Chapter 10

Verification and Validation of Simulation Models
Contents

- Model-Building, Verification, and Validation
- Verification of Simulation Models
- Calibration and Validation
Purpose & Overview

• The goal of the validation process is:
 • To produce a model that represents true behavior closely enough for decision-making purposes
 • To increase the model’s credibility to an acceptable level

• Validation is an integral part of model development:
 • **Verification**: building the model correctly, correctly implemented with good input and structure
 • **Validation**: building the correct model, an accurate representation of the real system

• Most methods are informal subjective comparisons while a few are formal statistical procedures
Modeling-Building, Verification & Validation
Modeling-Building, Verification & Validation

- Steps in Model-Building
 - Observing the real system and the interactions among their various components and of collecting data on their behavior
 - Construction of a conceptual model
 - Implementation of an operational model
Verification

- Purpose: ensure the conceptual model is reflected accurately in the computerized representation.
- Many common-sense suggestions, for example:
 - Have someone else check the model.
 - Make a flow diagram that includes each logically possible action a system can take when an event occurs.
 - Closely examine the model output for reasonableness under a variety of input parameter settings.
 - Print the input parameters at the end of the simulation, make sure they have not been changed inadvertently.
 - Make the operational model as self-documenting as possible.
 - If the operational model is animated, verify that what is seen in the animation imitates the actual system.
 - Use the debugger.
 - If possible use a graphical representation of the model.
Examination of Model Output for Reasonableness

- Two statistics that give a quick indication of model reasonableness are **current contents** and **total counts**
 - Current content: The number of items in each component of the system at a given time.
 - Total counts: Total number of items that have entered each component of the system by a given time.
- Compute certain long-run measures of performance, e.g. compute the long-run server utilization and compare to simulation results.
Examination of Model Output for Reasonableness

- A model of a complex network of queues consisting of many service centers.
 - If the current content grows in a more or less linear fashion as the simulation run time increases, it is likely that a queue is unstable.
 - If the total count for some subsystem is zero, indicates no items entered that subsystem, a highly suspect occurrence.
 - If the total and current count are equal to one, can indicate that an entity has captured a resource but never freed that resource.

![Diagram of a complex network of queues](image-url)
Other Important Tools

• Documentation
 • A means of clarifying the logic of a model and verifying its completeness.
 • Comment the operational model, definition of all variables and parameters.

• Use of a trace
 • A detailed printout of the state of the simulation model over time.
 • Can be very labor intensive if the programming language does not support statistic collection.
 • Labor can be reduced by a centralized tracing mechanism
 • In object-oriented simulation framework, trace support can be integrated into class hierarchy. New classes need only to add little for the trace support.
Trace: Example

- Simple queue from Chapter 2
- Trace over a time interval [0, 16]
- Allows the test of the results by pen-and-paper method

Definition of Variables:
- **CLOCK** = Simulation clock
- **EVTYP** = Event type (Start, Arrival, Departure, Stop)
- **NCUST** = Number of customers in system at time **CLOCK**
- **STATUS** = Status of server (1=busy, 0=idle)

State of System Just After the Named Event Occurs:

<table>
<thead>
<tr>
<th>CLOCK</th>
<th>EVTYP</th>
<th>NCUST</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Arrival</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Depart</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Arrival</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Arrival</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Depart</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

There is a customer, but the status is 0
Calibration and Validation
Calibration and Validation

- Validation: the overall process of comparing the model and its behavior to the real system.
- Calibration: the iterative process of comparing the model to the real system and making adjustments.
- Comparison of the model to real system
 - Subjective tests
 - People who are knowledgeable about the system
 - Objective tests
 - Requires data on the real system’s behavior and the output of the model
Calibration and Validation

• Danger during the calibration phase
 • Typically few data sets are available, in the worst case only one, and the model is only validated for these.
 • Solution: If possible collect new data sets

• No model is ever a perfect representation of the system
 • The modeler must weigh the possible, but not guaranteed, increase in model accuracy versus the cost of increased validation effort.

• Three-step approach for validation:
 • Build a model that has high face validity.
 • Validate model assumptions.
 • Compare the model input-output transformations with the real system’s data.
High Face Validity

- Ensure a high degree of realism:
 - Potential users should be involved in model construction from its conceptualization to its implementation.
- Sensitivity analysis can also be used to check a model’s face validity.
 - Example: In most queueing systems, if the arrival rate of customers were to increase, it would be expected that server utilization, queue length and delays would tend to increase.
 - For large-scale simulation models, there are many input variables and thus possibly many sensitivity tests.
 - Sometimes not possible to perform all of these tests, select the most critical ones.
Validate Model Assumptions

- General classes of model assumptions:
 - Structural assumptions: how the system operates.
 - Data assumptions: reliability of data and its statistical analysis.

