an ACK to the originating node.
If an ACK is received by the originator within a 1s interval, the event is regarded
as confirmed and handed to the event reporting layer, which in turn forwards
this information to the base station.

In order to properly evaluate the event reporting layer of our WSN use case,
we decided to focus on a much larger deployment than the one at our disposal.
We therefore resorted to a simulation-based evaluation using the traces of basic
events obtained during our experiments and the “ScatterWeb on ns-2” simula-
tion approach which allows to run unmodified algorithms on both ScatterWeb
sensor nodes and the ns-2 network simulator [12]. As a typical scenario we chose
the construction site of the U.S. embassy located in the center of Berlin.

The layout of the simulated deployment is shown in Figure 10. It consists of
105 sensor nodes placed 3.5m apart from each other along the fence line. Taking
into account the expected decrease in signal strength if sensor nodes are placed
within the metal frame of a fence element, we set the transmission range to 10m
as part of the configuration of the two-ray ground radio propagation model.

4.2 Results and Discussion

We use two statistical metrics for binary classification, sensitivity and speci-
ficity, to quantify the accuracy of our event detection algorithm.1 The goal is to
maximize both values, i.e. to correctly classify both events and non-events.
1 Sensitivity is the ratio of correctly identified climb events and all climb

events that occurred, i.e. sensitivity = #true positives / (#true positives +
#false negatives). Specificity is the ratio of correctly identified other events and all
other events, i.e. specificity = #true negatives / (#true negatives + #false
positives).
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Fig. 9. Experimental results of in-network event
detection accuracy

In Figures 8 and 9, we illustrate the construction fence deployment in the
patio of our institute and the experimental results obtained. At the local event
detection layer, a single node of our system performs with a sensitivity of 100%
and a specificity of 41.3%. These values indicate that one of our design goals -
setting the detection threshold rather low in this layer - has been achieved, since
all climb events have been recognized. On the downside, 59.7% of the all other
events are also classified as event candidates. We observe that the specificity
is increased by 12.0% by the neighborhood event detection layer. This increase
comes at the expense of incurring a 13.3% decrease in sensitivity. These values
show that our neighborhood event detection layer does well at filtering out false
event candidates, but regretably also correct detections. Still, this is consistent
with our design principle of a low event detection threshold in the local event
detection layer and a higher threshold in the neighborhood event detection layer.

This level of accuracy observed is less than the one we had expected after our
initial test runs, especially with regard to the high number of false positives. We
attribute this to a variety of factors: On the technical side, we had two node fail-
ures during the experiment and of course this resulted in unforeseen inaccuracies
during neighborhood event detection. Further, we suspect that gathering trace
data at the same time as performing event detection also adversely affected accu-
racy. More important and consistent with the evaluation found in [7] is however
the fact, that the evaluation of the traces suggests that slight variations of the
parameters would have significantly improved the results obtained. From this
we have to conclude that our manual calibration of the algorithm needs to be
improved. On the non-technical side, we note that the event patterns changed
over time as our test candidates got more proficient in climbing over the fence.

Before proceeding to simulate a large scale deployment to quantify the im-
pact of multi-hop event reporting, we verified the accuracy of the simulation by
rebuilding our original experiment within the simulator and playing back the
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original traces. We then ran a series of ten simulations, the average results of
which are shown in Figure 11 alongside with the real-world experimental data.
As we observed only a minor 4% increase in specificity due to slightly larger
packet loss, we concluded that running large scale simulations is appropriate.

The average results of ten simulation runs of the U.S. embassy construction
site scenario as illustrated in Figure 10 are included in Figure 11 labeled as
“Event Reporting / Simulation”. We note that even our very simplistic approach
to event reporting, relying on little more than a spanning tree routing, does not
have a negative impact on the results, with variations in both sensitivity and
specificity below 1%. While our simulation does not include node failures, based
on our data and in light of the progress in robust routing protocols for WSN,
we still tend to regard event reporting and routing as only a minor problem in
the use case of fence monitoring.

Apart from the increase in accuracy, in-network event detection has the ad-
ditional benefit of reducing the data that needs to be sent to the base station.
In Figure 12, we quantify this advantage by looking at the number of pack-
ets transmitted during the entire simulation. The figure contains the number of
packets sent by our complete layered architecture as well as the same numbers
for the two hypothetical cases in which either basic events or event candidates
are transmitted to the base station for centralized event detection.

For a transmission range of 10m, our data shows that locally aggregating basic
events into event candidates reduces the overall traffic by 79.3%. Aggregating
event candidates into confirmed events reduces the overall traffic by another
68.4%. This corresponds to a total reduction of 93.4% of the traffic by our
layered event detection architecture.

This reduction of traffic by means of in-network aggregation depends on
the topology of the network. For instance, in the trivial case of a network in
which all nodes are located within the 1-hop neighborhood of the base station,
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Fig. 12. Number of packets transmitted
over time in the simulation with 10m trans-
mission range at different levels of in-
network aggregation

Fig. 13. Number of packets transmitted
against hops between event source and
base station at different levels of in-
network aggregation

in-network aggregation will hardly reduce the number of packets transmitted.
In fact, the distributed event detection algorithm even incurrs the overhead of
data transmissions as part of the neighborhood event detection layer, which is
not required if all event candidates are received by the base station.

