Poster Abstract: Prototyping a Software Factory
for Wireless Sensor Networks

Tomasz Naumowicz
Freie Universitat Berlin
Institute of Computer Science,
Takustr. 9, 14195 Berlin, Germany

naumowic@inf.fu-berlin.de

Abstract

Wireless sensor networks (WSNs) are often advertised
with high sensing accuracy, long lifetime, and easy deploy-
ment. However, they are still not widely used in environ-
mental research due to of poor tool support and high com-
plexity. A wider use of WSNs in field science would enable
researchers to address scientific questions that are infeasible
today.

To address this issue, we designed and prototyped a Soft-
ware Factory for WSNs that hides the complexity of soft-
ware development for embedded systems. It exposes a vi-
sual domain-specific modeling language and supports code
generation for resource constrained devices. The proposed
Software Factory simplifies the integration of domain ex-
perts into the development process, making WSNs more at-
tractive as a tool for researchers from outside of the computer
science field. This could lead to a wider adoption of WSNs
in field sciences.

Categories and Subject Descriptors

D.1.7 [Programming Techniques]: Visual Program-
ming; D.3.4 [Programming Languages]: Processors—
Code generation

General Terms
Management, Design, Experimentation, Human Factors

Keywords
Wireless Sensor Networks, Software Factory, Domain-
Specific Languages

1 Introduction

Research in the area of WSNs has previously focused
on hardware design, self-organization, various routing al-
gorithms, or energy saving patterns. This trend is already
changing [2], but the available tools typically target experi-
enced software developers rather than researchers from out-
side the computer science field.

In recent cooperation with domain experts during real
world WSN deployments [4], we observed that our expertise
as computer scientists in software development for embed-
ded systems was required in every phase of the project such
as planning, deploying, and managing of the WSNs. The
research goals shifted often with changing field conditions

Copyright is held by the author/owner(s).
SenSys’09, November 4-6, 2009, Berkeley, CA, USA.
ACM 978-1-60558-748-6

Benjamin Schroter
Microsoft Research
7 JJ Thomson Ave CB3 OFB
Cambridge, UK

v-besch@microsoft.com

Jochen Schiller
Freie Universitat Berlin
Institute of Computer Science,
Takustr. 9, 14195 Berlin, Germany

schiller@inf.fu-berlin.de

and we had to update the deployed applications each time.
High complexity of required changes prevented domain ex-
perts from modifying the application themselves. The de-
pendency on us was a big disadvantage - it resulted not only
in delays but also distracted researchers from the core goals
of their work. This highlights the main barriers to the wide
adoption of WSNss in real-world scenarios: high complexity,
poor tool support, and continuous dependency on computer
scientists.

We have designed and developed a Software Factory to
address this problem. Software Factories are model-driven
development environments that support automatic code gen-
eration. Our solution is based on a data-centric programming
model where data flow models are used to describe how in-
formation should be processed. Domain experts use a simple
visual Domain-Specific Language (DSL) to define data flows
and, as a result, to specify the behavior of the WSN. Data
flows are automatically transformed into native application
code and compiled for the selected hardware platform, en-
capsulating the complex process of writing and compiling
WSN programs. We refer to the proposed Software Factory
as Flow.

Flow was prototyped for the resource constrained Scatter-
Web WSN platform MSB430H [1] with 55kB flash memory
and 5kB RAM. The prototype of Flow is available for down-
load! and evaluation.

2 The Software Factory in Brief

Flow provides a visual editor for modeling of applications
for WSNss, a set of DSLs, and a set of code generators. Flow
focuses on the visual representation of data flows at a very
high abstraction level (Figure 1). The modeled data flows are
validated for syntactic correctness at design time and instant
feedback is provided.

The Software Factory does not rely on a virtual machine
and generates native code for the target platform. This
approach significantly reduces the amount of work when
adding support for new hardware platforms or new sensors.
Native code generation also enables easy integration of code
blocks which can be required to handle advanced tasks, e.g.
domain specific mathematical computations.

Flow was built on top of Microsoft DSL Tools and lever-
ages MS Visual Studio 2008 as the Integrated Development
Environment.

Thttp://cst.imp.fu-berlin.de/projects/flow

@0 Skomer - Microsoft Visual Studio

Eile Edit Wiew Project Build Debug Data Tools Test Analyze Window Help

H-E-Eld @ p be |- o - B b Buildand Fla: + Any CPU
Toolbax > ® X| Rfid.dataflow* | Start Page
Operators =)
El DataFlow Trigger
R Poirter
Connection 7 RFID Tag Detected %] | > 7///
2 Formula
¢ Codeblock RFID Tag
O Comment Tirnestarnp
& Comment Connection
=) Skomer Island Board L
k Pointer =| || Dataflow
= P
@ Seale -7 RFID Tag Detected
@ Battery Level
@ Real Tirme Clack RFID Tag
@ Erwironment sensors Tirmestarnp
@ RFID Power Activator
@ Beeper -
(© Scale Activatar 44 RFID &) Write File with Timestamp(z)
7’ PIR1 Movernent Detected T Path
—/’ PIRZ Mowement Detected .ag ?
- Tirme Data
5 FRFID Tag Detected
—/’ Scale Push Value Received

Figure 1. A sample data flow model.

