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Abstract

Deep learning is widely used in autonomous vehicles’ environment perception systems that
utilize data from a variety of sensors such as camera, LiDAR, RADAR, and Time-of-Flight.
In order to build a reliable environment perception system for real-life applications, a vast
amount of multi-modal labeled data for different light, weather, and climatic conditions is
necessary for the training of deep learning environment perception models. Preparing such
datasets is a non-trivial task that requires a huge amount of resources. Moreover, annotation
of LIDAR data requires the designation of object bounding boxes in 3D space and a yaw
angle for each object, while manual annotation of nighttime camera data is complicated since
the objects are not clearly distinguishable due to the lack of contrast of the images that were
obtained without sufficient light. Besides, with the development of technology new sensors
appear that have distinctive features which determine the specific characteristics of the data.
Therefore, the problem of transferring knowledge between sensors of the same and different
modalities arises.

This master thesis is prepared with the German semiconductor and sensor manufacturer
Infineon Technologies AG, which conducts research in AI based on sensor data. The master
thesis addresses the problem of the lack of labeled data for autonomous vehicles’ environment
perception deep learning-based models training and the problem of transferring knowledge
between sensors on the example of a camera and LiDAR data.

While working on the thesis, a custom dataset for multimodal environment perception
was collected with the use of the Infineon multi-sensor setup, which included a camera,
LiDAR, and other sensors. A synchronization for Camera and LiDAR data was performed by
extracting 2D depth maps from 3D LiDAR point cloud and by calibration of the sensors using
a planar checkerboard pattern. Using the transfer learning approach, the YOLOv5 object
detection model was trained on Infineon camera image data. The weights were initialized
from the object detection model that was pretrained on the MS COCO dataset. The technique
to extrapolate labels from the camera images to LiDAR 2D depth maps was determined and
implemented. The resulting labels were used for training an independent object detection
model for Infineon 2D depth map data. Using the late fusion approach a sensor fusion
algorithm was implemented to provide a unified perception of the environment for the
autonomous vehicle. This approach allows to label multimodal data automatically and,
therefore, significantly decreases the time and resources for dataset annotation.
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1 Introduction

Autonomous vehicles is a rapidly evolving field that could revolutionize the future of mobility
and transportation. Autonomous vehicles provide the transportation capabilities of conven-
tional vehicles but are largely capable of perceiving the environment and self-navigating with
minimal or no human intervention [1].

Nowadays, autonomous vehicles are represented mostly by self-driving cars and au-
tonomous drones. Self-driving cars have great potential for both improving road safety and
reducing the chance of human error while driving, which is the leading cause of traffic
accidents and fatalities on the road. In addition, autonomous vehicles can provide reliable
mobility for the elderly, young people, and users with disabilities, improve transport inter-
connectivity, decrease traffic congestion in the cities and significantly reduce the energy
consumption for transportation by using the least energy-consuming driving style.

Autonomous drones have limitless potential for application in various industries including
infrastructure inspection, surveying, capturing of aerial data, delivery, emergency rescue,
agriculture, traffic control, and many others.

From a functional perspective, autonomous vehicles are composed of functional blocks,
which are defined based on the flow of information and the processing stages [2]:

Figure 1.1: Functional architecture of the autonomous driving system based on [2]

• Perception:
Perception includes data collection from sensors and other sources in order to generate
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1 Introduction

a representation of the vehicle status and a world model, localization and mapping, and
object detection.

• Planning and decision:
Planning and decision include plan navigation based on the goal specified by the user,
including long-term and short-term navigation plans, processing of information from
external sources (traffic rules, maps updates, and speed limits) in order to ensure safety
as well as Reactive behaviors such as collision-preventing features.

• Motion and vehicle control:
Motion and vehicle control is related to how the trajectory generated in the previous
step is performed on the platform.

• System supervision:
System supervision is in charge of monitoring all the aspects of the vehicle, including
hardware and software [2].

In order to ensure the primary functions described above, autonomous vehicles utilize
various in-vehicle technologies, including hardware (sensors, processing units, communication
technologies, internal networking interfaces, etc.) and software (operating systems, software
for data collection, machine learning and deep learning algorithms, as well as real-time and
safety-critical software, user interface software, etc.).

Overall performance and safety of the autonomous vehicle depend on the input data
coming from a variety of sensors, that shape a reliable picture of the environment and the
internal state of the vehicle. External state sensors such as monocular and stereo cameras,
LiDAR, RADAR, ultrasonic sensors, etc. are often used for environment perception. The
application of sensors of different modalities ensures a more reliable representation of the
environment allowing to overcome the drawbacks of individual sensor types.

Current work is focused on the application of monocular camera and LiDAR data as
well as sensor fusion of camera and LiDAR for object detection based on deep learning for
autonomous vehicles and exploration of the possibilities of labeling of data from one modality
based on data from another modality for the object detection model training.

The use of several sensors at the same time requires very precise synchronization and
calibration among all the sensors and provides the opportunity to utilize joint representation
of the data from multiple sensors for environment perception tasks, such as object detection
and obstacle avoidance. Calibration between the camera and LiDAR is part of the current
work and is described in sections section 2.3, section 3.1, section 4.1.

1.1 Goal

1.1.1 Thesis goal

Environmental perception algorithms are usually based on supervised learning techniques
and thus require a vast amount of data for model training. In order to create a model that is
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1 Introduction

well-performing in real life, a sufficient amount of high-quality labeled data that is recorded
in various weather, climatic and illumination conditions and in different environments should
be available.

ILSVRC ImageNet dataset [3] (more than 200 classes), the PASCAL VOC 2012 dataset [4]
(20 classes) and the MS COCO dataset [5] (80 classes) became very popular for 2D object
detection models training and performance evaluation. At the same time the datasets
KITTI [6], Waymo [7], nuScenes [8] and others are used for the development and evaluation
of 2D, 3D and multimodal deep learning models for environment perception tasks such
as object detection, object tracking, instance segmentation, etc. Annotation, collection and
retrieval of multimodal datasets is a key obstacle in the overall object detection pipeline, since
acquiring and labeling such data is a time-consuming process that requires the availability
of expensive sensors and other technologies as well as a highly professional team that will
ensure data quality.

This thesis has two main goals: the first goal is to propose and demonstrate an approach
to the creation of the annotated multimodal dataset using a monocular camera and LiDAR,
which will be used for the development of the deep learning based models for object detection,
meanwhile, the second goal is the development of the object detection tool for automatic data
labeling from several modalities (Camera, LiDAR, etc.) in order to enable an autonomous
vehicle to avoid obstacles such as pedestrians, cyclists, trees, buildings, etc.

The goals stated above have been achieved through the following steps:

• Collection of the multi-modal synchronous data from LiDAR and monocular camera,

• Development and implementation of the approach for autolabeling of multi-modal data
from LiDAR and camera,

• Implementation of the sensor fusion algorithm to determine the size of resulting
bounding boxes and object classes based on late fusion approach (See section 3.5).

• Analysis of the advantages of fusion of several modalities (camera and LiDAR) in
comparison to uni-modal approaches.

1.1.2 Own contribution

Traditional data collection and annotation assume the annotation of data from each modality
independently. In this work, the approach to simultaneous data labeling from several
modalities via the transfer learning approach is demonstrated.

