Organisational matters

Course outline

Model checking
Lecturer: Marcel Kyas
2 hrs lecture + 2 hrs tutorial
8 ECTS (5 lecture + tutorial, 3 mini project)
Visit me during my office hours if You have questions, comments, problems, ...
Office hours: Thursday 14–15, Room 106 and upon request
e-mail: marcel.kyas@fu-berlin.de

Register and stay informed
- For the course at https://www.mi.fu-berlin.de/kvv/course.htm?sid=18&cid=8298&iid=1
- For the mailing list at
- Check the course page at http://cst.mi.fu-berlin.de/teaching/WS0910/19612-V-Modelchecking/index.html

All announcements (e.g., change of date or room) will be sent on the mailing list!
Course language

- All course material are in *English*.
- This lecture will be held in English, too.
- Upon request, the tutorial may be held in German, if nobody objects.
- You are allowed to answer the assignments, exam, and questions in either English or German.

Lectures

- *Lectures* are (usually) Fridays (12–14) in SR006. Watch the course’s web page for changes.
 - October 14, 16, 23, 30
 - November 13, 20, 27
 - December 3, 11(?), 18
 - January 8, 15, 22, 29
 - February 5

- Observe that this fixes 14 of 15 lectures (16th lecture is exam). We need to find at least another date.

Tutorials I

- *Tutorials* are (usually) Wednesdays 18:00–19:30 (if no one objects) in SR006. Again, watch the course’s web pages for changes.
 - October 21, 28,
 - November 11, 18, 25
 - December 1, 9(?), 16
 - January 6, 13, 20, 27
 - February 3, 10

- Observe that this fixes 13 of 15 tutorial sessions. We need to find another date.
- Tutorials will consist of theoretical exercises and practical work.

Tutorials II

- To qualify for the exam you have to participate in all but two tutorials.
- You have to submit all but two assignments.
- Each assignment will be graded. You need to score at least 60% of the possible score.
- The assignments are designed for team-work. Submit each assignment in groups of two. Do not work alone and do not split the work. Collaborate!
Written exam

Written exam on Friday, February 12, 12–14

- You may take a *hand-written* summary of 4 pages (2 sheets) to the exam. You are kindly requested to submit your sheets together with the exam.
- This is the *only* material admitted.

Mini-project

- A final part of this course's examination is a *mini project*.
- It should take you 2–3 weeks to finish the project (3 ECTS correspond to 90 working hours!)
- You are supposed to apply the methods you learn in this lecture and tutorials to model your own system, formulate your own requirements, and use model checking to verify the model.
- You *have to* deliver the models and requirements
- You *have to* hand in a *written report* describing your model, the requirements, and how you developed it. The report should have 10–15 pages.
- We fix the topic on January 6. You must hand in your report and the model no later than February 26 (hard deadline).
- When you deliver late, your report is marked as *fail!*

Final Grade

- The grade for this course is obtained from the grade of the exam and the grade of the mini-project.
- If you fail either, you fail the whole course.
- If you pass the exam and the mini-project (both grades ≤ 4.0), your final grade will be the average of both.
- Example: Exam 5 and mini-project 2 results in a final grade of 5
- Example: Exam 3 and mini-project 1 results in a final grade of 2.
- If you fail the exam, you can take it once again.
- If you fail the mini-project, you can receive a new version after two weeks.

Lecture notes

- There are no lecture notes yet. I hope to have them ready until mid-term (before Christmas)
- Try to find and use the books and take notes
- I may put the slides on the web-page (accessible only within the university network)
Literature

Christel Baier and Joost Pieter Katoen
Principles of Model Checking
MIT Press
2008

Gerard J. Holzmann
The SPIN Model Checker
Addison Wesley
2004

Ernst-Rüdiger Olderog and Henning Dierks
Cambridge University Press
2008

Mordechai Ben Ari
Principles of the SPIN Model Checker
Springer-Verlag
2008
Literature

Edmund M. Clarke, Jr., Orna Grumberg and Doron A. Peled
Model Checking
The MIT Press
1999

Zohar Manna and Amir Pnueli
Temporal Verification of Reactive Systems: Safety
Springer Verlag
1995

Introduction

Simplicity is prerequisite for reliability.
Introduction

- What is the purpose of model checking?
- Is model checking relevant?
- Is model checking feasible?
- How does it work?

The cost of fixing a bug

Finding bugs early saves money and improves reliability.

Phases during which design decisions are made:
- requirements, system engineering
- high level design, system architecture
- detailed design, code structure
- coding
- testing
- operation

Phases during which design errors are found:
- operation

Cost of fixing the bug goes up.

Why is model checking interesting?

- Model checking is a mature engineering method
 - distinguishes between requirements and specifications
 - uses engineering prototypes to analyse designs
 - can predict the essential properties of a design before construction begins

- basic engineering approach to the design of concurrent software designs could look as follows
 - requirements → logic
 - prototype → logic model
 - analysis → model checking
What do software developers do?

- There is not much engineering in software engineering today
- Instead of modelling and analysing
 - reuse: copy something that seemed to work before
 - trial and error testing
- How does this approach work today?
 - Testing takes more than 50% of the development effort
 - major errors still slip through
 - classic testing methods were never meant to be applied to concurrent software

> *Testing shows the presence, not the absence of bugs*

Edsger W. Dijkstra

Number of executions

Lemma

Let \(n \) be the number of threads, \(\langle p_i \rangle_{i<n} \) a sequence of the number of atomic instructions of each thread, starting with 0. Then the number of executions is:

\[
\frac{\left(\sum_{i=0}^{n-1} p_i \right)!}{\prod_{i=0}^{n-1} p_i!}
\]

Small programs already show many executions

Example

If all statements are atomic, then the example program has \(\langle 3, 2 \rangle \) statements per thread, which results in \(\frac{5!}{3! \cdot 2!} = 10 \) different executions.

Example

The byte code of the same example, it has \(\langle 13, 9 \rangle \) instructions per thread, which results in \(\frac{(13+9)!}{13! \cdot 9!} = 497420 \) different executions.
Consequences I

- Real systems have much more executions, 10^{90} different ones are often seen.
- Testing is infeasible:
 - The number of test cases gets really large, usually one per execution.
 - Assuming 10 tests per seconds, it will take over 400,000 years to test all executions of two threads with 25 instructions each.
 - We can hardly the execution that is actually chosen when executing the test.

Consequences II

Since testing is impossible in practice, other methods like program verification have to be used.

- Inductive methods like (bounded) model checking try to build suitable representations of all possible executions, e.g. transition diagrams, and check all possible executions.
- Deductive methods use some kind of proof technique, e.g. Hoare-style calculi, to prove properties of the program.

The software crisis

- A software crisis was first declared in 1968
 - Complexity of software grew faster than our ability to control it. In 1968, a “large” program was about 100,000 lines of code.
 - The crisis still persists
- today
 - Large programs became 10,000 times larger
 - Available memory became 100,000 times larger
 - Computers became 1,000,000 times faster
 - Multi-processing became ubiquitous
- but software is basically still developed and tested the same way as 40 years ago
- we still cannot predictably produce reliable software
- solving this problem is the single most-important challenge in computing science today

The cost of buggy software

- Software bugs are catastrophic for the development process
 - Fewer than 1 in 3 industrial software projects proceed as planned
 - More than 1 in 5 projects fail completely
 - Inadequate testing of software costs 59.5 billion $ each year (RTI, 2002)
Software bugs can kill people

- China Airlines B1816, Airbus A300 crash (Nagoya, 1994)
- The “Ariane 5 Flight 501” (1996)
- Therac-25 deja-vu (2009)

Software bugs can cause great economic damage

- Wall-street crash (1987)
- Pentium processor division algorithm (1994)
- Denver Airport: computerised baggage handling fails (1995)

Software bugs can affect us

- AT&T phone system crash (1986)
- Rounding errors in election software (e.g. Schleswig-Holstein, 1992)
- Thai minister trapped in BMW by central locking system (2003)

What exactly does model checking address?

- likely bugs may be addressed with testing
- bugs with catastrophic results are addressed by model checking
- model checking helps with rare bugs (Heisenbugs)
Moore made it feasible!

- Improved algorithms reduced the memory requirements and run-time
- But machines got faster and have more available memory
- A problem that needed 7 days in the 1980s can be solved in a couple of seconds today

A reformulation

- Given
 - A system S with system behaviour $L(S)$ (the model)
 - A property ϕ describing valid/desirable behaviours $L(\phi)$
- Prove $L(S) \subseteq L(\phi)$
 - To prove this, we can prove $L(S) \cap (\Sigma^* \setminus L(\phi)) = \emptyset$
 - Which is the same as
 \[
 L(S) \cap L(\neg \phi) = \emptyset
 \]

Model checking in a nutshell

\[\mathcal{M} \models \phi \]

- Given a model \mathcal{M}, decide whether it satisfies property ϕ

Refutation principle

- When $L(S) \cap L(\neg \phi)$ is empty, then S satisfies ϕ
- When $L(S) \cap L(\neg \phi)$ is not empty, then it contains a counter example proving that S violates ϕ
- The value of model checking is the counter example
Scope

Logic model checking can catch a range of logic and functional design errors, especially errors related to concurrency and multi-threading.

- deadlock, livelock, starvation
- race condition
- locking problems, priority problems
- resource allocation errors
- reliance on relative speeds of thread execution
- violations of known system bounds
- specification incompleteness
- specification redundancy (dead code)
- logic problems: missing causal or temporal relations

A short timeline

1936 first theory on computation (A. Turing)
1955 early work on tense logic
1960 theory of ω-regular languages (J.R. Büchi)
1968 the term "software crisis" is introduced
1975 Guarded Command Language (E.W. Dijkstra)

1976–1979 first attempts at reachability analysers
1977 linear temporal logic for system verification (A. Pnueli)
1978 communicating sequential processes (C.A.R. Hoare)
1980 earliest predecessor of SPIN ("pan")

What do we need to do?

To use model checking successfully, we have to:

- build logic models
- how to express requirements
- how to analyse models and requirements

These are basic engineering skills!
A short timeline

1981 E. Clarke and A. Emerson introduce the term “model checking” and the logic CTL
1981 J. Sifakis and J.P. Queille develop a model checker
1986 Automata-theoretic framework of LTL model checking (P. Wolper and M. Vardi)
1986 Reduced, Ordered, Binary Decision Diagrams (R. Bryant)
1986 Mazurkiewicz’ trace theory
1989 SPIN version 0
1993 SMV (K. McMillan)
1995 Partial order reduction and LTL conversion (D. Peled)
2008 E. Clarke, A. Emerson, and J. Sifakis receive the ACM Turing Award for model checking

Success stories I

- Mars pathfinder (1997 mission)
- two typical software requirements:
 - mutual exclusion
 - potential priority inversion

Success stories II

- AT&T phone system crash
 - A mis-placed break statement brought the AT&T phone system down for 9 hours (snow-ball effect)
 - cost (w/o collaterals: $75,000,000 in industry and $100,000,000 at AT&T’s customers
- two typical software requirements:
 - mutual exclusion
 - potential priority inversion
Course overview

1. The distinction between programming and modelling.
2. Using the model checker SPIN and its input language PROMELA.
3. The automata theoretic foundation of SPIN and its algorithm.
4. Specifying properties by observers and in temporal logics.
5. Automatic state-space reduction techniques.
7. Real-time systems and timed automata
8. The model checker UPPAAL
9. Comparing models and understanding the properties they share.

What is modelling?

Modelling is a universal activity by which we form “abstractions” of our environment.

Example

Small children learn to build models. A baby sees a pretty red disc on top of a stove and touches it. She learns that cherry red objects are painful. Later, she sees a read coal that falls out of a fire place. She may apply her model now and save herself from burning her hands. She may also validate the model. Later, when her parents go to a party, she sees her mother wearing a red dress. The mother is baffled at her child screams of panic—the model, valid or not, does not apply.
What is a model?

- A model is a simplified representation of some real-world entities or phenomena.
- They are (usually) obtained from observing the environment or analysing planned systems.
- We model to better understand it:
 - Focus on interesting aspects
 - Predict and visualise potential outcomes
 - Create mechanisms to test and verify and approach before implementing it.

What do we model in computing science?

- In computing science, a model is a mathematical object that describes systems, i.e. structures and processes.
 - Interactions between actors and programs (electronic purse)
 - Chemical processes (batch processing plant)
 - Physical processes (thermostat, air bag)
 - Complex systems (autopilot, telephony networks, electrical networks)
- Thus modelling is (unfortunately) closely related to programming.
- Models should also be understood as simplified representations of programs.
- It is not necessary to model programs (except when we are supposed to re-engineer it or understand it), since each program is already a model of a process.
- Usually, programs should be the result of models and not the opposite way around.

Figure: Model of atmospheric processes
Modelling vs. programming

- A model of a program or system needs not be **executable**, but all programs are.
- A model needs not be **deterministic**, but programs hopefully are.
- A model needs not be **complete**, but programs have to (otherwise they crash of resource exhaustion or do not do anything useful).

Characterisation of a model

- Models generalise program in that they **abstract** many details. A model will not bother with user interfaces and memory management, unless these are the **aspect** to model.
- Models serve a **purpose** different from programs. A program is supposed to execute a specific task while a model is used to make predictions about a system's behaviour.
- Models must eventually be related to a system and the programs of the system, e.g. by serving as specifications or **test oracles**.
- Finally, a model can be formally checked against a program. This is seldom done, because it is computationally hard or infeasible, which is a task similar to proving correctness using Hoare's logic.

Models and programs are communication!

- In any case, models and programs must also be understood as communication.
- Thus they must convey information that must be understood by others.
- A model or program not understood by a colleague is rubbish!
- A personal opinion (drawn from a lot of experience): UML is **not** suited as a modelling language, because it lacks a precise, unambiguous semantics. Anything that enables two persons forming different opinions on what a model means is unsuitable!

Occam’s razor

entia non sunt multiplicanda praeter necessitatem

Attributed to William Ockham (c. 1285–1349)

entities must not be multiplied beyond necessity
Synchronisation skeletons I

- A classic example of applying Occam's razor in our context are **synchronisation skeletons**
- A synchronisation skeleton expresses all necessary information about a **mutual exclusion algorithm**
- In fact, these algorithms are usually expressed by synchronisation skeletons
- A synchronisation skeleton omits all code that is not necessary for understanding how synchronisation works.

Synchronisation skeletons II

```plaintext
active proctype P1() {
  Remainder:
    skip;
  Entry:
    atomic { b[0] = true; turn = 0; }
    atomic { (!b[1] || (turn == 1)) -> in_cs++; }
  Critical:
    assert (in_cs <= 1);
  Exit:
    atomic { in_cs--; b[0] = false; }
    goto Remainder;
}
```

Figure: Peterson's algorithm. The syntax is explained later

Synchronisation skeletons III

- We do not consider what the algorithm does in Remainder or the critical section
- We make assumptions (that are left implicit in the previous slide):
 - Reading from a variable and writing two a variable are indivisible steps (Peterson uses the weakest atomicity assumption: only one bit is read or written)
 - The code in remainder does not write to `turn`, `b[0]`, `b[1]`, and `in_cs`
 - The code in the critical section does not write to `turn`, `b[0]`, `b[1]`, and `in_cs`
- As long as we adhere to these assumptions, any use of that skeleton provides the desired property: the critical sections are executed in mutual exclusion.

Understanding the difference

- The crucial differences between **models** and **programs** are, that most models contain aspects of a system that are not implementable in computers
Example: Mode confusion

- Complex user interfaces, like ones used in air planes, are multi-modal
- Availability of controls depends on the planes mode (you cannot extend the landing gear when over a certain height or flying faster than a specific speed)
- Mode confusion means that the pilot assumes that the system is in a specific mode when it isn’t
- It arises from a discrepancy between the mental model of the plane’s controls and the actual model

Using model checking to identify mode confusion

- Build a model of the system
- Build a model of the pilot’s mind
- Check whether there is a discrepancy
- Note: The pilot’s mind is not executed on a computer

Correctness of programs

Clearly every program does something and therefore every program is correct if we are willing to accept whatever it does. Generally, however, the program was written for some purpose, and so we have some prior idea of what we want it to do. If this idea can be made precise, then it is called the specification of the program. A program is correct only relative to a specification, that is, it is correct if what it does is what the specification demands that it do. (Parikh, 2001)

A system cannot be correct unless its correctness depends only upon events and conditions observable within the system. (Lamport, 1976)

Wovon man nicht sprechen kann, darüber muss man schweigen. (Wittgenstein, 1922)

Three ingredients

Requirements
The properties an entity should satisfy

System
The entity we want to construct.

Assumptions
The “environment” we want the system to work in and the platform it is going to execute. More precisely: The assumptions of the system’s operational context.
Correctness revisited

A reactive system is correct when it satisfies its requirement in every environment that satisfies our assumptions.

What is Promela?

- Promela is an abbreviation for *process meta-language*.
- It is the input language of the model checker SPIN.
- Today, we describe the complete language.
- Promela's ancestors are *Dijkstra's guarded command language* and *Hoare's communicating sequential processes* (CSP)

SPIN

- Now we treat SPIN as a *black box*
- SPIN includes a *simulator* that executes Promela models.
- SPIN also includes a *explicit state on-the-fly model checker*
 - *explicit state* means: a complete state graph is built (nodes represent states and are labelled with valuations of variables, edges connect nodes that are related by a state transformation)
 - *on-the-fly* means: the state graph is constructed when needed.
 - *model checker* means: it searches the state graph (the *semantic* model) for property violations.
 - You do not need to understand all this, because we will look at all this in the next lecture.
A word of caution

- The following description contains some simplifications and white lies.
- We will elaborate these issues during the tutorial session.
- As with any formal language, Promela and Spin can sometimes be surprising, because it behaves in unexpected but completely logical ways.

Promela

- We introduce Promela by means of a series of examples of increasing complexity
- We also show how Promela models can be simulated and analysed using SPIN
- We advise you to try to run and analyse all models, so go and install SPIN after this lecture
 - SPIN is distributed at http://spinroot.com
 - SPIN is available on our machines.
 - Under Linux, add the directory /import/Spin/bin to your PATH variable, e.g., by adding export PATH=$PATH:/import/Spin/bin to your $HOME/.bashrc

Hello, world

```
active proctype main()
{
   printf("Hello, world\n")
}
```

Simulating this with SPIN results in:
```
$ spin hello.pml
Hello, world
1 process created
```

Process types

- `proctype` is a keyword in spin
- It defines a type of `processes`
- Processes have a name (e.g., `main`) and they have formal parameters (e.g., `()` for no parameters or `(int id)` for a single parameter called `id` of type `int`)
- A process then declares a block (`{ ... }`) containing (a sequence of) statements and variable declarations.
- `active` is a second keyword to modify a `proctype`. A process of that type will be started at initialisation time.
init process

- If the type and name of the initial process is not important, we can use the keyword `init` instead.
- `init` cannot be used for any other purpose.

```c
init {
    printf("Hello, world\n")
}
```

Peterson’s mutual exclusion algorithm I

We use Peterson’s mutual exclusion algorithm as our running example.

```c
bool b[2];
byte turn;
byte in_cs;
```

- Variables in Promela are typed and must be declared.
- A variable is `global` and `shared` when declared outside of any function or process.

Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Typical range</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>0, 1</td>
</tr>
<tr>
<td>bool</td>
<td>false, true</td>
</tr>
<tr>
<td>byte</td>
<td>0, ..., 255</td>
</tr>
<tr>
<td>chan</td>
<td>0, ..., 255</td>
</tr>
<tr>
<td>mtype</td>
<td>0, ..., 255</td>
</tr>
<tr>
<td>pid</td>
<td>0, ..., 255</td>
</tr>
<tr>
<td>short</td>
<td>$-2^{15}, ..., 2^{15} - 1$</td>
</tr>
<tr>
<td>int</td>
<td>$-2^{31}, ..., 2^{31} - 1$</td>
</tr>
<tr>
<td>unsigned</td>
<td>$0, ..., 2^n - 1$ with $1 \leq n \leq 32$</td>
</tr>
</tbody>
</table>

Statements

- `printf(...)` is a statement that behaves just like the corresponding C statement.
- Note that there is no `;` in our example.
 - `;` is a statement `separator`
 - Promela allows redundant `;` and will ignore it.
Arrays

- Only one-dimensional arrays are supported.
- Arrays are declared like in C: `byte a[12]`
- Arrays can be initialised at declaration time `int a = 42;` and `int b[3] = 1.`
- Array initialisation initialises all members.
- Array indices range from 0 to \(N - 1\), where \(N\) is the length of the array.
- Default initialisation is 0.