In order to examine the impact of n-hop event reporting, we ran additional
simulations with the transmission range of the simulated sensor nodes set to
10m, 20m, 30m, and 40m. These transmission ranges correspond to an average
hop count of 26.14, 12.84, 7.88, and 4.94 between the source of the event and
the base station respectively. The number of packets at each level of in-network
aggregation for these hop counts is shown in Figure 13. We observe that the re-
duction of traffic attributed to the neighborhood event detection layer decreases
when less hops are required to report the event candidates to the base station. As
expected, the diagram also shows the small overhead of in-network aggregation
for very well connected topologies. Further, the decrease in confirmed events for
a 10m transmission range as opposed to a 20m transmission range, while not
directly affecting the accuracy, shows that robustness becomes an issue for re-
porting events over higher numbers of hops. Possible solutions to this issue have
already been discussed in Section 3.4.

Turning our attention to the reduction of traffic due to local aggregation, we
note that even at low hop counts the number of packets is still reduced by 75.6%.
This underlines that the value added by detecting events locally on the sensor
nodes is largely independant of the network topology.

5 Related Work

As already briefly mentioned in the introduction, several theoretical approaches
to event detection have been published. On the local and the neighborhood
event detection layer, both Petri nets [1] and boolean expressions [2] have been
proposed, however no evaluation of these algorithms is presented. In [3], the
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authors propose to employ Probabilistic Context Free Grammars (PCFGs) in a
layered architecture similar to ours and evaluate this approach using a simulation
with real traces. Their use case of recognizing motion patterns differs from ours in
that it allows to infer semantic meaning of raw data locally on a sensor node, and
their evaluation stops short of actually quantifying the accuracy of the system.

On the other hand, a wealth of deployments of WSNs have been described.
To mention but a few, deployments have focussed on habitat monitoring [4], fire
detection [5], and environmental monitoring [6]. While some of these applications
are good candidates for in-network event detection, this functionality neither was
an integral part of any of these deployments, nor did the authors report on the
level of accuracy of the event detection algorithm used, if any. Instead, reports
on deployments mostly limit themselves to describing the raw data collected.

Focussing more on event detection, research untertaken within the NEST
project deals with discrimination of people, vehicles and noise using radar-
enabled sensor networks [13]. While we opted for classifying the events observed
within the network, the authors describe a base-station centerd classification
approach and the trade-off between classification accuracy and latency.

The two projects most similar to our work were published by He et al. in [7]
and by Werner-Allen et al. in [14,8]. In [7], He describes the VigilNet project,
a system for surveillance missions with applications such as vehicle tracking. It
has a broader scope than our work in that it comprises a deployment at a much
larger scale and event detection is only one component of their system. The
authors did not focus as much on the event detection algorithm as we did, as the
only parameter that is mentioned is the degree of aggregation which corresponds
to the number of ACKs send at our neighborhood event detection layer. It is also
unclear how many different types of events they exposed their system to. Based
on our experience, we can however support their claim that slight miscalibrations
of the event detection algorithm have an immense impact on its accuracy.

In [14] and later followed-up by [8], Werner-Allen et al. evaluate a deploy-
ment of sensor nodes on an active volcano with the goal of monitoring volcanic
eruptions. The traces obtained during the first deployment were used to both
evaluate an offline event detection algorithm and calibrate the event detection
algorithm for the second deployment. The architecture of the algorithm deployed
differs from ours in that sensor nodes send basic events to the base station and
in response to this the base station may decide to collect data from all nodes in
the network, while our approach relies entirely on in-network event detection.
The results of their second deployment as published in [8] indicate that the accu-
racy of their event detection architecture faces worse problems than ours under
real-world conditions. Sensitivity is very low at 1.2% and specificity is at 100%,
which we attribute to a miscalibration of the parameters of the event detection
algorithm used during this deployment.

6 Conclusion and Future Work

The goal of this paper was to explore how a security-focussed system relying
on the in-network data processing capabilities of WSNs can be constructed. We
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chose the example of a fence monitoring application due to both its demanding
requirements on distributed event detection and realism of the use case. Putting
our layered approach to event detection into practice, we have built and evaluated
fence monitoring deployments both in real-world and simulated experiments.

Our system showed a sensitivity of of 86.7% and a specificity of 53.3% dur-
ing these experiments. Distributed event detection contributed to the specificity
by eliminating false event candidates, however at the same time decreased the
sensitity by eliminating correct detections. Further, our layered approach to in-
network event detection was able to reduce the overall network traffic by up
to 93.4% depending on the network topology as compared reporting aggregated
sensor data to the base station for centralized processing. Our results are novel
in so far as to the best of our knowledge no previous work has quantitatively
evaluated the impact of in-network processing based on real-world experiments.

At the same time it must be noted that the level of accuracy we achieved
in our experiments is by far not sufficient for a production-level deployment. In
the future, we need to focus on refining the calibration phase of the event detec-
tion algorithm with the goal of reducing the number of false positive detections.
This may include looking at the raw data in a transformed domain to optain
a better differentiation of events and examining whether a pattern recognition
approach (e.g. k-nearest neighbors) for classification is more suitable. Preferably,
calibration should be an automated process instead of the manual calibration
we utilized. Fortunately, our comparison between a real deployment and a sim-
ulation relying on the same traces indicates that simulation is a viable tool for
studying this kind of application. Hence, given enough traces of raw data, it
should be feasible to perform the calibration using simulation tools.

Another problem to be tackled is how to avoid that failures of individual nodes
and the resulting variation in the average node degree of the WSN adversely
affects neighborhood event detection. One possibility we plan to evaluate in this
context of self-organization are periodic runs of recalibration phases. Once these
adaptations prove successful, we hope to verify our findings in a large scale
deployment over a longer period of time as part of which we can also evaluate
the long-term energy consumption of our fence monitoring system.
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