Chapter 8

Queueing Models
Contents

• Characteristics of Queueing Systems
• Queueing Notation – Kendall Notation
• Long-run Measures of Performance of Queueing Systems
• Steady-state Behavior of Infinite-Population Markovian Models
• Steady-state Behavior of Finite-Population Models
• Networks of Queues
Purpose

- Simulation is often used in the analysis of queueing models.
- A simple but typical queueing model

Queueing models provide the analyst with a powerful tool for designing and evaluating the performance of queueing systems.

Typical measures of system performance
- Server utilization, length of waiting lines, and delays of customers
- For relatively simple systems: compute mathematically
- For realistic models of complex systems: simulation is usually required
Outline

- Discuss some well-known models
 - Not development of queueing theory, for this see other class!

- We will deal with
 - General characteristics of queues
 - Meanings and relationships of important performance measures
 - Estimation of mean measures of performance
 - Effect of varying input parameters
 - Mathematical solutions of some basic queueing models
Characteristics of Queueing Systems
Characteristics of Queueing Systems

- Key elements of queueing systems
 - Customer: refers to anything that arrives at a facility and requires service, e.g., people, machines, trucks, emails, packets, frames.
 - Server: refers to any resource that provides the requested service, e.g., repairpersons, machines, runways at airport, host, switch, router, disk drive, algorithm.

<table>
<thead>
<tr>
<th>System</th>
<th>Customers</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reception desk</td>
<td>People</td>
<td>Receptionist</td>
</tr>
<tr>
<td>Hospital</td>
<td>Patients</td>
<td>Nurses</td>
</tr>
<tr>
<td>Airport</td>
<td>Airplanes</td>
<td>Runway</td>
</tr>
<tr>
<td>Production line</td>
<td>Cases</td>
<td>Case-packer</td>
</tr>
<tr>
<td>Road network</td>
<td>Cars</td>
<td>Traffic light</td>
</tr>
<tr>
<td>Grocery</td>
<td>Shoppers</td>
<td>Checkout station</td>
</tr>
<tr>
<td>Computer</td>
<td>Jobs</td>
<td>CPU, disk, CD</td>
</tr>
<tr>
<td>Network</td>
<td>Packets</td>
<td>Router</td>
</tr>
</tbody>
</table>
Calling Population

- Calling population: the population of potential customers, may be assumed to be **finite** or **infinite**.

 - Finite population model: if arrival rate depends on the number of customers being served and waiting, e.g., model of one corporate jet, if it is being repaired, the repair arrival rate becomes zero.

 \[n \quad n-1 \]

 - Infinite population model: if arrival rate is not affected by the number of customers being served and waiting, e.g., systems with large population of potential customers.

 \[\infty \]
System Capacity

- System Capacity: a limit on the number of customers that may be in the waiting line or system.
 - Limited capacity, e.g., an automatic car wash only has room for 10 cars to wait in line to enter the mechanism.
 - If system is full no customers are accepted anymore

- Unlimited capacity, e.g., concert ticket sales with no limit on the number of people allowed to wait to purchase tickets.
Arrival Process

- For infinite-population models:
 - In terms of interarrival times of successive customers.

- Arrival types:
 - Random arrivals: interarrival times usually characterized by a probability distribution.
 - Most important model: Poisson arrival process (with rate λ), where a time represents the interarrival time between customer $n-1$ and customer n, and is exponentially distributed (with mean $1/\lambda$).
 - Scheduled arrivals: interarrival times can be constant or constant plus or minus a small random amount to represent early or late arrivals.
 - Example: patients to a physician or scheduled airline flight arrivals to an airport

- At least one customer is assumed to always be present, so the server is never idle, e.g., sufficient raw material for a machine.
Arrival Process

- For **finite-population** models:
 - Customer is **pending** when the customer is outside the queueing system, e.g., machine-repair problem: a machine is “pending” when it is operating, it becomes “not pending” the instant it demands service from the repairman.
 - **Runtime** of a customer is the length of time from departure from the queueing system until that customer’s next arrival to the queue, e.g., machine-repair problem, machines are customers and a runtime is time to failure (TTF).
 - Let $A_1^{(i)}, A_2^{(i)}, \ldots$ be the successive runtimes of customer i, and $S_1^{(i)}, S_2^{(i)}$ be the corresponding successive system times:
Queue Behavior and Queue Discipline

- Queue behavior: the actions of customers while in a queue waiting for service to begin, for example:
 - Balk: leave when they see that the line is too long
 - Renege: leave after being in the line when its moving too slowly
 - Jockey: move from one line to a shorter line

- Queue discipline: the logical ordering of customers in a queue that determines which customer is chosen for service when a server becomes free, for example:
 - First-in-first-out (FIFO)
 - Last-in-first-out (LIFO)
 - Service in random order (SIRO)
 - Shortest processing time first (SPT)
 - Service according to priority (PR)
Service Times and Service Mechanism

• Service times of successive arrivals are denoted by S_1, S_2, S_3.
 • May be constant or random.
 • $\{S_1, S_2, S_3, \ldots\}$ is usually characterized as a sequence of independent and identically distributed (IID) random variables, e.g.,
 • Exponential, Weibull, Gamma, Lognormal, and Truncated normal distribution.