Peterson’s mutual exclusion algorithm II

```
active proctype P1() {
    Remainder:
    skip;
    Entry:
    atomic { b[0] = true; turn = 0; }  
    atomic { (!b[1] || (turn == 1)) -> in_cs++; }
    Critical:
    assert (in_cs <= 1);
    Exit:
    atomic { in_cs--; b[0] = false; }
    goto Remainder;
}
```

Peterson’s mutual exclusion algorithm III

```
active proctype P2() {
    Remainder:
    skip;
    Entry:
    atomic { b[1] = true; turn = 1; }
    atomic { (!b[0] || (turn == 0)) -> in_cs++; }
    Critical:
    assert (in_cs <= 1);
    Exit:
    atomic { in_cs--; b[1] = false; }
    goto Remainder;
}
```

Expressions

- Expressions are built like C or Java expressions, and follow roughly the same precedence rules.
- Unlike C, all Promela expressions are free of side-effects.
- One exception: `run main()`, where `main` is some `proctype` creates a new process and returns its PID.
- A value of 0 means that the maximum number of processes (255) has been created.
Statements

- `skip` is a statement that does nothing (except for allowing more interleaving)
- `b[0] = true` is a classical assignment.
- Statements are composed by `;`
- Labels are variables followed by `:`, e.g. `Remainder:`. They can be put in front of any statement.
- `goto Remainder` resumes execution at `Remainder:`. Some labels (e.g. when they start with `accept`) have a special meaning.
- `assert (in_cs <= 1)` is an assertion. The `simulator` indicates the assertion violation and aborts execution while the `verifier` checks it like an invariant (precise definition pending)

Guarded commands

- Look at the *guarded command*

 `(!b[0] || (turn == 0)) -> in_cs++;`
- Technically, the `->` means the same as `;` but provides a better visual clue of the intended meaning.
- `!b[0] || (turn == 0)` is a Boolean expression.
- Every boolean expression is a statement.
- Execution proceeds when the condition is `true` and block while it is `false` (like `await`)
- The combination `(!b[0] || (turn == 0)) -> in_cs++;` means: “wait until `!b[0] || (turn == 0)` holds, then execute `in_cs++;`”
- Understand that there is a scheduling point between the test and the reaction!
- As with C, every expression may be treated as a Boolean expression, where `0` is `false` and anything else is `true`

Atomic statements

- `atomic ...` declares that the execution of statements inside the braces is atomic, i.e. no interleaving is possible.
- Statements inside of `atomic` may be non-deterministic
- If a statement is not enabled (a boolean condition is false), the statement is interrupted and another process may execute. Then, the process may be re-elected nondeterministically, and execution resumes as if nothing has happened.
- Style: Avoid interruptible atomic statements! Make sure that the execution inside an atomic statement always terminates

d_step statements

- `d_step ...` declares that the execution of statements inside the braces is atomic and deterministic, i.e. no interleaving is possible.
- Conditions:
 - The execution inside must be deterministic. If there is non-determinism, always the same behaviour will be chosen. But: which one is undefined
 - No `goto` jumps into or out of `d_step`s. Warning: `L: d_step skip` jumps into the `d_step`, so write `L: skip; d_step skip`
 - The execution of a `d_step` may not be interrupted by blocking. It is an error if execution is blocking inside.
- `d_steps` can be used for defining our own statements (Later).
Conditional statement

```promela
if
:: (b1) -> s1
:: (b2) -> s2
:: (b3) -> s3
:: else s4
fi
```

- Works like a case/if statement: choose a branch whose condition is true and if none is true, continue with `else`.
- BUT: If two conditions are true, any branch may be chosen (non-determinism)
- Need not start with a condition, could also be a statement (then the condition is `true`).

Loop statement

```promela
do
:: (b1) -> s1
:: (b2) -> s2
:: (b3) -> s3
:: else s4
od
```

- Works like an infinite loop: choose a branch whose condition is true and if none is true, continue with `else`. And then repeat!
- Like `if`: If two conditions are true, any branch may be chosen (non-determinism)
- End loop with `break` or `goto`.

Expressing the same assignment

```
b = 1;
if
:: b = 1;
fi

if
:: true -> b = 1
fi

do
:: true -> b = 1; break
od
```

Comment: way's to encode busy waiting I

```
(!b[0] || (turn == 0)) -> in_cs++
if
:: (!b[0] || (turn == 0)) -> in_cs++
fi

Loop: if
:: (!b[0] || (turn == 0)) -> in_cs++
:: else goto Loop
fi
```
Comment: way's to encode busy waiting II

```text
do
:: (!b[0] || (turn == 0)) -> in_cs++; break
:: else skip
od

do
:: (!b[0] || (turn == 0)) -> in_cs++; break
:: else
od

do
:: (!b[0] || (turn == 0)) -> in_cs++; break
od
```

Understanding the differences

- All these examples have slight semantic differences which may be completely irrelevant to your problem.
- The question is: How many interleavings do I want to allow? How close do I want to model the real system!
- For if-statements: For a classical if, add an else and make sure that all possibilities are disjoint.
- Similar for do loops

Symbolic constants

- mtype is an enumeration type.
- Now constants are defined by the declaration mtype={ ... };
- Multiple declarations will merge the definitions and will not redefine definitions: mtype={P,C};mtype={N}; is the same as mtype={P,C,N};.
- No more than 255 symbolic names can be declared in all mtype declarations combined.

Data structures

- Promela supports simple data structures

```text
typedef Point {
    int x = 1, y
};
```

- New records of type Point will have field x initialised to 1.
- Structures may nest.
- Structures are not recursive.
- Using structures you can create arrays of arrays.

```text
typedef Array { byte el[4] }; Array a[4];
a[1].el[2] = 1
```
A note on memory management

- Promela does not have pointers,
- no malloc() or free()
- everything is \textit{statically allocated} for each process
- Hint: Don’t use processes to mimic data structures
- Remember to model and not to program

inline definitions

```plaintext
inline \text{P}(s) \{
  \text{d\_step \{ \ (s > 0) \rightarrow s--; \}}
\}

inline \text{V}(s) \{
  \text{d\_step \{ s++; \}}
\}
```

Simple semaphore example

```plaintext
\text{proctype} \text{producer()} \{
  \text{byte} \text{data};

  \text{do}
  \hspace{1em} \text{P(emp)};
  \hspace{1em} \text{data++};
  \hspace{1em} \text{buf} = \text{data};
  \hspace{1em} \text{printf(\"produced_/d\n\", data);}
  \hspace{1em} \text{V(ful)}
  \text{od}
\}
```
Channels

- We have seen the first part of Promela that already is adequate to deal with shared variable concurrency.
- Many problems are inconvenient to model using shared variables.
- Promela also provides channel based communication

Channels

- Channels are variables of type `chan`
- `[1]` designates the channel capacity (1 message)
- `{ `mtype` }` declares the type of messages
- Channels can carry many values: `{ byte, byte, bool }` sends triplets of messages.
- Triplets are written as comma separated lists.
- When you define message types with `mtype` as first component, you might also write something of the form `M(x, y, z)` instead of `M, x, y, z`, when `M` is a constant.

Ping-pong

```
mttype = { ping, pong }
chan M = [1] of { mtype };
chan W = [1] of { mtype };

active proctype P1()
{
    do
    :: M!ping;
    W?pong
    od
}
```

Sending and receiving a message

- The statement `M!ping` sends the message `ping` on the channel `M`
- When the channel expects to send more values, we separate them by comma: `C!1,x*y,false`
Receiving a message

- The statement $M?\text{ping}$ receives the message \text{ping} on the channel M.
- It waits until the oldest message in the queue is a \text{ping} message.
- If v is a variable, then $M?v$ receives the oldest message and assigns the value to v.

An extended example I

```promela
active proctype Mproc()
{
  W!ini;  /* connection */
  M?ack;  /* handshake */
  timeout -> /* wait */
  if /* two options: */
    :: W!shutup /* start shutdown */
  :: W!dreq; /* or request data */
    do
      :: M?data -> W!data /* send data */
      :: M?data -> W!shutup; break /* or shutdown */
    od
  fi;
  M?shutup; /* shutdown handshake */
  W!quiet;
  M?dead
}
```

An extended example II

```promela
active proctype Wproc()
{
  W?ini;  /* wait for ini */
  M!ack;  /* acknowledge */
  do /* 3 options: */
    :: W?dreq -> /* data requested */
      M!data /* send data */
    :: W?data -> /* receive data */
      skip /* no response */
  :: W?shutup -> /* start shutdown */
    M!shutup;
  break
  od;
  W!quiet;
  M!dead
}
```

Question: Does this protocol contain a deadlock?

- Let's use SPIN to analyse the model:
 1. `spin -u1000 -c datatrans.pml` simulates the protocol for up to 1000 steps and shows a message sequence chart (MSC). Executing this a couple of times showed that the protocol works as intended.
 2. `spin -a datatrans.pml` generates a verifier, which is a C program that contains a model checker and the model described in datatrans.pml.
 3. `gcc -Os -DREACH -DSAFETY pan.c -o datatrans` compiles the verifier (called pan (protocol analyser)).
A bug in the protocol

./datatrans executes the generated verifier and gives:

pan: invalid end state (at depth 11)
pan: wrote datatrans.pml.trail

(Spin Version 5.2.2 -- 7 September 2009)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:
never claim + (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

A deadlock in the protocol

Lets replay the error trail: spin -c -t datatrans.pml

proc 0 = Mproc
proc 1 = Wproc
q\p 0 1
1 W!ini
1 . W?ini
2 . M!ack
2 M?ack
1 W!dreq
1 . W?dreq
2 . M!data
2 M?data
1 W!data
1 . W?data
spin: trail ends after 12 steps

A deadlock in the protocol (cont.)

final state:

#processes: 2
queue 2 (M):
queue 1 (W):
12: proc 1 (Wproc) line 30 "datatrans.pml" (state 10)
12: proc 0 (Mproc) line 16 "datatrans.pml" (state 11)
2 processes created

Suggested reading

- G. Holzmann (), Chapters 1–3
- (Baier & Katoen, 2008) Chapter 2
- Experiment with SPIN, try some models (see new Assignments)
Models of reactive processes

Definition

Reactive programs are programs whose purpose is to maintain an ongoing interaction with their environment, rather that produce a final value on termination.

Reactive Systems

- We did not provide a definition yet but appealed to your intuition. Need to rectify this!
- We have a formal understanding of an algorithm (takes input and produces output upon termination)
- But most systems today are built to interact with a user (web servers, data bases, etc)
- We consider it to be an error if a reactive system terminates.

The semantics of Promela

- Last week we introduced Promela and gave a very informal description of the semantics.
- Today, we open the box and look what is happening in SPIN.
Ordered set

Definition (Ordered Set)
Let S be a set and \leq be a relation on S. $(S; \leq)$ is called a *ordered set*,
- if \leq is transitive ($\forall s, t, u \in S : s < t \land t \leq u \implies s \leq u$)
- if \leq is anti-symmetric ($\forall s, t \in S : s < t \land s \leq t \implies s = t$)
We call $(S; \leq)$ *totally ordered*, if and only if it is ordered and:
- $\forall s, t \in S : s \leq t \lor t \leq s$

Strictly Ordered set

Definition (Strictly Ordered Set)
Let S be a set and $<$ be a relation on S. $(S; <)$ is called a *strictly ordered set*, if $(S; <)$ is ordered and:
- $\forall a, b \in S : a < b \implies a \neq b$

Least element

Definition (Least element)
Let $(S; <)$ be an ordered set and let $T \subseteq S$ and $T \neq \emptyset$. We say that T has a least element, if there exists $s \in T$ such that for any $t \in T$ we have $s \leq t$.

Well-ordered set

Definition (Well-ordered set)
An ordered set $(S; \leq)$ is called *well-ordered*, if and only if any non-empty subset $T \subseteq S$ has a least element.
Intermission I: Ordinal numbers

- Ordinal numbers are naturally ordered numbers. They represent a very important mathematical structure when we talk about infinite structures.
- Algebraically and following the intuition, we have a total and well ordered set \((S, \leq)\) with least element 0 and a successor function \(+1 : S \rightarrow S\) such that \(n < n+1\) for any \(n \in S\).
- That only works for natural numbers and matches our understanding; let's look at the formal definition!

Intermission II: Ordinal numbers

Definition (von Neumann)

A set \(S\) is an ordinal if and only if \(S\) is strictly well-ordered with respect to set membership and every element of \(S\) is also a subset of \(S\).

Example

Let's look at the first ordinals:

- \(0 \triangleq \emptyset\)
- \(1 \triangleq \{0\} = \{0\}\) and note: \(0 \in 1\) and \(0 \subset 1\)
- \(2 \triangleq \{0, \{0\}\} = \{0, 1\}\) and note: \(0 \in 2, 1 \in 2\)
- \(3 \triangleq \{0, \{0\}, \{\{0\}\}\}\) and so on . . .

Intermission III: Ordinal numbers

- Observe that \(\in\) and \(\subset\) work as order relation: \(2 = \{0, 1\}\) is in \(3 = \{0, 1, 2\}\) and \(2 \subset 3\).
- Define \(n + 1 \triangleq n \cup \{n\}\) for every ordinal \(n\). \(n + 1\) is an ordinal. Clearly, \(n < n + 1\) (because \(n \in n + 1\) and \(n \subset n + 1\)).
- The natural numbers are isomorphic to the smallest set that includes \(\emptyset\) and all successor ordinals of \(\emptyset\).
- An important ordinal: \(\omega\) is the smallest ordinal such that all natural numbers are in \(\omega\). It is also called the smallest infinite ordinal
- Theorem: Let \(\omega + 1\) be the smallest ordinal that includes \(\omega\). Then \(|\mathbb{N}| = |\omega| = |\omega + 1|\).
- The neat trick: We can now write \(n \leq \omega\) to mean \(n\) is either a natural number or some countable infinite “thing”.

Transition system

Definition

A labelled transition system \(T\) is a tuple \((S, A, \rightarrow, I, P, \mu)\), where

- \(S\) is a set of states,
- \(A\) is a set of actions that includes the special action \(\tau\),
- \(\rightarrow \subseteq S \times A \times S\) a transition relation,
- \(I \subseteq\) a set of initial states,
- \(P\) a set of atomic propositions and
- \(\mu : S \rightarrow 2^P\) a labelling function.

The transition system \(T\) is called finite if \(S, A\) and \(P\) are finite.
Automatons-based model checking
Transition systems

Direct predecessor

Definition
Let $T = (S, A, \rightarrow, I, P, \mu)$ be a transition system. Define for any $s \in S$ and $\alpha \in A$:

$$\text{Pre}(s, \alpha) \triangleq \{ s' \in S \mid s' \xrightarrow{\alpha} s \}$$

$$\text{Pre}(s) \triangleq \bigcup_{\alpha \in A} \text{Pre}(s, \alpha)$$

$$\text{Post}(s, \alpha) \triangleq \{ s' \in S \mid s \xrightarrow{\alpha} s' \}$$

$$\text{Post}(s) \triangleq \bigcup_{\alpha \in A} \text{Post}(s, \alpha)$$

Reading it out

- Each $s' \in \text{Pre}(s, \alpha)$ is called a direct α-predecessor of s.
- Each $s' \in \text{Post}(s, \alpha)$ is called a direct α-successor of s.
- Each $s' \in \text{Pre}(s)$ is called a direct predecessor of s.
- Each $s' \in \text{Post}(s)$ is called a direct successor of s.

Generalisation by point-wise extension

If $S' \subseteq S$, then define

$$\text{Post}(S', \alpha) \triangleq \bigcup_{s \in S'} \text{Post}(s, \alpha)$$

Likewise for other predecessors and successors.

Terminal state

Definition
Let $T = (S, A, \rightarrow, I, P, \mu)$ be a transition system. A state $s \in S$ is called terminal if and only if $\text{Post}(s) = \emptyset$.
Execution fragment

Definition
Let $T = (S, A, \rightarrow, I, \mu)$ be a transition system. An *execution fragment* of length $n \leq \omega$ is an alternating sequence $s_0 \alpha_1 s_1 \alpha_2 s_2 \cdots \alpha_n s_n$ such that:

$s_i \xrightarrow{\alpha_{i+1}} s_{i+1}$ for all $i < n$

Definition
An *initial execution fragment* is an execution fragment that starts in some initial state.

Definition
A *maximal execution fragment* is either finite and the last state is terminal or it is infinite.

Program graphs

Definition
A *program graph* P over a set V of (typed) variables is a tuple $(L, A, E, \hookrightarrow, I, g_0)$, where

- L is a set of locations and A is a set of actions.
- $E : A \rightarrow \Sigma \rightarrow \Sigma$ is the effect function.
- $\hookrightarrow \subseteq L \times 2^\Sigma \times A \times L$ is the conditional transition relation.
- $I \subseteq L$ is a set of initial locations
- $g_0 \in 2^\Sigma$ is the initial condition.
- Σ is a set of functions that assign values to variables.
- 2^Σ is the set of all predication on Σ.
- The notation $t \xrightarrow{[\varphi]} t'$ represents a conditional transition.

Make sure our intuition remains valid

- The definition of a program graph is purely semantic!
- In principle, any statement can do anything and any predicate could represent anything. Don't do that!
- Guards and their notation: We write a formula φ (as we are used to) to represent the set $[\varphi] \triangleq \{ \sigma \in \Sigma \mid \sigma \models \varphi \}$ where $\sigma \models \varphi$ states that σ is a state in which φ is true.
- Define the *variant* $f[x \mapsto y]$ of a function f as:

$$f[x \mapsto y](z) \triangleq \begin{cases} y & \text{if } z = x \\ f(z) & \text{otherwise} \end{cases}$$

- The effect of an assignment should represent the corresponding state changes, e.g.:

$$E(x = 1) \triangleq \{ (\sigma; \sigma[x \mapsto 1]) \mid \sigma \in \Sigma \}$$
Semantics of skip

\[
\text{skip} \left[\text{true} \right] \ni \text{id} \rightarrow \text{exit}
\]

Semantics of assignment

\[
x = e \left[\text{true} \right] \ni \text{assign}(x, e) \rightarrow \text{exit}
\]

Semantics of expression

\[
e \left[\text{true} \right] \ni \text{id} \rightarrow \text{exit}
\]

Semantics of sequential composition

\[
\begin{align*}
\text{stmt}_1 \left[\text{true} \right] & \ni \text{exit} \\
\text{stmt}_1 ; \text{stmt}_2 \left[\text{true} \right] & \ni \text{stmt}_2
\end{align*}
\]
Semantics of if statement

\[
\text{stmt}_1 \xrightarrow{[g_i]e} \text{stmt}_2 \\
\text{if ... :: stmt}_1 :: \ldots \text{fi} \xrightarrow{[g_i]e} \text{stmt}_2
\]

Note that `else` represents the disjunction of the negation of every other guard: \(\bigvee_{i < n} \neg g_i \).

Semantics of do statement

Every terminating statement can be embedded into a loop.

\[
\text{stmt}_i \xrightarrow{[g_i]e} \text{exit} \\
\text{do} \ldots :: \text{stmt}_i :: \ldots \text{od} \xrightarrow{[g_i]e} \text{do} \ldots :: \text{stmt}_i :: \ldots \text{od}
\]

A break statement exits the loop.

\[
\text{stmt}_i \xrightarrow{[g_i]e} \text{break} \\
\text{do} \ldots :: \text{stmt}_i :: \ldots \text{od} \xrightarrow{[g_i]e} \text{exit}
\]

In any other case execution may block...

\[
\text{stmt}_i \xrightarrow{[g_i]e} \text{stmt}_j \\
\text{do} \ldots :: \text{stmt}_i :: \ldots \text{od} \xrightarrow{[g_i]e} \text{stmt}_j; \text{do} \ldots :: \text{stmt}_i :: \ldots \text{od}
\]

Labels and go-to

Labels (`label:`) declare a node. A go-to transfers control to the node.

\[
\text{goto} \ label \xrightarrow{\text{true}|d} \ label
\]

A note on atomic

The correct semantics of an atomic block is quite complicated, because we have to think about the internal expressions. If these are false, then the atomic block is interleaved. When these conditions are true, no interleaving is allowed. The tricky part is: we do not have a simple means of realising this in the transition system semantics. SPIN uses coloured states to indicate possible interleaving points. This means that atomic blocks are not always atomic.
A note on d_{step}

It is much simpler to provide a semantics for a d_{step}, because they must never be interleaved (and if they should, the system is considered to contain some error). This makes it possible to define a semantics! For sake of simplicity, assume that the d_{step} does not contain any loops.