2.1 Domain-Specific Languages

Flow uses three custom visual DSLs: the Hardware De-
scription DSL, the Data Structures DSL and the dynamic
Data Flow DSL.

The Hardware Description DSL is used to specify the
underlying hardware platform. The specification of the plat-
form and custom hardware extensions are created by a hard-
ware engineer. The hardware description contains definitions
of reusable software components (shapes) that represent real
or virtual hardware. For example a temperature sensor or a
FAT file system could be defined here. The shapes are auto-
matically generated from annotated native firmware sources.
The hardware description and the corresponding firmware
sources are distributed as a hardware setup package.

The Data Structure DSL is used by domain experts
to define project specific data records (data containers) and
variables.

The Data Flow DSL is used by domain experts to define
the data flows. The actual set of available components de-
pends on the selected project specific hardware description
and definitions of the data structures. Domain experts use
the Data Flow DSL to combine and configure the available
shapes and thus to describe the behavior of the nodes in the
WSN.

3 Future Work

Flow needs to be evaluated by domain experts in real
world scenarios. Flow will be deployed on the WSN in-
stalled on the Skomer Island [4]. Another upcoming eval-
uation is a deployment of a WSN with 40 sensor nodes at
Wytham Woods near Oxford, UK. The WSN will be used
to support the research on dispersal, environment and spatial
heterogeneity of avian malaria in Great Tits. In both experi-
ments researchers will use Flow to program their WSNs.

4 Related Work

The research community acknowledged the need of DSL
support in WSNs. Several approaches were proposed that

allow to model WSN behavior for simulation purposes, see
e.g. [6]. Actual support for generation of executable code is
still rare:

Mozumdar et al. prototyped a framework for modeling,
simulation and automatic code generation of applications for
sensor networks [3]. Their advanced solution targets profes-
sional software engineers.

Sadilek proposed a well-designed concept of a software
factory for embedded systems and prototyped a DSL for de-
scribing of earthquake detection algorithms [5]. They use
Scheme as an intermediate language which has to be com-
piled for the selected target platform. Currently their code
generator supports embedded Linux platforms. Support for
resource constrained devices is envisioned as a virtual ma-
chine that can be extended with native code.

5 Conclusions

The proposed solution has the potential to shorten the de-
velopment cycles dramatically during WSNs deployments in
field sciences, to reduce the dependency on hardware and
software engineers, and to lead to a wider adoption of WSNs
outside the computer science field.

6 Acknowledgments
This work has been partially sponsored and supported by
the Computational Science Group of Microsoft Research.

7 References

[1] M. Baar, E. Koppe, A. Liers, and J. Schiller. Poster and
abstract: The ScatterWeb MSB-430 platform for wire-
less sensor networks. In SICS Contiki Hands-On Work-
shop, page 3, Kista, Sweden, 03 2007.

[2] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy,
S. Guna, M. Corra, M. Pozzi, D. Zonta, and P. Zanon.
Monitoring heritage buildings with wireless sensor net-
works: The Torre Aquila deployment. In The 8th
ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), San Francisco,
CA, US, 04 2009.

[3] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Van-
zago, and S. Olivieri. A framework for modeling, simu-
lation and automatic code generation of sensor network
application. In SECON, pages 515-522. IEEE, 2008.

[4] T. Naumowicz, R. Freeman, A. Heil, M. Calsyn,
E. Hellmich, A. Brindle, T. Guilford, and J. Schiller.
Autonomous monitoring of vulnerable habitats using a
wireless sensor network. In REALWSN °08: Proceed-
ings of the workshop on Real-world wireless sensor net-
works, pages 51-55, New York, NY, USA, 2008. ACM.

[5] D. A. Sadilek. Domain-specific languages for wire-
less sensor networks. In T. Kiihne, W. Reisig, and
F. Steimann, editors, Modellierung, volume 127 of LNI,
pages 237-241. GI, 2008.

[6] S. Wielens, M. Galetzka, and P. Schneider. Design sup-
port for wireless sensor networks based on the IEEE
802.15.4 standard. In PIMRC 2008: Proceedings of the
IEEFE 19th International Symposium on Personal, Indoor
and Mobile Radio Communications, pages 1-5. IEEE,
2008.