• A queueing system consists of a number of service centers and interconnected queues.
 • Each service center consists of some number of servers (c) working in parallel, upon getting to the head of the line, a customer takes the 1^{st} available server.
Queuing System: Example 1

- Example: consider a discount warehouse where customers may
 - serve themselves before paying at the cashier (service center 1) or
 - served by a clerk (service center 2)
Queuing System: Example 1

- Wait for one of the three clerks:

- Batch service (a server serving several customers simultaneously), or customer requires several servers simultaneously.
Queuing System: Example 1

Service center 1

Queue 1

Arrivals

Queue 2

Service center 2

Server 1

Server 2

Server 3

Queue 3

Service center 3

Departures

$c = \infty$

(self-service)

$c = 1$

(cashier)
Queuing System: Example 2

- Candy production line
 - Three machines separated by buffers
 - Buffers have capacity of 1000 candies

Assumption: Always sufficient supply of raw material.
Queueing Notation
The Kendall Notation
Queueing Notation: Kendall Notation

- A notation system for parallel server queues: $A/B/c/N/K$
 - A represents the interarrival-time distribution
 - B represents the service-time distribution
 - c represents the number of parallel servers
 - N represents the system capacity
 - K represents the size of the calling population
 - N, K are usually dropped, if they are infinity
- Common symbols for A and B
 - M Markov, exponential distribution
 - D Constant, deterministic
 - E_k Erlang distribution of order k
 - H Hyperexponential distribution
 - G General, arbitrary
- Examples
 - $M/M/1/\infty/\infty$ same as $M/M/1$: Single-server with unlimited capacity and call-population. Interarrival and service times are exponentially distributed
 - $G/G/1/5/5$: Single-server with capacity 5 and call-population 5.
 - $M/M/5/20/1500/FIFO$: Five parallel server with capacity 20, call-population 1500, and service discipline FIFO
Queueing Notation

- General performance measures of queueing systems:
 - P_n: steady-state probability of having n customers in system
 - $P_n(t)$: probability of n customers in system at time t
 - λ: arrival rate
 - λ_e: effective arrival rate
 - μ: service rate of one server
 - ρ: server utilization
 - A_n: interarrival time between customers $n-1$ and n
 - S_n: service time of the n-th arriving customer
 - W_n: total time spent in system by the n-th customer
 - W_n^Q: total time spent in the waiting line by customer n
 - $L(t)$: the number of customers in system at time t
 - $L_Q(t)$: the number of customers in queue at time t
 - L: long-run time-average number of customers in system
 - L_Q: long-run time-average number of customers in queue
 - W: long-run average time spent in system per customer
 - w_Q: long-run average time spent in queue per customer
Long-run Measures of Performance of Queueing Systems
Long-run Measures of Performance of Queueing Systems

• Primary long-run measures of performance are
 • L long-run time-average number of customers in system
 • L_Q long-run time-average number of customers in queue
 • W long-run average time spent in system per customer
 • w_Q long-run average time spent in queue per customer
 • ρ server utilization

• Other measures of interest are
 • Long-run proportion of customers who are delayed longer than t_0 time units
 • Long-run proportion of customers turned away because of capacity constraints
 • Long-run proportion of time the waiting line contains more than k_0 customers
Long-run Measures of Performance of Queueing Systems

- Goal of this section
 - Major measures of performance for a general $G/G/c/N/K$ queueing system
 - How these measures can be estimated from simulation runs

- Two types of estimators
 - Sample average
 - Time-integrated sample average
Time-Average Number in System L

Number of customers in the system

Time

T_0 T_1 T_2 T_3

0 2 4 6 8 10 12 14 16 18 $T = 20$

1 2 3
Time-Average Number in System L

- Consider a queueing system over a period of time T.
 - Let T_i denote the total time during $[0,T]$ in which the system contained exactly i customers, the time-weighted-average number in the system is defined by:
 \[
 \hat{L} = \frac{1}{T} \sum_{i=0}^{\infty} i T_i = \sum_{i=0}^{\infty} i \left(\frac{T_i}{T} \right)
 \]