Multi-modal synchronous data has been acquired using an experimental multisensor setup
(see section 2.4) that has been developed by researchers of Infineon Technologies AG. With
help of the transfer learning approach, Infineon 2D image data were labeled using the
YOLOv5 object detection model, pretrained on the MS COCO dataset [5]. Instead of MS
COCO labels, a custom set of 5 labels which is suitable for application in autonomous vehicles
was used. The set of labels includes the following object classes: pedestrian, tree, building,
fence, and cyclist.
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1 Introduction

2D depth maps were extracted from 3D point cloud data obtained by LiDAR sensor and
projected into an image after sensor calibration. This calibration is performed by extraction
of the intrinsic parameters of the camera as well as extrinsic parameters of the camera and
LiDAR. Therefore, it became possible to apply labels, obtained based on camera image data,
for depth maps. Due to the distinction in fields of view of the camera and LiDAR, as well as a
difference in technology and the time of receiving the frame, the location of the objects in the
corresponding image and depth map is slightly different. Thus, filtering and bounding box
adaptation (in terms of location and size) of the labels was conducted. Filtering included the
elimination of labels outside of LiDAR field of view, analysis of 3D point cloud and ground
plane fitting and extraction in order to enable more accurate clustering, clustering of the
rest of the scene in 3D point cloud based on DBSCAN, and allocation of 2D projection of
3D clusters to 2D image labels. Despite a comprehensive approach to label filtering, partial
manual adjustments of about 10% of filtered labels were made in order to ensure the high
quality of the training data for the depth maps-based model.

As a result, a dataset for training and validation of the LiDAR depth maps-based object
detection model was shaped. The resulting object detection model for LiDAR depth maps
data was trained and demonstrated high performance. The last step of the pipeline is sensor
fusion which was developed and implemented using the late fusion strategy.

The choice of architecture was made due to the interest of Infineon in the independent
use of LiDAR in autonomous drones since LiDAR ensures a high level of data privacy that
is necessary for the real-life application of drones. The creation of the dataset (depth maps
and labels) for LiDAR-based object detection will enable further research in environment
perception using LiDAR.

1.2 Overall approach and thesis implementation pipeline

The thesis implementation pipeline includes four parts:

• Data collection:
Collection of multimodal data with the use of Infineon multisensor setup (See sec-
tion 2.4).

• Data preprocessing:
Data preprocessing step includes LiDAR-Camera sensor calibration (See section 3.1,
section 4.1) as well as depth maps extraction (See section 3.4).

• Images based object detection model development:
An object detection model for camera image data is implemented via a transfer learning
approach. YOLOv5 [9] model pretrained on MS COCO dataset was used (See section 3.2,
section 4.2).

• LiDAR depth maps based object detection model development:
In order to prepare training data for depth maps based object detection model training,
labels obtained by images based model were used and adjusted at the labels filtering
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1 Introduction

step (See section 3.3, section 4.3). YOLOv5 [9] architecture is used for depth maps based
object detector (See section 3.4, section 4.4).

• Sensor fusion based on late fusion approach (See section 3.5, section 4.5).

Figure 1.2: Thesis implementation pipeline

As a result of the work conducted, two independent unimodal object detection models were
trained based on a custom dataset, which has been annotated using the framework described
above. Sensor fusion which is carried out at the last step shapes a single perception of the
environment based on multimodal data, including classes and bounding boxes of objects.
The sensor fusion approach is shown in the Figure 1.3 below: data of each modality are fully
processed independently. In the last step, sensor fusion is applied to the labels obtained for
each modality.
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1 Introduction

Figure 1.3: Object detection pipeline with late fusion approach
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2 Preliminaries

2.1 Object detection in autonomous vehicles

In perception, autonomous vehicles (AVs) rely on a variety of sensors such as cameras,
LiDARs, and radars to detect, understand and interpret the environment, including static
and moving objects in order to avoid obstacles and ensure safe moving.

Object detection is one of the core tasks in the environment perception of AV and is a
foundation for other AV functions such as path planning and motion control. Object detection
is a computer vision task of detecting instances of objects of certain classes (such as humans,
trees, buildings, cars, etc.) and localizing objects in digital images or videos.

Over the years, a wide variety of object detection algorithms have been developed. Earlier
works use the approach of geometric features extraction. For example, In 2001 Viola and
Jones developed an object detector for the detection of a non-occluded, upright face in frontal
view [10]. Viola-Jones object detector utilized “integral image” representation that enabled
fast processing of the image, Ada-boost algorithm on Haar feature classifiers in order to select
a small number of critical visual features from a large set of potential features and a method
for combining classifiers in “cascade” that allows quick extraction of background.

In 2004, Dalal et. al. suggested using a Histogram of Oriented Gradient (HOG) descriptors
in order to extract a feature set to discriminate a human in the image [11] for pedestrian
detection. SVM (Support Vector Machine) classifier was used for the final classification
decision (person or non-person). HOG detectors were later extended to Deformable Part-
based Models (DPMs), which were capable to detect multiple objects in the image.

Deep learning is one of the key techniques in the field of artificial intelligence research
nowadays. Over the last decade, many deep learning-based solutions have been presented in
the field of autonomous vehicles and have achieved outstanding results. Deep learning is
part of machine learning methods that are based on artificial neural networks and imitates
functionality and the process of learning of the human brain. Interest in deep learning
significantly increased in 2012 with the introduction of AlexNet [12] - convolutional neural
network architecture built by A.Krizhevsky, I.Sutskever, G.Hinton and trained on GPU.
AlexNet achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by
the second-best entry at ImageNet Large Scale Visual Recognition Challenge 2012.

Deep learning utilizes a variety of architectures such as convolutional neural networks,
transformers, recurrent neural networks, etc., and is widely applied nowadays in various
domains, such as image processing (object detection, semantic segmentation, object tracking,
etc.), speech recognition, natural language processing, time series predictive modeling,
autonomous vehicles, etc. The recent rapid development of deep learning became possible
with advances in GPU technology and the availability of big datasets that are necessary to
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2 Preliminaries

train deep learning models.

2.1.1 2D camera image based object detection

There are two most famous and widely applied types of image-based object detector architec-
tures nowadays:

• two stages Region proposal Networks (RPN),

• single-stage detectors.

Two-stage object detectors perform a proposal of the region that might contain objects in
the first stage and make a prediction of the object class and location in the second stage.
In the first stage, the object detection model suggests several Regions of Interest (ROIs) of
the image which are likely to contain objects of interest. In the second stage, the ROIs that
are more likely to contain objects of interest are selected while other ROIs are discarded.
Objects within selected ROIs are classified. The main drawback of two-stage object detection
is inference speed, nevertheless, two-stage object detectors show high accuracy of predictions.

Single-stage object detectors utilize a single feed-forward neural network that creates
bounding boxes and predicts objects in the same stage. Single-stage object detectors are faster
than two-stage detectors and much more suitable for application in autonomous vehicles. At
the same time, they are typically less accurate than two-stage object detectors.

Each of these types is described in the following sections (See subsubsection 2.1.1, subsub-
section 2.1.1, subsubsection 2.1.1).

Region proposal detectors

Popular two-stage object detectors include RCNN, Fast R-CNN, and Faster R-CNN.