- Bank example: customer queueing and service facility in a bank.
 - Structural assumptions
 - Customer waiting in one line versus many lines
 - Customers are served according FCFS versus priority
 - Data assumptions, e.g., interarrival time of customers, service times for commercial accounts.
 - Verify data reliability with bank managers
 - Test correlation and goodness of fit for data
Validate Input-Output Transformation

- **Goal:** Validate the model’s ability to predict future behavior
 - The only objective test of the model.
 - The structure of the model should be accurate enough to make good predictions for the range of input data sets of interest.
- **One possible approach:** use historical data that have been reserved for validation purposes only.
- **Criteria:** use the main responses of interest.
Bank Example

- Example: One drive-in window serviced by one teller, only one or two transactions are allowed.
- Data collection: 90 customers during 11 am to 1 pm.
 - Observed service times \(\{S_i, i = 1, 2, \ldots, 90\} \).
 - Observed interarrival times \(\{A_i, i = 1, 2, \ldots, 90\} \).
- Data analysis let to the conclusion that:
 - Interarrival times: exponentially distributed with rate \(\lambda = 45/\text{hour} \)
 - Service times: \(N(1.1, 0.2^2) \)

\[
\text{Input variables} \]

Prof. Dr. Mesut Güneş • Ch. 10 Verification and Validation of Simulation Models
Bank Example: The Black Box

- A model was developed in close consultation with bank management and employees
- Model assumptions were validated
- Resulting model is now viewed as a “black box”:

Input Variables

- Poisson arrivals
 \(\lambda = 45/hr: X_{11}, X_{12}, \ldots \)
- Services times
 \(N(D_2, 0.22): X_{21}, X_{22}, \ldots \)

\(D_1 = 1 \) (one teller)
\(D_2 = 1.1 \) min
(mean service time)
\(D_3 = 1 \) (one line)

Model “black box”

\(f(X,D) = Y \)

Model Output Variables, \(Y \)

Primary interest:
- \(Y_1 \) = teller’s utilization
- \(Y_2 \) = average delay
- \(Y_3 \) = maximum line length

Secondary interest:
- \(Y_4 \) = observed arrival rate
- \(Y_5 \) = average service time
- \(Y_6 \) = sample std. dev. of service times
- \(Y_7 \) = average length of time
Comparison with Real System Data

- Real system data are necessary for validation.
 - System responses should have been collected during the same time period (from 11am to 1pm on the same day.)
- Compare average delay from the model Y_2 with actual delay Z_2:
 - Average delay observed, $Z_2 = 4.3$ minutes, consider this to be the true mean value $\mu_0 = 4.3$.
 - When the model is run with generated random variates X_{1n} and X_{2n}, Y_2 should be close to Z_2.
Comparison with Real System Data

- Six statistically independent replications of the model, each of 2-hour duration, are run.

<table>
<thead>
<tr>
<th>Replication</th>
<th>Y_4 Arrivals/Hour</th>
<th>Y_5 Service Time [Minutes]</th>
<th>Y_2 Average Delay [Minutes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51.0</td>
<td>1.07</td>
<td>2.79</td>
</tr>
<tr>
<td>2</td>
<td>40.0</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>3</td>
<td>45.5</td>
<td>1.06</td>
<td>2.24</td>
</tr>
<tr>
<td>4</td>
<td>50.5</td>
<td>1.10</td>
<td>3.45</td>
</tr>
<tr>
<td>5</td>
<td>53.0</td>
<td>1.09</td>
<td>3.13</td>
</tr>
<tr>
<td>6</td>
<td>49.0</td>
<td>1.07</td>
<td>2.38</td>
</tr>
</tbody>
</table>

- Sample mean [Delay] 2.51
- Standard deviation [Delay] 0.82
Hypothesis Testing

- Compare the average delay from the model Y_2 with the actual delay Z_2

- Null hypothesis testing: evaluate whether the simulation and the real system are the same (w.r.t. output measures):

$$H_0: E(Y_2) = 4.3 \text{ minutes}$$

$$H_1: E(Y_2) \neq 4.3 \text{ minutes}$$

- If H_0 is not rejected, then, there is no reason to consider the model invalid

- If H_0 is rejected, the current version of the model is rejected, and the modeler needs to improve the model
Hypothesis Testing

- Conduct the t test:
 - Chose level of significance ($\alpha = 0.05$) and sample size ($n = 6$).
 - Compute the sample mean and sample standard deviation over the n replications:

 $\overline{Y}_2 = \frac{1}{n} \sum_{i=1}^{n} Y_{2i} = 2.51$ minutes

 $S = \sqrt{\frac{\sum_{i=1}^{n} (Y_{2i} - \overline{Y}_2)^2}{n-1}} = 0.82$ minutes

- Compute test statistics:

 $|t_0| = \left| \frac{\overline{Y}_2 - \mu_0}{S / \sqrt{n}} \right| = \left| \frac{2.51 - 4.3}{0.82 / \sqrt{6}} \right| = 5.34 > t_{critical} = 2.571$ (for a 2-sided test)

- Hence, reject H_0.
 - Conclude that the model is inadequate.
 - Check: the assumptions justifying a t test, that the observations (Y_{2i}) are normally and independently distributed.
Hypothesis Testing