- Consider the total area under the function is $L(t)$, then,
 \[
 \hat{L} = \frac{1}{T} \sum_{i=0}^{\infty} i T_i = \frac{1}{T} \int_0^T L(t) dt
 \]

- The long-run time-average number of customers in system, with probability 1:
 \[
 \hat{L} = \frac{1}{T} \int_0^T L(t) dt \xrightarrow{T \to \infty} L
 \]
Time-Average Number in System L

Number of customers in the system

$L(t)$

t
Time-Average Number in System L

- The time-weighted-average number in queue is:

$$\hat{L}_Q = \frac{1}{T} \sum_{i=0}^{\infty} i T_i^Q = \frac{1}{T} \int_0^T L_Q(t) dt \xrightarrow{T \to \infty} L_Q$$

- $G/G/1/N/K$ example: consider the results from the queueing system ($N \geq 4, K \geq 3$).

$$\hat{L} = \frac{[0(3) + 1(12) + 2(4) + 3(1)]}{20} = \frac{23}{20} = 1.15 \text{ customers}$$
Time-Average Number in System L

\[L_Q(t) = \begin{cases}
0, & \text{if } L(t) = 0 \\
L(t) - 1, & \text{if } L(t) \geq 1
\end{cases} \]

\[\hat{L}_Q = \frac{0(15) + 1(4) + 2(1)}{20} = 0.3 \text{ customers} \]
Average Time Spent in System Per Customer w

- The average time spent in system per customer, called the average system time, is:

$$\hat{w} = \frac{1}{N} \sum_{i=1}^{N} W_i$$

where W_1, W_2, \ldots, W_N are the individual times that each of the N customers spend in the system during $[0,T]$.

- For stable systems: $\hat{w} \to w$ as $N \to \infty$

- If the system under consideration is the queue alone:

$$\hat{w}_Q = \frac{1}{N} \sum_{i=1}^{N} W_i^Q \xrightarrow{N \to \infty} w_Q$$
Average Time Spent in System Per Customer w

- $G/G/1/N/K$ example (cont.):
 - The average system time is ($W_i = D_i - A_i$)

$$\hat{w} = \frac{W_1 + W_2 + \ldots + W_5}{5} = \frac{2 + (8 - 3) + (10 - 5) + (14 - 7) + (20 - 16)}{5} = 4.6 \text{ time units}$$

- The average queuing time is

$$\hat{w}_Q = \frac{0 + 0 + 3 + 3 + 0}{5} = 1.2 \text{ time units}$$
The Conservation Equation or Little’s Law
The Conservation Equation: Little’s Law

- One of the most common theorems in queueing theory
- Mean number of customers in system
- Conservation equation (a.k.a. Little’s law)

\[
\text{average number in system} = \text{arrival rate} \times \text{average system time}
\]
The Conservation Equation: Little’s Law

- Conservation equation (a.k.a. Little’s law)

\[\hat{L} = \hat{\lambda}\hat{w} \]

- Holds for almost all queueing systems or subsystems (regardless of the number of servers, the queue discipline, or other special circumstances).

- \(G/G/1/N/K \) example (cont.): On average, one arrival every 4 time units and each arrival spends 4.6 time units in the system. Hence, at an arbitrary point in time, there are \((1/4)(4.6) = 1.15 \) customers present on average.
Server Utilization

- Definition: the proportion of time that a server is busy.
 - Observed server utilization, $\hat{\rho}$, is defined over a specified time interval $[0,T]$.
 - Long-run server utilization is ρ.
 - For systems with long-run stability: $\hat{\rho} \to \rho$ as $T \to \infty$
Server Utilization

- For $G/G/1/\infty/\infty$ queues:
 - Any single-server queueing system with
 - average arrival rate λ customers per time unit,
 - average service time $E(S) = 1/\mu$ time units, and
 - infinite queue capacity and calling population.
 - Conservation equation, $L = \lambda w$, can be applied.
 - For a stable system, the average arrival rate to the server, λ_s, must be identical to λ.
 - The average number of customers in the server is:

$$\hat{L}_s = \frac{1}{T} \int_0^T (L(t) - L_Q(t))dt = \frac{T - T_0}{T}$$
Server Utilization

- In general, for a single-server queue:

\[\hat{L}_s = \hat{\rho} \xrightarrow{T \to \infty} L_s = \rho \]

and

\[\rho = \lambda \cdot E(s) = \frac{\lambda}{\mu} \]

- For a single-server stable queue: \(\rho = \frac{\lambda}{\mu} < 1 \)

- For an unstable queue (\(\lambda > \mu \)), long-run server utilization is 1.
Server Utilization