First up, we must “massage” the contents of an atomic block into a certain format: the statement starts with one if-statement and each branch of the if-statement is followed by a sequence of assignments only (that can be done).

Then we can expand each branch, now in the form $g \rightarrow x = e; y = f; \ldots$, into one transition

$$\text{if } :: \ldots : : g \rightarrow x = e; y = f \ldots : : \ldots \text{fi}$$

$$\begin{aligned} & [g] \text{assign}((x,y,\ldots),(e,f,\ldots)) \rightarrow \text{exit} \end{aligned}$$

A note on test-and-set semantics

With reference to “Model checking” by (Baier & Katoen, 2008) and Katoen:

- (Baier & Katoen, 2008) and Katoen introduce a language they call “nanoPromela” which is supposed to be a simplification of Promela.
- NanoPromela does not include all features of Promela.
- It has a semantics based on program graphs and transition systems, just as explained above.
- For $\text{do} \ldots \text{od}$ and $\text{if} \ldots \text{fi}$ they propagate a “test-and-set” semantics, whereas we explain the semantics for Promela and Promela uses a “two-step” semantics.

Parallelism and communication

- For now, we just focus on interleaving semantics of transition systems and program graphs.
- The channel operators can be realised by compiling channels to shared variables (bounded buffers). This is actually what SPIN is doing; but it is also using tricks on optimising channels during model checking.

Interleaving of program graphs

Let $P_1 = (L_1, A_1, E_1, \leftarrow_1, l_1, g_{0,1})$ and $P_2 = (L_2, A_2, E_2, \leftarrow_2, l_2, g_{0,2})$ be program graphs over V_1 respectively V_2. Define

$$P_1 \parallel P_2 \triangleq (L_1 \times L_2, A_1 \cup A_2, E, \leftarrow, l_1 \times l_2, g_{0,1} \land g_{0,2})$$

where \leftarrow is defined by

\[
\begin{align*}
\ell_1 \leftarrow [g]a & \leftrightarrow \ell'_1 \\
\ell_1, \ell_2 \leftarrow [g]a & \leftrightarrow (\ell'_1, \ell'_2)
\end{align*}
\]

and

\[
\begin{align*}
\ell_2 \leftarrow [g]a & \leftrightarrow \ell'_2 \\
\ell_1, \ell_2 \leftarrow [g]a & \leftrightarrow (\ell'_1, \ell'_2)
\end{align*}
\]

where $S \cup S'$ represents disjoint union of the set S and S' and E is defined by:

\[
E(a) \triangleq \begin{cases}
E_1(a) & \text{if } a \in A_1 \\
E_2(a) & \text{if } a \in A_2
\end{cases}
\]
Interleaving of transition systems

Let $T_1 = (S_1, A_1, E_1, \rightarrow_1, I_1, P_1, \mu_1)$ and $T_2 = (S_2, A_2, E_2, \rightarrow_2, I_2, P_2, \mu_2)$ be program graphs over V_1 respectively V_2. Define

\[
T_1 \parallel T_2 = (S_1 \times S_2, A_1 \cup A_2, \rightarrow_1 \times \rightarrow_2, I_1 \times I_2, P_1 \cup P_2, \mu)
\]

where \rightarrow is defined by

\[
\frac{s_1 \xrightarrow{a} s'_1}{(s_1, s_2) \xrightarrow{a} (s'_1, s_2)} \quad \text{and} \quad \frac{s_2 \xrightarrow{a} s'_2}{(s_1, s_2) \xrightarrow{a} (s_1, s'_2)}
\]

and

\[
\mu((s_1, s_2)) = \mu_1(s_1) \cup \mu_2(s_2)
\]

Observers I

- One generic way of specifying properties of systems is by *observers*
- An observer is a *process* that raises an error once it observes that a property has been violated.
- Observers run in lock-step with all other processes (technically, not interleaving)
- In SPIN, they are formalised by *never* claims
- More generically, they can be described by processes
- Observers are also important during *run-time verification* (later)

Observers II

- We have seen some principles in model checking, already:
 - Building a transition system from a program graph
 - Using *exhaustive state exploration* for assertion checking
 - Checking for deadlocks (criterion: there is a state in the transition system without outgoing transition, but the program graph contains one outgoing transition)
- How do we check “absence of starvation”? Let’s go step by step...
Automatons-based model checking

Observers

never claim

Instead of an assertion, one can use an observer like this:

```plaintext
never { 
   do :: (in_cs > 1) -> break 
   :: else 
   od 
}
```

It is an error, if a never claim automaton terminates, thus this automaton tests for mutual exclusion.

Büchi Automaton

never claims are Büchi automata

- A Büchi automaton is a finite state automaton that accepts infinite words
- We call the language accepted by a Büchi automaton ω-regular
- There are also ω-regular expressions

Recall regular expressions and finite automata

- A regular expression r has the form $a \mid r + r \mid r \cdot r \mid r^*$
- A string that matches a regular expression can be recognised by a finite automaton

ω-regular expressions

- A ω-regular expression r has the form $r ::= r + r \mid s \cdot s^0$, where $s ::= a \mid s + s \mid s \cdot s \mid s^* \mid \bar{s}$
- A string that matches a ω-regular expression can be recognised by a finite automaton with Büchi acceptance condition, or Büchi automaton
Definition

A non-deterministic Büchi automaton (NBA) A is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:
- Q is a finite set of states,
- Σ is an alphabet,
- $\delta : Q \times \Sigma \rightarrow 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states,
- $F \subseteq Q$ is a set of accepting (or final) states, called acceptance set.

Run

A run σ is accepting, if there is an infinite set of indexes $I \subseteq \omega$ such that all $\sigma_i \in F$ where $i \in I$.

Remark
Alternatively: there is an injective function $f : \omega \rightarrow \omega$ such that $\alpha f(i) \in F$.

Stutter extension

- With this notion of ω-properties, we cannot establish properties of finite runs.
- By repeating the final state infinitely often, we can transform any finite run to an infinite one.
- That is, if ε represents a stutter step, any run σ of length n can be extended to an infinite run by:

$$\sigma \cdot (\sigma_n, \varepsilon, \sigma_n)\omega$$
Finite states, infinite runs

![Finite States Diagram]

Figure: How many different strings does this accept?

We can specify fairness

```plaintext
never {
    Q0_init:
        if :: (flag[0]) -> goto accept_Q1 :: (1) -> goto Q0_init fi;
    accept_Q1:
        (flag[0]) -> goto accept_Q1
}
```

- By marking a location with a label that starts with `accept`, we place its state into the acceptance set.

The automaton

![Büchi Automaton Diagram]

Figure: An Büchi automaton to refute fairness

How does the observer work?

- The observer represents a Büchi automaton whose alphabet are propositions.
- After each step taken by some process, the observer automaton takes a step
- If the observer terminates, SPIN flags an error
- If the run accepts, SPIN flags an error.
In SPIN, observers reduce the search space

```
x<=5
start q0 _nr_pr==1 && x==2 exit
```

Figure: What does this one check?

```
never {
  do :: (x <= 5)
  :: (_nr_pr == 1 && x == 2) -> break
  od
}
```

Observation

- The composition rule forms some kind of *intersection* between the runs described by the transition system and the language accepted by the Büchi automaton.
- In SPIN, this can be used to *reduce* the states we search in.
- We must think carefully, because we can *remove* a path to an error state with the same mechanism.

Composition rule

Definition

Let \(T = (S, A, \rightarrow, l, P, \mu) \) be a transition system and \(\mathcal{A} = (Q, \Sigma, \delta, Q_0, F) \) a Büchi automaton. Define the product \(T \otimes \mathcal{A} \triangleq (S \times Q, A, \rightarrow, l', Q, \mu') \) where \(\rightarrow \) is defined by:

\[
\begin{align*}
 s \xrightarrow{a} t & \quad \mu'(l) q \\
 (s, p) \xrightarrow{a} (t, q)
\end{align*}
\]

and where

- \(l' = \{(s_0, q) \mid s_0 \in l \land \exists q_0 \in Q : q = \delta(q_0, \mu(s_0))\} \)
- \(\mu' : S \times Q \rightarrow 2^Q \) is given by \(\mu'(s, q) = \{q\} \).

Let \(P_{\text{pers}}(\mathcal{A}) \) be the persistence property “eventually forever \(\neg F \), where \(\neg F \triangleq \land_{q \in F} \neg q \).
Classification of properties

- Invariants
- Safety properties
- Liveness properties
- Other properties

Invariants

Definition
An invariant φ is a property such that:

$$P_{inv} = \{ \sigma \in 2^{P_\omega} \mid \forall i < \omega : \sigma_i \models \varphi \}$$

In short: an invariant holds in every state.

Safety property

“Never something bad should happen”

Definition
A property P_{safe} is called a safety property if for all words σ there exists a finite prefix $\hat{\sigma}$ such that

$$P_{safe} \cap \{ \sigma' \in (2^P)^\omega \mid \exists \hat{\sigma} : \hat{\sigma} \text{ is a finite prefix of } \sigma' \} = \emptyset$$

$\hat{\sigma}$ is called bad prefix

A bad prefix is a finite refutation of the safety property. The defining intuition is: any safety property can be refuted in finite time (the bad thing happened)

Liveness property

“Eventually something good happens”

Definition
A liveness property is a property that admits any prefix, i.e., it has the form $(2^P)^* \cdot r^\omega$ for some regular expression r.

Observe: A liveness property cannot be refuted by any finite prefix.
Fairness

Unconditional fairness “Every process gets its turn infinitely often"

Weak fairness “Every process that is continuously enabled from a certain time instant on gets its turn infinitely often"

Strong fairness “Every process that is infinitely often enabled gets its turn infinitely often"

SPIN and progress

- Sometimes we need to assume fairness to verify a property.
- We can specify fairness as part of the never claim, thus ruling out all unfair computations.
- We can also use progress labels.
 - We use progress labels to mark statements that do something desirable.
 - When a process contains a progress label, we can instruct the verifier to make sure that all runs visit some progress label infinitely often.
 - This way, we can force fairness.
- Finally, we will return to fairness later.

Linear-time temporal logic

- In every formal system, we have to distinguish a couple of closely related concepts.
- Implication is a concept encoded in a logical formula, usually written $a \implies b$.
- Provability is a concept of the proof system of a logic. It is usually written $a \vdash b$ and means “assuming a I can prove b”.
- Satisfaction connects models with formulas: $M \models a$ says that M is a semantic model in which a is true.
- Entailment is an implication on the semantic level: $a \models b$ states: in every model in which a holds, also b will hold.
- The three relations \implies, \vdash, \models are closely related in first order logic, but there are logics which behave differently.
Deduction lemma

Lemma

Let Φ be a set of formulas and φ, ψ formulas such that $\Phi \cup \{\varphi\} \vdash \psi$. Then $\Phi \vdash \varphi \implies \psi$.

This lemma connects provability with implication by: When I can prove a sentence ψ by assuming Φ and φ, then I can also prove $\varphi \implies \psi$ with only assuming Φ.

The reverse is usually encoded by the rule *modus ponens*:

$$
\begin{array}{c}
\varphi \\
\hline
\varphi \implies \psi \\
\psi
\end{array}
$$

Soundness and completeness

- Soundness means that one can only prove true sentences with the proof system, i.e.: $\Phi \vdash \psi$ implies $\Phi \models \psi$.
- Completeness means that every true sentence is provable, i.e.: $\Phi \models \psi$ implies $\Phi \vdash \psi$.
- Existence of a proof does not mean that we can find it or that a computer can find it!
- Decidability: $\Phi \vdash \psi$ can be *constructively* answered by finding the proof. One can, in principle, enumerate all proofs and check whether it proves the claim. That is not always possible.

Temporal logics

- Often, observers are not really convenient, when we reason about models and specify their properties.
- A lot of properties can be structures quite well when we express them in a special logic.
- One such family of logics is called *temporal logic*
- Some temporal logic formulas can be translated into never claims (even by SPIN)

Assertions

Definition

An *assertion* is a predicate that may hold in some state.

Example

$\text{in_cs} < 2$ is an assertion, because we only need knowledge about the current state to determine the validity of this formula.
TALKING ABOUT TIME

DEFINITION
A path formula is constructed by the following rules:

- Every assertion is a path formula
- If φ is a path formula, then $\mathcal{O}\varphi$ is a path formula (read “next φ”)
- If φ is a path formula, then $\square \varphi$ is a path formula (read “always φ”)
- If φ is a path formula, then $\Diamond \varphi$ is a path formula (read “eventually φ”)
- If φ and ψ are path formulas, then $\varphi \mathcal{U} \psi$ is a path formula (read “φ holds until ψ”)
- If φ and ψ are path formulas, then $\varphi \mathcal{R} \psi$ is a path formula (read “φ releases ψ”)

Example
Let $\sigma = (x = 0)(x = 1)(x = 2)(x = 3)\ldots$

- $\sigma \models x = 0$, $\sigma \not\models x = 1$
- $\sigma \not\models \mathcal{O} x = 0$, $\sigma \models \mathcal{O} x = 1$
- $\sigma \not\models \mathcal{O} \mathcal{O} x = 2$

Paths
To interpret these formulas, we need a path, which we can derive from an execution (fragment).

Recall: An execution fragment of length $n \leq \omega$ is an alternating sequence $s_0 \alpha_1 s_1 \alpha_2 s_2 \cdots \alpha_n s_n$. The path is the sequence $s_0 s_1 s_2 \cdots s_n$.

Let φ be an assertion. A path $\sigma = s_0 s_1 s_2 \cdots s_n$ satisfies φ, written $\sigma \models \varphi$, if and only if φ holds in the first state of σ, that is: $s_0 \models \varphi$.

THE MEANING OF NEXT

Definition
The first derivative of a sequence $\alpha = s_0 s_1 s_2 \cdots s_n$ is α without its first element, i.e. $s_1 s_2 \cdots s_n$. We write α' or α^1 for the first derivative.

We can define the nth derivative inductively: If $n = 0$, then $\alpha^n = \alpha$ and if $n = 1$ then $\alpha^n = \alpha'$. If $n > 1$, then $\alpha^n = \alpha^{n-1}'$.

Definition
$\mathcal{O} \varphi$ reads φ holds in the next state. Let σ be a path. $\sigma \models \mathcal{O} \varphi$ iff $\sigma^1 \models \varphi$.

Example
Let $\sigma = (x = 0)(x = 1)(x = 2)(x = 3)\ldots$

- $\sigma \models x = 0$, $\sigma \not\models x = 1$
- $\sigma \not\models \mathcal{O} x = 0$, $\sigma \models \mathcal{O} x = 1$
- $\sigma \not\models \mathcal{O} \mathcal{O} x = 2$
The meaning of always

Two equivalent formulations:

Definition
\(\sigma \models \square \varphi \) if and only if \(\forall i : \sigma^i \models \varphi \)

Definition
\(\sigma \models \square \varphi \) if and only if \(\sigma \models \varphi \) and \(\sigma' \models \square \varphi \)

Lemma
\(\forall i : \sigma^i \models \varphi \) if and only if \(\sigma \models \varphi \) and \(\sigma' \models \square \varphi \)

The meaning of eventually

Two equivalent formulations:

Definition
\(\sigma \models \diamond \varphi \) if and only if \(\exists i : \sigma^i \models \diamond \varphi \)

Definition
\(\sigma \models \diamond \varphi \) if and only if \(\sigma \models \varphi \) or \(\sigma' \models \diamond \varphi \)

Lemma
\(\exists i : \sigma^i \models \varphi \) if and only if \(\sigma \models \varphi \) or \(\sigma' \models \varphi \)

Lemma
\(\diamond \varphi \iff \neg \square \neg \varphi \)

The meaning of until

Definition
\(\sigma \models \varphi U \psi \) if and only if \(\exists i : \sigma^i \models \psi \land \forall j < i : \sigma^j \models \varphi \)

Lemma
\(\neg \square \varphi \iff \varphi false \)

Lemma
\(\neg (\varphi U \psi) \iff \neg \varphi R \neg \psi \)

The meaning of release

Definition
\(\sigma \models \varphi R \psi \) if and only if \((\forall i : \sigma^i \models \psi) \lor (\exists i : \sigma^i \models \varphi \land \forall j < i : \sigma^j \models \psi) \)

Lemma
\(\neg \square \varphi \iff \varphi false \)

Lemma
\(\neg (\varphi U \psi) \iff \neg \varphi R \neg \psi \)
Useful equivalences I

Duality laws

\[\neg \Diamond \phi \equiv \Box \neg \phi \]
\[\neg \Diamond \phi \equiv \Box \neg \phi \]
\[\neg \Box \phi \equiv \Diamond \neg \phi \]
\[\neg (\phi \mathcal{U} \psi) \equiv ((\phi \land \neg \psi) \mathcal{U} (\neg \phi \land \neg \psi)) \lor \Box (\phi \land \neg \psi) \]

Idempotency laws

\[\Diamond \Diamond \phi \equiv \Diamond \phi \]
\[\Box \Box \phi \equiv \Box \phi \]

\[\phi \mathcal{U} (\phi \mathcal{U} \psi) \equiv \phi \mathcal{U} \psi \]

Absorption laws

\[\Diamond \Box \Diamond \phi \equiv \Box \Diamond \phi \]
\[\Box \Diamond \Box \phi \equiv \Diamond \phi \]

expansion laws

\[\phi \mathcal{U} \psi \equiv \psi \lor (\phi \land \Box (\phi \mathcal{U} \psi)) \]
\[\Diamond \phi \equiv \phi \lor (\Box \Diamond \phi) \]
\[\Box \phi \equiv \phi \land (\Box \Box \phi) \]

distributive laws

\[\Box (\phi \mathcal{U} \psi) \equiv (\Box \phi \mathcal{U} \Box \psi) \]
\[\Diamond (\phi \lor \psi) \equiv \Diamond \phi \lor \Diamond \psi \]
\[\Box (\phi \land \psi) \equiv \Box \phi \land \Box \psi \]

The basic steps

1. Translate an LTL formula into a Büchi automaton
2. Compute the product of the Büchi automaton and the system
3. Check, whether the language accepted by the product is empty
Deciding emptiness

Lemma

Let $A = (Q, \Sigma, \delta, Q_0, F)$ be an NBA. Then the following two statements are equivalent:

1. $[A] \neq \emptyset$
2. There exists a $q \in F$ that is reachable from some $q_0 \in Q_0$ such that there is a cycle from q to q in A.

A bit of mathematical motivation

- We want to show: $M \models \varphi$
- This means $[M] \subseteq [\varphi]$
- This holds, when $[M] \cap (\Sigma^\omega \setminus [\varphi]) = \emptyset$
- $[M]$ is already represented as a transition system
- For any φ we can construct a Büchi automaton A_φ that accepts any trace that is a model of φ
- We know how to build $M \oplus A_\varphi$, but can we answer $[M \oplus A_\varphi] = \emptyset$?

The algorithm

- Compute the strongly connected components S of $(Q, \hat{\delta})$ that is the directed graph obtained from the NBA.
- Generate $\mathcal{S} \triangleq \{ S \in \mathcal{S} | S \cap F \neq \emptyset \}$
- For each $q_0 \in Q_0$ search for a path from q_0 to some member of $\hat{S} \in \mathcal{S}$.
- If some path has been found, print out the path and the members of \hat{S} to indicate the acceptance cycle.
From LTL to NBA

Next, we fill in the second part of the equation.

