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Purpose & Overview

e The world the model-builder sees is probabilistic rather than
deterministic.

e Some statistical model might well describe the variations.

® An appropriate model can be developed by sampling the
phenomenon of interest:

e Select a known distribution through educated guesses
e Make estimate of the parameters
e Test for goodness of fit

® In this chapter:
e Review several important probability distributions
e Present some typical application of these models
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Basic Probability Theory Concepts
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Review of Terminology and Concepts

e In this section, we will review the following concepts:
e Discrete random variables

e Continuous random variables
e Cumulative distribution function
e Expected value
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Discrete Random Variables

® X is a discrete random variable if the number of possible values

of X is finite, or countable infinite.

e Example: Consider packets arriving at a router.
e Let X be the number of packets arriving each second at a router.
R, = possible values of X (range space of X) = {0,1,2,...}
p(x;) = probability the random variable X is x; , p(x,) = P(X =x))
« p(x), i =12, ... must satisfy:

1. p(x,)=0, foralli
2. Z:p(xi)ZI

e The collection of pairs (x, p(x)), i=1,2,..., is called the probability
distribution of X, and

e p(x) is called the probability mass function (PMF) of X.
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Continuous Random Variables

® X is a continuous random variable if its range space R, is an interval or
a collection of intervals.

e The probability that X lies in the interval [q, b] is given by:
Pla<X<b)=[ f(x)dx

® f{x)is called the probability density function (PDF) of X, and
satisfies:

) P(Xela,b))
1. f(x)=0, forallxinR, A
2. jf(x)dx =1
Ry
3. f(x)=0, if xisnotin R,
® Properties ¢ b X

. P(X =x,) =0, because [ ' f(x)dx =0
2. Pa<X<b)=Pla< X <b)=PlasX<b)=Pla< X <b)

Prof. Dr. Mesut Glines = Ch. 5 Statistical Models in Simulations 57



Continuous Random Variables

e Example: Life of an inspection device is given by X, a
continuous random variable with PDF:

1 -x/2 07 |
fr=12¢  *=°
0 ,otherwise = °

e X has exponential distribution with mean 2 years
e Probability that the device’s life is between 2 and 3 years is:

P(2£x£3):lre_X/zdx:O.MS
7
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Cumulative Distribution Function

e Cumulative Distribution Function (CDF) is denoted by F(x), where
F(x) =P(X<x) Fx)

N

o If X is discrete, then F(x)=> p(x)

x;<x

e If X is continuous, then F(x)= f f(t)dt

® Properties
1. F is nondecreasing function. If a <b, then F'(a) < F(b)

2. lim F(x) =1

X—>00

3. lim F(x)=0

X—>—00

e All probability questions about X can be answered in terms of the CDF:
P(a<X<b)y=F(b)—-F(a), forall a<bh
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Cumulative Distribution Function

e Example: The inspection device has CDF:

_1 Y29, —x/2
F(x)—ajoe dt=1-e

e The probability that the device lasts for less than 2 years:

PO<X<2)=FQ2)-F(0)=FQ2)=1-¢"'=0.632

e The probability that it lasts between 2 and 3 years:

P2<X<3)=F@)-F@2)=(l—¢*)-(1-¢")=0.145
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Expected value

® The expected value of X is denoted by E(X)

o If X is discrete E(X)=) xp(x)

alli

« If X is continuous g x) :J‘_Oo x- f(x)dx

e a.k.a the mean, m, u, or the 1st moment of X
e A measure of the central tendency
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Variance

® The variance of X is denoted by X) or Var(X) or o2
e Definition: W(X)=E((X-E[X])?)

* Also VX) = EX°) - (EX) )

e A measure of the spread or variation of the possible values of X around the

Mmean
fx) Sfx)
A o’ 4 o
large small
> X > X
M M
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Standard deviation

e The standard deviation (SD) of X is denoted by o

e Definition: o =V (x)

e The standard deviation is expressed in the same units as the mean

e Interprete o always together with the mean

e Attention:
e The standard deviation of two different data sets may be difficult to compare
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Expected value and variance: Example

e Example: The mean of life of the previous inspection
device is:

—x/2 +Iwe_X/2dx: 2

0
0

1 oo
E(X)= EL xe dx =—Xxe

® To compute the variance of X, we first compute E(X?):

LN T 7 —x/2
E(X)—E_[Oxe dx=—Xx*e

Oo+jw e *dx =8

0
0

® Hence, the variance and standard deviation of the
device’s life are: p(x)=8-2*=4

o=V(X)=2
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Expected value and variance: Example