- For $G/G/c/\infty/\infty$ queues:
 - A system with c identical servers in parallel.
 - If an arriving customer finds more than one server idle, the customer chooses a server without favoring any particular server.
 - For systems in statistical equilibrium, the average number of busy servers, L_s, is:
 \[L_s = \lambda E(S) = \frac{\lambda}{\mu} \]
 - Clearly $0 \leq L_s \leq c$
 - The long-run average server utilization is:
 \[\rho = \frac{L_s}{c} = \frac{\lambda}{c\mu}, \quad \text{where } \lambda < c\mu \text{ for stable systems} \]
Server Utilization and System Performance

- System performance varies widely for a given utilization ρ.
 - For example, a $D/D/1$ queue where $E(A) = 1/\lambda$ and $E(S) = 1/\mu$, where:

 $$ L = \rho = \frac{\lambda}{\mu}, \quad w = E(S) = \frac{1}{\mu}, \quad L_Q = W_Q = 0 $$

- By varying λ and μ, server utilization can assume any value between 0 and 1.

- In general, variability of interarrival and service times causes lines to fluctuate in length.
Server Utilization and System Performance

- Example: A physician who schedules patients every 10 minutes and spends S_i minutes with the i-th patient:

$$S_i = \begin{cases}
9 \text{ minutes with probability 0.9} \\
12 \text{ minutes with probability 0.1}
\end{cases}$$

- Consider the system is simulated with service times: $S_1 = 9$, $S_2 = 12$, $S_3 = 9$, $S_4 = 9$, $S_5 = 9$, ...

- The system becomes:

- Arrivals are deterministic:

$$A_1 = A_2 = \ldots = \lambda^{-1} = 10$$

- Services are stochastic
 - $E(S_i) = 9.3$ min
 - $V(S_0) = 0.81$ min2
 - $\sigma = 0.9$ min

- The occurrence of a relatively long service time ($S_2 = 12$) causes a waiting line to form temporarily.

- The system becomes:

- On average, the physician's utilization is

$$\rho = \lambda/\mu = 0.93 < 1$$
Costs in Queueing Problems

- Costs can be associated with various aspects of the waiting line or servers:
 - System incurs a cost for each customer in the queue, say at a rate of $10 per hour per customer.
 - The average cost per customer is:
 \[\sum_{j=1}^{N} \frac{10 \cdot W_{j}^{Q}}{N} = 10 \cdot \hat{w}_{Q} \]
 - If \(\hat{\lambda} \) customers per hour arrive (on average), the average cost per hour is:
 \[\left(\frac{\hat{\lambda} \text{ customer}}{\text{hour}} \right) \left(\frac{10 \cdot \hat{w}_{Q}}{\text{customer}} \right) = 10 \cdot \hat{\lambda} \cdot \hat{w}_{Q} = \frac{10 \cdot \hat{L}_{Q}}{\text{hour}} \]
 - Server may also impose costs on the system, if a group of \(c \) parallel servers (\(1 \leq c \leq \infty \)) have utilization \(\rho \), each server imposes a cost of $5 per hour while busy.
 - The total server cost is: $5 \cdot c \cdot \rho
Steady-state Behavior of Infinite-Population Markovian Models
Steady-State Behavior of Markovian Models

- Markovian models:
 - Exponential-distributed arrival process (mean arrival rate $= 1/\lambda$).
 - Service times may be exponentially (M) or arbitrary (G) distributed.
 - Queue discipline is FIFO.
 - A queueing system is in statistical equilibrium if the probability that the system is in a given state is not time dependent:

$$P(L(t) = n) = P_n(t) = P_n$$

- Mathematical models in this chapter can be used to obtain approximate results even when the model assumptions do not strictly hold, as a rough guide.
- Simulation can be used for more refined analysis, more faithful representation for complex systems.
Steady-State Behavior of Markovian Models

- Properties of processes with statistical equilibrium
 - The state of statistical equilibrium is reached from any starting state.
 - The process remains in statistical equilibrium once it has reached it.
Steady-State Behavior of Markovian Models

- For the simple model studied in this chapter, the steady-state parameter, L, the time-average number of customers in the system is:

$$L = \sum_{n=0}^{\infty} nP_n$$

- Apply Little’s equation, $L = \lambda w$, to the whole system and to the queue alone:

$$w = \frac{L}{\lambda}, \quad w_Q = w - \frac{1}{\mu}, \quad L_Q = \lambda w_Q$$

- $G/G/c/\infty/\infty$ example: to have a statistical equilibrium, a necessary and sufficient condition is:

$$\rho = \frac{\lambda}{c\mu} < 1$$
M/G/1 Queues

- Single-server queues with Poisson arrivals and unlimited capacity.
- Suppose service times have mean $1/\mu$ and variance σ^2 and $\rho = \lambda / \mu < 1$, the steady-state parameters of $M/G/1$ queue:

\[
\begin{align*}
\rho &= \frac{\lambda}{\mu} \\
P_0 &= 1 - \rho \\
L &= \rho + \frac{\rho^2(1 + \sigma^2 \mu^2)}{2(1 - \rho)} \\
w &= \frac{1}{\mu} + \frac{\lambda(1/\mu^2 + \sigma^2)}{2(1 - \rho)} \\
L_Q &= \frac{\rho^2(1 + \sigma^2 \mu^2)}{2(1 - \rho)} \\
w_Q &= \frac{\lambda(1/\mu^2 + \sigma^2)}{2(1 - \rho)}
\end{align*}
\]

The particular distribution is not known!