Useful properties:

Lemma
\[\phi \land \psi \equiv \neg (\neg \phi \lor \neg \psi) \]

Lemma
\[\Box \phi \equiv \neg (\text{true} \lor \neg \phi) \]

Lemma
\[\phi \lor \psi \equiv \psi \lor (\phi \land \Box (\phi \lor \psi)) \]

Theorem
A complete and minimal set of operators to express all possible LTL formulae is \(\neg, \land, \lor, \Box, \text{true} \).

From GNBA to NBA

Theorem
For each GNBA \(G \) there exists an NBA \(A \) with \(L(G) = A \) and \(|A| = O(|G| \cdot |F|) \) where \(F \) denotes the acceptance set of \(G \).

Proof.
Let \(G = (Q, \Sigma, \delta, Q_0, F) \) be a GNBA. Assume w.l.o.g. \(F \neq \emptyset \). Let \(F = \{ F_0, \ldots, F_{k-1} \} \). The basic idea is to create \(k \) copies of \(A \) where the acceptance set \(F_i \) of the \(i \)th copy is connected to the successor states in the \(i+1 \)th copy. The acceptance set of the NBA becomes \(F_0 \).

Generalised Büchi automaton

Definition
A generalised non-deterministic Büchi automaton (GNBA) is a tuple \(G = (Q, \Sigma, \delta, Q_0, F) \), where \(Q, \Sigma, \delta, Q_0 \) are defined as for NBA and \(F \subseteq 2^Q \) is a possibly empty set of acceptance sets.

The accepted language \(L(G) \) consists of all \(\sigma \in (2^P)^\omega \) that have a run in \(G \) such that:
\[\forall F \in F : \exists f \in \omega \rightarrow \omega : \forall i < \omega : \sigma(f(i)) \in F \]

Proof continued

Formally, define \(Q' = Q \times \{0, \ldots, k-1\} \), \(Q'_0 = Q_0 \times \{0\} \), \(F' = F_1 \times \{0\} \). The transition function is given by
\[\delta'((q, i), A) = \begin{cases} \{ (q', i) \mid q' \in \delta(q, A) \} & \text{if } q \notin F_i \\ \{ (q', (i+1) \mod k) \mid q' \in \delta(q, A) \} & \text{otherwise} \end{cases} \]

Proving \(L(A) \subseteq L(A) \): For a run in \(A \) to be accepting, it must visit states in \(F_0 \) infinitely often. Since all successors of states in \(F_i \) are in the \(i+1 \)th copy, we have to visit members of \(F_{i+1} \) \(k \) times before we can visit members of \(F_i \) for the \(k+1 \)th time. Hence, states for all \(F_i \) are visited infinitely often.

Proving \(L(A) \subseteq L(G) \) uses similar reasoning.
Constructing a GNBA for a LTL formula φ

Assume that φ only contains the operators \land, \neg, \diamond, and \mathcal{U}. Since $\varphi = \text{true}$ is trivial, we also assume $\varphi \neq \text{true}$.

Basic idea:
Let $\sigma = A_0A_1A_2 \ldots \models \varphi$. The sets A_i are expanded by subformulae (and their negations) ψ of φ such that an infinite word $\hat{\sigma} = B_0B_1B_2 \ldots$ with the following property arises:

$\psi \in B_i$ if and only if $\sigma^i \models \psi$

Closure

The set of all subformulae and their negations (where we identify $\neg
\neg\psi$ with ψ) of a formula is called its closure. It is defined by:

- $\text{closure}(a) \triangleq \{a, \neg a\}$
- $\text{closure}(\neg \varphi) \triangleq \{\neg \varphi, \varphi\} \cup \text{closure}(\varphi)$
- $\text{closure}(\diamond \varphi) \triangleq \{\diamond \varphi, \neg \diamond \varphi\} \cup \text{closure}(\varphi)$
- $\text{closure}(\varphi \land \psi) \triangleq \{\varphi \land \psi, \neg(\varphi \land \psi)\} \cup \text{closure}(\varphi) \cup \text{closure}(\psi)$
- $\text{closure}(\varphi \mathcal{U} \psi) \triangleq \{\varphi \mathcal{U} \psi, \neg(\varphi \mathcal{U} \psi)\} \cup \text{closure}(\varphi) \cup \text{closure}(\psi)$

Elementary set of formulae

We cannot use all subsets of a closure, but only elementary ones. Let $B \subseteq \text{closure}(\varphi)$.

1. B is consistent wrt. propositional logic, i.e. for all $\varphi_1 \land \varphi_2, \psi$:
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B$ and $\varphi_2 \in B$
 - $\psi \in B \implies \neg \psi \notin B$
 - true $\in \text{closure}(\varphi) \implies \text{true} \in B$

2. B is locally consistent wrt. until, i.e. for all $\varphi_1 \mathcal{U} \varphi_2 \in \text{closure}(\varphi)$:
 - $\varphi_2 \in B \implies \varphi_1 \mathcal{U} \varphi_2 \in B$
 - $\varphi_1 \mathcal{U} \varphi_2 \in B$ and $\varphi_2 \notin B \implies \varphi_1 \in B$

3. B is maximal, i.e., for all $\psi \in \text{closure}(\varphi)$:
 - $\psi \notin B \implies \neg \psi \in B$

GNBA for LTL formula

Theorem

For every LTL formula φ there exists a GNBA G_φ such that:

- $[[\varphi]] = \mathcal{L}(G_\varphi)$
- G_φ can be constructed in time and space $2^{O(|\varphi|)}$
- The number of accepting sets of G_φ is bounded above by $O(|\varphi|)$
Construction

Define $G_\varphi = (Q, 2^P, \delta, Q_0, \mathcal{F})$ by:
- Q is the set of all elementary sets of formulae $B \subseteq \text{closure}(\varphi)$
- $Q_0 = \{ B \in Q \mid \varphi \in B \}$
- $\mathcal{F} = \{ F_{\varphi_1, \varphi_2} \mid \varphi_1 \models \varphi_2 \in \text{closure}(\varphi) \}$ where $F_{\varphi_1, \varphi_2} = \{ B \in Q \mid \varphi_1 \models \varphi_2 \not\in B \text{ or } \varphi_2 \in B \}$
- The transition relation δ is given by:
 - If $A \neq B \cap P$, then $\delta(B, A) = \emptyset$
 - If $A = B \cap P$, then $\delta(B, A)$ is the set of all elementary sets of formulae B' satisfying:
 1. For every $\varphi \models \text{closure}(\varphi)$: $\varphi \in B \iff \varphi \in B'$
 2. For every $\varphi_1 \not\models \varphi_2 \models \text{closure}(\varphi)$:
 $\varphi_1 \models \varphi_2 \in B \iff \varphi_2 \in B \text{ or } (\varphi_1 \in B \text{ and } \varphi_1 \models \varphi_2 \in B')$

Proof II: $B_0 B_1 \ldots$ is a run of G

- $\sigma(i) = B_i \cap P$
- for $\emptyset \varphi \in \text{closure}(\varphi)$:
 - $\varphi \in B_i$
 - if $\sigma' \models \emptyset \varphi$
 - if $\sigma'^{i+1} \models \varphi$

- for $\varphi_1 \not\models \varphi_2 \in \text{closure}(\varphi)$:
 - $\varphi_1 \not\models \varphi_2 \in B_i$
 - if $\sigma' \models \varphi_1 \not\models \varphi_2$
 - if $\sigma' \models \varphi_2 \text{ or } (\sigma' \models \varphi_1 \text{ and } \sigma'^{i+1} \models \varphi_1 \not\models \varphi_2)$
 - if $\varphi_2 \in B_i \text{ or } (\varphi_1 \in B_i \text{ and } \varphi_1 \not\models \varphi_2 \in B_{i+1}$)

Proof III: The run is accepting

To prove: for each subformula $\varphi_1 \not\models \varphi_2 \in \text{closure}(\varphi)$, $B_i \in F_{\varphi_1 \not\models \varphi_2}$ infinitely often. Proof by contradiction: Assume there are finitely many i such that $B_i \in F_{\varphi_1 \not\models \varphi_2}$. We have:
- $B_k \not\in F_{\varphi_1 \not\models \varphi_2} \implies \varphi_1 \not\models \varphi_2 \in B_k$ and $\varphi_2 \not\in B_k$
As $B_k = \{ \varphi \in \text{closure}(\varphi) \mid \sigma^k \models \varphi \}$, it follows that if $B_k \not\in F_j$, then:
- $\sigma^k \models \varphi_1 \not\models \varphi_2$ and $\sigma^k \not\models \varphi_2$ Thus, $\sigma^l \models \varphi_2$ for some $l > k$. By definition of B_k, it then follows that $\varphi_2 \in B_l$ and by definition of F_j, $B_k \in F_j$. Thus, $B_j \in F_j$ for finitely many i, then $B_k \in F_j$ for infinitely many k. Contradiction.
Proof IV

\(\mathcal{L}(G) \subset \{ \varphi \} \): Let \(\sigma = A_0 A_1 \ldots \in \mathcal{L}(G) \). Then there is an accepting run \(B_0 B_1 \ldots \) for \(\mathcal{L}(G) \).

Since \(\delta(B,A) = \emptyset \) for all \(B \) and \(A \) with \(A \neq B \cap P \), it follows that \(A_i = B_i \cap P \) for all \(i \). Thus \(\sigma = (B_0 \cap P)(B_1 \cap P)(B_2 \cap P) \ldots \). To prove now:

\[(B_0 \cap P)(B_1 \cap P)(B_2 \cap P) \ldots \models \varphi \]

For \(B_0 B_1 B_2 \ldots \) a sequence with \(B_i \in Q \) satisfying

1. for all \(i \) : \(B_{i+1} \in \delta(B_i, A_i) \) and
2. for all \(F \in \mathcal{F} : \exists j : B_j \in F \)

we have for all \(\psi \in \text{closure}(\varphi) \):

\[\psi \in B_0 \iff A_0 A_1 A_2 \models \psi \]

Proof \(\Rightarrow \)

Assume \(A_0 A_1 A_2 \ldots \models \varphi_1 \not\models \varphi_2 \). Then there exists \(j \) such that \(A_j A_{j+1} \ldots \models \varphi_2 \) and \(A_i A_{i+1} \ldots \models \varphi_1 \) for \(0 \leq i < j \). From the induction hypothesis it follows that \(\varphi_2 \in B_j \) and \(\varphi_1 \in B_i \) for \(0 \leq i < j \). By induction on \(j \) we obtain \(\varphi_1 \not\models \varphi_2 \in B_j, B_{j-1} \ldots B_0 \).

Proof \(\Leftarrow \)

Assume \(\varphi_1 \not\models \varphi_2 \in B_0 \). Since \(B_0 \) is elementary, \(\varphi_1 \in B_0 \) or \(\varphi_2 \in B_0 \).

Case \(\varphi_2 \in B_0 \): From the induction hypothesis it follows \(A_0 A_1 A_2 \ldots \models \varphi_2 \) and thus \(A_0 A_1 A_2 \ldots \models \varphi_1 \not\models \varphi_2 \).

Case \(\varphi_2 \not\in B_0 \). Then \(\varphi_1 \in B_0 \) and \(\varphi_1 \not\models \varphi_2 \in B_0 \). Assume \(\varphi_2 \not\in B_j \) for all \(j \).

From the definition of \(\delta \) we obtain using an inductive argument (successively applied to \(\varphi_1 \in B_j, \varphi_2 \not\in B_j \) and \(\varphi_1 \not\models \varphi_2 \) for all \(j \)):

\[\varphi_1 \in B_j \text{ and } \varphi_1 \not\models \varphi_2 \text{ in } B_j \text{ for all } j \]

Because \(B_0 B_1 \ldots \) satisfies constraint 2, it follows that

\[B_j \in F_{\varphi_1 \not\models \varphi_2} \text{ for infinitely many } j \]

On the other hand:

\[(\varphi_2 \not\in B_j \text{ and } \varphi_1 \not\models \varphi_2 \in B_j) \iff B_j \not\in F_{\varphi_1 \not\models \varphi_2} \]

for all \(j \). Contradiction!
Thus, we find a smallest j with $\varphi_2 \in B_j$, i.e. $\varphi_2 \notin B_0 B_1 \ldots B_{j-1}$. The induction hypothesis for $i < j$ yields:

$$\varphi_1 \in B_i \text{ and } \varphi_1 \mathcal{U} \varphi_2 \in B_i \text{ for all } i < j.$$

Thus, $A_j A_{j+1} \ldots \models \varphi_2$ and $A_i A_{i+1} \ldots \models \varphi_2$ for all $i < j$. We conclude that $A_0 A_1 A_2 \ldots \models \varphi_1 \mathcal{U} \varphi_2$.

Q.E.D.

Reminder on complexity

- **P** A problem is in P, if and only if there exists a deterministic algorithm that solves it in polynomial time.

- **NP** A problem is in NP, if and only if there exists a non-deterministic algorithm that solves it in polynomial time.

- **PSPACE** A problem is in PSPACE, if and only if there exists a deterministic algorithm that solves it in polynomial space.

Lemma

$P \subseteq NP \subseteq PSPACE$

Remark

The suspicion is: $P \subset NP \subset PSPACE$

Completeness: A problem P is complete for a complexity class C if any problem $P' \in C$ can be reduced to P.

Checking language emptiness

Theorem

There is an algorithm ("nested depth-first search") that needs $O(N + M + N \cdot |\Phi|)$ steps, where N is the number of reachable states, M is the number of transitions between reachable states, and Φ is some complex formula we have to check for the state.

Example

The "complex formula" might be the persistence property mentioned before.
Complexity results

Theorem
The LTL model-checking problem is PSPACE-complete.
Proof: See Theorem 5.48 in (Baier & Katoen, 2008).

Theorem
The satisfiability and validity problems for LTL are PSPACE-complete.
Proof: See Theorem 5.49 in (Baier & Katoen, 2008).

Motivating examples

Consider the following simple mutual exclusion algorithm using semaphores:

```c
inline P(s) { atomic { (s > 0) -> s-- } }
inline V(s) { atomic { s++ } }
byte in_cs, sema = 1;
active [2] proctype proc() {
  Remainder:
  P(sema);
  Critical:
  V(sema);
  goto Remainder;
}
```

Which of the desired properties hold?

1. Safety (mutual exclusion)?
2. Deadlock freedom?
3. Lifeness (absence of starvation)?

Let's prove some.
SPIN predicates and labels

- Internally, spin maintains an array of locations in which each process resides.
- P[0]@Critical means that the process with _pid 0 is currently in a line labelled by Critical.
- The following specification is dangerous, since we assume that the pids are 0 and 1.

\[\Box \neg (P[0]@Critical \land P[0]@Critical) \]

is true, but

\[\Box (proc[0]@Remainder \rightarrow \Diamond proc[0]@Critical) \]

does not.

Fair and unfair cycles

\[\langle r_0, r_1, s = 1 \rangle \]

What is the problem?

- We have declared the meaning of a semaphore abstractly, without thinking about fairness
- SPIN is using exactly what we wrote and finds an unfair cycle
- We would like to prove properties about algorithms using semaphores without thinking about how the semaphores are implemented
- We would like to make fairness assumptions instead
Fairness

- Assumption that some part of a transition system eventually progresses, without quantitative restrictions
- Can be viewed as an abstraction of many possible transition scheduling policies
- There are many different notions of fairness
 - The most common is weak fairness
 - Another not uncommon one is strong fairness

Fairness assumptions in LTL

unconditional fairness \(\Box \diamond \Psi \)
weak fairness \(\Box \Box \Phi \rightarrow \Box \diamond \Psi \)
strong fairness \(\Box \diamond \Phi \rightarrow \Box \diamond \Psi \)

Definition
A fairness assumption is a conjunction of unconditional fairness assumptions, weak fairness assumptions and strong fairness assumptions, i.e.:

\[
\text{fair} \triangleq \left(\bigwedge_{i \in U} \Box \diamond \psi_i \right) \land \left(\bigwedge_{i \in W} \Box \Box \phi_i \rightarrow \Box \diamond \psi_i \right) \land \left(\bigwedge_{i \in S} \Box \diamond \phi_i \rightarrow \Box \diamond \psi_i \right)
\]

Definition of fairness

Definition
Let \(A \) be a set of actions (or transitions). A computation \(s_0 s_1 s_2 \cdots \) is
unconditionally fair with respect to \(A \), if: When for every \(i \) we find an \(j > i \)
where an action in \(A \) is enabled in the state \(s_j \), then we find also a \(k > i \) where an action in \(A \) is performed from \(s_k \).

weakly fair with respect to \(A \), if: When for every \(i \) an action in \(A \) is enabled
in the state \(s_j \) for every \(j > i \), then we find also a \(k > i \) where
an action in \(A \) is performed from \(s_k \).

strongly fair with respect to \(A \), if: When an action in \(A \) is enabled infinitely
often, then it is performed infinitely often.

Fair satisfaction

Definition
We say that \(M \models_{\text{fair}} \varphi \), if for all paths \(\pi \) in \(M \) with \(\pi \models \text{fair} \) we have \(\pi \models \varphi \).

Example
For the semaphore problem, define

\[
\text{fair} \triangleq (\Box \diamond P[0]@\text{Remainder} \rightarrow \Box \diamond P[0]@\text{Critical}) \land \\
(\Box \diamond P[1]@\text{Remainder} \rightarrow \Box \diamond P[1]@\text{Critical})
\]

Remark
For the semaphore example, absence of starvation is now a trivial property.
Checking fairness in exploration algorithm

To verify φ under fairness assumption fair:
- Naive algorithm searches for bad loops π that satisfy
 $$\pi \models fair \land \neg \varphi$$
- A more efficient solution for weak fairness:
 - search for bad loops that satisfy $\neg \varphi$ in which each action A with weak fairness is once either disabled or taken.

Enforcing fairness constraints

- Fairness can be expressed in LTL, but this may be difficult, inconvenient, or infeasible
- SPIN provides options to enforce default types of process scheduling fairness
- There is a cost associated with the implementation as part of the analysis algorithm:
 - weak fairness: linear increase of complexity (in number of processes)
 - strong fairness: quadratic increase of complexity (in number of processes)

The basic idea: unfolding

Flag construction method by Yaacov Choueka
- Create $(k + 2)$ copies of the global reachability graph, with k the number of active processes, numbered from 0 to $k + 1$.
- Preserve accept state labels only in the copy numbered 0
- change the transition relation to connect all $k + 2$ copies:
 - in copy 0, change the destination state for outgoing transitions of all accepting states so that they point to their successors in copy 1
 - in copy $k + 1$, change the destination state for all transitions so that they point to their successors in copy 0
 - in copy i for $1 \leq i \leq k$ change the destination state for all transitions contributed by process i to the corresponding state in copy $i + 1$
 - add a nil-transition from any state in copy i where process i is blocked (has no enabled transitions) to the same state in copy $i + 1$
- an accepting ω-run in the unfolded automation necessarily contains transitions from all active processes and therefore is weakly fair

Fair reminders

- SPIN's built-in notion of fairness applies only to
 - weak fairness, not strong fairness
 - process scheduling
 - not to non-deterministic choices within a process
- Other types of fairness can be expressed in LTL
Partial order reduction

- Partial order reduction is a method to reduce the number of transitions taken during the search for counter examples,
- Idea: full asynchronous interleaving of process actions is sometimes redundant.

```java
byte a, b;
active proctype P()
{
    a = 2; 0
}
active proctype Q()
{
    b = 3; 0
}
```

The final result is the same, no matter which path is followed.

Computation tree logic
Computation tree logic

- Until today, we have been using LTL, a linear time logic. A linear time logic evaluates all properties on linear futures, which we called paths.
- But sometimes, we want to explore possibilities in the system. Consider the requirement “at any time we want to be able to abort”.
- Can we express this property in LTL?

Let's look at a transition system with this property

- We cannot say $\Box (\neg s_5 \rightarrow \Diamond s_5)$, because this requires to always visit s_5 next.
- We actually want to say “it is always possible to visit s_5”, not that we will always do so!

