
FACTS – A Rule-based Middleware Architecture
 for Wireless Sensor Networks

Kirsten Terfloth
Freie Universität Berlin

Takustr. 9
14195 Berlin

+49 (0) 30 838 75211
terfloth@inf.fu-berlin.de

Georg Wittenburg
Freie Universität Berlin

Takustr. 9
14195 Berlin

+49 (0) 30 20256233
wittenbu@inf.fu-berlin.de

Jochen Schiller
Freie Universität Berlin

Takustr. 9
14195 Berlin

+49 (0) 30 838 75211
schiller@inf.fu-berlin.de

ABSTRACT
Introducing a middleware abstraction layer into wireless
sensor networks is a widely accepted solution to facilitate
application programming and allow network organization.
In this paper, we argue that although an event-based
approach is the most obvious solution, it also provides the
most natural way to address software development in
wireless sensor networks. As a proof of concept, we
introduce FACTS, a very flexible middleware framework
able to provide support for a wide range of different
applications. The objective is to combine advantages of
event-centric processing and rule-based execution while
preserving low resource usage.

Keywords
Wireless sensor networks, middleware, event-centric
architecture, rule-based language, qualitative simulation

1. INTRODUCTION
Wireless sensor networks (WSN) comprise a variety of
features that make software development in this domain
rather challenging. Dealing with embedded devices in large
numbers, each of which is prone to error and very restricted
in terms of energy, memory and processing power
introduces a burden upon the application development.
Moreover, the distribution of nodes and their shared
communication medium call for multi-hop routing
algorithms and distributed coordination among them. The
introduction of a middleware layer can alleviate problems
arising from both complex communication and data sharing
methods as well as those that originate at the underlying
software layer.
Since the deployment of a middleware layer inevitably
consumes memory, a decision whether to use this kind of
abstraction has to be deliberated carefully. The more
generic such a middleware layer, the more likely it is to be
used in diverse application scenarios. Furthermore, a clear
abstraction model able to combine benefits for supporting
both distribution issues and embedded programming is
needed. A number of solutions have already been
suggested, ranging from tiny enhancements for

programming [1] to full-fledged middleware architectures
with rich sets of services [2, 6, 9].
In the latest discussions it has been argued, that event-
driven programming is rather complicated from an
application programmers’ point of view. Asynchronous
wake-ups related to the occurrence of state changes, the
need for non-blocking calls to enable execution and
coordination of multiple events, and the necessary means to
maintain state seem backward to ‘usual’ imperative
programming. On the other hand, an event-driven paradigm
suites the application domain best: sensor nodes are
supposed to detect certain changes in their environment,
react to them appropriately and remain in low-power mode
in case of absence of events or tasks. Hence, a triggered
action, thus a push mechanism, is a more natural way to
think of programming for sensor networks.
The middleware architecture we introduce in this paper
provides a powerful mental model that emphasizes the use
of trigger mechanisms and actions. Combining the
advantages of virtual machines, grouping facilities and
modularity-based approaches as described in [10], and
inspired by expert-systems [12], our main abstraction are
rules, facts and functions. In this context information –
which is everything ranging from sensor readings to
temporary variables – is represented as facts, which are
stored in a fact repository and processed by rules. In other
words, rules encode the information processing relevant to
a specific application and are written in a high-level
language consisting of the triggering conditions and the
actions to be taken accordingly. In contrast to inference
engines using backward chaining, our rule engine, which is
the scheduling entity for rules, uses forward chaining in
order to provide event-like semantics. Rules may also call
functions that hook into the firmware or operating system
of the sensor node and perform resource critical operations
in a fast and memory-efficient manner.
Facts, rules and functions are local to each node of the
sensor network and each node runs its own rule engine.
However, facts are also used as the key abstraction for
transmitting information from one node to another, to the
entire sensor network, or to a distinct subgroup. Hence, one
can think of it as a node sending one of the facts from its

mailto:terfloth@inf.fu-berlin.de
mailto:wittenbu@inf.fu-berlin.de
mailto:schiller@inf.fu-berlin.de

own fact repository to another node, which in turn adds it
to its fact repository. Due to the reception of the fact on its
radio interface, the middleware is aware of not being the
owner or originator of this fact. However, there is no
further distinction made between locally created facts and
those received from other nodes over the network.
The rest of this paper is organized as follows: First, we
estimate FACTS concepts in the context of current research
activities. Section 3 describes the main architecture of
FACTS in detail and discusses design considerations,
before introducing the prototype implementation in Section
4. A coverage algorithm is given in our rule language to
present the expressiveness of our programming abstraction
in Section 5, and give a first impression of the overall
system in practical use. A conclusion and outlook on future
work concludes this paper and once again summarizes the
contributions of our work.