- ρ: server utilization
- P_0: probability of empty system
- L: long-run time-average number of customers in system
- w: long-run average time spent in system per customer
- L_Q: long-run time-average number of customers in queue
- w_Q: long-run average time spent in queue per customer
M/G/1 Queues

• There are no simple expressions for the steady-state probabilities P_0, P_1, P_2, \ldots
• $L - L_Q = \rho$ is the time-average number of customers being served.
• Average length of queue, L_Q, can be rewritten as:

$$L_Q = \frac{\rho^2}{2(1 - \rho)} + \frac{\lambda^2 \sigma^2}{2(1 - \rho)}$$

• If λ and μ are held constant, L_Q depends on the variability, σ^2, of the service times.
M/G/1 Queues

- Example: Two workers competing for a job, Able claims to be faster than Baker on average, but Baker claims to be more consistent,
 - Poisson arrivals at rate $\lambda = 2$ per hour (1/30 per minute).
 - Able: $1/\mu = 24$ minutes and $\sigma^2 = 20^2 = 400$ minutes2:
 \[
 L_Q = \frac{(1/30)^2[24^2 + 400]}{2(1 - 4/5)} = 2.711 \text{ customers}
 \]
 - The proportion of arrivals who find Able idle and thus experience no delay is $P_0 = 1 - \rho = 1/5 = 20\%$.

- Baker: $1/\mu = 25$ minutes and $\sigma^2 = 2^2 = 4$ minutes2:
 \[
 L_Q = \frac{(1/30)^2[25^2 + 4]}{2(1 - 5/6)} = 2.097 \text{ customers}
 \]
 - The proportion of arrivals who find Baker idle and thus experience no delay is $P_0 = 1 - \rho = 1/6 = 16.7\%$.

- Although working faster on average, Able’s greater service variability results in an average queue length about 30% greater than Baker’s.
M/M/1 Queues

- Suppose the service times in an \(M/G/1 \) queue are exponentially distributed with mean \(1/\mu \), then the variance is \(\sigma^2 = 1/\mu^2 \).
- \(M/M/1 \) queue is a useful approximate model when service times have standard deviation approximately equal to their means.
- The steady-state parameters

\[
\rho = \frac{\lambda}{\mu} \\
P_n = (1-\rho)\rho^n \\
L = \frac{\lambda}{\mu-\lambda} = \frac{\rho}{1-\rho} \\
w = \frac{1}{\mu-\lambda} = \frac{1}{\mu(1-\rho)} \\
L_Q = \frac{\lambda^2}{\mu(\mu-\lambda)} = \frac{\rho^2}{1-\rho} \\
w_Q = \frac{\lambda}{\mu(\mu-\lambda)} = \frac{\rho}{\mu(1-\rho)}
\]

- \(\rho \): server utilization
- \(P_0 \): probability of empty system
- \(L \): long-run time-average number of customers in system
- \(w \): long-run average time spent in system per customer
- \(L_Q \): long-run time-average number of customers in queue
- \(w_Q \): long-run average time spent in queue per customer
M/M/1 Queues

- Single-chair unisex hair-styling shop
 - Interarrival and service times are exponentially distributed
 - $\lambda = 2$ customers/hour and $\mu = 3$ customers/hour

\[
\rho = \frac{\lambda}{\mu} = \frac{2}{3}
\]
\[
P_0 = 1 - \rho = \frac{1}{3}
\]
\[
P_1 = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^1 = \frac{2}{9}
\]
\[
P_2 = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^2 = \frac{4}{27}
\]
\[
P_{\geq 4} = 1 - \sum_{n=0}^{3} P_n = \frac{16}{81}
\]

\[
L = \frac{\lambda}{\mu - \lambda} = \frac{2}{3 - 2} = 2 \text{ Customers}
\]
\[
w = \frac{L}{\lambda} = \frac{2}{2} = 1 \text{ hour}
\]
\[
w_Q = w - \frac{1}{\mu} = 1 - \frac{1}{3} = \frac{2}{3} \text{ hour}
\]
\[
L_Q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{4}{3(3 - 2)} = \frac{4}{3} \text{ Customers}
\]
\[
L = L_Q + \frac{\lambda}{\mu} = \frac{4}{3} + \frac{2}{3} = 2 \text{ Customers}
\]
M/M/1 Queues

- Example: $M/M/1$ queue with service rate $\mu = 10$ customers per hour.
 - Consider how L and w increase as arrival rate, λ, increases from 5 to 8.64 by increments of 20%.
 - If $\lambda/\mu \geq 1$, waiting lines tend to continually grow in length.
 - Increase in average system time (w) and average number in system (L) is highly nonlinear as a function of ρ.