R-CNN
R-CNN architecture was suggested by Girshik et al. in 2014 [13]. R-CNN generates

around 2000 category-independent region proposals for the input image via a selective search
algorithm. Affine image warping is used to compute a fixed-size CNN input of 227x227x3
from each region proposal regardless of the input shape. A 4096-dimensional feature vector
is extracted from each region proposal with the use of the Convolutional Neural Networks
(CNN). At the next step, the model classifies each region with a set of category-specific linear
SVMs [13].

Non-maximum suppression (NMS) step is performed at the end of the object detection
pipeline. Non-maximum suppression is an algorithm that is used in both two-stages and
single-stage object detectors in order to eliminate duplicate predictions for one object. NMS
sorts all detection boxes based on their confidence scores, recursively selects detection with
maximum score M, identifies detections that have an overlap with selected detection that is
greater than a predefined threshold, and suppresses such detections.
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2 Preliminaries

Figure 2.1: R-CNN architecture based on [14]

Fast R-CNN
In 2015 R.Girshick proposed an improved version of R-CNN - Fast R-CNN [15] that solved

some of the problems of the R-CNN model and demonstrated increased inference speed and
accuracy in comparison to R-CNN. This was achieved by computing the convolutional feature
map and ROI proposals for the entire input image. For each object proposal, a ROI pooling
layer extracted a fixed-length feature vector from the feature map. Then each feature vector
is fed into a sequence of fully connected layers that have two outputs that produce softmax
probability for possible object classes and a set of 4 values that encodes the refined bounding
box location of the object.

Figure 2.2: Fast RCNN architecture based on [14]

Faster R-CNN
In order to solve the computation bottleneck of R-CNN and Fast R-CNN at the region

proposal step, authors of Faster R-CNN [16] employed a Region Proposal Network (RPN) that
shared convolutional layers with the object detection network. RPN is a fully convolutional
network and is designed to efficiently predict region proposals with a wide range of scales
and aspect ratios. On the top of RPN, there are several additional convolutional layers that
simultaneously regress region bounds and objectness scores at each location on a regular
grid.

Faster R-CNN paper introduces the idea of anchors - bounding boxes that are placed
throughout the image with different sizes and ratios and that are referenced when predicting
object locations. As a result of the application of anchors, many-to-one predictions could
occur for one object. Therefore, NMS post-processing step is necessary to remove duplicates.
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2 Preliminaries

Figure 2.3: Faster RCNN architecture based on [14]

Single stage detectors

Single-stage object detectors are faster in comparison to two-stage detectors since they per-
form only a single pass in order to predict objects in the input image. Nevertheless, earlier
versions of single-stage object detectors were less accurate in comparison to two-stages object
detectors. Commonly used one-stage object detectors are SSD, YOLO, EfficientDet, RetinaNet,
FCOS, OneNet, DETR, etc.

Single Shot MultiBox Detector (SSD)
Single Shot MultiBox Detector (SSD) architecture was proposed in 2015 by Liu et al [17].

SSD encapsulates all computation of the object detection pipeline in a single network. The
model architecture consists of a backbone network and detection head. The backbone model
usually is a pre-trained image classification network with truncated classification layers that
is used as a feature extractor. SSD detects objects at multiple scales by applying predictors to
multiple feature maps from the later stages of a network. It distinguishes SSD from YOLO
which operates on a single-scale feature map. SSD predicts object categories and offsets in
bounding box locations for a fixed set of default bounding boxes and uses separate predictors
(filters) for different aspect ratio detections. The model loss is calculated as a weighted sum
between localization loss and confidence loss. At the last step of the object detection pipeline,
NMS is performed in order to produce final predictions. The architecture of the SSD is shown
in the Figure 2.4 below.

Figure 2.4: SSD architecture based on [17]
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2 Preliminaries

RetinaNet
While in two-stage object detectors classifier is applied to a limited sparse set of candidate

object locations, in single-stage object detectors, on the contrary, dense regular samples of
possible object locations are given to the classifier and thus most of the samples contain
background. As a result, single-stage object detectors had a common problem that significantly
decreased accuracy - foreground-background class imbalance, when foreground classes are
under-represented and background class is extremely over-represented.

Due to foreground-background class imbalance training becomes inefficient as most lo-
cations are so called easy negatives and do not contribute any useful information to the
model to learn, the easy negatives can overwhelm training and lead to degenerate models
that always predict background class.

Lin et al. suggested a way to mitigate this problem in [18] and developed RetinaNet
object detection architecture that utilizes a focal loss function, that contains commonly used
cross-entropy loss multiplied by a modulating factor γ. Focal loss is defined as following:

FL(pt) = −(1 − pt)
γ log pt (2.1)

Thus, if the confidence score pt is low, the modulating factor −(1 − pt)γ is approximately
equal to 1 and the loss is unaffected. If pt is close to 1, the factor −(1 − pt)γ goes to 0 and
the loss for well-classified examples is down-weighted. Authors analysed γ ∈ [0, 5] and
found that γ = 2 works best in their experiments [18]. Modulating factor reduces loss from
"easy" examples with high confidence score pt and helps the model to focus on learning more
difficult ones.

RetinaNet object detection consists of backbone network ResNet-101, FPN (Feature Pyramid
Network) as a neck and detection head that is represented by two task-specific subnetworks
for object classification and bounding box regression. The backbone is responsible for
computing a convolutional feature map over an entire input image while augmenting a
standard convolutional network with a top-down pathway and lateral connections so the
network efficiently constructs a multi-scale feature pyramid from a single resolution input
image and improves predictions for small-size objects [18]. Architecture of the RetinaNet is
demonstrated in the Figure 2.5 below.

Figure 2.5: RetinaNet architecture based on [18]

Authors of RetinaNet architecture have demonstrated that RetinaNet outperformed other
two-stage and single-stage object detectors that existed at the time in speed vs accuracy and
reached average precision of AP = 37.8 which is higher than the closest result of FPN FRCN
based on MS COCO test-dev dataset (See [18]).
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2 Preliminaries

Figure 2.6: Speed (ms) versus accuracy (AP) on COCO test-dev based on [18]

YOLO for 2D image based object detection

The first version of the single-stage object detector YOLO (You only look once) YOLOv1 was
proposed by Redmon et al in 2016 [19]. YOLOv1 predicts the class and location for each object
in the image in one pass and demonstrates high generalization ability and inference speed in
comparison to current two-stages object detectors [15]. In YOLOv1 entire image is divided
into an SxS grid (7 × 7 default). For each grid cell, B bounding boxes and corresponding
confidence scores are predicted. Regardless of the number of bounding boxes per cell B, only
one set of C conditional class probabilities is predicted for each grid cell, where C is the
number of possible classes.

The number of bounding boxes B, as well as the ability to predict only one class of objects
for each grid cell, is a strong limitation of the model. In addition, predictions are performed on
the feature map that is obtained by several convolutional layers and multiple downsampling
layers. Thus, the model extracts coarse features that are used for bounding box prediction.
Such an architecture limits model performance for the small objects prediction.

In 2017 YOLO9000 paper (YOLOv2) was published [20]. YOLOv2 is a modified version of
YOLOv1 that had improved overall performance via several new approaches and techniques.
YOLOv2 is capable to predict 9000 classes due to training on both classification and object
detection datasets. In YOLOv2 Darknet-19 is used as a backbone network. All fully connected
layers are removed and anchor boxes are used to predict bounding boxes. K-means clustering
is used in order to identify anchor box dimensions. The authors showed that k=5 gives a good
trade-off between recall and complexity of the model. In order to increase the resolution of the
resulting feature map, one of the pooling layers is removed. Authors used batch normalization
on all convolutional layers in YOLOv2 and thus achieved faster convergence during training,
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2 Preliminaries

regularization effect, and improvement of mAP by more than 2%. Furthermore, the authors
suggested multi-scale training by changing of input size every 10 batches and expanding the
13x13 feature map, which is used for predictions, with features from an earlier layer at 26 ×
26 resolution via concatenation through the pass-through layer.

