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Purpose & Overview
• The world the model-builder sees is probabilistic rather than 

deterministic.  
Some statistical model might well describe the variations• Some statistical model might well describe the variations.

• An appropriate model can be developed by sampling the 
phenomenon of interest:
• Select a known distribution through educated guesses
• Make estimate of the parameters
• Test for goodness of fit

• In this chapter:• In this chapter:
• Review several important probability distributions
• Present some typical application of these models
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Basic Probability Theory ConceptsBasic Probability Theory Concepts
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Review of Terminology and Concepts

• In this section, we will review the following concepts:
•Discrete random variables
•Continuous random variables
•Cumulative distribution function
•Expected value
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Discrete Random Variables

• X is a discrete random variable if the number of possible values 
of X is finite, or countable infinite.

• Example: Consider packets arriving at a router.
• Let X be the number of packets arriving each second at a router.

RX = possible values of X (range space of X) = {0,1,2,…}X p ( g p ) { , , }
p(xi) = probability the random variable X is xi , p(xi) = P(X = xi)

• p(xi), i = 1,2, … must satisfy:
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• The collection of pairs (xi, p(xi)), i = 1,2,…, is called the probability 

∑ =
=

1
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i ixp

distribution of X, and
• p(xi) is called the probability mass function (PMF) of X.
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Continuous Random Variables
• X is a continuous random variable if its range space RX is an interval or 

a collection of intervals.
• Th  b bilit  th t X li  i  th  i t l [ b] i  i  b• The probability that X lies in the interval [a, b] is given by:

∫=≤≤
b

a
dxxfbXaP )()(

• f(x) is called the probability density function (PDF) of X, and 
satisfies:

Rf illf0)(1 ≥
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Continuous Random Variables

• Example: Life of an inspection device is given by X, a 
continuous random variable with PDF:

⎪⎧1 /
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otherwise,0
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2
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2/ xexf

x

• X has exponential distribution with mean 2 years• X has exponential distribution with mean 2 years
• Probability that the device’s life is between 2 and 3 years is:

14501)32(
3 2/≤≤ ∫ − dxexP x
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Cumulative Distribution Function
• Cumulative Distribution Function (CDF) is denoted by F(x), where             

F(x) = P(X ≤ x) F(x)

• If X is discrete, then ∑
≤

=
xx

i
i

xpxF )()( 1

• If X is continuous, then 

• Properties
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• Properties
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• All b bilit  ti  b t X  b  d i  t  f th  CDF

0)(lim  3. =
−∞→

xF
x

• All probability questions about X can be answered in terms of the CDF:

baaFbFbXaP ≤−=≤≤   allfor   ,)()()(
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Cumulative Distribution Function

• Example: The inspection device has CDF:

2/2/1 x

∫
• The probability that the device lasts for less than 2 years:

2/

0

2/ 1
2
1)( xx t edtexF −− −== ∫

• The probability that the device lasts for less than 2 years:

632.01)2()0()2()20( 1 =−==−=≤≤ −eFFFXP

• The probability that it lasts between 2 and 3 years:• The probability that it lasts between 2 and 3 years:

( ) ( ) 145.011)2()3()32( 12
3

=−−−=−=≤≤ −− eeFFXP
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Expected value
• The expected value of X is denoted by E(X)

• If X is discrete ∑ xpxXE )()(• If X is discrete

• If X is continuous

∑=
i

ii xpxXE
 all

)()(

∫
∞

dxxfxXE )()(• If X is continuous

• a.k.a the mean, m, µ, or the 1st moment of X

∫ ∞−
⋅= dxxfxXE )()(

, , µ,
• A measure of the central tendency
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Variance
• The variance of X is denoted by V(X) or Var(X) or σ 2

• Definition: V(X) = E( (X – E[X])2 )• Definition: V(X) = E( (X – E[X]) )

• Also V(X) = E(X2) – ( E(X) )2

• A measure of the spread or variation of the possible values of X around the 
mean

f(x) f(x)f(x)
σ2

large

f(x)
σ2

small

x
µ

x
µ
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Standard deviation
• The standard deviation (SD) of X is denoted by σ

• Definition: )(xV=σ• Definition:

• The standard deviation is expressed in the same units as the mean

)(xVσ

The standard deviation is expressed in the same units as the mean

• Interprete σ always together with the mean

• Attention:
• The standard deviation of two different data sets may be difficult to compare
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Expected value and variance: Example

• Example: The mean of life of the previous inspection 
device is:

22/
2
1)(

0
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0
0

2/ =+−== ∫−∫
∞ −

∞
∞ − dxexdxxeXE xx xe

• To compute the variance of X, we first compute E(X2):

2 0

To compute the variance of X, we first compute E(X ):
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• Hence  the variance and standard deviation of the 
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• Hence, the variance and standard deviation of the 
device’s life are:
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Expected value and variance: Example
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Mean and variance of sums

• If x1, x2, …, xk are k random variables and if a1, a2, …, ak are k
constants, then

E(a1x1+a2x2+…+akxk) = a1E(x1)+a2E(x2)+…+akE(xk)

• For independent variables

)Var()Var()Var()Var( 2
2

2
21

2
12211 kkkk xaxax a xaxaxa +…++=+++ L
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Coefficient of variation

• The ratio of the standard deviation to the mean is called 
coefficient of variation (C.O.V.)
•Dimensionless 
•Normalized measure of dispersion

deviationstandard σ 0,       
mean

deviationstandard.. >== μ
μ
σVOC

•Can be used to compare different datasets, instead the 
standard deviationstandard deviation.
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Covariance

• Given two random variables x and y with µx and µy, their 
covariance is defined as

Cov(x, y) = σ2
xy = E[(x-µx)(y-µy)] = E(xy) - E(x) E(y)

• Cov(x, y) measures the dependency of x and y, i.e., how x and y
vary togethervary together.

• For independent variables, the covariance is zero, sinceFor independent variables, the covariance is zero, since

E(xy) = E(x)E(y)( y) ( ) (y)
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Correlation coefficient

• The normalized value of covariance is called the 
correlation coefficient or simply correlation

2

yx

xy
yx σσ

σ
ρ

2

,y)(x,nCorrelatio ==

• The correlation lies between -1 and +1
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Quantile

• The x value at which the CDF takes a value α is called the 
α-quantile or 100α-percentile. It is denoted by xα.

P(X ≤ xα) = F(xα) = α , α∈[0,1]

1

F(x)

1

α

• Relationship:

xα

x

• Relationship:
•The median is the 50-percentile or 0.5-quantile
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Mean, median, and mode

• Three different indices for the central tendency of a 
distribution:

•Mean: ∫∑
∞

∞−
⋅=== dxxfxxpµXE

n

ii )()(
1

•Median: The 0 5-quantile  i e  the x for that half of the values 

=i 1

•Median: The 0.5-quantile, i.e., the xi for that half of the values 
are smaller and the other half is larger.

•Mode: The most likely value, i.e., the xi that has the highest 
probabiliy p or the x at which the PDF is maximumprobabiliy pi or the x at which the PDF is maximum.
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Mean, median, and mode
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Selecting among 
mean, median, and mode

Select central
tendency

Is data
categorial? Use modeYes

No

Is total of
interest? Use mean

Yes

Is 
distribution Use medianYes

No

skewed?skewed?

No
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Relationship between simulation and 
probability theoryprobability theory
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Central limit theorem

• Let Zn be the random variable 
nXZ )( μ−

=

• and Fn(z) be the distribution function of Zn for a sample 

n

nZ
2σ

=

n n
size of n, i.e., Fn(z)=P(Zn ≤ z), then

)()( zzF Θ→
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• where Θ(z) is normal distribution with µ=0 and σ2=1
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Strong law of large numbers

• Let X1, X2, …, Xn be IID random variables with mean µ.

1y probabilit   with )( μ⎯⎯ →⎯ ∞→nnX

Sample meanSample mean
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Strong law of large numbers
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Discrete DistributionsDiscrete Distributions
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Discrete Distributions

• Discrete random variables are used to describe random 
phenomena in which only integer values can occur.