2. RELATED WORK
A number of approaches resemble FACTS in certain
aspects. The SWARMS project [13] makes use of a
distributed virtual shared information space (dvsIS), an
adaptation of the Linda tuplespace, to share global state
among all nodes. The idea of SWARMS is to provide
global coordination, having the sensor nodes of the
network behave like members of a swarm. Elements of this
space are qualified by XML tags, and are distributed
among swarm members. Our fact repository is
implemented to enable distributed shared memory, so
applications may use this in case they can benefit from it.
Otherwise, it functions as local memory for state, data and
variables, and is thus the central coordination entity for
nodes. This concept of variable usage is a lot more flexible,
since it allows for application specific tuning instead of
predefined functionality.
The Generic Role Assignment (GRA) project [4] makes
use of rules to encode node behavior. An algorithm is
implemented by specifying a set of roles a node can assign
to itself depending on its local state and that of neighboring
nodes. Therefore, a change in state may inherently result in
a re-evaluation process of roles of a potentially large set of
nodes, and hence lead to massive communication between
nodes for coordination. Our approach also relies on stateful
information, but decisions on event occurrence or state
changes have to be implemented by the programmer
explicitly, leading to a more controllable communication
pattern. Although GRA allows a higher abstraction from
communication issues, we believe that the domain of WSN
does not allow making such subsumptions for developers.
The introduction of new languages to implement
applications for WSN can be widely observed [3, 7, 11].
Design goals combine offering a high-level language
construction tailored to domain specific needs and allowing
interpreted, dense byte-code to be deployed on the nodes.

Furthermore, interpretation of code may serve in acquiring
modularity of software components.

3. FACTS ARCHITECTURE

The architecture of FACTS will be introduced in the
following pages. To emphasize the issues that were
considered during the construction process, they will be
briefly presented in a motivating section.

3.1 Motivation
The main criteria for the design of our middleware
architecture are summarized in the following key points:

• Event-centric architecture
• Rule-based language capturing trigger/action

semantics
• Minimalistic architecture, able to be enhanced at

runtime according to application-specific services
• Support for distributed shared memory to enable

grouping algorithms
• Support for cross-layer optimization

To reflect the event-centric domain of networked sensors
and benefit from the inherent data compression of an event
concept, the middleware design uses the primary
abstraction of events which trigger actions. The overall
system can therefore be implemented in a resource-aware
manner, allowing nodes to switch to low-power mode in
case of absence of events. The formalization of rules is a
natural way to express actions triggered by changes either
in a node’s environment or internal state, or by any
combination of both. Therefore we chose to make explicit
use of these semantics and defined a suitable language that
is concise and powerful, but also small in terms of memory
consumption.
As the goal is to allow sets of basic services, depending on
the envisioned application domain, to be implemented and
added to the middleware on demand. Hence, a modular
design to obtain a highly flexible framework is also a key
design aspect. Furthermore, the ability to easily share data
among nodes for coordination algorithms has been proven
useful in WSNs [5]. Our fact repository with its ability to
act as a distributed shared memory supports software
relying on any kind of grouping or clustering mechanism.
These features are not explicitly provided by FACTS to
prevent the pollution of memory with unnecessary services,
but can be added in a set of a few rules.
Not only data sharing among different nodes of a network
can be realized through the use of the fact repository as
central data entity on a node. Algorithms operating on
different layers according to the ISO/OSI layering model
can also exchange information to use it as means to

coordinate and tune themselves, enabling network
optimization based on cross-layering.
The middleware architecture of FACTS as shown in Figure
1 has been designed to provide a highly flexible framework
to cope with the limited resources inherent to the
application domain of wireless sensor networks, but
nevertheless equip a developer with a clear mental model.
The fundamental concepts are introduced in following
sections.

