
„Model checking“
Prof. Dr. Marcel Kyas

Assignment 2, October 14, 2009

Exercise 3 (2 Points) We are given three processes P1, P2 and P3 that share the integer
variable x. The program that is given for each process Pi (i ∈ {1, 2, 3} is:

for (ki=1;ki<=10;++ki) {
int ri = x;
ri++;
x=ri;

}
That is, Pi executes ten times the assignment x = x+ 1. This assignment is realised by loading
the shared variable into a local register, increasing the value of that register and storing the
local register into the shared variable. Consider the parallel program P :

x:=0;
P1 ‖ P2 ‖ P3;

Does P have an execution that halts in a final state with the value x = 2?

Exercise 4 (6 Points) The following program is a mutual exclusion protocol for two pro-
cesses due to Amir Pnueli. There is a single shared variable s that is either 0 or 1 and initially
1. Besides, each process has a local Boolean variable y that initially equals 0. The program
text for process Pi (i ∈ {0, 1} is as follows:

for(;;) {
// Non−critical section
(yi,s) = (1,i);
await ((yi−1==0) || (s != i));
// critical section
yi = 0;

}
Here, the statement (yi,s)=(1,i) is a multiple assignment in which yi=1 and s=i are executed
as one single atomic step.

1. Define the program graph of a process in Pnueli’s algorithm.

2. Determine the transition system for each process.

3. Construct their parallel composition.

4. Check, whether the algorithm ensures mutual exclusion.

5. Check, whether the algorithm ensures absence of deadlock.

6. Check, whether the algorithm ensures starvation freedom.

The last three questions may be answered by inspecting the transition system.

Exercise 5 (4 Points) The following incorrect mutual exclusion algorithm has been pub-
lished in the January 1966 issue of the „Communication of the ACM“. The algorithm is for
two processes; let i ∈ {0, 1} be their identities. It uses three shared variables turn, flag[0] and
flag[1]. Initially, flag[0]=0 and flag[1]=0. The initial value of turn is either 0 or 1.

process P[i = 0,1] {
for (;;) {

// Remainder
flag[i] = 1;
while (turn == 1 − i) {

await flag[1−i] == 0;
turn = i;

}
// Critical section
flag[i] = 0;

}
}

1. Formalise this algorithm in Promela

2. Augment the program such that we can identify the error in the program

3. Use SPIN to find the error in this algorithm

4. Use the counter example generated by SPIN to explain the error in the program

Handing in this Assignment Please submit your hand-written solutions on paper no later
than October 28, 2009, 18:00 (before the tutorial session).

2