Computation trees

Path quantifiers

- Solution: introduce path quantifiers
- $\exists \Diamond p$ means “there exists a path on which eventually p holds”
- $\forall \Box p$ means “on every path always p holds”
- Observe: in these examples, a path quantifier is always paired with a temporal modality. This is a defining feature of CTL (computation tree logic)
Syntax

Definition

A *state formula* over a set of atomic propositions P is formed by the following grammar:

$$\Phi ::= \text{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \Psi \mid \forall \Psi$$

where Ψ is a *path formula*. A CTL path formula is formed by the following grammar:

$$\Psi ::= \Box \Phi \mid \Phi U \Psi$$

where Φ represents a state formula.

Abbreviations

- The Boolean connectives \lor, \rightarrow, and \leftrightarrow are defined in the usual way.
- The modalities for always and eventually can be derived in a similar way to LTL:
 - $\forall \bigcirc \phi \equiv \forall (\text{true} U \phi)$
 - $\exists \bigcirc \phi \equiv \exists (\text{true} U \phi)$
 - $\forall \square \phi \equiv \neg \exists \bigcirc \neg \phi$
 - $\exists \square \phi \equiv \neg \forall \bigcirc \neg \phi$

Verbalisations

- $\exists \bigcirc \phi$ is pronounced “potentially ϕ”
- $\forall \bigcirc \phi$ is pronounced “inevitably ϕ”
- $\exists \square \phi$ is pronounced “potentially always ϕ”
- $\forall \square \phi$ is pronounced “invariantly ϕ”

Semantics

Let $T = (S, A, \rightarrow, I, P, \mu)$ be a transition system without terminal states, let state $s \in S$, ϕ, ψ CTL state formulae, and ξ be a path formula. Let $\text{Paths}(s)$ be the set of all infinite execution fragments of T that start in s.

- $s \models a$ if and only if $a \in \mu(s)$
- $s \models \neg \phi$ if and only if $s \not\models \phi$
- $s \models \phi \land \psi$ if and only if $s \models \phi$ and $s \models \psi$
- $s \models \exists \xi$ if and only if for some $\pi \in \text{Paths}(s)$, $\pi \models \xi$.
- $s \models \forall \xi$ if and only if for every $\pi \in \text{Paths}(s)$, $\pi \models \xi$.
- $\pi \models \bigcirc \phi$ if and only if $\pi(1) \models \phi$
- $\pi \models \phi U \psi$ if and only if there exists j such that $\pi(j) \models \psi$ and for all $i < j$: $\pi(i) \models \phi$.

where for a path $\pi = s_0s_1s_2 \cdots$ and natural number i, $\pi(i) \triangleq s_i$ represents the $(i + 1)$th state.
Semantics on transition systems

Definition
Given a transition system T, the satisfaction set $\text{SAT}_T(\varphi)$ for a CTL formula φ is defined by:

$\text{SAT}_T(\varphi) = \{ s \in S \mid s \models \varphi \}$.

The transition system T satisfies a CTL formula φ if and only if φ holds in all initial states of T:

$T \models \varphi$ if and only if $\forall s_0 \in I : s_0 \models \varphi$

This is equivalent to: $I \subseteq \text{SAT}_T(\varphi)$

We use an analogous definition for LTL.

Interpretation of several CTL formulae I

Figure: A transition system

Interpretation of several CTL formulae II

Figure: States in which $\exists \circ \text{a}$ holds

Interpretation of several CTL formulae III

Figure: States in which $\forall \circ \text{a}$ holds
Interpretation of several CTL formulae IV

Figure: States in which $\exists \Box a$ holds

Interpretation of several CTL formulae V

Figure: States in which $\forall \Box a$ holds

Interpretation of several CTL formulae VI

Figure: States in which $\exists (\exists \Box a)$ holds

Interpretation of several CTL formulae VII

Figure: States in which $\forall (a U b)$ holds
Interpretation of several CTL formulae VIII

![Diagram](image)

Figure: States in which \(\exists (a U \neg a \land \forall (\neg a U b)) \) holds

Useful equivalences for CTL I

Duality laws

\[
\begin{align*}
\forall \lozenge \varphi & \equiv \neg \forall \square \neg \varphi \\
\exists \lozenge \varphi & \equiv \neg \exists \Diamond \neg \varphi \\
\forall \square \varphi & \equiv \neg \exists \Diamond \neg \varphi \\
\exists \Diamond \varphi & \equiv \neg \forall \lozenge \neg \varphi \\
\forall (\varphi U \psi) & \equiv \neg \exists (\neg \psi U (\neg \varphi \land \neg \psi)) \land \neg \exists \square \neg \psi \\
& \land \neg \exists (\varphi \land \neg \psi) \lor (\neg \varphi \land \neg \psi) \land \neg \exists (\varphi \land \neg \psi)
\end{align*}
\]

Distributive laws

\[
\begin{align*}
\forall \square (\varphi \land \psi) & \equiv \forall \varphi \land \forall \psi \\
\exists \Diamond (\varphi \lor \psi) & \equiv \exists \varphi \lor \exists \psi
\end{align*}
\]

Useful equivalences for CTL II

Expansion laws

\[
\begin{align*}
\forall (\varphi U \psi) & \equiv \psi \lor (\varphi \land \forall \lozenge \forall (\varphi U \psi)) \\
\forall \Diamond \varphi & \equiv \varphi \lor \forall \lozenge \forall \Diamond \varphi \\
\forall \square \varphi & \equiv \varphi \lor \forall \lozenge \forall \square \varphi \\
\exists (\varphi U \psi) & \equiv \psi \lor (\varphi \land \exists \Diamond \exists (\varphi U \psi)) \\
\exists \Diamond \varphi & \equiv \varphi \lor \exists \Diamond \exists \Diamond \varphi \\
\exists \square \varphi & \equiv \varphi \lor \exists \Diamond \exists \square \varphi
\end{align*}
\]

Expressiveness of CTL vs. LTL

To keep a long story short: The expressiveness of CTL and LTL are incomparable. There are properties we can express in CTL which we cannot express in LTL and vice versa.

It is additionally worth-while to study the differences in expressive power.

Definition

A CTL formula \(\varphi \) is equivalent to a LTL formula \(\psi \) (both over \(P \)) if and only if for all transition systems \(T \) over \(P \):

\[
T \models \varphi \text{ if and only if } T \models \psi
\]

We write \(\varphi \equiv \psi \) if the formulae are equivalent.
Characterisation theorem

Theorem
Let ϕ be a CTL formula and ψ the LTL formula that is obtained from ϕ by eliminating all quantifiers. Then:

$\phi \equiv \psi$ or there does not exist any LTL formula that is equivalent to ϕ

For a proof, see (Clarke & Draghicescu, 1989).

Proof continued

The initial state s_0 clearly satisfies $\Diamond \Box a$, because every path starting in s_0 has the form $s_0^0 + (s_0^0 s_1^0 s_2^0)$, thus we stay forever in a state that satisfies a. Now look carefully at the path s_0^0. This path does not satisfy $\forall \Diamond \forall \Box a$, because in this path it is always possible to take a transition to s_1, which does not satisfy a.

Corollary
$\Diamond \Box a$ is not expressible in CTL.

Persistence

Lemma
The CTL formula $\forall \forall \Diamond a$ and the LTL formula $\Diamond \Box a$ are not equivalent.

Proof.
Consider the transition system below:

Eventually an a-State with only direct a-Successor

Lemma
The CTL formula $\forall \Diamond (a \land \forall \forall a)$ and the LTL formula $\Diamond (a \land \Box a)$ are not equivalent.
Proof.
Consider the previous figure. All paths have either \(s_0s_1 \) or \(s_0s_3s_4 \) as a prefix. Clearly, all such paths satisfy the LTL formula \(\Diamond (a \land \Diamond a) \). On the other hand, \(s_0 \not\models \forall \Diamond (a \land \Diamond \Diamond a) \). Consider the path \(s_0s_1s_0^\omega \). This one does not satisfy \(\Diamond (a \land \Diamond \Diamond a) \), because \(s_0 \) also has the successor \(s_3 \), which does not satisfy \(a \).

\[\square \Diamond b \rightarrow \square \Diamond c \text{ is not expressible in CTL.} \]

Proof.
We have \(\square \Diamond b \rightarrow \square \Diamond c \equiv \square \neg b \lor \square \Diamond c \) and the persistence property \(\Diamond \square \neg b \) cannot be expressed in CTL.

\[s_{fair} = \bigwedge_{1 \leq i \leq k} (\square \Diamond \varphi_i \rightarrow \square \Diamond \psi_i) \]

(This specification uses the generalised logic \(CTL^* \))

Similar definitions can be given for weak fairness (\(justice \)) and unconditional fairness.
Symbolic model checking

- We do not work out algorithms for CTL model checking (maybe later)
- We also point out, that CTL model checking cannot be performed by SPIN
- An open source model checker for CTL is NuSMV (http://nusmv.irst.itc.it/)
- NuSMV uses a different input language for models.

Model checking algorithm

The basic idea

```
for all i ≤ |ϕ|
  for all ψ ∈ subformula(ϕ) with |ψ| = i do
    compute Sat(ψ) from Sat(ψ′) for maximal proper ψ′ ∈ subformula(ψ)
  return I ⊆ Sat(ϕ)
```

This traverses the formula to prove from the smallest subformulae upwards to the full construction, expanding or reducing the set of formulae satisfied at the current level.

Suggested reading

- (Baier & Katoen, 2008) 6.1–6.3

Symbolic Model Checking with Binary Decision Diagrams
Symbolic model checking

Symbolic CTL Model Checking

- When model checking was introduced in 1981, memory and CPU was limited: the 80286 was not yet introduced, and servers had 4MB RAM.
- More powerful machines were not widely available, and were often too expensive for universities and research institutes.
- Thus, only small models could be verified at that time (up to 10^8 states in 1990s). Complexity results threatened to make model checking a curiosity (e.g., LTL model checking is P-SPACE hard).
- The landmark paper of Ken McMillan et.al., titled “Symbolic Model Checking: 10^{20} States and Beyond” (IEEE, 1990) introduced the idea of symbolic model checking using reduced ordered binary decision diagrams. (Bryant, 1986).
- These techniques work especially well with CTL.

Switching functions I

- For technical reasons, it is more convenient to name the positions in the state vectors, making composition and analysis more simple.
- Let z_1, \ldots, z_m be Boolean variables and $\text{Var} = \{z_1, \ldots, n_m\}$. Let $\text{Eval}(z_1, \ldots, z_m)$ denote the set of evaluations for z_1, \ldots, z_m, i.e., functions $\eta : \text{Var} \rightarrow \{0, 1\}$. Evaluations are written as $\{z_1 \mapsto b_1, z_2 \mapsto b_2, \ldots, z_m \mapsto b_m\}$.
- A switching function for Var is a function $f : \text{Eval}(\text{Var}) \rightarrow \{0, 1\}$. For $\text{Var} = \emptyset$, the switching functions are the constants 0 and 1.
- Disjunction, conjunction, and negation are defined in the obvious way:

\[(f \lor g)(\{z_1 \mapsto b_1, z_2 \mapsto b_2, \ldots, z_m \mapsto b_m\}) = \max\{f(\{z_1 \mapsto b_1, z_2 \mapsto b_2, \ldots, z_m \mapsto b_m\}), g(\{z_1 \mapsto b_1, z_2 \mapsto b_2, \ldots, z_m \mapsto b_m\})\} \]

Switching functions II

- We write z_i for the projection function $\text{pr}_{z_i} : \text{Eval}(\text{Var}) \rightarrow \{0, 1\}$ with $\text{pr}_{z_i}(\{\ldots, z_i \mapsto b_i, \ldots\}) = b_i$.
- With these notations, switching functions can be represented by boolean connections of the variables z_i, viewed as projection functions, and constants.
- $z_1 \lor (z_2 \land \neg z_3)$ is a switching function.

A different view on transition systems

- In the sequel, $T = (S, \rightarrow, I, P, \mu)$ be a transition system (the transition labels are irrelevant and are omitted). Let $n \geq \max(\lceil \log |S| \rceil, 1)$ and choose an arbitrary, injective encoding $\text{enc} : S \rightarrow 2^n$ (where 2^n represents any set isomorphic to $\{0, 1\}^n$).
- A set of states can be represented by its characteristic function $\chi : 2^n \rightarrow \{0, 1\}$.
- The transition function can be encoded by a function $\Delta : 2^n \times 2^n \rightarrow \{0, 1\}$, where $\Delta(\text{enc}(s), \text{enc}(t)) = 1$ if and only if $s \rightarrow t$.
Cofactor

Let \(f : \text{Eval}(\text{Var}) \rightarrow \{0, 1\} \) be a switching function.

- The **positive cofactor** of \(f \) is the switching function
 \[f|_{z=1}(\text{Var}\setminus \{z \mapsto 0, z \mapsto 1\}) = f((\text{Var}\setminus \{z \mapsto 0, z \mapsto 1\}) \cup \{z \mapsto 1\}) \]
- The **negative cofactor** of \(f \) is the switching function
 \[f|_{z=0}(\text{Var}\setminus \{z \mapsto 0, z \mapsto 1\}) = f((\text{Var}\setminus \{z \mapsto 0, z \mapsto 1\}) \cup \{z \mapsto 0\}) \]
- \(z \) is said to be **essential** for \(f \) if and only if \(f|_{z=0} \neq f|_{z=1} \).

Example

Consider the switching function \(f(z_1, z_2, z_3) = (z_1 \lor \neg z_2) \land z_3 \). Then
\[f|_{z_1=0} = \neg z_2 \land z_3 \text{ and } f|_{z_1=1} = z_3. \] In particular, \(z_1 \) is essential for \(f \).

Shannon expansion

Lemma

If \(f \) is a switching function for \(\text{Var} \), then for each \(z \in \text{Var} \):

\[f = f|_{z=0} \lor f|_{z=1} \]

Quantified Boolean formulae

Definition

\[\exists z. f \triangleq f|_{z=0} \lor f|_{z=1} \]

Definition

\[\forall z. f \triangleq f|_{z=0} \land f|_{z=1} \]
Renaming

Definition
Let \(\text{Var} \) be a set of variables and \(f(\text{Var}) \) be a switching function. The switching function \(f\{z \leftarrow y\} \) for \(y \notin \text{Var} \) is the switching function over \(\text{Var} \cup \{y\} \setminus \{z\} \), given by:

\[
f\{z \leftarrow y\} = \begin{cases} f(s) & \text{if } s \neq y \\ f(z) & \text{if } s = y \end{cases}
\]

Renaming can be generalised to sets of variable names in the natural manner.

Encoding transition systems by switching functions II

- To encode the transition relation, we build a switching function over \(\bar{x}, \bar{x}' \), where \(\bar{x}' \) contains \emph{primed} versions of members in \(\bar{x} \).
- Intuition: \(\bar{x} \) represents the current state, \(\bar{x}' \) represents a successor state.
- Then we identify \(\rightarrow \) with the switching function

\[
\Delta : \text{Eval}(\bar{x}, \bar{x}') \to \{0, 1\}, \Delta(s, t\{\bar{x}' \leftarrow \bar{x}\}) = \begin{cases} 1 & \text{if } s \rightarrow t \\ 0 & \text{otherwise} \end{cases}
\]

Remark
Synchronous product becomes conjunction:

\[
\Delta(\bar{x}_1, \bar{x}_2, \bar{x}_1', \bar{x}_2') = \Delta_1(\bar{x}_1, \bar{x}_1') \land \Delta_2(\bar{x}_2, \bar{x}_2')
\]
Asynchronous product becomes disjunction:

\[
\Delta(\bar{x}_1, \bar{x}_2, \bar{x}_1', \bar{x}_2') = \Delta_1(\bar{x}_1, \bar{x}_1') \lor \Delta_2(\bar{x}_2, \bar{x}_2')
\]

What to do with it?

- Finally, the transition system has been encoded by a switching function.
- The model checking algorithm can now compute the satisfaction sets symbolically. Below is an example for computing \(\text{Sat}(\exists(C \land B)) \).

\[
f_0(\bar{x}) = \chi_B(\bar{x});
\]

\[
j = 0;
\]

\[
do \{
 f_{j+1}(\bar{x}) = f_j(\bar{x}) \lor (\chi C(\bar{x}) \land \exists \bar{x}'.(\Delta(\bar{x}, \bar{x}') \land f_j(\bar{x}')));
 j++;
} \text{ while } (f_j(\bar{x}) \neq f_{j-1}(\bar{x}))
\]

return \(f_j(\bar{x}) \)

Here, we have computed the \emph{least fixed point} by doing a forward breadth-first search.
Finding a memory efficient representation

- The smart trick is to find a memory efficient representation for switching functions.
- Observation: Let \(m \) be a number of variables. Then there are at most \(2^m \) different switching functions.
- We cannot expect to find a small representation for any possible switching function, but for the most common cases, we can.

Ordered binary decision diagrams

Idea: Skip redundant fragments of binary decision trees.

Figure: Binary decision tree for \(z_1 \land (\neg z_2 \lor z_3) \)

OBDD depend on variable order

Figure: Binary decision tree diagram \(z_1 \land (\neg z_2 \lor z_3) \)
Definition

Let \(\rho = (z_0, z_1, \ldots, z_k) \) be a variable ordering for \(\text{Var} \). An \(\rho \)-ordered binary decision diagram (\(\rho \)-OBDD for short) is a tuple \(\mathcal{B} = (V, V_I, V_T, \text{succ}_0, \text{succ}_1, \text{var}, \text{val}, v_0) \), where:

- \(V \) is a finite set of nodes, partitioned into \(V_I \) (inner nodes) and \(V_T \) (terminal nodes or drains).
- a root node \(v_0 \in V \).
- successor functions \(\text{succ}_{0,1} : V_I \to V \setminus \{v_0\} \) which are \(\rho \)-consistent, i.e.:
 \[z_i = \text{var}(v) \land w \in \{\text{succ}_0(v), \text{succ}_1(v)\} \cap V_I \implies (z_j = \text{var}(w) \implies j > i) \]
 and each node except root has a predecessor:
 \[\forall v \in V \setminus \{v_0\} : \exists w \in V : \exists b \in \{0, 1\} : v = \text{succ}_b(w) \]
- a variable labelling function \(\text{var} : V_I \to \text{Var} \)
- a drain labelling function \(\text{val} : V_T \to \{0, 1\} \)

Reduced ordered binary decision diagrams

- Let \(\mathcal{B} \) be a \(\rho \)-OBDD (where \(\rho \) represents the variable order). We call \(\mathcal{B} \) reduced, if for every pair \(\{v, w\} \) of nodes in \(\mathcal{B} \): \(v \neq w \implies f_v \neq f_w \). We write \(\rho \)-ROBDD for the reduced \(\rho \)-OBDD.

Canonicity

Theorem

Let \(\text{Var} \) be a finite set of boolean variables and \(\rho \) be a variable ordering for \(\text{Var} \). Then:

- For each switching function \(f \) for \(\text{Var} \) there exists a \(\rho \)-ROBDD \(\mathcal{B} \) with \(f_{\mathcal{B}} = f \).
- Given two \(\rho \)-ROBDD \(\mathcal{B} \) and \(\mathcal{C} \) with \(f_{\mathcal{B}} = f_{\mathcal{C}} \), then \(\mathcal{B} \) and \(\mathcal{C} \) are isomorphic, i.e. agree up to renaming of the nodes.

Corollary

Let \(\mathcal{B} \) be a \(\rho \)-ROBDD for \(f \). Then \(\mathcal{B} \) is reduced if and only if \(|\mathcal{B}| \leq |\mathcal{C}| \) for each \(\rho \)-ROBDD \(\mathcal{C} \) for \(f \).

A switching function with small and exponential sized ROBDD

Example

Let \(\text{Var} = \{x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_m\} \) for \(m \geq 1 \) and

\[f_m = (x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_m \land y_m) \]

Then the \((x_m, y_m, x_{m-1}, y_{m-1}, \ldots, x_1, y_1)\)-ROBDD has \(2m + 2 \) while \(\Omega(2^m) \) nodes are required for the \((x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_m)\)-ROBDD.
Symbolic model checking
Variable ordering problem

Small sized ROBDD

![Small sized ROBDD Diagram]

Hardness of variable ordering

Lemma
Deciding, whether a variable ordering for a switching function is optimal (i.e., gives the least number of nodes) is NP-hard.

Theorem
Finding the optimal variable ordering for a switching function is NP-complete.