3.2 Rules
Rules are used to express algorithms and reactions to
external events in the system. A rule is a named structure
containing both a set of conditions and an ordered list of
statements. A rule fires, i.e. the rule engine executes the
statements belonging to the rule, if all conditions evaluate
as true according to the facts in the fact repository. More
precisely, a rule fires if all the conditions are true and at
least one of the facts mentioned in these conditions is
tagged as modified. This ensures that the system processes
changes in the fact repository in an event-like manner.
Furthermore, a rule also has a priority which defines
exactly when during one complete run of the rule engine
the conditions of the rule are checked against the fact
repository, and based on this it is decided whether the rule
should fire or not. Multiple rules can have the same
priority, but for these rules the system does not provide a
guarantee on the order in which they are executed.

Conditions have one of two forms:
Exists: This condition checks whether one particular fact
exists in the fact repository.
Eval: An eval condition checks, whether a boolean
expression is true given the data found in the fact

repository. Statements modify the fact repository or
generally interact with the rest of the system.

Figure 1: Component diagram of FACTS architecture: Low-level events start execution by creation of new facts (1),
 which trigger the rule engine (2) to match rules against fact repository (3) and eventually fires rules (4).

Available statements include:
Define: Adds a new fact to the local fact repository and
initializes its properties.
Retract: Removes one or more facts from the local fact
repository.
Set: Changes the value an existing property of one or more
facts in the local fact repository or adds a new property.
Send: Transmits one or more facts in the local fact
repository to other nodes in the sensor network.
Call: Calls a function implemented in native code and made
available by the underlying software layer.
An example on how to use these operators to implement a
typical algorithm for WSNs is given in Section 5.

3.3 Facts
Facts are the central means of representing any kind of data
in the system. They are structured as a named set of key-
value tuples. Multiple facts with the same name may be
present in each local fact repository without disturbing the
system. Keys are unique for each facts, values typed. A
specific key-value tuple is called a property of a fact, with
available types of values being bool, int, float, and string.
Every fact has a few predefined properties which are
updated by the system and available to the programmer as
read-only values. More precisely, the keys and types of
these hard encoded properties are:
(int) owner: The network wide unique ID of the sensor
node that was the last to modify this fact by either creating
it, adding a new property, or modifying an existing
property.
(int) time: The time at which the fact was last modified.
Note that this merely is the perception of the current time

of the modifying node, which may well be out of sync with
the rest of the sensor network or otherwise inaccurate.
(string) id: The network wide unique ID of this fact. It is
implemented as the dot-separated concatenation of the ID
of the owning sensor node (which is unique in the sensor
network) and the time of last modification (which is unique
on the local node, that sets itself as the owner upon
modifying the fact in question).
(bool) modified: This boolean flag indicates whether a fact
has been modified by either another rule or some external
system-generated event during or since the last run of the
rule engine. As rules only fire when at least one of the facts
referenced in their conditions has been modified, this
property is useful for working on only those facts out of a
potentially larger set that have caused the rule to fire and
hence might require processing. The modified flag of all
facts is cleared every time an entire run of the rule engine
has been completed successfully.

As facts are dynamically added to the fact repository at
runtime and as only facts marked as modified trigger the
execution of rules, modified facts appear as events in the
system to the application-level programmer, thus allowing
for event-centric programming. Furthermore, facts are also
the central means of transmitting information between
nodes of the sensor network: The Send statement in a rule
allows for one or multiple facts to be transmitted to another
node or to be broadcasted to the entire network, possibly
utilizing multi-hop forwarding by other nodes.

3.4 Functions
A function is a chunk of machine code that interacts with
the firmware or operating system of the sensor node, and
provides an interface that can be invoked by the rule
engine. As such, its main purpose is to provide hooks for
the rules to interact with the software layer below the
middleware and to allow for efficient implementation of
algorithms featuring critical performance considerations.