In 2018 YOLOv3 paper [21] was published with further improvements of the You Only
Look Once architecture. YOLOv3 uses a 53-layered backbone network Darknet-53 for feature
extraction. Darknet-53 mainly consists of convolutional layers with kernel size 3x3 and 1x1
and has skip connections like the residual network ResNet [22]. As in YOLOv2, YOLOv3
predicted 4 coordinates for each bounding box: bounding box center along the x and y
axis and width and height of the bounding box. The Sum of squared error is used as
a loss function during training. In YOLOv3 softmax function for the class prediction is
replaced with independent logistic classifiers for each class and binary cross-entropy loss for
classification loss calculation during training. It allows to use the classes that are not mutually
exclusive and thus to put several labels for each object. YOLOv3 makes predictions at 3
different scales via an approach that is similar to the feature pyramid network. In YOLOv3
predictions are performed on the output feature map that is concatenated with 2 previous
layers after upsampling. Improvements that are described above enhanced the prediction of
the overlapping bounding boxes and smaller objects. A comparison with other architectures
that existed at the time of publication is shown in the graph below (See Figure 2.7). YOLOv3
demonstrated high accuracy together with a high speed of detection.

Figure 2.7: Performance comparison (speed vs accuracy) of YOlOv3 with other SOTA object
detection architectures based on [21]

In 2020, YOLOv4 [23] was introduced. Authors proposed two groups of techniques - “bag
of freebies” and “bag of specials”. “Bag of freebies” – improvements in the training process
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that enhanced the accuracy of the model, and “bag of specials” - improvements that aimed
mostly at increasing the inference speed:

• Bag of Freebies (BoF) for backbone: CutMix and Mosaic data augmentation, DropBlock
regularization, Class label smoothing;

• Bag of Specials (BoS) for backbone: Mish activation, Cross-stage partial connections
(CSP), Multi-input weighted residual connections (MiWRC);

• Bag of Freebies (BoF) for detector: CIoU-loss, CmBN, DropBlock regularization, Mosaic
data augmentation, Self-Adversarial Training, Eliminate grid sensitivity, Using multiple
anchors for single ground truth, Cosine annealing scheduler, Optimal hyperparameters,
Random training shapes;

• Bag of Specials (BoS) for detector: Mish activation, SPP-block, SAM-block, PAN path-
aggregation block, DIoU-NMS.

YOLOv4’s architecture consists of CSPDarknet-53 [24] as a backbone, modified SPP [25]
(Spatial Pyramid Pooling), and PAN [26] (Path Aggregation Network) as a neck and YOLOv3
detection head [21].

Backbone network CSPDarknet-53 is inspired by ideas of Darknet-53 that was used as a
backbone in YOLOv3 [21], and Cross Stage Partial DenseNet (CSPNet) [24]. Object detection
neck collects feature maps from different levels of aggregation in the backbone. The neck
models include top-down paths and bottom-up paths in order to provide spatial information
from the bottom-up path and semantic information from the top-down path as input for
the detection head. YOLOv4 includes SSP in order to increase receptive field and PAN - as
a method for parameter aggregation from different backbone levels for different detector
levels [23].

In 2020 one more version of YOLO - YOLOv5 was proposed by Ultralytics [9]. While
previous versions of YOLO were developed based on Darknet (written in C), Ultralytics
prepared implementations in Pytorch, a widely used open-source machine learning framework
developed by Meta AI. Research and development of YOLOv4 and YOLOv5 by two different
groups of researchers were carried out at the same time. Both groups of researchers included
state-of-the-art techniques in object detection. As a result architectures of YOLOv4 and
YOLOv5 are very similar. The publication of the YOLOv5 paper which was promised by the
authors has never been published.

As well as YOLOv4, YOLOv5 has a CSP backbone and PAN neck. One of the improvements
of YOLOv5 in comparison to YOLOv4 is an integration of the anchors’ bounding boxes
learning into the model pipeline. Therefore, no preliminary analysis of bounding boxes in
the dataset is needed. Figure 2.8 summarizes information about the speed and mAP (mean
average precision) of several widely used object detection models. This table demonstrates,
that YOLOv5 outperforms other models in inference speed while showing reasonably high
performance. Since both the accuracy of the model and its speed are important for the
application in autonomous vehicles, YOLOv5 has been chosen for further experiments in the
current work.
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Figure 2.8: Performance comparison (speed vs accuracy) of 2D camera image based object
detection architectures based on [27]

2.1.2 3D Point cloud based object detection

3D object detection task is formulated as following: Given the point cloud of a scene formed
by the LiDAR sensor and represented in the LiDAR coordinate frame, predict oriented
3d bounding boxes of the target objects (represented in the LiDAR coordinate frame) and
corresponding class of the object. An oriented 3d bounding box is represented by coordinates
of the center of 3d box xc, yc, zc, its length, width, height w, h, l and augmented with its
heading angle θ (yaw rotation around Z-axis) with respect to the body coordinate frame of
the 3d box. Angle θ = 0 of a box refers to the case when its length dimension (longer side on
the X-Y plane) is parallel to the X-axis of the LiDAR coordinate frame.

There are three main directions for the development of object detectors based on LiDAR
3D point cloud data:

• Discretization (Voxelization) based methods,

• Architectures where 3D point cloud is directly processed (point based),

• Architectures where the 3D point is transformed to the 2D pseudo-image in order to
apply 2D object detection methods, and

• Multi-modal fusion-based methods that combine data from several sensors, for example,
camera and LiDAR data (This group of methods is described in the section section 2.2).

15



2 Preliminaries

Historically object detection was developed for 2D images and a lot of methods were
created for image data. Remarkable results in image-based object detection were achieved
with Convolution Neural Networks (CNN), that use dense, ordered, regular representation as
an input. The point cloud data, on the contrary, is unordered, sparse, and has varying density.
These distinctive features of point clouds do not allow direct use of such methods as CNN.

Voxel based object detection architectures

Discretization-based methods transform unordered LiDAR data in order to create an ordered,
grid-like representation (pseudo-image) that can be used as input to CNN.

The main idea of voxelization-based methods is to divide 3D space into 3D or 2D cells –
voxels and allocate points to the voxels based on the coordinates. The features that describe
the voxels are derived from each voxel and are represented as 4D tensors (in the case of 3D
voxelization) or 3D tensors (in the case of 2D voxelization along the plane). Such an approach
provides the opportunity for the application of convolutional neural networks for further
processing and object detection. Widely used examples of such approach - VoxelNet and
PointPillars. One of the major differences between VoxelNet and PointPillars is a voxelization
method: In VoxelNet authors divide the space along all 3 axes X, Y and Z, while in PointPillars
the space is divided only along X and Y-axes which leads to a forming of the columns alone
Z-axis, so-called “pillars”.