• In this section, we will learn about:
•Bernoulli trials and Bernoulli distribution
•Binomial distribution
•Geometric and negative binomial distribution•Geometric and negative binomial distribution
•Poisson distribution

5.29Prof. Dr. Mesut Güneş ▪ Ch. 5 Statistical Models in Simulations



Bernoulli Trials and Bernoulli Distribution
• Bernoulli trials: 

• Consider an experiment consisting of n trials, each can be a success 
or a failureor a failure.

⎩
⎨
⎧

=
failure a is experimentth -j  theif0
success a is experimentth -j  theif1

jX

f il

• The Bernoulli distribution (one trial):

failure success

nj
xpq
xp

xpxp
j

j
jjj ,...,2,1         ,

0,1:
1,

)()( =
⎩
⎨
⎧

=−=
=

==

• where E(Xj) = p and V(Xj) = p(1-p) = pq
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Bernoulli Trials and Bernoulli Distribution
• Bernoulli process: 

• n Bernoulli trials where trials are independent:

p(x1,x2,…, xn) = p1(x1)p2(x2) … pn(xn)
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Binomial Distribution

• The number of successes in n Bernoulli trials, X, has a binomial 
distribution.

1 n

⎪

⎪
⎨
⎧

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

− ,...,2,1,0   ,  )( nxqp
x
n

xp
xnx

⎪⎩ otherwise               ,0

The number of Probability thatoutcomes having the 
required number of 

successes and 
failures

Probability that 
there are 

x successes and 
(n-x) failures

• The mean, E(x) = p + p + … + p = n×p
• The variance  V(X) = pq + pq + + pq = n×pq

5.32

• The variance, V(X) = pq + pq + … + pq = n×pq
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Geometric Distribution

• Geometric distribution
•The number of Bernoulli trials, X, to achieve the 1st success:, ,

⎧ − 2101 nxpqx

success

⎩
⎨
⎧ =

=
otherwise           ,0

,...,2,1,0  ,
)(

nxpq
xp

• E(x) = 1/p, and V(X) = q/p2
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Negative Binomial Distribution

• Negative binomial distribution
•The number of Bernoulli trials, X, until the k-th success , ,

k-th success
• If X is a negative binomial distribution with parameters p and 

k, then:
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• E(X) = k/p and V(X) = kq/p2
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44 344 21
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E(X)  k/p, and V(X)  kq/p
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Poisson Distribution
• Poisson distribution describes many random processes quite 

well and is mathematically quite simple.
• where > 0  PDF and CDF are:• where α > 0, PDF and CDF are:

⎪
⎨
⎧

==
− ,...1,0   ,

!)( xe
xxp

x
αα

∑ −=
x i

exF )( αα

• E(X) = α = V(X)

⎪⎩
⎨

otherwise           ,0
!)( xp ∑

=i i0 !
)(
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Poisson Distribution

• Example: A computer repair person is “beeped” each time 
there is a call for service.  The number of beeps per hour 

 Poisson( 2 pe  ho )~ Poisson(α = 2 per hour).

• The probability of three beeps in the next hour:
p(3) = 23/3! e-2 = 0.18

also, p(3) = F(3) – F(2) = 0.857-0.677=0.18

• The probability of two or more beeps in an 1-hour period:
p(2 or more) = 1 – ( p(0) + p(1) )

= 1 – F(1) 1 F(1) 
= 0.594
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Continuous DistributionsContinuous Distributions
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Continuous Distributions

• Continuous random variables can be used to describe 
random phenomena in which the variable can take on any 
value in some interval.

h h d b d d• In this section, the distributions studied are:
•Uniform
•Exponential• Exponential
•Weibull
•Normal
• Lognormal
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Uniform Distribution

• A random variable X is uniformly distributed on the interval
(a, b), U(a, b), if its PDF and CDF are:

⎪

⎪
⎨
⎧ ≤≤

−=    ,1
)( bxa

abxf
⎪

⎪
⎨

⎧

<≤
−

<

= bxa
ab
ax

ax

xF    ,

          ,0

)(

• Properties
i i l h l h f h i l

⎪⎩ otherwise          ,0 ⎪
⎩ ≥

−
bx

ab
           ,1

• P(x1 < X < x2) is proportional to the length of the interval
[F(x2) – F(x1) = (x2-x1)/(b-a)]