3.5 Derived Concepts
Complementing the basic components of the distributed
expert system, the following concepts are helpful to fully
understand and communicate about the system:

3.5.1 Slots
A slot is the primary means for addressing facts and their
property values in the fact repository. It is a tuple
consisting of two patterns, one identifying the fact and one
identifying the property key, and a list of conditions that
further specify which subset of the fact repository is to be
addressed. The property key pattern may be omitted if only
the fact itself, rather than one of its properties, is of
interest.

3.5.2 Rulesets
A ruleset is the construct equivalent to a component in
other middleware architectures. It is a set of rules and
related facts that together provide a certain services in the
system. Rulesets have a well-defined interface in terms of a
set of facts that trigger the execution of their rules. They
encapsulate locally used rules and facts in their own
namespace which is implemented as dot-separated prefix to
the name of the fact it contains.
Rulesets may explicitly provide services as identified by a
well-known descriptor, or require them to be present on a
local system when being installed. This allows for the
construction of a dependency graph at compile time and
possibly for automatic loading of rulesets at runtime. On
the downside, one has to be aware of possible excessive
resource usage in case of automated functions, a drawback
that should be investigated extensively at design time.
Experiences gained by implementing a few common
algorithms typical for wireless sensor networks show that a
ruleset is typically in the magnitude of ten to twenty rules
and a similar amount of facts. Of course, these numbers are
merely rough estimates and vary depending on the
complexity of the functionality to be implemented. The
possibility to add such ruleset-like library functions to the
system according to application needs once again
emphasizes the powerful and adaptable design of FACTS.

3.5.3 Globally Shared Information Space
Facts have an unique ID that is the concatenation of the ID
of the owning node and the time when the fact was last
modified. Only one fact can be modified on a node at any
given time. The fact repository may thus contain various
facts from different nodes, being the knowledge base of the
node owning it. This knowledge is composed of
information about its current state, events it has spotted in a
certain time interval or communicated details of
neighboring or potentially reachable nodes in the network.

3.6 Design Details and Considerations
The concepts as described above were only rough sketches
when the work of formalization was begun. Several
decisions were made during the design phase of the project,
which eventually led to the final semantics of our system.
This section lists important details of our design and the
considerations details that led to these decisions.

3.6.1 Sets of Facts
As facts are addressed by their name – which is not
required to be unique – evaluating a slot against the fact
repository may result in a set of multiple matching facts.
Hence, a condition or statement that takes a slot as a
parameter may either process a single fact or a set of facts
depending on the content of the fact repository at runtime.

For a condition to return true when evaluated against a
given fact repository, it is sufficient if at least one of the
facts matched by the slot satisfies the constraints stated in
the condition. A statement however will be executed
separately for every single fact matched by the slot, which
will lead to multiple executions of the same rule. In case of
a statement containing multiple slots, the statement is
applied sequentially to all possible combinations of the
matching facts, i.e. the cross product of the respective sets
of facts. If only one specific fact is to be processed, this can
either be achieved by carefully naming the facts, or by
providing more specific constraints in the form of
conditions as additional parameter of the slot as explained
in the following section.

3.6.2 Filtering Facts for Processing by a Statement
Apart from addressing a fact by its name, a slot is
frequently required to be more specific about exactly which
fact from a potentially large set of matching facts to work
with. In order to do so, a slot can filter the set of all facts
with matching names by providing further constraints on
the required values of properties of selected facts. This is
done in the form of a list of conditions that can be specified
as additional parameter for slot refinement. Obviously, the
result includes only that subset of facts where all conditions
on slot parameterization are met. It is up to the application-
level programmer to ensure that the properties of facts
differ enough for selection to isolate a specific single fact
in case this is required by the application. The system
supports this by providing an unique ID for each fact in the
fact repository and therefore making any fact directly
accessible via the read-only id property.
An alternative design would have been to implement
implicit filtering of the facts based on the conditions of the
rule in question. While this would allow for a simpler
syntax, there are several disadvantages:

• Statements may access facts that are not
referenced in the conditions. Adding conditions
for filtering purposes alone would bloat the
application-level code.

• Questions would arise on the proper order
concerning statement processing: All statements
could be executed sequentially for all matching
facts (horizontal execution), but with the same
logical implication each single statement could
also be applied to each matching fact before
executing the following (vertical execution). None
of these two options seems intuitive enough to be
acceptable by an application-level programmer or
preferable due to its inherent properties.