VoxelNet architecture was proposed in 2017 in [28] and become the first end-to-end
trainable architecture for 3D object detection. In VoxelNet a point cloud is partitioned into
voxels of the equal size and the features within each voxel are encoded with feature encoding
layers based on PointNet. As a result, a 4D tensor is produced. 3D Convolution is applied to
transform 4D tensor into a 3D tensor and prepared data for processing by the region proposal
network that is used for object detection. 3D convolution layers aggregate local voxel features
and transform the point cloud into a high-dimensional volumetric representation. These
layers add more context to the shape description and prepare data for feeding into Region
Proposal Network. A regional proposal network (RPN) is a fully convolutional network that
simultaneously predicts object bounds and object class probabilities scores at each position.
RPN in VoxelNet contains two sub-networks: one top-down network that produces features
at increasingly small spatial resolution and a second network that performs upsampling and
concatenation of the top-down features.

Figure 2.9: VoxelNet architecture

PointPillars paper [29] was published one year later. PointPillars architecture consists of 3
parts:
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• a feature encoder network that converts a raw point cloud data to a pseudo-image (3D
Tensor) suitable for processing by convolutional neural networks,

• a 2D convolutional backbone network to process the pseudo-image into a feature map,
and

• a Single Shot Detection (SSD) head that regresses 3D bounding boxes and outputs class
of the object.

Figure 2.10: PointPillars architecture

In PointPillars 3D space is divided into voxels in the X-Y plane resulting in vertical columns
(pillars). Each point in the pillar is encoded by a 9-Dimensional vector that is used for scene
representation as a 3D tensor. A linear layer followed by BatchNorm and ReLU operators
is applied on the 3D tensor with an output number of features of the fixed size. After the
max-pooling operation over the channels of the tensor, the pillar feature vectors are brought
back to the original pillar locations to create a pseudo-image. The structure of the backbone
network in PoinPillars is similar to VoxelNet, and the main difference is Detection Head.
While in VoxelNet two-stage regional proposal network is used, PointPillars uses Single Shot
Detector (SSD).

In a single-stage architecture, a dense set of anchor boxes is regressed and classified in a
single stage into a set of predictions providing a fast and simple architecture. With focal loss,
it outperforms RPN in both speed and accuracy.

Point based object detection architectures

Despite the voxelization methods that are described in the subsubsection 2.1.2 above are
efficient due to the opportunity to apply 3D or 2D convolutions on voxel representation,
voxelization results in the loss of detailed information of the shape of the objects. In addition,
voxelization takes a lot of computational resources. Point-based object detection methods
attempt to reduce information loss caused by either projection or voxelization. Point-based
object detection operates directly on raw point cloud and does not have such a disadvantage.
Nevertheless, processing of raw point cloud is a challenging task since point cloud is an
unevenly distributed, unordered, and thus permutation invariant set of points. At the same
time using the whole point cloud as input can increase run-time. One of the fundamental
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point-based architectures is PointNet [30]. PointNet is a unified architecture that operates
directly on the point cloud and outputs either class labels for the entire input or per point
segment/part labels for each point of the input [30]. The network performs point-wise
transformations using Fully-Connected layers and uses the max-pooling layer as a symmetric
function to aggregate information from all points in order to ensure that the model is invariant
to input permutation.

Figure 2.11: PointNet architecture based on [30]

PointNet-like architecture is used as a building block in many 3D object detection ar-
chitectures. other examples of such architectures are PointRCNN [31], 3DSSD [32] and
Point-GNN [33]. PointRCNN uses a block similar to PointNet to learn the semantic signals
associated with foreground points from which 3D proposals are generated. In 3DSSD ar-
chitecture, authors suggest a new sampling approach in order to make detection on less
representative points feasible and reduce computational costs. The Point-GNN is single-stage
detection architecture that has three main components: graph construction from a point cloud,
a graph neural network for object detection, and bounding box merging and scoring [33].

2D depth maps based object detection architectures

A depth map is a robust representation that is highly invariant to lighting changes. 2D depth
maps based object detection architectures transform the 3D point cloud into a 2D depth map
representation first via plane, cylindrical, or spherical coordinate transformation. That allows
to directly apply convolutional neural networks and, therefore, to use of methods that are
developed for camera images.

Besides depth map representations are widely used in sensor fusion methods, including
early and halfway fusion [34]. Sensor fusion methods are considered in the section 2.2.
In comparison to the 3D point cloud, processing of 2D depth maps requires much less
computational power and thus, is suitable for application on mobile devices and in real-time
scenarios.
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One of the examples of such methods is 2.5VoteNet [35] architecture that extracts features
directly on depth maps and learns robust local features using relative depth convolution
(RDConv) block. At the same time depth map is scaled to the size of the feature map and
lifted into 3D space. The feature vectors from the feature map are then matched to the
corresponding 3D point. After that, the detection and NMS are performed in 3D space in
order to use the spatial information. 2.5VoteNet achieves a high inference speed of 69 FPS.

Figure 2.12: 2.5Votenet architecture based on [35]

2.2 Sensor fusion for object detection (Camera and LiDAR)

2.2.1 Sensor fusion definition

D.L.Hall et al. define data fusion in [36] in the following way:

Data fusion techniques combine data from multiple sensors, and related informa-
tion from associated databases, to achieve improved accuracy and more specific
inferences than could be achieved by the use of a single sensor alone.

The authors of the paper characterize data fusion as a hierarchical transformation between
observed energy or parameters (provided by multiple sources as input) and a decision or
inference (produced by fusion estimation and/or inference processes) regarding the location,
characteristics, and identity of an entity, and an interpretation of the observed entity in the
context of a surrounding environment and relationships to other entities [36].

Bellot et al. in [37] define 4 categories of the gain obtained with the use of data fusion:
gain in representation (abstraction level of data at the end of a fusion process), completeness
(effectiveness of the fusion process to enhance the description of an environment), accuracy
(reduction of noise and approximation on data after fusion) and certainty (an increase of the
belief on data after the fusion process).

2.2.2 Commonly used modalities in sensor fusion

Data from several different modalities are commonly used for reliable environment perception
in autonomous driving. Frequently used types of sensors include monocular and stereo
cameras, LiDAR, RADAR, ultrasonic sensors, etc.

19



2 Preliminaries

Monocular and stereo camera

The camera is the most used sensor for perceiving the environment. A camera is an optical
instrument that captures a visual image. A camera lens takes the light rays bouncing around
and uses glass to redirect them to a photosensitive surface, creating an image. Cameras
could provide high-resolution 2D images of surroundings and are relatively inexpensive
in comparison to other types of sensors. A monocular camera has one sensor and creates
a sequence of images. A stereo camera has two sensors, that are spaced a small distance
(baseline) apart from each other. Both sensors produce synchronized images. A stereo
camera takes the two images from sensors and compares them. Since the distance between
the sensors is known, the comparison gives depth information. The camera’s performance
strongly depends on light conditions, therefore camera data is often supplemented by data
obtained from other types of sensors.

LiDAR

LiDAR is an acronym for "Light Detection and Ranging" or "Laser imaging, Detection, and
Ranging”. LiDAR is a technology for 3D scanning of the environment. Typically, LiDAR
sensor emits pulsed light waves that are outside of the visible spectrum into the surrounding
environment. These pulses bounce off surrounding objects and return to the sensor. The
sensor uses the time it took for each pulse to return to calculate the distance it traveled. Unlike
cameras, LiDAR sensor functions independently of the ambient lighting and provide robust
results without any loss of performance due to disturbances such as shadows, sunlight, or
headlight glare during both day and night time. LiDAR can target a wide range of materials,
including non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds, and even
single molecules. LiDAR sensors have high resolution, operate at ranges up to 300 meters
and demonstrate very precise results with the error up to 2cm. LiDAR technology provides a
very accurate 3D reconstruction of a scene due to the high number of measurement points for
each scene.