Exponential-sized ROBDD

![Exponential-sized ROBDD Diagram]

ROBDD are useful

- ROBDD are used in many other places beyond (symbolic) model checking
- Their origin is computer aided design to synthesise circuits (logic synthesis)
- They are used in fault tree analysis
- They are used in Bayesian reasoning (e.g., spam filters)
- They are used in data flow analysis
- They are used for constraint solving (e.g., data bases)
- ...
Example implementations

- BuDDy (http://sourceforge.net/projects/buddy/)
- JINC (http://www.jossowski.de/projects/jinc/jinc.html)
- CUDD (http://vlsi.colorado.edu/~fabio/CUDD/)
- JDD (http://javaddlib.sourceforge.net/jdd/)
- ...

Complexity results

Theorem
For a transition system T with N states and K transitions, CTL formula φ and CTL fairness assumption fair with k conjuncts, the CTL model-checking problem $T \models_{\text{fair}} \varphi$ can be decided in time $O((N + K) \cdot |\varphi| \cdot k)$.

We did not discuss the problem, but state the theorem here:

Theorem
For a transition system T with N states and K transitions, CTL formula φ and CTL fairness assumption fair with k conjuncts, the CTL counter example can be generated in time $O((N + K) \cdot k)$.

CTL* is an extension of CTL

Definition
A CTL* state formula over a set of atomic propositions P is formed by the following grammar:

$$\Phi ::= \text{true} \mid a \mid \Phi \land \Phi \mid \neg \Phi \mid \exists \Psi$$

where Ψ is a CTL* path formula. A CTL* path formula is formed by the following grammar:

$$\Psi ::= \Phi \mid \Psi \land \Psi \mid \neg \Psi \mid \bigcirc \Psi \mid \psi \exists \Psi$$

where Φ represents a state formula.

Semantics I

Let $T = (S, A, \rightarrow, I, P, \mu)$ be a transition system without terminal states, let state $s \in S$, $\varphi, \varphi_1, \varphi_2$ CTL* state formulae, and ψ, ψ_1, ψ_2 be CTL* path formulae.

- $s \models a$ if and only if $a \in \mu(s)$
- $s \models \neg \varphi$ if and only if $s \not\models \varphi$
- $s \models \varphi_1 \land \varphi_2$ if and only if $s \models \varphi_1$ and $s \models \varphi_2$
- $s \models \exists \psi$ if and only if for some $\pi \in \text{Paths}(s)$, $\pi \models \psi$.

Semantics II

- \(\pi \models \varphi \) if and only if \(\pi(0) \models \varphi \)
- \(\pi \models \neg \psi \) if and only if \(\pi \notmodels \psi \)
- \(\pi \models \psi_1 \land \psi_2 \) if and only if \(\pi \models \psi_1 \) and \(\pi \models \psi_2 \)
- \(\pi \models \bigcirc \psi \) if and only if \(\pi^1 \models \psi \)
- \(\pi \models \psi_1 \Rightarrow \psi_2 \) if and only if there exists \(j \) such that \(\pi^j \models \psi_2 \) and for all \(i < j \), \(\pi^i \models \psi_1 \)

Remark

\(\exists \varphi \equiv \varphi \) and \(\forall \varphi \equiv \varphi \)

Semantics on transition systems

Definition

Given a transition system \(T \), the satisfaction set \(SAT_T(\varphi) \) for a CTL* formula \(\varphi \) is defined by:

\[
SAT_T(\varphi) = \{ s \in S | s \models \varphi \}.
\]

The transition system \(TS_T \) satisfies a CTL formula \(\varphi \) if and only if \(\varphi \) holds in all initial states of \(T \):

\(T \models \varphi \) if and only if \(\forall s_0 \in I : s_0 \models \varphi \)

This is equivalent to: \(I \subseteq SAT_T(\varphi) \)

Embedding CTL and LTL into CTL*

Lemma

For every transition system \(T \) without a terminal state, and every state \(s \) of \(T \) and every CTL formula \(\psi \):

\(s \models_{CTL} \psi \) if and only if \(s \models_{CTL^*} \psi \)

Theorem

For every transition system \(T \) without a terminal state, and every state \(s \) of \(T \) and every LTL formula \(\psi \):

\(s \models_{LTL} \psi \) if and only if \(s \models_{CTL^*} \psi \)

Expressive power

Theorem

There does not exist any equivalent LTL or CTL formula for the CTL* formula

\((\forall \bigcirc \Box a) \lor (\forall \Box \exists \bigcirc b) \)

over \(P = \{ a, b \} \)
Summary

- Computation tree logic (CTL) is a logic for formalising properties over computation trees, i.e. branching structures.
- Linear time logic is a logic for formalising properties about computation paths.
- The expressiveness of LTL and CTL are incomparable.
- Though fairness constraints cannot be encoded in CTL, fairness assumptions can be incorporated in CTL by adapting the CTL semantics such that quantification is over fair paths, rather than over all paths.
- The CTL model-checking problem can be solved by a recursive descent procedure over the parse tree of the formula to be checked.
- Counter examples and witnesses for CTL can be determined using a standard graph analysis.

Suggested reading

- (Baier & Katoen, 2008) 6.7

Let's look at a case study

Case study:
Alternating Bit Protocol

- We have learnt about two major techniques for verifying protocols and establish program correctness.
- It is useful to compare these two methods, because the tools perform differently.
- An open problem is: When is it better to prefer symbolic model checking over explicit state model checking.
- Once You have analysed a couple of models using the different tools, you will gain insight and intuition, which will enable you to make an informed choice.
The alternating bit protocol

The alternating bit protocol is the inevitable example in model checking courses. The alternating bit protocol shall ensure that incoming data is delivered, but also in the right order.

Context of the protocol

- Sending messages over unreliable channels:
 - Messages may be lost
 - Messages may be distorted
 - Messages may be sent in different order
- Idea: Sender appends an alternating bit to each message
- Receiver checks that bits and confirms that it received the right message or asks for retransmission.

A Promela model I

```promela
mtype = { msg0, msg1, ack0, ack1 };
chan to_sndr = [2] of { mtype };
chan to_rcvr = [2] of { mtype };

active proctype Sender()
{
    again: to_rcvr!msg1;
    to_sndr?ack1;
    to_rcvr!msg0;
    to_sndr?ack0;
    goto again
}
```

A Promela model II

```promela
active proctype Receiver()
{
    again: to_rcvr!msg1;
    to_sndr!ack1;
    to_rcvr?msg0;
    to_sndr!ack0;
    goto again
}
```
A case study

ABP with losses I

active proctype Sender()
{
 byte data = 0;
 bit sbit, seqno = 0;
 do
 :: s_r ! msg(data, sbit);
 r_s ? ack(seqno);
 if
 :: seqno == sbit ->
 sbit = 1 - sbit;
 data ++
 :: else
 fi
 od
}

ABP with losses II

active proctype Receiver()
{
 byte recd, expected = 0;
 bit rbit, seqno = 0;
 do
 :: s_r?msg(recd, seqno) ->
 if
 :: r_s!ack(seqno)
 :: skip
 fi;
 if
 :: seqno == rbit ->
 rbit = 1 - rbit;
 :: else
 fi
 od
}

ABP with losses and retransmission I

active proctype Sender()
{
 byte data = 0;
 bit sbit, seqno = 0;
 do
 :: s_r ! msg(data, sbit);
 :: skip
 :: r_s ? ack(seqno);
 if
 :: seqno == sbit ->
 sbit = 1 - sbit;
 data ++
 :: else
 fi
 od
}

ABP with losses and retransmission II

active proctype Receiver()
{
 byte recd, expected = 0;
 bit rbit, seqno = 0;
 do
 :: s_r?msg(recd, seqno);
 if
 :: seqno == rbit ->
 rbit = 1 - rbit;
 assert(recd == expected);
 expected++
 :: else
 fi
 :: r_s!ack(rbit)
 :: skip
 od
 }
A case study

ABP with message checking I

active proctype Sender()
{
 byte data = 0;
 bit sbit, seqno = 0;
 do
 :: s_r ! msg(data, sbit);
 :: skip
 :: r_s ? ack(seqno);
 if :: seqno == sbit ->
 sbit = 1 - sbit;
 data ++
 :: else
 fi
 od
}

ABP with message checking II

active proctype Receiver()
{
 byte recd, expected = 0;
 bit rbit, seqno = 0;
 do
 :: s_r?msg(recd, seqno);
 if :: seqno == rbit ->
 rbit = 1 - rbit;
 assert(recd == expected);
 expected++
 :: else
 fi
 :: r_s!ack(rbit)
 :: skip
 od
}

ABP with progress I

active proctype Sender()
{
 byte data = 0;
 bit sbit, seqno = 0;
 do
 :: (data < 10) -> s_r ! msg(data, sbit);
 :: skip
 :: r_s ? ack(seqno);
 if :: seqno == sbit ->
 sbit = 1 - sbit;
 data ++
 :: else
 fi
 od
}

ABP with progress II

active proctype Receiver()
{
 byte recd, expected = 0;
 bit rbit, seqno = 0;
 do
 :: s_r?msg(recd, seqno);
 if :: seqno == rbit ->
 rbit = 1 - rbit;
 progress: assert(recd == expected);
 expected++
 :: else
 fi
 :: r_s!ack(rbit)
 :: (1) -> progress2: skip
 od
}
The ABP in NuSMV

- NuSMV does not have channels, so we have to formalise our own channels first. Message loss will be handled in the channel, which is a conceptual advantage.
- In NuSMV, the behaviour is formulated as switching functions, there is no state or location, only the values of the variables.

Channels

MODULE one-bit-chan(input)

```plaintext
VAR
  output : boolean;

ASSIGN
  next(output) := {input, output};

FAIRNESS running
```

MODULE two-bit-chan(input1, input2)

```plaintext
VAR
  output1 : boolean;
  output2 : boolean;

ASSIGN
  next(output2) := {input2, output2};
  next(output1) :=
    case
      input2 = next(output2) : input1 ;
      1 : {input1, output1};
    esac;

FAIRNESS running
```

Sender

MODULE sender(ack)

```plaintext
VAR
  st : {sending, sent};
  message1: boolean;
  message2: boolean;

ASSIGN
  init(st) := sending;
  next(st) :=
    case
      ack = message2 & !(st = sent) : sent;
      1 : sending;
    esac;
  next(message1) :=
    case
      st = sent : {0, 1};
      1 : message1;
    esac;
  next(message2) :=
    case
      st = sent : !message2;
      1 : message2;
    esac;

FAIRNESS running
```

Receiver

MODULE receiver(message1, message2)

```plaintext
VAR
  st : {receiving, received};
  ack : boolean;
  expected : boolean;

ASSIGN
  init(st) := receiving;
  next(st) :=
    case
      message2 = expected & !(st = received): received;
      1 : receiving;
    esac;
  next(ack) :=
    case
      st = received : message2;
      1 : ack;
    esac;
  next(expected) :=
    case
      st = received : !expected;
      1 : expected;
    esac;

FAIRNESS running
```
Wiring everything together

MODULE main
VAR
 S : process sender(ack_chan.output);
 R : process receiver(msg_chan.output1, msg_chan.output2);
 msg_chan : process two-bit-chan(S.message1, S.message2);
 ack_chan : process one-bit-chan(R.ack);

ASSIGN
 init(S.message2) := 0;
 init(R.expected) := 0;
 init(R.ack) := 1;
 init(msg_chan.output2) := 1;
 init(ack_chan.output) := 1;

Summary

- The alternating bit protocol can be modelled in both languages with reasonable effort.
- Specifications that express the same property can usually be defined in both formalism; CTL specs tend to be weaker, however.
- The performance on the ABP is similar; our computers got too fast to let us see a difference.
- It is not obvious how we should compare both models; they are different implementations of the protocol and make different assumptions.

Abstractions

Formal abstractions

- Sometimes, the model checking tools can apply algorithms successfully to reduce the state space to search.
- Often, this state space is still too large for effective verification.
- We discuss methods for reducing the state space by using our brains and establishing the required properties of the model.
- The basic idea is to build a reduced model of the model or system to verify, verify the reduced model and prove that the verification result can be transferred to the bigger one.
Linear-time branching-time spectrum

- What shall be the intuition of "bigger model" and "smaller model"?
- We shall define a partial order on transition systems, that effectively tells us which one is bigger...
- The guiding principle: a model is at least as big as another one, if it can be used instead of the other (substitution principle)
- This means that the bigger model has less behaviour (but more states)

Trace inclusion

- A (very weak) relation between two transition systems is given by trace inclusion:
- Let \mathcal{A}, \mathcal{C} be two transition systems such that $[\mathcal{C}] \subseteq [\mathcal{A}]$.
- Then every universal property satisfied by \mathcal{A} is also satisfied by \mathcal{C}.
- It might be nice, if $|\mathcal{A}| \leq |\mathcal{C}|$.
- The trick is to merge states but preserve outgoing transitions.

Example

- The important question for model checking is: what kind of properties are preserved?
- We desire: $\mathcal{A} \models \phi$ implies $\mathcal{C} \models \phi$ (soundness) and $\mathcal{A} \not\models \phi$ implies $\mathcal{C} \not\models \phi$ (completeness).
- There are little techniques which give us both.
Formalisation

Let $C = (S_C, \rightarrow_C, I_C, P, \mu_C)$ be a transition system which we call the *concrete* one. Let $A = (S_A, \rightarrow_A, I_A, P, \mu_A)$ be a transition system which we call the *abstract* one.

A binary relation $R \subseteq S_C \times S_A$ is called a *simulation relation*, if and only if:

1. For every $s_C \in I_C$ there exists $s_A \in I_A$ with $(s_C, s_A) \in R$.
2. For every pair $(s_C, s_A) \in R$, then for all $s_C' \in S_C$ with $s_C \rightarrow_C s_C'$ there exists $s_A' \in S_A$ with $s_A \rightarrow_A s_A'$ and $(s_C', s_A') \in R$.
3. It holds $\mu_C(s_C) = \mu_A(s_A)$ for all $(s_C, s_A) \in R$.

If there exists such an R, we say that A simulates C and write $C \preceq R A$.

Under-approximation

If $C \subseteq A$, then we say that C is an *under-approximation* of A.

Lemma

When $C \subseteq A$ and ϕ is an \exists-CTL* property, then $C \models \phi$ implies $A \models \phi$.

Over-approximation

If $C \subseteq A$, then we say that A is an *over-approximation* of C.

Lemma

When $C \subseteq A$ and ϕ is an \forall-CTL* property, then $A \models \phi$ implies $C \models \phi$.

Suggested reading

- Principles of Model Checking (Baier & Katoen, 2008), Sections 7.4–7.5
- (McMillan, 2000)
- (Clarke, Long, & McMillan, 1989)
- (ACM, 1989)
- (Wolper & Lovinfosse, 1989)
Verifying the Futurebus+ Cache Coherence Protocol

- The Futurebus+ is the specification of a computer bus (like ISA, PCI, PCI-E)
- It was intended to be the bus architecture for computers, connecting CPU, memory, and serving to some extend as LAN
- The protocol is described in (IEEE, 1994) using timing diagrams and predicate logic formulae.

Related work

- Analysis using model checking reported in (Clarke et al., 1993). Several mistakes were found and corrected in the standard.
- Uniform proof reported in (Kyas, 2001).

History and Background

1979 A standardisation effort for the computer bus of the future was initiated, when devices plugged into existing busses became faster than the provided bandwidth

1987 After years of development (no product was present), a first version of the Futurebus standard was published. The US NAVY promised to standardise on Futurebus after changes

1994 The Futurebus+ standard was finalised, supporting multiple profiles to satisfy the needs of all stake holders. Unfortunately, improvements to conventional bus systems like PCI made Futurebus+ obsolete.

Futurebus+ was never widely adopted. Much research on cache coherence was initiated as part of this standardisation process.
Abstractions

Problem statement

Multiprocessors, caches and memory

Cache coherence

- Integrity of data stored in local caches.
- CPU read common memory addresses and manipulate them independently, thus leading to inconsistent data.
- Related to memory coherence and memory consistence, the guarantees made by the system on concurrent access to memory.

Characterisation

1. A read made by a processor P to a location X that follows a write by the same processor P, with no writes to X by other processors occurring between these two events, must always return the value written by P.
2. A read made by P_1 to X that follows a write by P_2 to X must return the value written by P_2 if no other write to X occurred in between.
3. Writes to the same location must be sequenced, i.e., if values A and B are written to X in that order, no processor may read B and then A from X.

Cache line states

- invalid: The content of the cache line is not valid or not present.
- shared: The content of the cache line is shared with other CPU.
- exclusive-unmodified: The cache line is owned exclusively by the CPU and has the same value as in memory.
- exclusive-modified: The cache line is owned exclusively by the CPU and has possibly a different value from the one in memory.

Abbreviations

- readable, if the state is shared, exclusive-unmodified or exclusive modified.
- writable, if the state is exclusive-modified.
- unmodified, if the state is shared or exclusive-unmodified.
- exclusive, if the state is exclusive-unmodified or exclusive modified.
Looking at some code

CMD=none:
case
 -- Shared copies can be nondeterministically kicked out of the cache,
 -- provided we aren’t waiting for them to become exclusive.
 state=shared:
 case
 requester=exclusive: shared;
 1: {invalid, shared};
 esac;
 -- Exclusive unmodified copies can be nondeterministically kicked
 -- or written to.
 state=exclusive-unmodified:
 case
 SR: {invalid, shared};
 1: {invalid, shared, exclusive-unmodified, exclusive-modified};
 esac;
 1: state;

Protocol description

- Memory is partitioned into lines, usually multiple machine words, which
 form one unit of transaction.
- Commands on the bus announce the intention to read one line with a
 specific purpose or that the line has been modified
 read-shared read with intention to share access
 read-modified read with intention to modify
 none no command
 wait wait
 invalidate announce that the value has been changed
 copyback write the value back to memory

Formalising cache coherence in CTL

1. $\forall \square (p_1.writable \implies \neg p_2.readable$
2. $\forall \square (p_1.readable \land p_2.readable \implies p_1.data = p_2.data$
3. $\forall \square (p.readable \land \neg m.memory_line_modified \implies p.data = m.data$
4. $\forall \square \exists \diamond p.readable$
5. $\forall \square \exists \diamond p.writable$

Commands and modifiers

1. One node is chosen to be the master for this round
2. The master decides who will issue a command
3. All other nodes may modify the command by raising flags:
 - sr: if the command is read-shared, announces that more than one
 processor reads
 - iv: indicate that the value in memory is invalid and provided by another
 cache
 - tf:
Abstractions

- Only one bit of data and one memory line is considered.

Roadmap

1. What are *parameterised networks*?
2. How to specify a parameterised network?
3. How to specify properties of parameterised networks independent of the number of components?
4. Computing an abstract system from a parameterised network.
5. Model checking.
6. Results.

Parameterised Networks

What are *parameterised networks*?

- Infinite family of finite-state processes,
- Composed by parallel composition operators,
- Parameterised by the number of processes.

\[P_1 \parallel P_2 \parallel \cdots \parallel P_n \] with Parameter \(n \).

Problems

1. How to specify properties independently of the number of processes?
 - Structure of the network?
2. How to specify a parameterised network and its *topology*?

Here: *only* specification of properties, *only* linear parameterised networks.
Verification Problem

Wanted: *uniform* proof of correctness for
- a specification \(\varphi \)
- a parametrised network \(\mathcal{F} \)

\[
\forall P. P \in \mathcal{F} \land (P \models \varphi)
\]

Theorem (Apt & Kozen, 1986)

The verification problem is undecidable in general, even if it is decidable for each member of a family.

Boolean Transition Systems

To define components of a parameterised network:
- Transition system \(S(i, n) \) as a predicate,
- Parameters \(i \) (process identifier), \(n \) (number of processes),
- propositional variables \(b[i] \) \((b\text{ is boolean array})\).