E(X)= %J:O xe 2dx = _xe—x/Z 0 + J:o e dx =2
Partial Integration

ju(x)v' (x)dx =u(x)v(x)— j u' (x)v(x)dx

Set

u(x)=x

V(x)=e "

—

u'(x)=1

v(x)=-2e "

E(X)= %J:O xe dx = %(x : (—28_)‘/2)‘: — jl (—2e7"*)dx)
0

Prof. Dr. Mesut Giines = Ch. 5 Statistical Models in Simulations 515



Mean and variance of sums

® If x,x,, ...,x, are k random variables and if a;, a,, ..., q,are k
constants, then

Elaxray,*.. ) = a, E(x)TaE(o) . a Ex,)

® For independent variables

Var(a,x, +a,x, +---+a,x,) = a; Var(x,)+a; Var(x,)+...+a, Var(x,)
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Coefficient of variation

® The ratio of the standard deviation to the mean is called
coefficient of variation (C.0.V.)

e Dimensionless
e Normalized measure of dispersion

COV - standard deviation _o >0

mean 7,

e Can be used to compare different datasets, instead the
standard deviation.
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Covariance

® Given two random variables x and y with x, and x, their
covariance is defined as

Cov(x, y) = 0%, = E[(x-p,)(v-u,)] = E(xy) - E(x) E(y)

e Cov(x,y) measures the dependency of x and y, i.e., how x and y
vary together.

e For independent variables, the covariance is zero, since

E(xy) = E(X)E(y)
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Correlation coefficient

® The normalized value of covariance is called the
correlation coefficient or simply correlation

Correlation(x,y) = p, , =

® The correlation lies between -1 and +1
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Quantile

e The x value at which the CDF takes a value a is called the
a-quantile or 100a-percentile. It is denoted by x,_,

PX<x,)=F(x)=0o ,aec[0,1]

e Relationship:
e The median is the 50-percentile or 0.5-quantile
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Mean, median, and mode

® Three different indices for the central tendency of a
distribution:

e Mean: E(X):ﬂzzn:pixi:fox-f(x)dx
=)

e Median: The 0.5-quantile, i.e., the x,for that half of the values
are smaller and the other half is larger.

e Mode: The most likely value, i.e., the x, that has the highest
probabiliy p, or the x at which the PDF is maximum.
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Mean, median, and mode
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Selecting among

mean, median, and mode

Select central
tendency

{

Is data
categorial?

Is total of
interest?

Is
distribution
skewed?

Use mean
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Relationship between simulation and
probability theory
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Central limit theorem

® let Z be the random variable
, _Xm)—u

=
ol
n

® and F (z) be the distribution function of Z for a sample
size of n, i.e., F (2)=P(Z,<z), then

F,(2) —5:0(2)

® where 0O(z) is normal distribution with 4=0 and o*=1

O(z) =

Ie dy for—oo<z<w

\/_
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Strong law of large numbers

® let X, X, ..., X, be IID random variables with mean p.

X (n)——— u with probability 1

Sample mean
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Strong law of large numbers

Sanples size 18

a 18 28 38 448 58 68 FL &8 98 188

Sanples size 98

1
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Discrete Distributions
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Discrete Distributions

® Discrete random variables are used to describe random
phenomena in which only integer values can occur.

® In this section, we will learn about:
e Bernoulli trials and Bernoulli distribution
e Binomial distribution
e Geometric and negative binomial distribution
e Poisson distribution
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Bernoulli Trials and Bernoulli Distribution

® Bernoulli trials:

e Consider an experiment consisting of » trials, each can be a success
or a failure.

1 if the j-th experiment is a success
710 if the j-th experimentis a failure

OCBOOOO?OOOQOCOOOC.OO

failure success

e The Bernoulli distribution (one trial):

D, x; =1

, =1,2,...,
qg=1-p, x,=0 / .

pj(xj) :p(xj):{

e where E(X) =p and V(X)) = p(1-p) = pq
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Bernoulli Trials and Bernoulli Distribution

® Bernoulli process:
- n Bernoulli trials where trials are independent:

PX,Xy, .., X,) = pi(x)pAX)) ... p(x,)
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Binomial Distribution

® The number of successes in n Bernoulli trials, X, has a binomial
distribution.