• Statements would have different semantics
depending on which rule they appear in. This
would not only be confusing but also violate the

idea of strict decoupling of conditions and
statements within a rule, as detailed in the next
section.

3.6.3 Separation of Conditions and Statements
Even when associated with the same rule, conditions and
statements are clearly separate entities. Conditions are
specified to only take care of firing a rule and should not
result in unintentional side effects. On the other hand,
statements only alter the fact repository or interact with the
system, thus can be totally ignored by the rule engine when
determining whether to fire rules. Clearly, statements do
have exactly the same semantics independent of the calling
rule. However, this also implies that the filtering of exactly
which facts to process needs to be done for each statement
separately, and hence is independent of the conditions of
the rule.

3.6.4 Adjusting Ownership of Modified Facts
Whenever a node changes the properties of a local fact, the
owner property of the fact is set to the ID of modifying
node. The goal is to keep the global namespace of facts
intact and to ensure that sensor readings processed within
the sensor network are clearly marked as such. If the
original fact is to be preserved while processing, a copy
needs to be made beforehand. The copy is then owned by
the local node and can therefore safely be modified. In case
only changes to facts owned by the local node are intended,
one has to add a filtering condition to slots which state that
only facts whose owner property matches the ID of the
local node are to be processed.
An alternative solution proposes facts to be owned by the
local node exclusively, i.e. independent of any filters.
Updates would then result in changes just in case the
current executing entity is also the owner of the fact and
otherwise leave the fact untouched as read-only. It turned
out that while allowing for the same functionality to be
implemented, these semantics resulted in bloated code
because of bad interaction with sending facts across the
network: In this case, facts can be seen as packets, and
packet properties, thus facts properties, needed to be
updated slightly for each hop they travel on the network.
Having to make a copy before being able to process a
packet would not only waste memory but also result in
unreadable code.

3.6.5 Usage of Local Variables
Unlike JESS [12], a reference expert system we examined
tor language formalization, our system does not support the
notion of local variables to which a specific fact can be
bound within a rule. We consider binding facts to variables
at runtime to be too expensive in terms of memory usage
for an embedded system. As proven above the syntax of

filtering on slots is able to provide the same functionilty,
while lowering system overhead for memory management.
Due to this optimization it will be possible to give bounds
on memory consumption of a future implementation even
at compile time.

4. PROTOTYPE IMPLEMENTATION
FACTS as introduced in the previous sections was first
implemented as purely functional prototype in the Haskell
programming language. The following section explain the
reasons why this somewhat unusual approach was taken,
gives an overview of the implementation and presents
relevant code fragments.

4.1 Rationale
As [14] points out, a functional design or a prototype can
be most useful even if the ultimate goal is an imperative
solution. In our case the advantages were as follows:

• Initially, the basic concepts were not well
understood beyond traditional event-centric
architectures and their exact semantics changed
rapidly while new requirements and
interdependencies were discovered. During this
phase of rapid iterative prototyping, the emphasis
on concise functional definitions helped the
project to stay coherent.

• The definitions of functions obtained from the
prototype can serve as formal specification of the
system. Also, the definitions of the data types can
be used as basis for a grammar. Eventually this
approach can lead to the construction of a
compiler for this grammar able to translate human
readable rule definitions into an intermediate
format or byte-code, suitable for deployment in
the sensor network.

• Higher order function and their capability of using
functions as parameters makes the code base very
compact and easy to maintain, while at the same
time preserving type safety.

The availability of our functional prototype allows to run
test cases and check the semantics of the system very early
in the development process. The result is a smooth
codebase without known inconsistencies or dead code.
Furthermore, the codebase is perfect in the respect that
nothing can we removed without losing functionality.

4.2 Overview
The core of our system is implemented as a Haskell
module. Its public interface contains constructors for the
condition and statement primitives and functions to create
rule, fact and function entities as well as slots and rulesets.