• E(X) = (a+b)/2 V(X) = (b-a)2/12

• U(0,1) provides the means to 
generate random numbers  from generate random numbers, from 
which random variates can be 
generated.
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Exponential Distribution

• A random variable X is exponentially distributed with 
parameter λ > 0 if its PDF and CDF are:

⎩
⎨
⎧ ≥

=
−

elsewhere         ,0
0   ,

)(
xe

xf
xλλ

⎪⎩

⎪
⎨
⎧

≥−=
<

=
∫ −− 0   ,1

0                              0,
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0
xedte
x

xF x xt λλλ

• E(X) = 1/λ V(X) = 1/λ2

⎩ ⎩∫0
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Exponential Distribution

•Used to model interarrival
times when arrivals are 

l t l  d  d t  completely random, and to 
model service times that 
are highly variable

• For several different 
exponential PDF’s (see exponential PDF s (see 
figure), the value of 
intercept on the vertical 

i  i  λ  d ll PDF’  axis is λ, and all PDF’s 
eventually intersect.
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Exponential Distribution
• Memoryless property

• For all s and t greater or equal to 0:
P(X > s+t | X > s) = P(X > t)P(X > s+t | X > s) = P(X > t)

•Example: A lamp ~exp(λ = 1/3 per hour), hence, on average, 1 
failure per 3 hoursfailure per 3 hours.

• The probability that the lamp lasts longer than its mean life is: P(X
> 3) = 1 – P(X < 3) = 1 – (1 – e -3/3) = e -1 = 0.368 3)  1 P(X  3)  1 (1 e )  e  0.368

• The probability that the lamp lasts between 2 to 3 hours is:
P(2 ≤ X ≤ 3) = F(3) – F(2) = 0.145( ) ( ) ( )

• The probability that it lasts for another hour given it is operating 
for 2.5 hours:

1/3P(X > 3.5 | X > 2.5) = P(X > 1) = e -1/3 = 0.717
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Exponential Distribution

• Memoryless property

)(
)()|(

sXP
tsXPsXtsXP

>
+>

=>+>
)(

)(e
s

ts

=
+−

λ

λ

e
e

t

s

= −

−

λ

λ

)( tXP
e

>=

5.43Prof. Dr. Mesut Güneş ▪ Ch. 5 Statistical Models in Simulations



Weibull Distribution
• A random variable X has a Weibull distribution if its PDF has the form:

⎧ ⎤⎡ ⎞⎛⎞⎛
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⎠
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⎜
⎝
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=

otherwise                                              ,0

   ,exp)( ν
α

ν
α

ν
α
β ββ

xxx
xf

• 3 parameters:
• Location parameter: υ,  
• Scale parameter: β  (β > 0)

)( ∞<<−∞ ν
• Scale parameter: β , (β > 0)
• Shape parameter: α,  (> 0)

E l  0 d  1• Example: υ = 0 and α = 1:
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Weibull Distribution

• Weibull Distribution
⎧ ⎤⎡ ⎞⎛⎞⎛
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• For β = 1, υ=0
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α xexf
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⎩

When β = 1, 
X ~ exp(λ = 1/α)
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Normal Distribution

• A random variable X is normally distributed if it has the PDF:

⎟
⎞

⎜
⎛ −x1

21 μ

∞<<∞−=
⎟
⎠

⎜
⎝

−
xexf   ,

2
1)( 2 σ

πσ

• Mean:
• Variance:
• Denoted as X ~ N(μ σ2)

∞<<∞− μ
02 >σ

• Denoted as X ~ N(μ,σ )

• Properties:
•
• f(μ - x) = f(μ + x); the PDF is symmetric about μ.
• The maximum value of the PDF occurs at x = μ

0)(lim and ,0)(lim ==
∞→−∞→

xfxf
xx

• The maximum value of the PDF occurs at x  μ
the mean and mode are equal
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Normal Distribution

• Evaluating the distribution:
• Use numerical methods (no closed form)

• Independent of μ and σ, using the standard normal distribution: 
Z ~ N(0,1)