LiDAR sensor returns a point cloud, an unordered set of points that contains coordinates
of each point in the 3D space in Cartesian (x, y, z) or spherical coordinate system (r, theta,
phi), and reflectance information. Point cloud representation preserves the original geometric
information in 3D space without any discretization. Therefore, it is the preferred represen-
tation for many scene understanding related applications such as autonomous driving and
robotics. 3D point cloud has specific features that distinguish this data type from 2D image
representation:

• Unorderdness:
The point cloud of a scene is the set of points (usually represented by coordinates)
obtained from the objects in the scene and are usually stored as a list in a file. The order
in which the points are stored does not change the scene representation.

• Irregularity:
The points in the point cloud are not evenly sampled across the scene. The resulting
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point cloud could have areas that are represented by a high number of dense points as
well as areas that are represented by the small number of sparse points.

• Unstructureness:
Points in the point cloud are not located on the regular grid. Each point is scanned
independently and its distance to neighboring points is not fixed. In contrast, pixels in
images are represented on a 2 dimension grid, and spacing between two adjacent pixels
is always fixed.

RADAR

RADAR (Radio Detection and Ranging) works on the principle of radiating electromagnetic
waves and receiving the scattered waves or reflections of targets for further signal processing
and evaluation of range information about the target [1]. Based on the doppler property of
electromagnetic waves, the relative speed and position of the target could be determined.

The propagation of electromagnetic waves is not affected by adverse weather conditions,
and the operation of the radar is independent of environmental lighting conditions. Therefore,
RADAR provides reliable data at any time of the day and in any weather conditions. Nev-
ertheless, the detection of static objects based on RADAR data is challenging since RADAR
sensors are commonly optimized to detect moving objects.

In [1] D.J. Yeong et al. provide a comparison of commonly used sensors in autonomous
vehicles (Camera, LiDAR, RADAR):

Figure 2.13: Comparison of commonly used sensors (Camera, LiDAR, RADAR) in AV based
on technical characteristics and other external factors based on [1]

Camera data has a high resolution, color perception and is suitable for traffic light recog-
nition, lane detection, and object classification, but under certain illumination or weather
condition performance of the camera sensor could be poor. LiDAR is suitable for accurate
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distance estimation, object detection and does not depend on illumination conditions. Nev-
ertheless, LiDAR does not provide color perception, velocity estimation, and is not suitable
for some tasks such as line detection or traffic light recognition. RADAR provides range
data, operates well in any illumination and weather conditions, and is suitable for velocity
estimation.

The fusion of several modalities for environment perception in autonomous vehicles is
beneficial. For example, using LiDAR in darkness can significantly improve object detection
results, since there is not enough light to recognize objects based on camera data while LiDAR
does not depend on the amount of light and the performance of the LiDAR-based object
detection models does not decrease due to poor light conditions. At the same time, the quality
of object detection based on LiDAR data could decrease during precipitation. Thus, with the
use of several modalities, the ambiguities of individual data sources can be resolved and the
performance of the overall system could be improved.

2.2.3 Sensor fusion strategies

Recent object detection architectures based on data from a single data source show high
performance by utilizing the power of Convolutional Neural Networks (CNN). Nevertheless,
a combination of data from several modalities could help to overcome shortages of individual
modalities and improve the overall perception capabilities of the autonomous system.

Depending on the stage when the fusion step is performed, there are several fusion
strategies: early fusion, middle (or halfway), and late fusion. In early fusion, raw data
are merged at the beginning of the processing, while late fusion combines results after the
processing of data in each modality. In middle fusion features that were extracted from
different modalities are combined.

Figure 2.14: Sensor fusion strategies based on [14]

In early fusion, raw data or features extracted from the raw data of each modality could be
concatenated into a joint representation and processed together. Data from each modality
should be properly aligned in joint representation. Thus, cross-correlations between data
from different modalities could be exploited, thereby providing an opportunity to increase
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the performance of the system. Nevertheless, the processing of joint representation might
need more computational resources and time than the processing of data from each modality
separately and performing fusion at the end of the process (late fusion).

In [38] authors of VoxelNet, first end-to-end 3D object detection achritecture [28] proposed
PointFusion and VoxelFusion - 3D object detectors based on RGB camera and LiDAR PCD
modalities. They extended VoxelNet, 3D voxel-based object detector that operates on LiDAR
PCD, augmented PCD with semantic image features, and propose the following fusion
techniques:

• PointFusion - an early fusion method where points from the LiDAR are projected onto
the image plane, followed by image feature extraction from a pre-trained 2D detector. In
PointFusion concatenation of image features and the corresponding points is processed
by the VoxelNet architecture.

• VoxelFusion - a halfway fusion method where non-empty 3D voxels created by VoxelNet
are projected to the image, followed by extracting the image features for every projected
voxel using a pretrained CNN and further processing by voxel feature encoding layers.
In the last stage region proposal network is utilized in order to produce 3D bounding
boxes.

In [39] Kim et al. propose a YOLO-based object detection system and utilize a late-fusion
strategy to combine results. YOLO-based object detectors are trained independently based on
data from 3 modalities: RGB camera data, reflection data obtained from LiDAR PCD, and
depth map data obtained from LiDAR PCD. Each object detector predicts bounding boxes
and conditional class probability. Detection results from each modality are combined at the
decision level to improve overall detection performance: weighted mean (WM) is calculated
for each object to average the bounding box.

Depending on the task, one or another strategy may bring more benefits. In the current
work, the late fusion strategy is utilized. This approach meets the requirements determined
by Infineon Technology AG to prepare independent object detection models for each modality
in order to have the opportunity to use each sensor for object detection independently.
Furthermore, it is planned to use the object detection model on edge devices. Therefore, a
less computationally expensive strategy is more beneficial.

2.3 Sensor Calibration for Camera and LiDAR

Sensor calibration is a foundation for sensor fusion and requires additional preprocessing
in order to match data from several sensors that could be either same or from different
modalities.

Precise calibration is a cornerstone for further processing steps, such as sensor fusion
and implementation of such algorithms as obstacle detection. Sensor calibration notifies the
autonomous system about the sensors’ position and orientation in real-world coordinates by
comparing the relative positions of known features as detected by the sensors [1]. In the [1]
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three categories of calibrations are mentioned: intrinsic calibration, extrinsic calibration, and
temporal calibration.

Intrinsic calibration estimates the internal or intrinsic parameters of a sensor, e.g., focal
lengths of a vision camera, which correct for systematic or deterministic aberrations (errors) [1].
Extrinsic calibration is a rigid transformation (or Euclidean transformation) that maps the
points from one 3D coordinate system to another [1]. Intrinsic calibration is conducted before
implementing extrinsic calibration. In this section two types of calibration that are necessary
for LiDAR-Camera sensor fusion, are considered - single camera calibration based on a
pinhole camera model and extrinsic LiDAR-Camera calibration.