CTDOO.OO.OOO.OQOOOQ.OCTD

1 n

e " B
p(x) =+ (x] pq", x=012,...,n
4

/4 0, otherwise

4 The number of
outcomes having the
required number of

successes and

\ failures )

Probability that
there are
x successes and
(n-x) failures

e The mean, Ex)=p+p+ .. +p=nxp
e The variance, V(X) =pqg + pg + ... + pg = nxpq
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Geometric Distribution

e Geometric distribution
e The number of Bernoulli trials, X, to achieve the 1st success:

succecess

g 'p, x=0,12,...,n
p(x)= .
0, otherwise

« E(x) = 1/p, and V(X) = q/p’
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Negative Binomial Distribution

® Negative binomial distribution
e The number of Bernoulli trials, X, until the i-th success

OOOQ == OO @ === OO’

k-th success

o If X is a negative binomial distribution with parameters p and

k, then:
YT o kL k42
, x=k, , e
p@=1lk-1) " °
0, otherwise
_ x=1) o s
p(X)—(k_J qp p

QO B k—th success

(k-1) successes

« E(X) = kip, and V(X) = kq/p?
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Poisson Distribution

® Poisson distribution describes many random processes quite
well and is mathematically quite simple.

e where >0, PDF and CDF are:

-

o’ :
—a X l
—e x=0.1.,... a
pOI=1 " 7T F)=2 —e*
0, otherwise i=0 b
° E(X) = a = V(X) p(x) F(x)
0.30 I~
1.0 -
0.25 09 |
0.8 |-
0.20 I~ 07
0.6 —
0151~ 05|
0.4
0.10 H 03
0.2
0.05 H 01 -
| 1 | | | | | | | |
0 1 2 3 4 5 6 X O 1 2 3 4 5 6 7 8 X
(a) (b)
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Poisson Distribution

e Example: A computer repair person is “beeped” each time

there is a call for service. The number of beeps per hour
~ Poisson(o =2 per hour).

e The probability of three beeps in the next hour:
p(3) =23/31¢2=0.18
also, p(3) = F(3)— F(2) = 0.857-0.677=0.18

e The probability of two or more beeps in an 1-hour period:
p(2 or more) =1-(p0)+p(1))
=1-F(1)
=0.594
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Continuous Distributions
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Continuous Distributions

e Continuous random variables can be used to describe

random phenomena in which the variable can take on any
value in some interval.

® In this section, the distributions studied are:
e Uniform
e Exponential
e Weibull
e Normal
e Lognormal
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Uniform Distribution

® A random variable X is uniformly distributed on the interval
(a, b), U(a, b), if its PDF and CDF are:

r

1 0, x<a
- <y < _
JxX)=3p—g’ asx<b F(x):<x a’ a<x<b
0, otherwise b-a
1, x>b

® Properties

* P(x; < X<ux,) is proportional to the length of the interval
[F(x,) — F(x;) = (x,-x)/(b-a)]

e E(X) = (a+h)/2 V(X) = (b-a)*/12
f(x) F(x)
 U(0,1) provides the means to o2l 10

0.8

generate random numbers, from | )
which random variates can be O] 04
generated : L i 02 [ N R
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Exponential Distribution

e A random variable X is exponentially distributed with
parameter A >0 if its PDF and CDF are:

10x) Ae ™, x>0 . 0, x<0
x)= o i
0, elsewhere (x) _[0 deMdt=1-e", x20
« E(X)=1/A VX)=1/42
f(x) A F(x) A
\ 1

=Y
o

0
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Exponential Distribution

e Used to model interarrival
times when arrivals are
completely random, and to
model service times that by
are highly variable

e For several different
exponential PDF’s (see
figure), the value of
intercept on the vertical
axis is 4, and all PDF’s |
eventually intersect. 09

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 x
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Exponential Distribution

® Memoryless property
e For all s and ¢ greater or equal to O:
PX>stt| X>5)=PX>¥)

e Example: A lamp ~exp(A = 1/3 per hour), hence, on average, 1
failure per 3 hours.

e The probability that the lamp lasts longer than its mean life is: PX
>3)=1-PX<3)=1-(1-e33)=e1=0.368

e The probability that the lamp lasts between 2 to 3 hours is:
PQ2<X<3)=F3)-F(2)=0.145

e The probability that it lasts for another hour given it is operating
for 2.5 hours:

P(X>35|X>25)=PX>1)=e3=0.717
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Exponential Distribution

e Memoryless property

P(X >s+1| X >g5)= DX >5H0)
P(X > )
o5+
S
_ oM
=P(X >1)
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Weibull Distribution

e A random variable X has a Weibull distribution if its PDF has the form:

B(x—v - x—vY
f(x)= ;(7] exp ( » j > X2V

0, otherwise

e 3 parameters:
e Location parameter: o, (—0 <V < )
e Scale parameter: g, (6> 0)
e Shape parameter: «, > 0)

fx)
2.0

1.8

=
Il
(ST

1.6

e Example: v=0and a=1: 14
12
1.0 B=2
0.8
0.6 —
04

02

0.0 | | | | | I — I e — —
00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 «x
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Weibull Distribution

e Weibull Distribution

-

B(x—vY™ x—vY S
@) =1a\ «a et I > r=Y

0, otherwise

1 -
—e %, X2V )
f(.X) = ’ 2.0
o
0, otherwise " b
~ 1.6 =7
B=4
1.4
12
1.0 g=2
B=1
0.8 —

T

\_—71%]

Whenﬂzl, 04

X~exp(1=1/a) 02
0.0 L N TS T—

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 x
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Normal Distribution

® A random variable X is normally distributed if it has the PDF:

R
J(x)= Gme :

— <X <o

f(x) 4

e Mean: —oo< <o
e Variance: o’ >0 /\
e Denoted as X ~ N(u, o)

7’

Y

® Properties:
o lirp f(x)=0,and lim f(x)=0

* lu-x)= flu+x); the PDF is symmetric about ..

e The maximum value of the PDF occurs at x = i
=» the mean and mode are equal
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Normal Distribution

e Evaluating the distribution:
e Use numerical methods (no closed form)

e Independent of 4 and o, using the standard normal distribution:
Z ~N(0,1)
([

Transformation of variables: let g X4

/4
o)

F(x):P(XSx):P(ZS x‘”j

o
cc-pio 1 2
(" e’dz
J—0 /272-
T p(e)dz = () -
= 7 dz = N P e
| p ,wWhere @(z) J._OO me dt
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Normal Distribution

e Example: The time required to load an oceangoing vessel, X, is
distributed as N(12,4), u=12, o=2
e The probability that the vessel is loaded in less than 10 hours:

10-12

F(lO)zd)( j:(D(—l):l—CD(l):O.1587

e Using the symmetry property, ®(1) is the complement of (-
1), i.e., ®(-x) = 1-O(x)

d)(z) A (].')(Z) A

0.1587

T
|
o
=Y
|
P
NY
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Normal Distribution

e Why is the normal distribution important?
e The most commonly used distribution in data analysis
e The sum of » independent normal variates is a normal variate.

e The sum of a large number of independent observations from
any distribution has a normal distribution.
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Lognormal Distribution

® A random variable X has a lognormal dlstrlbutlon if its pdf has
the form:

J(X)=1270x 20°
0, otherwise
e Mean E(X) = e nto’/2
e Variance V(X) = e 24t9%/2 (¢9° - 1)

2
: exp{—(lnx—_ﬂ) } x>0

e Relationship with normal distribution N
e When Y~ N(u, o2, then X =¢e¥~ lognormal(u, c2)

e Parameters u and o2 are not the mean and variance of the lognormal
random variable X
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Poisson Process
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Poisson Process

e Definition: N(¢) is a counting function that represents the
number of events occurred in [0,7].

® A counting process {N(¢?), t>0} is a Poisson process with mean
rate A if:

e Arrivals occur one at a time
e {N(?),t>0} has stationary increments

e Number of arrivals in [z, t+s] depends only on s, not on starting point ¢
e Arrivals are completely random

e {N(?),t>0} has independent increments

e Number of arrivals during non-overlapping time intervals are independent
e Future arrivals occur completely random
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Poisson Process

® Properties

P(N (1) = n) = (ﬁt') e  fort>0andn=0,12,...
n!

e Equal mean and variance: E[N®)]=V[N@®)] = At

e Stationary increment:

e The number of arrivals in time s to ¢, with s<¢, is also Poisson-
distributed with mean A(z-s)
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Poisson Process: Interarrival Times

e (Consider the interarrival times of a Poisson process (4,, 4,, ...), where 4,
is the elapsed time between arrival i and arrival i+1

| |
| [
0 t A1 A1 + A2

NP

e The 1st arrival occurs after time t iff there are no arrivals in the interval [0, 7],
hence:

l: Al

Y

P(A,>1t)=P(N(t)=0) =™
PA <t)=1-P(A,>)=1-eM [CDF of exp(1)]

e Interarrival times, 4, 4,, ..., are exponentially distributed and independent
with mean 1/4

Arrival counts Interarrival time
~ Poisson(A) N 4 ~ exp(1/4)
Stationary & Independent Memoryless
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Poisson Process: Splitting and Pooling

e Splitting:
e Suppose each event of a Poisson process can be classified as Type
I, with probability p and Type II, with probability 1-p.