For evaluation purposes we also implemented functions to
construct a sensor node and set up a sensor network. and
based on these run a simulation. Using these mechanisms a
core set of rulesets has been implemented as additional
Haskell modules and is available to be used in test runs of
the system.
Following the functional paradigm, the simulation runs by
iteratively transforming the current state of the sensor
network – including all nodes and their respective rule and
fact repositories – into the subsequent state. For all nodes
the conditions of their local rules are checked against the
fact repositories and the statements are executed if the
given facts suffice for the rule to fire. In order to implement
unique IDs of facts the simulation environment provides a
timer counter that is increment whenever a fact is modified
and set to an steadily increasing well known value after a
complete run of the simulated rule engines on all nodes has
been completed. The current notion of time of the sensor
nodes is thus known for each simulation step which allows
for the simulation to supports the injection of facts to the
fact repositories of one specific are all sensor nodes. As
external events appear to the rule engines as new facts in
their repositories, the injection method can be used to
simulate sensor readings at certain points in time during the
deployment of the sensor network.

4.3 Relevant Code Fragments
Listing 1 is a shortened version of the main “loop” of the
functional simulation.

1 processState :: [Event] -> State -> State
2 processState events state =
3 (State (step + 1) nextStepTime
4 (Network (map cleanNode newNodes)))
5 where
6 nextStepTime =
7 time + simulationStepTime
8 (State step time network) =
9 state (State _ newTime
10 (Network newNodes)) =
11 processNetwork (processEvents
12 state currentEvents) network
13 currentEvents =
14 filter (\(Event eventStep _ _) ->
15 (eventStep 15 == step)) events

 Listing 1: Main loop of functional simulation

A simulation step is broken down into several operations:
In lines 13 to 15 the events for the current simulation step
are filtered out of the global event list. Lines 10 to 12 first
process these events by updating the state of the network
accordingly, The new state is then used as input for the
central processing of the network in the same line. It results
in a new list of nodes the facts of which have their
modified property cleaned up in line 4 as a final

operation. Together with the calculation of the time for the
next simulation step in lines 6 and 7 this concludes the
transformation of the current state.
Listing 2 shows the complete logic that decides whether to
fire a rule or not and updates the simulated state of the
sensor network accordingly.

1 applyRule :: State -> MAC -> Rule -> State
2 applyRule state mac
3 (Rule name _ conditions statements)
4 | oneFactIsModified &&
5 allConditionsAreTrue =
6 foldl (\state -> applyStatement state
7 mac) state statements
8 | otherwise = state
9 where
10 oneFactIsModified = or (map
11 (checkFacts facts) conditions)
12 allConditionsAreTrue = and (map
13 (checkCondition facts) conditions)
14 facts = getFacts state mac

 Listing 2: Determination of rule execution

Taking the MAC address as ID of the current sensor node
and the rule to be applied to its fact repository as additional
parameters, this function can be broken down into the
following operations: As can be seen in lines 4 and 5, a rule
fires only if at least one fact is tagged as modified and all
conditions of the rule evaluate as true. If this is the case, a
rule is applied by folding its statements into the current
state of the simulation in lines 6 and 7, otherwise the state
is returned unchanged in line 8 as the rule did not fire. The
calculations whether a fact referenced in the conditions has
been modified and whether all conditions are true state
lines 10 to 13 respectively.

5. EXAMPLE: COVERAGE
The goal of the coverage algorithm in a wireless sensor
network scenario is to determine which areas of a
geographic region are covered by the sensor network, and
where redundant information can be gained. The collected
information may be used to selectively power down sensor
nodes in order to extend the total lifetime of the sensor
network, a situation applying usually to densely deployed
networks.
A partial listing of the rule-based implementation of the
coverage algorithm is given in listing 3. Following name of
the rule, conditions are listed prefixed with “<-” and
statements with “->”.

1 sendRange
2 <- Exists Timer.expiredSlot
3 -> Retract Timer.expiredSlot
4 -> Define "rangeFact"
5 -> Set ("rangeFact" "xMin")
6 (posXSlot - System.txRadiusSlot)
7 -> Set ("rangeFact" "xMax")