2.3.1 Single camera calibration

The pinhole camera model is widely used for intrinsic camera calibration. The pinhole
camera model describes the mathematical relationship of the projection of points in 3D world
coordinate space onto a 2D image plane. The pinhole camera model assumes that the camera
aperture is a point and no lenses are used and does not describe geometric distortion. Pinhole
camera model visualisation1:

Figure 2.15: Pinhole camera model

The projection of the point from 3D world coordinates to 2D image coordinates is calculated
using the following formula:

sm′ = Mint MW−C
ext M′ (2.2)

1Source: https : //docs.nvidia.com/vpi/appendix_pinhole_camera.html
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Where: s - scale factor, Mint – intrinsic parameters of camera, MW−C
ext – extrinsic parameters

(rotation and translation) that describe transformation from 3D world coordinates to 3D
camera coordinates, m′ = [u, v, 1]T - homogeneous image coordinates, M′ = [x, y, z, 1]T

- homogeneous 3D world coordinates. Homogeneous coordinates m′, M′ equal to m, M
correspondingly, augmented with additional coordinate W. W represents the distance from
the sensor to the projection plane and reflects a scaling transformation. For the purposes
of calibration W is set to 1. Homogeneous coordinates allow to express various coordinate
transformations as matrix operations and therefore are used in computer vision.

Mint =

 fx 0 0
0 fy 0
u0 v0 1

 (2.3)

where fx, fy - horizontal and vertical focal lengths respectively expressed in pixel units,
u0, v0 - optical center (principal point) of the image.

MW−C
ext = [R|T] =

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 (2.4)

where R - rotation matrix, T - translation vector.
One of the commonly utilized approaches is Zhang’s model [40]. This is a camera calibration

method that uses photogrammetric techniques (based on known calibration points) and self-
calibration techniques (correspondence between the calibration points when they are in
different positions). Zhang’s model uses one of the repetitive calibration patterns with known
geometry, for example, the checkerboard pattern.

Figure 2.16: Checkerboard pattern widely used for calibration

The planar pattern is captured from several orientations (at least two). The dimensions
of the checkerboard as well as the dimensions of each cell are known in advance. The
known calibration points observed from a planar pattern and the correspondence between
the calibration points in various positions are used to estimate the calibration matrix [40].
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2.3.2 LiDAR-Camera Calibration

Monocular camera and LiDAR are the sensors that are commonly used in autonomous
vehicles. Camera and LiDAR data representations have different coordinate systems and
dimensionality. Calibration of camera and LiDAR is an example of extrinsic calibration and
implies a rigid transformation of points from the 3D LiDAR coordinate system to the 3D
camera coordinate system [1].

Transformation from 3D LiDAR coordinate space to 2D image space is defined as following:

sm′ = Mint ML−C
ext M′ (2.5)

Where: s – scale factor, Mint – intrinsic parameters of camera, ML−C
ext – extrinsic parameters

(rotation and translation) between LiDAR and Camera in 3D coordinate systems, m′ =

[u, v, 1]T - homogeneous image coordinates, M′ = [x, y, z, 1]T - homogeneous 3D LiDAR
coordinates.

Figure 2.17: 3D LiDAR-2D image coordinate transformation

LiDAR-Camera Calibration estimates extrinsic parameters:

ML−C
ext = [R|T] =

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 (2.6)

where R - rotation matrix, T - translation vector.
Intrinsic parameters of camera Mint are estimated using single camera calibration ap-

proaches and described above in subsection 2.3.1.
Contemporary approaches to LiDAR-Camera calibration include calibration based on

repetitive planar pattern, for example [41], as well as targetless calibration, for example [42],
[43].

Zhou et al. proposed a target-based extrinsic calibration approach based on a checkerboard
pattern that is captured in different poses in order to obtain constraints of calibration parame-
ters under different poses. The authors of the paper developed a calibration algorithm that
combines 3D line and plane correspondences. This algorithm consists of several steps:

1. Detect the checkerboard and its boundaries in the image and calculate their correspond-
ing 3D plane and 3D boundaries.
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2. Specify a rough position for the checkerboard. Detect the checkerboard by RANSAC to
get the plane and the boundary.

3. Estimate the rigid transformation (R̂C
L , t̂C

L ), where R̂C
L - estimation of the rotation matrix,

t̂C
L - estimation of the translation vector.

One of the disadvantages of the approach described above is that it is an iterative approach.
Each new iteration of the calibration is performed independently of the others, and the
result could be improved. However, the improvement of the result is not guaranteed and the
required number of iterations is difficult to estimate.

G. Zhao et al proposed a deep learning-driven technique for multimodal calibration called
CalibDNN [42] that require a single iteration.

Figure 2.18: CalibDNN approach overview

This approach requires pre-calibrated data samples in order to generate ground truth data
for training neural network - RGB images and 2D projections of the 3D point cloud into an
image. CalibDNN architecture consists of feature extraction and feature aggregation blocks
and predicts extrinsic parameters: rotation vector r =(rx; ry; rz)T and translation vector t =
(tx; ty; tz)T. The loss function is a weighted sum of three losses: transformation loss, depth
map loss, and point cloud loss. Transformation loss is the L-2 norm between prediction and
the ground truth separately on the rotation vector and translation vector. Depth map loss is a
loss between predicted and ground truth depth maps obtained using predicted and ground
truth extrinsic parameters correspondingly. Given intrinsic camera parameters, the predicted
and ground truth depth maps are back-projected to the point cloud. The point cloud loss
reflects the difference between the predicted point cloud and ground truth point cloud using
Chamfer Distance.

The novel targetless LiDAR-Camera calibration approach proposed by B.Zhang et al. in
[43] relies only on one shot and transforms multimodal calibration problem from 3D-3D to
2D-2D. The authors of the paper suggest to project LiDAR 3D point cloud into the image
plane via a cylindrical projection model, to extract dense maps of depth, reflectivity, and
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object features and then to extract edge information from each of them based on the Canny
edge detector. At the same time, edge information is extracted from the image as well based
on the Sobel filter. The edge map is smoothed by applying a Gaussian kernel. Edge matching
between multi-feature edge maps extracted from LiDAR point cloud and camera edge map is
solved using optimization.

2.4 Infineon data acquisition setup

Researches of Infineon Technologies AG developed a multisensor setup and framework for
data acquisition and storage. The multisensor setup represents a bicycle helmet with sensors
mounted on it. Sensors in the setup:

• Camera Intel RealSense D415 2;

• LiDAR: Blickfeld Cube 13;

• RADAR: Infineon BGT60TR13C4;

• ToF: CamBoard pico flexx5;

• CubeOrange with IMU (ICM-209486) and GPS (Here37 + Here+ RTK8 Base).

Multisensor setup is connected to laptop with the following configuration:

Parameter Value
Model ASUS TUF 15 FX506HM

Processor Intel Core i5-11400H
GPU NVIDIA GeForce RTX 3060

CUDA cores 3840
RAM 16 GB

Computing power 11.4 TFLOPS

Table 2.1: Configuration of the laptop that was used for data acquisition

The setup records data of the data types that are commonly used for autonomous vehicles’
environment perception. All data are synchronized among all sensors.

In the Figure 2.19 the sensor setup for multi-modal data acquisition is demonstrated.