<table>
<thead>
<tr>
<th>λ</th>
<th>5</th>
<th>6</th>
<th>7.2</th>
<th>8.64</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>0.5</td>
<td>0.6</td>
<td>0.72</td>
<td>0.864</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>1.0</td>
<td>1.5</td>
<td>2.57</td>
<td>6.35</td>
<td>∞</td>
</tr>
<tr>
<td>w</td>
<td>0.2</td>
<td>0.25</td>
<td>0.36</td>
<td>0.73</td>
<td>∞</td>
</tr>
</tbody>
</table>
Effect of Utilization and Service Variability

• For almost all queues, if lines are too long, they can be reduced by decreasing server utilization (ρ) or by decreasing the service time variability (σ^2).

• A measure of the variability of a distribution:
 • coefficient of variation (cv):

$$ (cv)^2 = \frac{V(X)}{[E(X)]^2} $$

• The larger cv is, the more variable is the distribution relative to its expected value

• For exponential service times with rate μ
 • $E(X) = 1/\mu$
 • $V(X) = 1/\mu^2$
 $\Rightarrow cv = 1$
Effect of Utilization and Service Variability

- Consider L_Q for any $M/G/1$ queue:

$$L_Q = \frac{\rho^2 (1 + \sigma^2 \mu^2)}{2(1 - \rho)} \left(\rho^2 \left(1 + (cv)^2\right) \right)$$

For any $M/G/1$ queue:

$$(cv)^2 = \frac{\sigma^2}{(1/\mu)^2} = \sigma^2 \mu^2$$
Multiserver Queue: $M/M/c$

- $M/M/c/\infty/\infty$ queue: c servers operating in parallel
 - Arrival process is poisson with rate λ
 - Each server has an independent and identical exponential service-time distribution, with mean $1/\mu$.
 - To achieve statistical equilibrium, the offered load (λ/μ) must satisfy $\lambda/\mu < c$, where $\lambda/(c\mu) = \rho$ is the server utilization.
Multiserver Queue: $M/M/c$

- The steady-state parameters for $M/M/c$

\[
\rho = \frac{\lambda}{c\mu}
\]

\[
P_0 = \left[\sum_{n=0}^{c-1} \frac{(\frac{\lambda}{\mu})^n}{n!} \right]^{-1}
\]

\[
P(L(\infty) \geq c) = \frac{(cp)^c P_0}{c! (1 - \rho)}
\]

\[
L = c\rho + \frac{(cp)^c P_0}{c(c!)^2 (1 - \rho)^2} = c\rho + \rho \cdot P(L(\infty) \geq c)
\]

\[
w = \frac{L}{\lambda}
\]

\[
L_0 = \frac{\rho \cdot P(L(\infty) \geq c)}{1 - \rho}
\]

\[
L - L_0 = c\rho
\]
Multiserver Queue: $M/M/c$

Probability of empty system

log scale on y axis

Probability of empty system

Study-state probability of zero customers in queueing system

P_0

Utilization factor

$\rho = \frac{\lambda}{c\mu}$
Multiserver Queue: $M/M/c$

- Probability of empty system
- Number of customers in system
Multiserver Queue: Common Models

- Other common multiserver queueing models

\[L_Q = \left(\frac{\rho^2}{1 - \rho} \right) \left(\frac{1 + (cv)^2}{2} \right) \]

- \(M/G/c/\infty \): general service times and \(c \) parallel server. The parameters can be approximated from those of the \(M/M/c/\infty/\infty \) model.
- \(M/G/\infty \): general service times and infinite number of servers.
- \(M/M/c/N/\infty \): service times are exponentially distributed at rate \(\mu \) and \(c \) servers where the total system capacity is \(N \geq c \) customer. When an arrival occurs and the system is full, that arrival is turned away.
Multiserver Queue: $M/G/\infty$