••
Transformation of variables: let ,            

σ
μ−

=
XZ

( ))(
σ

μ
⎟
⎠
⎞

⎜
⎝
⎛ −

≤=≤=
xZPxXPxF

2
1/)(

2
2σμ

π
−

∞−
= ∫

−x
dze

z

∫ ∞−

−=Φ
z t dtez 2/2

2
1)(   where,
π

)()(
/)(

σ
μσμ

φ −−

∞−
Φ== ∫ xx

dzz
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Normal Distribution

• Example: The time required to load an oceangoing vessel, X, is 
distributed as N(12,4), µ=12, σ =2
• The probability that the vessel is loaded in less than 10 hours:

1587.0)1(1)1(
2

1210)10( =Φ−=−Φ=⎟
⎠
⎞

⎜
⎝
⎛ −

Φ=F

U i  th  t  t  Φ(1) i  th  l t f    Φ(

2 ⎠⎝

•Using the symmetry property, Φ(1) is the complement of    Φ(-
1), i.e., Φ(-x) = 1-Φ(x)
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Normal Distribution

• Why is the normal distribution important?
•The most commonly used distribution in data analysisy y
•The sum of n independent normal variates is a normal variate.
• The sum of a large number of independent observations from 

an  dist ib tion has a no mal dist ib tionany distribution has a normal distribution.

5.49Prof. Dr. Mesut Güneş ▪ Ch. 5 Statistical Models in Simulations



Lognormal Distribution

• A random variable X has a lognormal distribution if its pdf has 
the form:

( )

⎪
⎩

⎪
⎨

⎧
>⎥

⎦

⎤
⎢
⎣

⎡ −
−=

otherwise0

0  ,
2

lnexp
2
1

)(

2

2 x
σ
μx

σxπxf μ=1, 
σ2=0.5,1,2.

• Mean E(X) = e μ+σ2/2

• Variance V(X) = e 2μ+σ2/2 (eσ2 - 1)

⎩ otherwise                                      0,

• R l ti hi  ith l di t ib ti• Relationship with normal distribution
• When Y ~ N(μ, σ2), then X = eY ~ lognormal(μ, σ2)
• Parameters μ and σ2 are not the mean and variance of the lognormal μ g

random variable X
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Poisson ProcessPoisson Process
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Poisson Process
• Definition: N(t) is a counting function that represents the 

number of events occurred in [0,t].

• A counting process {N(t), t ≥ 0} is a Poisson process with mean 
rate λ if:
• Arrivals occur one at a time
• {N(t), t ≥ 0} has stationary increments

• Number of arrivals in [t, t+s] depends only on s, not on starting point t
• Arrivals are completely random

• {N(t), t ≥ 0} has independent increments
• Number of arrivals during non-overlapping time intervals are independent
• Future arrivals occur completely random
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Poisson Process
• Properties

( ) ,...2,1,0 and 0for        ,
!
)()( =≥== − nte

n
tntNP t

n
λλ

• Equal mean and variance: E[N(t)] = V[N(t)] = λ t

• Stationary increment:
• The number of arrivals in time s to t, with s<t, is also Poisson-

distributed with mean λ(t-s)( )
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Poisson Process: Interarrival Times
• Consider the interarrival times of a Poisson process (A1, A2, …), where Ai

is the elapsed time between arrival i and arrival i+1

• The 1st arrival occurs after time t iff there are no arrivals in the interval [0, t], 
hence:

P(A1 > t) = P(N(t) = 0) = e-λtP(A1 > t)  P(N(t)  0)   e
P(A1 ≤ t) = 1- P(A1 > t) = 1 – e-λt [CDF of exp(λ)]

• Interarrival times, A1, A2, …, are exponentially distributed and independent 
with mean 1/λ

Stationary & Independent Memoryless

Arrival counts   
~ Poisson(λ)

Interarrival time   
~ exp(1/λ)
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Poisson Process: Splitting and Pooling
• Splitting:

• Suppose each event of a Poisson process can be classified as    Type 
I  with probability p and Type II  with probability 1 pI, with probability p and Type II, with probability 1-p.