8 (posXSlot + System.txRadiusSlot)
9 -> Set ("rangeFact" "yMin")
10 (posYSlot - System.txRadiusSlot)
11 -> Set ("rangeFact" "yMax")
12 (posYSlot + System.txRadiusSlot)
13 -> Send 0 System.txPowerSlot
14 ("rangeFact" [(("rangeFact" "owner")
15 == nodeIDSlot)])
16 -> Define "rangeSendFact"
17
18 xyMinCovered
19 <- Exists "rangeSendFact"
20 <- Eval ((posXSlot - System.txRadiusSlot)
21 < ("rangeFact" "xMin"))
22 <- Eval ((posYSlot - System.txRadiusSlot)
23 < ("rangeFact" "yMin"))
24 -> Define "xyMinCoveredFact"
25
26 determineCoverage
27 <- Exists xyMinCoveredFact"
28 <- Exists "xMaxYMinCoveredFact"
29 <- Exists "xyMaxCoveredFact"
30 <- Exists "xMinYMmaxCoveredFact"
31 -> Define "coveredFact"

 Listing 3: Coverage algorithm in rules

As a first step and firing when a timer has expired, the
sendRange-rule removes the timer fact that caused it to
fire from the fact repository in line 3. It then proceeds to
calculate the range it expects to cover and stores this
information in a fact in lines 4 to 12. Note that establishing
the position of the node is not in the scope of the coverage
algorithm. In lines 13 to 15 the newly created rangeFact
is broadcasted to the neighboring nodes. Each node has to
take care however, to only send the fact that it created
locally as otherwise it would re-broadcast the equally
named facts that it received from its neighbors. Finally, the
node changes its state by defining a fact which indicates
that range information has been sent in line 16.

In the next stage, the node then waits for the rangeFacts
of its neighbors. Upon reception of a matching fact, the
xyMinCovered-rule inspects the data in lines 20 to 23 and
fires if the covered area as reported by the fact overlaps
with its own. The result is stored in the
xyMinCoveredFact. Similar rules for the
xMaxYMinCoveredFact, xyMaxCoveredFact and
xMinYMmaxCoveredFact have been omitted for brevity.
Finally as a last step, the determineCoverage-rule
checks whether all four sides of a nodes area are covered
by other nodes in lines 27 to 30, and if this is the case,
stores this information in the coveredFact. After this
process has been completed for all nodes, each node knows
whether it is the only node of sensor network to cover one
particular geographic region or not and can act accordingly
in the future.

The example of the coverage algorithm illustrates how our
middleware provides intuitive event-like semantics and
abstraction from low-level communication details.
Furthermore, it shows how remote data transparently
becomes available for local processing while still
preserving the semantics of global adressability.

6. CONCLUSION
In this paper we presented the fundamental concepts and
the prototype implementation of our middleware approach
FACTS, which is able to provide a highly flexible
framework for applications in wireless sensor networks.
The goal is to alleviate challenges in programming arising
from the underlying embedded hardware, asynchronous
event-handling, and distribution issues of sensor nodes by
introducing a rule-based programming environment.
To determine the state of each single node, as well as to
coordinate groups of dedicated nodes in a simple way,
FACTS uses a single data management facility, the fact
repository. This may serve as distributed shared memory,
as well as to maintain state and temporal data. Rules can be
specified to implement algorithms and take care of
processing of sensor data. With its modular design the
overall system is aimed to be especially suitable for the
restricted resources of wireless sensor networks and allows
for application specific adaptations, envisioned to be
performed even once deployed.

7. FUTURE WORK
After establishing the semantics of the FACTS system and
small-scale qualitative simulations, there are two major
directions in which to proceed:

On the implementation side, we will replace our functional
prototype and custom made simulation environment with
an imperative implementation that can run on both more
widely used network simulators and eventually on a real-
world sensor network platform. We plan to enrich our
current qualitative data with quantitative measurements and
finally verify our findings in real-world scenarios.

On the application-level side, we plan to extend to
functionality of our middleware by implementing more
algorithms and services commonly used in wireless sensor
networks in the form of rulesets. This will lead to questions
about the dependencies between rulesets and their
interactions at runtime. We envision that rulesets will
eventually be used as drop-in components for sensor
networks that extend the capabilities of a deployed wireless
sensor network while making these advantages
transparently available to the application that runs on the
middleware.

8. REFERENCES
[1] A. Dunkels, O. Schmidt and T. Voigt. Using Protothreads for

Sensor Node Programming. In REALWSN'05 Workshop on
Real-World Wireless Sensor Networks, Stockholm, Sweden,
June 2005.