- $M/G/\infty$: general service times and infinite number of servers
 - customer is its own server
 - service capacity far exceeds service demand
 - when we want to know how many servers are required so that customers are rarely delayed

\[
P_n = e^{-\frac{\lambda}{\mu}} \frac{\left(\frac{\lambda}{\mu}\right)^n}{n!}, n = 0,1,\ldots
\]

\[
P_0 = e^{-\frac{\lambda}{\mu}}
\]

\[
w = \frac{1}{\mu}
\]

\[
w_Q = 0
\]

\[
L = \frac{\lambda}{\mu}
\]

\[
L_Q = 0
\]
Multiserver Queue: $M/G/\infty$

- How many users can be logged in simultaneously in a computer system
 - Customers log on with rate $\lambda = 500$ per hour
 - Stay connected in average for $1/\mu = 180$ minutes = 3 hours
 - For planning purposes it is pretended that the simultaneous logged in users is infinite
 - Expected number of simultaneous users L

 $$L = \frac{\lambda}{\mu} = \frac{500}{3} = 1500$$

- To ensure providing adequate capacity 95% of the time, the number of parallel users c has to be restricted

 $$P(L(\infty) \leq c) = \sum_{n=0}^{c} P_n = \sum_{n=0}^{c} e^{-1500} \frac{(1500)^n}{n!} \geq 0.95$$

- The capacity $c = 1564$ simultaneous users satisfies this requirement
Multiserver Queue with Limited Capacity

- **M/M/c/N/∞**: service times are exponentially distributed at rate μ and c servers where the total system capacity is $N \geq c$ customer
 - When an arrival occurs and the system is full, that arrival is turned away
 - Effective arrival rate λ_e is defined as the mean number of arrivals per time unit who enter and remain in the system

$$a = \frac{\lambda}{\mu}$$

$$\rho = \frac{\lambda}{c\mu}$$

$$P_0 = \left[1 + \sum_{n=1}^{c} \frac{a^n}{n!} + \frac{a^c}{c!} \sum_{n=c+1}^{N} \rho^{n-c} \right]^{-1}$$

$$P_N = \frac{a^N}{c!\rho^{N-c}} P_0$$

$$L_Q = \frac{P_0 a^c \rho}{c! (1 - \rho)} \left(1 - \rho^{N-c} - (N-c) \rho^{N-c} (1 - \rho)\right)$$

$$\lambda_e = \lambda (1 - P_N)$$

$$w_Q = \frac{L_Q}{\lambda_e}$$

$$w = w_Q + \frac{1}{\mu}$$

$$L = \lambda_e w$$

(1 - P_N) probability that a customer will find a space and be able to enter the system
Multiserver Queue with Limited Capacity

Single-chair unisex hair-styling shop (again!)

- Space only for 3 customers: one in service and two waiting
- First compute P_0
 \[P_0 = \frac{1}{1 + \frac{2}{3} + \frac{2}{3} \sum_{n=2}^{3} \left(\frac{2}{3} \right)^{n-1}} = 0.415 \]
- $P(\text{system is full})$
 \[P_N = P_3 = \frac{(\frac{2}{3})^3}{1! \mu^2} P_0 = \frac{8}{65} = 0.123 \]
- Average of the queue
 \[L_Q = 0.431 \]
- Effective arrival rate
 \[\lambda_e = 2 \left(1 - \frac{8}{65} \right) = \frac{114}{65} = 1.754 \]

- Queue time
 \[w_Q = \frac{L_Q}{\lambda_e} = \frac{28}{114} = 0.246 \]
- System time, time in shop
 \[w = w_Q + \frac{1}{\mu} = \frac{66}{114} = 0.579 \]
- Expected number of customers in shop
 \[L = \lambda_e w = \frac{66}{65} = 1.015 \]
- Probability of busy shop
 \[1 - P_0 = \frac{\lambda_e}{\mu} = 0.585 \]
Steady-state Behavior of Finite-Population Models
Steady-State Behavior of Finite-Population Models

- In practical problems calling population is finite
 - When the calling population is small, the presence of one or more customers in the system has a strong effect on the distribution of future arrivals.
- Consider a finite-calling population model with K customers ($M/M/c/K/K$)
 - The time between the end of one service visit and the next call for service is exponentially distributed with mean $\frac{1}{\lambda}$.
 - Service times are also exponentially distributed with mean $\frac{1}{\mu}$.
 - c parallel servers and system capacity is K.