Definition

The *synchronous monadic parameterised system* (SMPS) built from an BTS \(S(i, n) \) is the set

\[
\mathcal{P} = \{|m|_{\ell=0}^{m-1} S(\ell, m)[i/\ell, n/m] [v/\nu(\ell)]_{v \in V} \mid m < \omega\}
\]

Roadmap (refined)

- specific transition systems (BTS)
- specific linear parameterised networks (SMPS)
- bisimilar transition system
- \(\Downarrow \alpha \) Abstraction
- finite state system

Specification:
- Universal properties
- Invariance

Key Observations

- A state of a linear system configuration is a *string* of states of its constituents.
- collect *related* states into a *regular language*.
- Describe this language in \(WS1S \).
- *Transitions* lead from regular language to regular language.
- Properties are described in \(WS1S \) *easily* and *independently* of the number of processes in \(P' \).
Weak Second Order Theory of One Successor (WS1S)

- Sets represent *finite* subsets of ω
- Monadic relations: $x \in S$ ($x < y$ is a special case)
- Only successor function $\text{succ}(x)$
- Quantification over natural numbers, monadic relations
- Constants 0 and \emptyset

Lemma

WS1S is decidable (Büchi 1960, Elgot 1961)

Central observation in the proof

WS1S can be decided by *finite state automatons*, its generalisation S1S (a.k.a. MSO) can be decided by *Büchi-automatons*.

Tool for deciding WS1S: MONA (http://www.brics.dk/mona/)

WS1S transition systems

Definition

A WS1S-TS $S = (V, \Theta, \mathcal{T})$ consists of

- A finite set V of second-order variables.
- A satisfiable predicate Θ with the free variables ranging over V.
- A finite set \mathcal{T} of transitions described by WS1S formulae $\rho(V, V')$ with its free variables ranging over V and V'.

Computations are defined as usual.

Procedure

1. Compute a WS1S-TS bisimilar to SMPS
2. Compute an *abstract finite-state* transition system from the WS1S-TS when an abstraction relation α is supplied.
3. Use a model checker, e.g. NuSMV, to check the specification.

Converting a SMPS to a WS1S-TS

For a SMPS \mathcal{P} build from BTS $S(i, n)$ let μ denote the substitution replacing

- all occurrences of the form $b[i]$ by $i \in X_b$.
- all occurrences of n by $\max(P) + 1$.
Algorithm

\(\tilde{P} = (\tilde{V}, \tilde{\Theta}, \tilde{T}) \) is defined by:

\[
\tilde{\Theta} = \exists n. P = \{0, \ldots, n-1\} \land \forall m. m \in P \rightarrow \Theta \mu
\]

(1)

\[
\tilde{T} = \{ \exists \tau \in \mathcal{T}. \text{part}(P, \{ Y_\tau | \tau \in \mathcal{T} \}) \land P = P' \land
\left(\forall \tau \in \mathcal{T}. m_\tau \land m_\tau \in Y_\tau \rightarrow \rho_\tau(V, V') \mu \right) \}
\]

(2)

\[
\tilde{V} = FV(\tilde{\Theta}) \cup FV(\tilde{T})
\]

(3)

where

\[
\text{part}(Y, \{ Y_\tau | \tau \in \mathcal{T} \}) = (\bigwedge \{ Y_\tau \cap Y_{\tau'} = \emptyset \} \land Y = \bigcup \{ Y_\tau \})
\]

Abstract State Graph

Computing the abstract state graph with:

Theorem

For an L-simulation \(\alpha \) (represented as a predicate) as a WS1S formula define

\[
\Theta_\alpha = \{ s | s \models \Theta \land \alpha \}
\]

\[
\mathcal{T}_\alpha = \{ (s, s') | (s, s') \models \alpha \land \rho \land \alpha' \}
\]

Then \(S_\alpha = (FV(\alpha), \Theta_\alpha, \mathcal{T}_\alpha) \) is a finite state transition system.

Example: Futurebus+ Cache Coherence Protocol

Futurebus+ Cache Coherence Protocol (Abstract System)
Suggested reading

- (Clarke et al., 1993)
- (Kyas, 2001)
- (Clarke, Grumberg, & Peled, 1999)

Timed Automatons

Today's material

Today's material is based on Chapter 9 of (Baier & Katoen, 2008) and Chapter 1 of (Olderog & Dierks, 2008).

Reactive systems

- Up to now, we have studied model checking of reactive systems, i.e. systems that maintain an ongoing interaction with an environment.
Real-time systems

- Very often, systems need to react in time, like traffic lights, air bags, and communication protocols

Correctness in time-critical systems not only depends on the logical result of the computation but also on the time at which the results are produced

Time domains

Fictitious time
Time is recorded by a step counter, i.e. time is a natural number, during which things happen. If fictitious time increases by 1, we do not know how much it increased in reality. It allows to reason about simultaneous events.

Discrete time
Time is recorded by a step counter, i.e. time is a natural number, regardless of what is happening. Discrete time is used on hardware and 1 time unit often represents one clock cycle.

Dense time
Time is “measured” in a physical unit, but recorded in a dense domain, e.g. non-negative rational numbers. This domain is usually used in tools.

Continuous time
Time is “measured” in a physical unit and the domain is continuous, e.g. non-negative real numbers.

Introductory example

Figure: Railroad crossing

Modelling the train

Figure: Train model

- start
- approach
- near
- far
- exit
- enter
- in
Modelling the controller

Modelling the gate

Initial fragment of Train \parallel Controller \parallel Gate

Modelling the train with timing assumption

Figure: Controller model

Figure: Gate model

Figure: Initial fragment of Train \parallel Controller \parallel Gate

Figure: Train model
Modelling the controller with timing assumptions

![Controller model diagram]

Figure: Controller model

Modelling the gate

![Gate model diagram]

Figure: Gate model

Initial fragment of \(\text{Train} \parallel \text{Controller} \parallel \text{Gate} \) with timing assumptions

![Initial fragment diagram]

Figure: Initial fragment of \(\text{Train} \parallel \text{Controller} \parallel \text{Gate} \) with timing assumptions

Timed automata

Timed automata = Finite automata + Clock constraints + Clock resets
Clock constraints

Definition
A clock constraint over a set C of clocks is formed according to the grammar

$$g ::= x < c \mid x \leq c \mid x > c \mid x \geq c \mid g \land g \mid true$$

where $c \in \mathbb{N}$ is a constant and $x \in C$ is a clock variable. Let $CC(C)$ denote the set of clock constraints over C. Clock constraints that do not contain any conjunctions are called atomic. Let $ACC(C)$ denote the set of all atomic clock constraints over C.

Remark
This definition ensures that all clock constraints form convex sets, a restriction that is often not necessary, but convenient.

We can, at the cost of a more involved theory, also admit clock difference constraints $x - y < c$ (this is allowed in Uppaal).

Handshaking for timed automata

Let $TA_i = (Loc_i, Act_i, C_i, \rightarrow_i, Loc_{0,i}, Inv_i, AP_i, L_i)$ for $i \in \{1, 2\}$ be two timed automata, $H \subseteq Act_1 \cap Act_2$ and with $C_1 \cap C_2 = \emptyset$ and $AP_1 \cap AP_2 = \emptyset$. The timed automaton $TA_1 \parallel_H TA_2$ is defined by:

$$TA_1 \parallel_H TA_2 = (Loc_1 \times Loc_2, Act_1 \cup Act_2, C_1 \cup C_2, \rightarrow, \text{Loc}_{0,1} \times \text{Loc}_{0,2}, \text{Inv}, \text{AP}_1 \cup \text{AP}_2, L)$$

where

- $L((\ell_1, \ell_2)) = L_1(\ell_1) \cup L_2(\ell_2)$
- $Inv((\ell_1, \ell_2)) = Inv_1(\ell_1) \land Inv_2(\ell_2)$

Timed automaton

Definition
A timed automaton is a tuple $TA = (Loc, Act, C, \rightarrow, Loc_0, Inv, AP, L)$, where

- Loc is a finite set of locations,
- $Loc_0 \subseteq Loc$ is a set of initial locations,
- Act is a finite set of actions,
- C is a finite set of clocks,
- $\rightarrow \subseteq Loc \times CC(C) \times Act \times 2^C \times Loc$ is a transition relation,
- AP is a finite set of atomic propositions, and
- $L : Loc \rightarrow 2^AP$ is a labelling function

- For $\alpha \in H$:

$$\ell_1 \xrightarrow{g_1 : \alpha, D_1} \ell'_1 \xrightarrow{g_2 : \alpha, D_2} \ell'_2 \quad (\ell_1, \ell_2) \xrightarrow{g_1 \land g_2 : \alpha, D_1 \cap D_2} (\ell'_1, \ell'_2)$$

- For $\alpha \notin H$:

$$\ell_1 \xrightarrow{g_1 : \alpha, D_1} \ell'_1 \quad (\ell_1, \ell_2) \xrightarrow{g_1 : \alpha, D_1} (\ell'_1, \ell_2)$$

and

$$\ell_2 \xrightarrow{g_2 : \alpha, D_2} \ell'_2 \quad (\ell_1, \ell_2) \xrightarrow{g_2 : \alpha, D_2} (\ell_1, \ell'_2)$$
Clock evaluations

Definition

A clock evaluation η for a set C of clocks is a function $\eta : C \rightarrow \mathbb{R}_{\geq 0}$, assigning each clock x each current value $\eta(x)$. Let $\text{Eval}(C)$ denote the set of all clock evaluations for C.

Remark

For dense time model, a clock valuation is actually a function $\eta : C \rightarrow \mathbb{Q}_{\geq 0}$.

Satisfaction relation for clock constraints

Definition

For set C of clocks, $x \in C$, $\eta \in \text{Eval}(C)$, $c \in \mathbb{N}$, and $g, g' \in \text{CC}(C)$, let $\models \subseteq \text{Eval}(C) \times \text{CC}(C)$ be defined by:

- $\eta \models \text{true}$
- $\eta \models x < c$ if and only if $\eta(x) < c$
- $\eta \models x \leq c$ if and only if $\eta(x) \leq c$
- $\eta \models x > c$ if and only if $\eta(x) > c$
- $\eta \models x \geq c$ if and only if $\eta(x) \geq c$
- $\eta \models g \land g'$ if and only if $\eta \models g$ and $\eta \models g'$

Transition system semantics of a timed automaton

Let $TA = (\text{Loc}, \text{Act}, C, \rightarrow, \text{Loc}_0, \text{Inv}, \text{AP}, L)$ be a timed automaton. Its transition system $TS(TA) = (S, \text{Act}', \rightarrow, I, \text{AP}', L')$ is given by:

- $S = \text{Loc} \times \text{Eval}(C)$
- $\text{Act}' = \text{Act} \cup \mathbb{R}_{\geq 0}$
- $I = \{(\ell_0, \eta) \mid \ell_0 \in \text{Loc}_0 \land \forall x \in C : \eta(x) = 0\}$
- $\text{AP}' = \text{AP} \cup \text{ACC}(C)$
- $L'((\ell, \eta)) = L(\ell) \cup \{g \in \text{ACC}(C) \mid \eta \models g\}$
The transition relation is defined by two rules:

- **discrete transition:** \((\ell, \eta) \xrightarrow{\alpha} (\ell', \eta')\) if the following conditions hold:
 1. There is a transition \(\ell \xrightarrow{g \in D} \ell'\) in TA
 2. \(\eta \models g\)
 3. \(\eta' = \text{reset } D \text{ in } \eta\)
 4. \(\eta' \models \text{Inv}(\ell')\)

- **delay transition:** \((\ell, \eta) \xrightarrow{d} (\ell, \eta + d)\) for \(d \in \mathbb{R}_{>0}\) provided that \(\eta + d \models \text{Inv}(\ell)\).

Guards vs. invariants

- A **guard** expresses a condition under which a transition can be taken. They limit progress.
- An **invariant** expresses a condition under which it is allowed to delay in the current state. They force progress.

Time convergence

Consider a location \(\ell\) such that for any \(t < d\) (where \(d\) is a constant \(d \in \mathbb{R}_{>0}\)), the clock valuation \(\eta + t \models \text{Inv}(\ell)\). A possible execution fragment starting from this location is given by

\[
(\ell, \eta) \xrightarrow{d_1} (\ell, \eta + d_1) \xrightarrow{d_2} (\ell, \eta + d_1 + d_2) \xrightarrow{d_3} (\ell, \eta + d_1 + d_2 + 3) \ldots
\]

where \(\lim_{j \to \infty} \sum_{i=1}^{j} d_i = d\). Such an infinite path fragment is called **time convergent**.

Time convergent paths are not realistic and should be ignored.

Preparatory exercise

- Download and install Uppaal from http://www.uppaal.com
- Try to model today's examples and show some basic properties
- Enjoy the season
Suggested reading

- (Baier & Katoen, 2008), Chapter 9

Timed Computation Tree Logic

- Starting from the definition of a transition system of a timed automaton, we obtain execution fragments and executions in the same manner as for transitions systems.
- This time, we obtain timed traces, i.e. sequences of pairs \((s, \eta)\), where \(s\) is a state and \(\eta\) is a clock valuation.
- Timed Computation Tree Logic (TCTL) is a real-time variant of CTL aimed to express properties of timed automatons.

Timed Computation Tree Logic

Definition

Formulae of TCTL are generated by the following grammar for *state formulae*:

\[Φ ::= \text{true} \mid a \mid g \mid Φ \land Φ \mid ¬Φ \mid \exists ϕ \mid ∀ϕ , \]

where \(a \in AP\) and \(g \in ACC(C)\) and \(ϕ\) is a path formula given by:

\[ϕ ::= Φ \lor JΦ \]

where \(J \subset \mathbb{R}_{≥0}\) is an interval whose bounds are natural numbers.

We define \(Ω^JΦ \triangleq \text{true} \lor JΦ\) and

\[\exists Ω^JΦ \triangleq ¬∀Ω^J¬Φ \text{ and } ∀Ω^JΦ \triangleq ¬∃Ω^JΦ \]

Timed Computation Tree Logic

Abbreviations

Write \(\leq c \) for \([0, c]\), \(< c \) for \([0, c)\), \(> c \) for \((c, \infty)\), \(\geq c \) for \([c, \infty)\), and nothing for \([0, \infty) = \mathbb{R}_{\geq 0}\).

Example

The property “the light cannot be continuously switched on for more than 2 minutes” is expressed by the TCTL formula

\[
\forall \square (\text{on}) \rightarrow \forall \diamond \geq 2 \neg \text{on}
\]

Sets of path fragments

Let \(TA \) be a timed automaton. Let \(\pi = s_0 \xrightarrow{d_0} s_1 \xrightarrow{d_1} s_2 \xrightarrow{d_2} s_3 \xrightarrow{d_3} \ldots \) be the equivalence class of all infinite execution fragment in \(TS(TA) \) of the form

\[
(\ell_0, \eta_0) \xrightarrow{d_0^1} \ldots \xrightarrow{d_0^n} (\ell_0, \eta_0 + d_0) \xrightarrow{\alpha_0} (\ell_1, \eta_1) \xrightarrow{d_1^1} \ldots \xrightarrow{d_1^n} (\ell_1, \eta_1 + d_1) \xrightarrow{\alpha_1} (\ell_2, \eta_2) \ldots
\]

That means: The set of path fragments represents the passage of \(d_0 \) time units by all finite sequences of delay transitions which let \(d_0 \) time units pass. *Time divergent* execution fragments that perform only a finite number of actions are represented by a set of path fragments that ends in

\[
(\ell_m, \eta_m) \overset{1}{\underset{\ell_m}{\rightarrow}} (\ell_m, \eta_m + 1) \overset{1}{\underset{\ell_m}{\rightarrow}} (\ell_m, \eta_m + 2) \overset{1}{\underset{\ell_m}{\rightarrow}} \ldots
\]

Semantics of TCTL

Let \(TA \) be a timed automaton, let state \(\ell \in Loc \), \(a \in AP \), \(g \in ACC(C) \), \(J \subseteq \mathbb{R}_{\geq 0} \) an interval, \(\varphi, \psi \) TCTL state formulae, and \(\xi \) be a path formula. Let \(Paths(s) \) be the set of all infinite execution fragments of \(T \) that start in \(s \).

- \((\ell, \eta) \models \varphi \) if and only if \(a \in \mu(\ell) \)
- \((\ell, \eta) \models \varphi \) if and only if \(a \in \mu(\ell) \)
- \((\ell, \eta) \models \neg \varphi \) if and only if \(a \in \mu(\ell) \)
- \((\ell, \eta) \models \varphi \) if and only if \(a \in \mu(\ell) \)
- \((\ell, \eta) \models \varphi \) if and only if \(a \in \mu(\ell) \)
- \((\ell, \eta) \models \exists \xi \) if and only if for some \(\pi \in Paths_{\text{div}}((\ell, \eta)) \), \(\pi \models \xi \).
- \((\ell, \eta) \models \forall \xi \) if and only if for some \(\pi \in Paths_{\text{div}}((\ell, \eta)) \), \(\pi \models \xi \).
- \(s \models \forall \xi \) if and only if for every \(\pi \in Paths(s) \), \(\pi \models \xi \).

Semantics for path formulae

For a time-divergent path \(\pi \in (\ell_0, \eta_0) \xrightarrow{d_0^1} (\ell_0, \eta_0 + d_0) \xrightarrow{\alpha_0} (\ell_1, \eta_1) \xrightarrow{d_1^1} \ldots \xrightarrow{d_1^n} (\ell_1, \eta_1 + d_1) \xrightarrow{\alpha_1} (\ell_2, \eta_2) \ldots \),

the satisfaction relation is defined by:

- there exists \(i \geq 0 \) such that \(s_i + d \models \Psi \) for some \(d \in [0, d_i] \) with \(d + \sum_{k=0}^{i-1} d_k \in J \) and
- for all \(j \leq i \) we have \(s_j + d' \models \Psi \) for any \(d' \in [0, d_j] \) with \(d' + \sum_{k=0}^{j-1} d_k \leq d + \sum_{k=0}^{i-1} d_k \).
Semantics on transition systems

Definition
Given a timed automaton TA, the satisfaction set $SAT_{TA}(\varphi)$ for a TCTL formula φ is defined by:

$$SAT_{TA}(\varphi) \triangleq \{ (\ell, \eta) \in Loc \times Eval(C) \mid (\ell, \eta) \models \varphi \}.$$

The timed automaton TA satisfies a TCTL formula φ if and only if φ holds in all initial states of $TS(TA)$:

$$TA \models \varphi \text{ if and only if } \forall \ell_0 \in I : (\ell_0, \eta_0) \models \varphi$$

where $\eta_0(x) = 0$ for all $x \in C$.

Liveness and time-lock

Lemma
A timed automaton is time-lock-free if and only if for all $(\ell, \eta) \in \text{Reach}(TS(TA)) s \models \exists \Box \text{true}$.

Note: this is different from $TA \models \forall \Box \exists \Box \text{true}$!

TCTL vs. CTL

Any TCTL formula Φ in which all intervals are of the form $[0, \infty)$ may be considered to be a CTL formula. But we can find an example in which

$$TA \models_{TCTL} \Phi \text{ and } TS(TA) \not\models_{CTL} \Phi !$$

The reason is: the semantics of TCTL is restricted to only time divergent paths, whereas we also consider time convergent paths for CTL.

TCTL model checking

Problem
We cannot use CTL model checking algorithms:

$$TA \models \Phi \text{ if and only if } TS(TA) \models \Phi$$

and $TS(TA)$ is an infinite transition system.

Solution

$$TA \models \Phi \text{ if and only if } RTS(TA, \Phi) \models \hat{\Phi}$$

where $RTS(TA, \Phi)$ is a finite transition system called region automaton and $\hat{\Phi}$ is a CTL formula obtained from Φ as explained next.
Eliminating timing parameters

First we express all $J \neq [0, \infty)$ in the TCTL formula by atomic clock constraints.

Idea: For each $J \neq [0, \infty)$ introduce a fresh clock z that neither occurs in Φ nor in TA and add a clock constraint to Φ that uses z.