[2] B. M. Blum, P. Nagaraddi, A. Wood, T. F. Abdelzaher, S.
Son and J. A. Stankovic. An Entity Maintenance and
Connection Service for Sensor Networks.
The First International Conference on Mobile Systems,
Applications, and Services (MOBISYS `03), California, May
2003.

[3] P. Lewis and D. Culler. Maté: A Tiny Virtual Machine for
Sensor Networks. In ASPLOS-X, San Jose, USA, October
2002.

[4] K. Römer, C. Frank P. M. Marron and C. Becker. Generic
Role Assignment for Wireless Sensor Networks. In ACM
SIGOPS European Workshop 2004, Leuven, Belgium, 2004.

[5] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A
Neighborhood Abstraction for Sensor Networks. In ACM
MobiSys 2004, Boston, USA, June 2004.

[6] S. R. Madden, M. J. Franklin, J. M. Hellerstein and W.
Hong. TAG: a Tiny Aggregation Service for Ad-Hoc Sensor
Networks. In OSDI 2002, Boston, USA, December 2002.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In:Programming Language De-
sign and Implementation (PLDI), June 2003.

[8] K. Römer and F. Mattern: Event-Based Systems for
Detecting Real-World States with Sensor Networks: A
Critical Analysis. In DEST Workshop on Signal Processing
in Wireless Sensor Networks at ISSNIP, Melbourne,
Australia, December 2004.

[9] T. Liu and M. Martonosi. Impala: A Middleware System for
Managing Autonomic Parallel Sensor Systems. In ACM SIG-
PLAN, San Diego, USA, June 2003.

[10] K. Terfloth and J. Schiller. Driving Forces behind
Middleware Concepts for Wireless Sensor Networks,
In The REALWSN'05 Workshop on Real-World Wireless
Sensor Networks, Stockholm, June 2005.

[11] O. Kasten, K. Römer: Beyond Event Handlers: Programming
Wireless Sensors with Attributed State Machines, In
IEEE/ACM International Conference on Information
Processing in Sensor Networks (IPSN), Los Angeles, USA,
April 2005.

[12] Jess, the Rule Engine for the Java Platform.
http://herzberg.ca.sandia.gov/jess/

[13] Carsten Buschmann, Stefan Fischer, Norbert Luttenberger
and Florian Reuter: Middleware for Swarm-Like Collections
of Devices, In IEEE Pervasive Computing Magazine, Vol. 2,
No. 4, 2003.

[14] S. Thompson: Haskell – The Craft of Functional
Programming. Addison-Wesley, Second Edition, 1999.

http://www.vs.inf.ethz.ch/publ/papers/wsn-events.pdf
http://www.vs.inf.ethz.ch/publ/papers/wsn-events.pdf
http://www.vs.inf.ethz.ch/publ/papers/wsn-events.pdf
http://page.mi.fu-berlin.de/%7Eterfloth/mw_forces_realwsn05.pdf
http://page.mi.fu-berlin.de/%7Eterfloth/mw_forces_realwsn05.pdf
http://www.vs.inf.ethz.ch/publ/papers/kasten-beyond-2005.pdf
http://www.vs.inf.ethz.ch/publ/papers/kasten-beyond-2005.pdf

	1. INTRODUCTION
	2. RELATED WORK
	3. FACTS ARCHITECTURE
	3.1 Motivation
	3.2 Rules
	3.3 Facts
	3.4 Functions
	3.5 Derived Concepts
	3.5.1 Slots
	3.5.2 Rulesets
	3.5.3 Globally Shared Information Space

	3.6 Design Details and Considerations
	3.6.1 Sets of Facts
	3.6.2 Filtering Facts for Processing by a Statement
	3.6.3 Separation of Conditions and Statements
	3.6.4 Adjusting Ownership of Modified Facts
	3.6.5 Usage of Local Variables

	4. PROTOTYPE IMPLEMENTATION
	4.1 Rationale
	4.2 Overview
	4.3 Relevant Code Fragments

	5. EXAMPLE: COVERAGE
	6. CONCLUSION
	7. FUTURE WORK
	8. REFERENCES