• N(t) = N1(t) + N2(t), where N1(t) and N2(t) are both Poisson processes 
with rates λp and λ(1 p)with rates λp and λ(1-p)

N1(t) ~ Poisson(λp)λp

Ν (t) ~ Poisson(λ)

N1(t) Poisson(λp)

N2(t) ~ Poisson(λ(1-p) )

λ
λp

λ(1-p)
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Poisson Process: Splitting and Pooling

• Pooling:
• Suppose two Poisson 
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Empirical DistributionsEmpirical Distributions
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Empirical Distributions

• A distribution whose parameters are the observed values in a 
sample of data.
• May be used when it is impossible or unnecessary to establish that a 

random variable has any particular parametric distribution.
• Advantage: no assumption beyond the observed values in the 

sample.
• Disadvantage: sample might not cover the entire range of possible 

values.
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Empirical Distributions: Example

• Customers arrive in groups from 1 to 8 persons
• Observation of the last 300 groups has been reportedg p p
• Summary in the table below

Group
Size

Frequency Relative 
Frequency

Cumulative Relative 
Frequency

1 30 0.10 0.10

2 110 0.37 0.47

3 45 0.15 0.62

4 71 0.24 0.86

5 12 0.04 0.90

6 13 0.04 0.94

7 7 0.02 0.960 0 0 96

8 12 0.04 1.00
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Empirical Distributions: Example

0 35
0,4

Relative Frequency

1,2

Empirical CDF of the Group Sizes

0,25
0,3
0,35

0,8

1

0,1
0,15
0,2

0 2

0,4

0,6

0
0,05

1 2 3 4 5 6 7 8

0

0,2

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
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Useful Statistical ModelsUseful Statistical Models
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Useful Statistical Models

• In this section, statistical models appropriate to some 
application areas are presented.  

• The areas include:
Q i t•Queueing systems

• Inventory and supply-chain systems
•Reliability and maintainability•Reliability and maintainability
• Limited data
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Useful models: Queueing Systems 

• In a queueing system, interarrival and service-time patterns 
can be probabilistic.

• Sample statistical models for interarrival or service time 
distribution:
• Exponential distribution: if service times are completely randomExponential distribution: if service times are completely random
• Normal distribution: fairly constant but with some random variability 

(either positive or negative)
• Truncated normal distribution: similar to normal distribution but with • Truncated normal distribution: similar to normal distribution but with 

restricted values.
• Gamma and Weibull distributions: more general than exponential 

(involving location of the modes of PDF’s and the shapes of tails )(involving location of the modes of PDF’s and the shapes of tails.)

ServerWaiting line

Calling population
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Useful models: Inventory and supply chain

● In realistic inventory and 
supply-chain systems, there 
are at least three random are at least three random 
variables:
• The number of units demanded 

per order or per time period
Th  ti  b t  d d• The time between demands

• The lead time = Time between 
placing an order and the 
receipt of that order

• Sample statistical models for lead time distribution:
• GammaGamma

• Sample statistical models for demand distribution: 
• Poisson: simple and extensively tabulated.
• Negative binomial distribution: longer tail than Poisson (more Negative binomial distribution: longer tail than Poisson (more 

large demands).
• Geometric: special case of negative binomial given at least one 

demand has occurred.
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Useful models: Reliability and maintainability

• Time to failure (TTF)
•Exponential: failures are randomp
•Gamma: for standby redundancy where each component has 

an exponential TTF
Weib ll  fail e is d e to the most se io s of a la ge n mbe  of •Weibull: failure is due to the most serious of a large number of 
defects in a system of components

•Normal: failures are due to wear

runtimedowntimeruntime

Time
Time 0 eor eoreod
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Useful models: Other areas

• For cases with limited data, some useful distributions are:
•Uniform

f( )
•Triangular
•Beta 

f(x)

• Other distribution: 
B lli

x
•Bernoulli
• Binomial
•HyperexponentialHyperexponential
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Summary

• The world that the simulation analyst sees is probabilistic, 
not deterministic.

• In this chapter:
•Reviewed several important probability distributions.
•Showed applications of the probability distributions in a 

simulation context.

• Important task in simulation modeling is the collection • Important task in simulation modeling is the collection 
and analysis of input data, e.g., hypothesize a 
distributional form for the input data. 

• Student should know:
•Difference between discrete, continuous, and empirical 

distributionsdistributions.
• Poisson process and its properties.
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