![Diagram of queueing model](image)
Steady-State Behavior of Finite-Population Models

- Some of the steady-state probabilities of $M/M/c/K/K$:

$$P_0 = \left[\sum_{n=0}^{c-1} \binom{K}{n} \left(\frac{\lambda}{\mu} \right)^n + \sum_{n=c}^{K} \frac{K!}{(K-n)! c!} \left(\frac{\lambda}{\mu} \right)^n \right]^{-1}$$

$$P_n = \begin{cases} \binom{K}{n} \left(\frac{\lambda}{\mu} \right)^n P_0, & n = 0, 1, \ldots, c - 1 \\ \frac{K!}{(K-n)! c!} \left(\frac{\lambda}{\mu} \right)^n, & n = c, c + 1, \ldots, K \end{cases}$$

$$L = \sum_{n=0}^{K} n P_n, \quad w = L / \lambda_e, \quad \rho = \frac{\lambda_e}{c \mu}$$

where λ_e is the long run effective arrival rate of customers to queue (or entering/exiting service).

$$\lambda_e = \sum_{n=0}^{K} (K - n) \lambda P_n$$
Steady-State Behavior of Finite-Population Models

• Example: two workers who are responsible for 10 milling machines.
 • Machines run on the average for 20 minutes, then require an average 5-minute service period, both times exponentially distributed: $\lambda = 1/20$ and $\mu = 1/5$.
 • All of the performance measures depend on P_0:

$$P_0 = \left[\sum_{n=0}^{\infty} \left(\frac{10}{n!} \right) \left(\frac{5}{20} \right)^n + \sum_{n=2}^{10} \frac{10!}{(10-n)!2^{n-2}} \left(\frac{5}{20} \right)^n \right]^{-1} = 0.065$$

• Then, we can obtain the other P_n, and can compute the expected number of machines in system:

$$L = \sum_{n=0}^{10} nP_n = 3.17 \text{ machines}$$

• The average number of running machines:

$$K - L = 10 - 3.17 = 6.83 \text{ machines}$$
Networks of Queues
Networks of Queues

- No simple notation for networks of queues
- Two types of networks of queues
 - Open queueing network
 - External arrivals and departures
 - Number of customers in system varies over time
 - Closed queueing network
 - No external arrivals and departures
 - Number of customers in system is constant
Networks of Queues

- Many systems are modeled as networks of single queues
- Customers departing from one queue may be routed to another

\[\lambda_j = \lambda_i p_{ij} \]

The following results assume a stable system with infinite calling population and no limit on system capacity:

- Provided that no customers are created or destroyed in the queue, then the departure rate out of a queue is the same as the arrival rate into the queue, over the long run.
- If customers arrive to queue \(i \) at rate \(\lambda_i \), and a fraction \(0 \leq p_{ij} \leq 1 \) of them are routed to queue \(j \) upon departure, then the arrival rate from queue \(i \) to queue \(j \) is \(\lambda_j = \lambda_i p_{ij} \) over the long run.
Networks of Queues

- The overall arrival rate into queue j:

$$\lambda_j = a_j + \sum_{i \text{ all}} \lambda_i p_{ij}$$

Arrival rate from outside the network

Sum of arrival rates from other queues in network

- If queue j has $c_j < \infty$ parallel servers, each working at rate μ_j, then the long-run utilization of each server is: (where $\rho_j < 1$ for stable queue).

$$\rho_j = \frac{\lambda_j}{c_j \mu_j}$$

- If arrivals from outside the network form a Poisson process with rate a_j for each queue j, and if there are c_j identical servers delivering exponentially distributed service times with mean $1/\mu_j$, then, in steady state, queue j behaves like an $M/M/c_j$ queue with arrival rate

$$\lambda_j = a_j + \sum_{i \text{ all}} \lambda_i p_{ij}$$
Network of Queues

- Discount store example:
 - Suppose customers arrive at the rate 80 per hour and 40% choose self-service.

- Hence:
 - Arrival rate to service center 1 is $\lambda_1 = 80(0.4) = 32$ per hour
 - Arrival rate to service center 2 is $\lambda_2 = 80(0.6) = 48$ per hour.
 - $c_2 = 3$ clerks and $\mu_2 = 20$ customers per hour.
 - The long-run utilization of the clerks is:
 \[\rho_2 = \frac{48}{3 \times 20} = 0.8 \]
 - All customers must see the cashier at service center 3, the overall rate to service center 3 is $\lambda_3 = \lambda_1 + \lambda_2 = 80$ per hour.
 - If $\mu_3 = 90$ per hour, then the utilization of the cashier is:
 \[\rho_3 = \frac{80}{90} = 0.89 \]
Summary

- Introduced basic concepts of queueing models.
- Showed how simulation, and sometimes mathematical analysis, can be used to estimate the performance measures of a system.
- Commonly used performance measures: L, L_Q, w, w_Q, ρ, and λ_e.
- When simulating any system that evolves over time, analyst must decide whether to study **transient** or **steady-state** behavior.
 - Simple formulas exist for the steady-state behavior of some queues.
- Simple models can be solved mathematically, and can be useful in providing a rough estimate of a performance measure.