• Similarly, compare the model output with the observed output for other measures:

\[Y_4 \leftrightarrow Z_4, \ Y_5 \leftrightarrow Z_5, \ and \ Y_6 \leftrightarrow Z_6 \]
Type II Error

• For validation, the power of the test is:
 • Probability(detecting an invalid model) = 1 − β
 • β = P(Type II error) = P(failing to reject $H_0 \mid H_1$ is true)
 • Consider failure to reject H_0 as a strong conclusion, the modeler would want β to be small.
 • Value of β depends on:
 • Sample size, n
 • The true difference, δ, between $E(Y)$ and μ:
 $$\delta = \frac{|E(Y) - \mu|}{\sigma}$$

• In general, the best approach to control β error is:
 • Specify the critical difference, δ.
 • Choose a sample size, n, by making use of the operating characteristics curve (OC curve).
Type II Error

- Operating characteristics curve (OC curve).
- Graphs of the probability of a Type II Error $\beta(\delta)$ versus δ for a given sample size n.

For the same error probability with smaller difference the required sample size increases!
Type I and II Error

- **Type I error (α):**
 - Error of rejecting a valid model.
 - Controlled by specifying a small level of significance α.
- **Type II error (β):**
 - Error of accepting a model as valid when it is invalid.
 - Controlled by specifying critical difference and find the n.
- For a fixed sample size n, increasing α will decrease β.

<table>
<thead>
<tr>
<th>Statistical Terminology</th>
<th>Modeling Terminology</th>
<th>Associated Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I: rejecting H_0 when H_0 is true</td>
<td>Rejecting a valid model</td>
<td>α</td>
</tr>
<tr>
<td>Type II: failure to reject H_0 when H_1 is true</td>
<td>Failure to reject an invalid model</td>
<td>β</td>
</tr>
</tbody>
</table>
Confidence Interval Testing

- Confidence interval testing: evaluate whether the simulation and the real system performance measures are close enough.
- If Y is the simulation output, and $\mu = E(Y)$
- The confidence interval (CI) for μ is:

$$
\left[\bar{Y} - t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}, \bar{Y} + t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}} \right]
$$
Confidence Interval Testing

- Validating the model:
 - Suppose the CI does not contain μ_0:
 - If the best-case error is $> \varepsilon$, model needs to be refined.
 - If the worst-case error is $\leq \varepsilon$, accept the model.
 - If best-case error is $\leq \varepsilon$, additional replications are necessary.
 - Suppose the CI contains μ_0:
 - If either the best-case or worst-case error is $> \varepsilon$, additional replications are necessary.
 - If the worst-case error is $\leq \varepsilon$, accept the model.

ε is a difference value chosen by the analyst, that is small enough to allow valid decisions to be based on simulations!

Prof. Dr. Mesut Güneş • Ch. 10 Verification and Validation of Simulation Models
Confidence Interval Testing

- Bank example: $\mu_0 = 4.3$, and “close enough” is $\varepsilon = 1$ minute of expected customer delay.
 - A 95% confidence interval, based on the 6 replications is $[1.65, 3.37]$ because:

$$\bar{Y} \pm t_{0.025, 5} \frac{S}{\sqrt{n}}$$

$$2.51 \pm 2.571 \frac{0.82}{\sqrt{6}}$$

- $\mu_0 = 4.3$ falls outside the confidence interval,
 - the best case $|3.37 - 4.3| = 0.93 < 1$, but
 - the worst case $|1.65 - 4.3| = 2.65 > 1$

- Additional replications are needed to reach a decision.
Using Historical Output Data

- An alternative to generating input data:
 - Use the actual historical record.
 - Drive the simulation model with the historical record and then compare model output to system data.
 - In the bank example, use the recorded interarrival and service times for the customers \(\{A_n, S_n, n = 1,2,\ldots\} \).

- Procedure and validation process: similar to the approach used for system generated input data.
Using a Turing Test

- Use in addition to statistical test, or when no statistical test is readily applicable.

Turing Test
Described by Alan Turing in 1950. A human judge is involved in a natural language conversation with a human and a machine. If the judge cannot reliably tell which of the partners is the machine, then the machine has passed the test.

- Utilize persons’ knowledge about the system.
- For example:
 - Present 10 system performance reports to a manager of the system. Five of them are from the real system and the rest are “fake” reports based on simulation output data.
 - If the person identifies a substantial number of the fake reports, interview the person to get information for model improvement.
 - If the person cannot distinguish between fake and real reports with consistency, conclude that the test gives no evidence of model inadequacy.
Summary

- Model validation is essential:
 - Model verification
 - Calibration and validation
 - Conceptual validation
- Best to compare system data to model data, and make comparison using a wide variety of techniques.
- Some techniques that we covered:
 - Insure high face validity by consulting knowledgeable persons.
 - Conduct simple statistical tests on assumed distributional forms.
 - Conduct a Turing test.
 - Compare model output to system output by statistical tests.