Elimination theorem

Define the timed automaton $TA \oplus z$ by adding z to the clocks. Then:

1. $(\ell, \eta) \models_{TCTL} \exists(\Phi \lor \Psi)$ if and only if $(\ell, \eta \cup \{z \mapsto 0\}) \models_{TCTL} (\Phi \lor \Psi \lor (\Psi \land z \in J))$

2. $(\ell, \eta) \models_{TCTL} \forall(\Phi \lor \Psi)$ if and only if $(\ell, \eta \cup \{z \mapsto 0\}) \models_{TCTL} ((\Phi \lor \Psi) \land (\Psi \land z \in J))$

Region automata

Idea

We cannot use $TS(TA)$, because this is an infinite transition system. We'd like to find an appropriate equivalence relation on clocks, written \simeq, such that:

- Equivalent clock valuations should satisfy the same clock constraints:
 $$\eta \simeq \eta' \implies (\eta \models g \iff \eta' \models g) \text{ for all } g \in ACC(TA) \cup ACC(\Phi)$$

- Time-divergent paths emanating from equivalent states should be “equivalent”. This guarantees that equivalent states satisfy the same path formulae.

- The number of equivalent classes under \simeq is finite.

Notations

- Integral part of a real number: $\lfloor 3.14 \rfloor = 3$
- Fractional part of a real number: $\text{frac}(3.14) = 0.14$

Observation

Clock valuations “look” equivalent if we define \simeq by:

$$\forall x : [\eta(x)] = [\eta'(x)] \text{ and } \text{frac}(\eta(x)) = 0 \iff \text{frac}(\eta'(x)) = 0$$

This relation is too coarse!
Clock equivalence

Definition
Let TA be a timed automaton, Φ a $TCTL$ formula both over the same set C of clocks, and c_x the largest constants with which $x \in C$ is compared to in Φ. Clock valuations are clock-equivalent if and only if either:
- for any $x \in C$ it holds that $\eta(x) > c_x$ and $\eta'(x) > c_x$
- for any $x, y \in C$ with $\max\{\eta(x), \eta'(x)\} \leq c_x$ and $\max\{\eta(y), \eta'(y)\} \leq c_y$ all the following conditions hold:
 - $\forall x: \lfloor \eta(x) \rfloor = \lfloor \eta'(x) \rfloor$ and $\frac{\eta(x)}{\eta'(x)} = 0$ if and only if $\frac{\eta'(x)}{\eta'(y)} = 0$
 - $\frac{\eta(x)}{\eta'(x)} \leq \frac{\eta(y)}{\eta'(y)}$ if and only if $\frac{\eta'(x)}{\eta'(y)} \leq \frac{\eta'(y)}{\eta'(y)}$

Number of regions

Theorem
The number of clock regions is bounded by:
$|C|! \cdot \prod_{x \in C} \max\{c_x, 1\} \leq |\text{Eval}(C)/\simeq| \leq |C|! \cdot 2^{|C|-1} \cdot \prod_{x \in C} (2\max\{c_x, 1\} + 2)$

Complexity and decidability results

- Timed automatons test the border of model checking techniques: they are a form of infinite state systems that have a finite representation.
- A finite representation is not enough for decidable procedures: a common example is a Turing machine
Decidability results

Proof in (Alur & Dill, 1994, Theorem 4.17):

Theorem
The emptiness problem for timed automata in which the coefficients of the guards are rational numbers is PSPACE-complete.

And Puri shows (Puri, 1999):

Theorem
The reachability problem for timed automata in which the coefficients of the guards are from the set \{1, \sqrt{2}\} is undecidable.

More results: see (Henzinger, Kopke, Puri, & Varaiya, 1998).

Proof idea I

Definition
A counter machine \(C = (V, L, E, \ell_0) \) has a
- a set of counters \(V \)
- set of locations \(L \),
- a set of transitions \(E \subseteq L \times \text{Act}(V) \times L \), where \(\text{Act}(V) \) is given by the grammar:

\[
A ::= \text{inc}(v) \mid \text{dec}(v) \mid \text{reset}(v) \mid (v = 0) \mid (v \neq 0)
\]

- An initial location \(\ell_0 \)
- Terminal control location do not have any outgoing edges.

States are from \(L \times (V \rightarrow \mathbb{N}_0) \) and runs are defined in the obvious way.

Proof idea II

Theorem
A 2 counter machine (one with \(|V| = 2\)) can simulate a Turing machine.

Corollary
It is not decidable whether a 2 counter machine reaches a terminal location.

Proof idea III

We formulate the reachability problem for 2 counter machines to the reachability problem of a timed automaton.

Theorem
For any 2 counter machine \(M \) we find a timed automaton \(TA \) with all coefficients taken from \{1, \sqrt{2}\} such that \(M \) reaches a terminal location if and only if \(TA \) reaches a designated “final state”.
Encoding a counter

The value k of a counter will be stored as a real number in the interval $[0, 1)$ using the following encoding:

$$e(k) \triangleq k \sqrt{2} - \lfloor k \sqrt{2} \rfloor$$

Lemma

The encoding e is injective.

In the timed automaton, two clocks v_x, v_y are used to store and manipulate the value of the counter v.

Encoding the transitions

- We introduce three gadgets that encode the actions:
 - A maintain gadget with: v_x has the value $e(v)$ if $v_y = 0$
 - An increment gadget with: v_x has the value $e(v + 1)$ if $v_y = 0$
 - A decrement gadget with: v_x has the value $e(v - 1)$ if $v_y = 0$

- The guards can be expressed by:
 - $(v = 0)$ becomes $v_x = 0 \land v_y = 0$
 - $(v \neq 0)$ becomes $0 < v_x \land v_x < 1 \land v_y = 0$

Maintain gadget

![Maintain gadget diagram]

Increment gadget

![Increment gadget diagram]
Decrement gadget

\[
\begin{align*}
V_y &= 1/\text{reset}(V_y) \\
V_y &= 0 \\
0 \leq x < 1
\end{align*}
\]

- From 2 counter machine to transition
 - The timed automaton is formed by composing a gadget for each counter according to the description of the counter machine, e.g.: \(\text{inc}(c) \) is formed by composing

 \[
 \text{Maintain}(c) \mid \text{Maintain}(d); \text{Increment}(c) \mid \text{Maintain}(d)
 \]

 Each operation is preceded by a maintain phase to make sure that no time passed before we execute the operation.

Example

Example as timed automaton
Decidability and clock rates

Theorem
The emptiness problem is undecidable for 2-rate timed automata and rational coefficients.

Proof.
We can encode a counter machine as a timed automaton with 3 clocks at different rates. Suppose we have three clocks, one with rate 1 and two with rate 2. Then we can encode the values of two counters in the \(i\)-th machine configuration by the values of clocks \(x_1\) and \(x_2\) at accurate time \(i\): the counter value \(k\) is encoded by the clock value \(1/2^k\). The increment and decrement can be formed as before, but uses only the guards 1.

Model checking software

Software is usually a really detailed model of a process.
- Often, more than one task is performed by a program.
- It is not well-structured
- Works with lots of data.

Challenge
- Data increases state space, especially when stored.
- Control flow contains activities not relevant to the property
- Spurious distinctions
The Intuition of Model Checking

- Compute whether a system satisfies a certain behavioural property:
 - Is the system deadlock free?
 - When ever a packet is sent will it eventually be received?
- Unlike testing, all possible behaviours of a system are analysed
- Model checking is automatic if the system is finite state
 - Potential for being a push-button technology
 - Almost no expert knowledge required

Specifying properties

Temporal logic

- Express properties of event orderings in time
- “Always” when a packet is sent it will “eventually” be received

Linear time

- Every moment has a unique successor
- Infinite sequences (words)
- Linear-time temporal logic (LTL)

Branching time

- Every moment may have several successors
- Infinite trees
- Computation tree logic (CTL)

Safety and liveness

Safety properties

- Invariants, deadlocks, reachability, etc.
- Can be checked on finite traces
- “something bad never happens”

Liveness properties

- Fairness, response, etc.
- Can only be checked on infinite traces
- “something good will eventually happen”
Model checking

- Given a transition system $M = (S, I, \rightarrow, L)$ that represents a finite-state concurrent system and a temporal logic formula φ expressing some desired specification, find the set of states that satisfy φ:
 $$\{ s \in S \mid M, s \models \varphi \}$$
- Normally, some states of the concurrent system are designated as initial states. The system satisfies the specification provided all initial states are in the set. We then write $M \models \varphi$

Explicit state vs. symbolic model checking

Explicit state
- States are enumerated on-the-fly
- Forward-analysis
- Stores visited states in a hashtable

Symbolic
- Sets of states are manipulated at a time
- Typically a backwards analysis
- Transition relation encoded by BDDs

Characteristics
- Memory intensive
- Good for finding concurrency errors
- Can deal well with long executions
- Can handle dynamic creation of threads/objects
- Mostly used for software

Characteristics
- Can handle very large state spaces
- Not as good for asynchronous systems
- Cannot deal well with long executions
- Works best without dynamic thread/object creation
- Mostly used for hardware

Program model checking

Why analyse programs with model checkers?
- Designs and models of programs are hard to come by, but buggy programs are everywhere
- Testing is inadequate for complex programs (threads, pointers, objects, etc.)
- Static program analysis was already an established field, mostly in compiler optimisation and now also in verification

Problem

Most model checkers cannot deal with the features of modern programming languages
- Adapting programs to model checkers using translation and abstraction
- Bringing model checking to programs by improving algorithms to deal with them directly
Abstraction is the enabling technology

Program
void add(Object& o) {
 buffer[head++]=o;
 head %= size;
}

Model checker input

The need for abstraction

- Model checkers don’t take real “programs” as input
- Model checkers typically work on finite state systems
- Abstraction therefore solves two problems:
 - It allows model checkers to analyse a notation they could not before
 - Reduces the size of the state space to something manageable
- Abstraction comes in three flavours
 - Over-approximation more behaviour is displayed by the abstracted system than is present in the original
 - Under-approximation less behaviour is displayed by the abstracted system than is present in the original
 - Precise abstraction the same behaviour is displayed by both the abstracted and the original program

Remark
The term “behaviour” depends on what we observe!

Under-approximation

- Remove parts of the program deemed “irrelevant” to the property being checked
 - Restrict input values to [0, 10] rather than all integer values
 - Queue size of 3 instead of unbounded
- The abstraction of choice in the early days of program model checking
 - Used during the translation of code to a model checkers input language
 - Typically manual
 - No guarantee that the right behaviours are removed

Lemma
Let ϕ be a universal property (LTL formula or \forall-CTL formula). If $TS_1 \leq L TS_2$ and $TS_1 \not\models \phi$, then $TS_2 \not\models \phi$.

Observation
Under-approximation is good for systematic testing and finding bugs, but not for verifying correctness.

Cone of influence reduction

- A precise abstraction with respect to the property being checked
- May be computed automatically:
 1. Given a property ϕ, let V be the set of variables used in ϕ
 2. Mark all control-flow statements (if, while, goto) and add all variables read in these statements to V
 3. Mark all statements that write to variables in V
 4. Add all variables read in the marked statements to V
 5. Repeat at 3 until no new statement is marked
 6. Delete all unmarked statements
Over-approximations

- Maps sets of states in the original program to one state in the abstracted program
 - Reduces the number of states, but increases the number of possible transitions, and hence the number of behaviours
 - Can in rare cases lead to a precise abstraction
- Type-based abstractions, e.g. replace int by sign abstraction \{neg, pos, zero\}
- Predicate abstraction: Replace predicated in the program by Boolean variables, and replace each statement that modifies the validity of the predicate with a corresponding statement that modifies the Boolean.
- Automated (conservative) abstraction (bit-state hashing)
- Eliminating spurious errors is the big problem:
 - Abstract program has more behaviour, therefore when an error is found in the abstract program, is it also an error in the original program?
 - Most research focuses on the problem of eliminating spurious errors and finding counter examples in the original program. Keyword: abstraction

Bringing model checking to programs

- Allow model checkers to take modern programming languages as input
- Major hurdle is how to encode the state of the system efficiently
- Alternatively state-less model checking (no state encoding and storing)
- Almost exclusively explicit-state model checking
- Abstraction can still be used as well (source-to-source abstractions, slicing, ...)

Examples

- Remote agent (Lowry, Havelund, & Penix, 1997)
 - Translation from LISP to Promela
 - Heavy abstraction (essentially a remodelling)
 - 3 man months
- DEOS (1998/1999), see (Penix et al., 2005)
 - C++ to Promela (most effort in environment generation)
 - Limited abstraction (programmers produced sliced systems)
 - 3 man months
Semi-automatic translation

- Table-driven translation and abstraction
- User specifies code fragments in C and how to translate them to Promela (note: SPIN now accepts Promela with fragments of C)
- Translation is then automatic
- Advantages
 - Can be reused when program changes
 - Works well for programs with long development and only local changes

Fully automatic translation

- Advantage: No human intervention required
- Disadvantage: limited by capabilities of target system
- Examples:
 - Java PathFinder 1 (translates from Java to Promela)
 - JCAT (translates from Java to Promela)
 - Bandera (today: Bogor) (translates from Java to Promela, SMV)

Remark
An extension of SPIN that supports Process deletion is available and called dSPIN.

Partial-order reductions

- Reduce the number of interleavings of independent concurrent transitions

Basic ideas

- Independence: Independent transitions cannot disable nor enable each other. Enabled independent transitions are commutative.
- Partial-order reductions mostly apply during the on-the-fly construction of transition systems
- Based on a selective search principle: compute a subset of enabled transitions in a state to execute
 - ample sets (reduced transitions)
 - persistent sets (reduced states)
- See Chapter 8 of the book (Baier & Katoen, 2008)
Software model checking
Abstract interpretation

Structure of a software model checker

- Custom-made model checkers for programming languages with automatic abstraction at the source code level
- Automatic abstraction and translation based transformation to new "abstract" formalism for model checker
- Abstraction refinement mostly automated

Data abstraction

Problem
Programs use data types with possibly infinite domain (e.g., lists). Use data abstraction and abstract interpretation (ACM, 1977) to build a finite model.

Solutions
- Data type based abstractions:
 - For each data type define an abstract domain, e.g. sign abstraction for integers \(\{ \text{neg, zero, pos} \} \).
 - Replace all operations with corresponding abstract operations:
 - \(\text{add}(\text{pos}, \text{pos}) = \text{pos} \)
 - \(\text{sub}(\text{pos}, \text{pos}) = \text{pos} \mid \text{zero} \mid \text{neg} \)
 - \(\text{eq}(\text{pos}, \text{pos}) = \text{true} \mid \text{false} \)
 - Predicate abstraction (Graf & Saïdi, 1997): Create abstract state space from the predicates defined in the concrete system

Abstract interpretation and data type abstraction

Features of abstract interpretation
- Each data type has a concrete domain, e.g. int's is the integer numbers. The operations have their natural meaning.
- A mapping from the concrete domain to an abstract domain. Each operation is interpreted by an abstract operation on the abstract domain.
- Interpretation computes an over-approximation. Termination is guaranteed by a meet operator \(\sqcap \) and an extrapolation operator \(\triangledown \).

Abstract interpretation and model checking

- Abstract interpretation is a method to compute properties of a program based on data abstractions
- Additional constraints are placed on the relation between concrete and abstract domain:
 - Both must be partially ordered with least element \(\perp \) (also called lattice) (e.g., concrete integers are enriched by \(\perp \) with \(z \geq \perp \) for all \(z \in \mathbb{Z} \))
 - Abstract and concrete domain must form a Galois connection: There is a pair of functions \(\alpha : C \rightarrow A \) and \(\gamma : A \rightarrow C \) s.t. \(c\alpha \leq a \) iff \(c \leq ay \)
 - The partial order on the domains induces two additional operations \(\sqcap \) (supremum, join) and \(\sqcup \) (infimum, meet)
 - Loops are abstracted with help of the acceleration operator
 \(a\triangledown b = (a \sqcup b) \sqcup b \cdots \)
 - Abstract interpretation computes a safe over-approximation
 - Problem: choice of abstract domain. Shall we use intervals or signs to represent integers?
Infeasible counter examples

When over-approximating, we may have infeasible counter examples
- Abstraction refinement is used to refine the abstraction when an infeasible counter example is found
- This presupposes an ordered set of data abstractions
- When a counter example is infeasible, compute why it is infeasible and use the information to choose the next refined data abstraction
- Try again with the new abstraction

Soundness of abstraction

- Infeasible counter examples are the result of two problems:
 1. The data abstraction introduces more transitions, i.e. more non-determinism and new computations not possible in the original program
 2. The data abstraction does not preserve the property:
 \[\square (x \leq 5) \text{ is abstracted to } \square (x = \text{pos} \lor x = \text{zero} \lor x = \text{neg}) \]
 where the abstracted property is a tautology.
 - Must prove that the abstraction is sound, i.e.:
 \[M^\alpha \models \varphi^\alpha \text{ implies } M \models \varphi \]
- This topic has been worked out well by Dennis Dams in (Dams, 1996).

Predicate abstraction (Graf & Saïdi, 1997)

Idea
Create abstract state space from the predicates defined in the concrete system
- Identify all relevant predicates in the program.
- Replace each predicate by a Boolean variable.
- Replace each statement by a corresponding assignment to the boolean variables.

Example

```c
int x = 0;
int y = 0;
while (x==y) {
    x++;
    if (x>0) {
        ++y;
    }
}
```

```c
bool a = true;
bool b = false;
while (a) {
    a = false; b = true;
    if (b) {
        a=true;
    }
}
```

When verification fails
Use abstraction refinement to add more information. Difficult, because we need to guess additional Boolean variables that provide suitable distinctions.
Divide, abstract, and model-check

1. Huge systems must be suitable decomposed into different parts.
2. Since parts do not run individually, we need to have a model of the environment (corresponds to a precondition in Hoare logic).
3. Each part may still be too large for model checking, so the part needs to be abstracted. (Abstraction function and composition operators must be monotonic: $C \sqsubseteq A \implies C \circ P \sqsubseteq A \circ P$ and abstraction function must be sound!)
4. Model check properties of each part.
5. Use model checking or theorem proving to combine the results.

Software model checkers for Java

- Java Pathfinder (http://babelfish.arc.nasa.gov/trac/jpf)
- Bogor (http://bogor.projects.cis.ksu.edu/content/view/88/54/)

Software model checkers for C

- Verisoft (http://cm.bell-labs.com/who/god/verisoft/)
- CBMC (http://www.cprover.org/cbmc/) (only bounded model checking)
- BLAST (http://mtc.epfl.ch/software-tools/blast/index-epfl.php)
- SLAM (http://research.microsoft.com/en-us/projects/slam/) used as part of driver certification

Conclusion:
The road ahead
What did we look at?

- The model checking problem ($M \models \varphi$)
- Decidability guaranteed for finite state models M and decidable properties φ
- Models are represented in textual languages (SPIN, SMV) and graphical languages (UPPAAL)
- Models are interpreted by transition systems (including region transition systems) or binary decision diagrams (BDD)
- Properties are specified in subsets of CTL^* (LTL, CTL, \forall-CTL, TCTL)

Decision procedures

- Looked at basic model checking algorithms
 - Büchi-automata based for LTL
 - Symbolic for CTL

State-space reduction methods

- Partial-order reduction (automatic, sketched)
- Abstraction (simulation, bi-simulation, sketched)
- Data abstraction and abstract interpretation (mentioned)

Modelling and tools

Used all major, freely available model checkers

- **SPIN** on-the-fly, Büchi-automaton based, LTL
- **NuSMV** symbolic, BDD, CTL (and LTL)
- **UPPAAL** timed, TCTL
What did we not look at?

From the book, we did not look at

- Optimised versions of the model checking algorithms
- Correctness proofs for the model checking algorithms
- Computing (bi-)simulations automatically by partition refinement. See Section 6.x ff. of (Baier & Katoen, 2008).

Going beyond this lecture

- State-space reduction techniques
 - Symmetry reduction (Ip & Dill, 1996)
 - Delta-encoding (d’Amorim, Lauterburg, & Marinov, 2007)
- Model-checking stochastic and probabilistic properties
 - Very different from conventional model checking, because here we look at quantitative reasoning (results are probabilities) and not qualitative reasoning (results are “yes” or “no and counter example”)
 - See Chapter 9 of (Baier & Katoen, 2008).
- Hybrid systems (Alur et al., 1995)
 - Generalisation of timed systems, thus mostly undecidable problems
 - Important for understanding control systems
- The huge topic: Making it scale to real software systems

Bibliography I

Bibliography II

Bibliography III

Bibliography IV

Bibliography V

Bibliography VI

Bibliography VII