« N(t) = N1(¥) + N2(¢), where N1(¢) and N2(r) are both Poisson processes
with rates Ap and A(1-p)

Ap N1(t) ~ Poisson(Ap)
: A
N(t) ~ Poisson(1) =<
- N2(t) ~ Poisson(A(1-p))
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Poisson Process: Splitting and Pooling

e Pooling: P(N,+N, =n)= ZP(N J)P(N, =n—j)
e Suppose two Poisson
processes are pooled together (ﬂqt) S A",
® NI1(¢) + N2(f) = N(¢), where N(v) is _JZ; (n—j)!
a Poisson processes with rates ) ; n_j
/11 + 22 _ e—ﬂlte—ﬂztz (ﬂ’lt) (/Izt) :
i Jb (m=))!
o Z AA
| 0 JH(n=))!
N1(t) ~ Poisson(4,) N2(t) ~ Poisson(4,)

:e—ul%)zfnz A
9 Ay ntim b (n=))!

Mo+, — o hth)r 7 t" Z( j/lf/ln J

N(t) ~ Poisson(4, + 4,)
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Empirical Distributions
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Empirical Distributions

e A distribution whose parameters are the observed values in a
sample of data.

e May be used when it is impossible or unnecessary to establish that a
random variable has any particular parametric distribution.

e Advantage: no assumption beyond the observed values in the
sample.

e Disadvantage: sample might not cover the entire range of possible
values.

Prof. Dr. Mesut Glines = Ch. 5 Statistical Models in Simulations

5.58



Empirical Distributions: Example

® Customers arrive in groups from 1 to 8 persons

® Observation of the last 300 groups has been reported

e Summary in the table below

Group Frequency Relative Cumulative Relative
Size Frequency Frequency

110
45
71
12
13

7
12

O N O U1l A W N -
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0.10
0.37
0.15
0.24
0.04
0.04
0.02
0.04

0.10
0.47
0.62
0.86
0.90
0.94
0.96
1.00
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Empirical Distributions: Example

Relative Frequency Empirical CDF of the Group Sizes
0,4 1,2
0,35 1
0’3 )/;
0,8

0,25
0,2

0,15 04
01 I AT
0,2
0,05 ’
° N0 ¢
1 2 3 4 5 6 7 8
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Useful Statistical Models
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Useful Statistical Models

® In this section, statistical models appropriate to some
application areas are presented.

® The areas include:
e Queueing systems
e Inventory and supply-chain systems
e Reliability and maintainability
e Limited data
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Useful models: Queueing Systems

® In a queueing system, interarrival and service-time patterns
can be probabilistic.

e Sample statistical models for interarrival or service time
distribution:

e Exponential distribution: if service times are completely random

e Normal distribution: fairly constant but with some random variability
(either positive or negative)

e Truncated normal distribution: similar to normal distribution but with
restricted values.

e Gamma and Weibull distributions: m
P

—_—— L =

(involving location of the modes of

Waiting line Server
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Useful models: Inventory and supply chain

1

® In realistic inventory and

supply-chain systems, there

are at least three random

variables:

* The number of units demanded
per order or per time period

* The time between demands

* The lead time = Time between
placing an order and the
receipt of that order

Amount in inventory

® Sample statistical models for lead time distribution:
e Gamma

® Sample statistical models for demand distribution:
e Poisson: simple and extensively tabulated.

e Negative binomial distribution: longer tail than Poisson (more
large demands).

e Geometric: special case of negative binomial given at least one
demand has occurred.
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Useful models: Reliability and maintainability

® Time to failure (TTF)
e Exponential: failures are random

e Gamma: for standby redundancy where each component has

an exponential TTF

e Weibull: failure is due to the most serious of a large number of

defects in a system of components
e Normal: failures are due to wear

runtime downtime runtime
A A
e \/_A_Y ~N

I I I I
Time 0 eor eod eor
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Useful models: Other areas

® For cases with limited data, some useful distributions are:

e Uniform
. Ax)
e Triangular A
e Beta
e Other distribution: R
e Bernoulli ¥

e Binomial

e Hvperexponential
1T r
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Summary

e The world that the simulation analyst sees is probabilistic,
not deterministic.

® In this chapter:

e Reviewed several important probability distributions.

e Showed applications of the probability distributions in a
simulation context.

e Important task in simulation modeling is the collection
and analysis of input data, e.g., hypothesize a
distributional form for the input data.

e Student should know:

e Difference between discrete, continuous, and empirical
distributions.

e Poisson process and its properties.
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