2https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-
technology/Intel-RealSense-D400-Series-Datasheet.pdf

3https://www.blickfeld.com/lidar-sensor-products/cube-1/
4https://www.infineon.com/dgdl/Infineon-BGT60TR13CDataSheet-DataSheet-v0100 − EN.pd f ? f ileId =

8ac78c8c7d718a49017d94bac88e5d43
5https://3d.pmdtec.com/en/
6https://invensense.tdk.com/download-pdf/icm-20948-datasheet/
7https://docs.cubepilot.org/user-guides/here-3/here-3-manual
8https://ardupilot.org/copter/docs/common-here-plus-gps.html
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Figure 2.19: Sensor setup for data acquisition

Data acquisition was conducted at Infineon office park "Campeon" - an office complex
embedded in a 62-hectare public landscaped park with 6.8 ha of water. Campeon has a good
mix of environmental features including buildings, trees, and green vegetation of various
sizes, which could also be considered an obstacle for autonomous vehicles. Data acquisition
was conducted in compliance with the standards of data privacy - all participants of data
acquisition are employees of Infineon Technologies AG who have agreed to participate in the
data recording. Due to privacy issues, data acquisition in the city was not possible.

In the current work, only a monocular camera and LiDAR data is used. Data from each
sensor are stored in separate folders with synchronous timestamps/ids. The framework
for data acquisition and storage developed by researchers of Infineon stores LiDAR data in
.csv format. The resulting .csv file contains 3D coordinates of the points and a timestamp.
Reflection is not recorded.

Data acquisition results

Object detection data was acquired in 3 recording sessions at an FPS = 10.34 (2340 frames),
10.28 (4000 frames) and 7.87 (4000 frames). Since with the increase of the frame rate the
number of points of LiDAR and its resolution decreases significantly, the LiDAR sensor limits
the opportunity to increase the recording frequency rate. Nevertheless, an FPS = 7.8 is a
sufficient frequency of data acquisition for object detection model training.

In order to diversify the data, the scenes were recorded in several locations of Campeon
with different landscapes. 2340 frames were recorded in a dynamic manner (the operator
was wearing the helmet with a sensor setup). Dynamic data acquisition provides higher
data variability, however, due to the high sensitivity of the sensors to slight changes of the
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position in space, for example, due to a change in the position of the head of the operator,
the remaining 8000 frames were recorded in a static manner, in 8 locations (1000 frames in
each location). During static data acquisition, sensor setup was installed on a flat horizontal
surface, pedestrians and cyclists were moving in the field of view of sensors at different
distances from it.

In current work five classes of objects are used:

• pedestrian,

• tree,

• building,

• fence,

• cyclist.

Each class of object is represented by various entities. The resulting dataset is unlabeled.
Supplementing the dataset with labels provides wide opportunities for research of the object
detection and tracking models based on data from a monocular camera, stereo camera, LiDAR,
RADAR, and models based on fused data from several sensors.
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3.1 LiDAR-Camera Calibration

3.1.1 Calibration tools

The following tools were used to perform the sensor calibration:

• MatLab Singe Camera Calibrator App was used to find the intrinsic parameters of the
camera,

• Matlab Camera-LiDAR Calibrator App was used to find extrinsic parameters between
the camera and LiDAR.

For the aims of sensor calibration planar checkerboard with a chess pattern was created.
The chessboard has a size of 8x7 cells, a cell size – 78 mm, and no padding. Data was recorded
according to Matlab guidelines for calibration data acquisition and contains the images on
which both the borders of the chessboard and the pattern are clearly visible.

The dataset for single-camera calibration contains images of a board with different angles
of rotation without restrictions regarding the plane of rotation.

Dataset for LiDAR-camera calibration contains images of a board with different angles of
rotation along the x-z plane in LiDAR coordinate space. Dataset for LiDAR-camera calibration
was created with images from 6 positions relative to the sensor:

• near sensors (center, right, left),

• away from sensors (center, right, left).

The resulting dataset for calibration contained 40 sequences of 200-500 frames, 12000
frames in total, out of which 6 sessions are intended for single camera calibration and the
rest of the data were designed for camera-LiDAR calibration. Such amount of data was
recorded since the calibration algorithm that was utilized, is very sensitive to the slightest
deviations from the expected planes of rotation indicated in the guideline. In addition, during
the calibration process, there were difficulties with the time synchronization of the sensors.

3.1.2 Calibration pipeline

Generally, the extrinsic calibration of a LiDAR and a camera needs a preliminary calculation
of the intrinsic parameters of the camera. The extrinsic calibration problem of a LiDAR and a
camera is to estimate the relative rotation and translation between the two sensors. On the
Figure 3.1 below the calibration pipeline is demonstrated.
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Figure 3.1: Camera-LiDAR calibration pipeline

The first step of calibration is data acquisition and preprocessing since LiDAR data are
recorded as a .csv file that contains entire data from the acquisition session and individual
frames should be extracted and converted to the .pcd format that is compatible with Matlab.

In order to use the Matlab application for calibration, a certain number of scenes that
meet certain criteria should be selected. One of these criteria is an angle of rotation of the
checkerboard that should not exceed 45 degrees. In order to visually assess whether the data
meets the criteria and select suitable scenes, projection of the 3D LiDAR data onto the 2D
image based on transformation from Cartesian to spherical coordinates was prepared with
the use of Python. For this purpose, the approach to depth maps extraction suggested by
J.Mendez et al. [34] was used. Coordinates of 3D points from the point cloud were projected
on the image plane based on the following formulas:

ui = tan−1(
yi

xi
) (3.1)

di =
√

x2
i + y2

i + z2
i (3.2)

vi = cos−1(
zi

di
) (3.3)

color =
√

x2
i + y2

i (3.4)

where [ui, vi] - image coordinates along X and Y axes, [xi, yi, zi] - 3D coordinates of the point
of point cloud, i = [1,...,N], where N is a number of points in Point cloud. The color was
calculated based on the distance to the objects alone X-Y plane. In the Figure 3.2 example of
such projection is demonstrated. Despite the LiDAR and camera data are not aligned, such
projection gives an understanding of the angle of the checkerboard and allows to select data
for calibration. Besides it shows that calibration is necessary in order to implement sensor
fusion.

32



3 Methods

Figure 3.2: Example of LiDAR to image projection for visual estimation of the data

Subsequent steps of the pipeline include single camera and LiDAR-Camera calibration, and
preparation of projections based on the intrinsic and extrinsic parameters obtained during
calibration. During the calibration process, estimation of parameters is carried out on the
basis of errors (see subsection 3.1.3, subsection 3.1.4). The last step of the pipeline is the
visual evaluation of parameters using the LiDAR to image projection that is obtained using
calibration parameters. Calibration data recorded from 6 positions relative to sensors (near
the sensor and far away from the sensor; to the right, in the center, and to the left) were used
for evaluation. The procedure was repeated several times in order to improve results since
the overall approach of this work requires perfectly aligned data from Camera and LiDAR.

3.1.3 Single camera calibration

The aim of camera calibration is an estimation of camera parameters using images of a
special calibration pattern. According to the pinhole camera model, there are two groups
of parameters: extrinsic parameters (rotation and translation) that describe the projection of
3D world coordinates into 3D camera coordinates, and intrinsic parameters that describe the
mapping from 3D camera coordinates into a 2D image. In the current work, calibration is
performed in order to find a correspondence between data from different sensors. Therefore,
extrinsic parameters of the camera are not needed and only the extraction of intrinsic
parameters of the camera is considered in this section. Extrinsic calibration is performed in
order to describe the mapping of LiDAR data into 3D camera coordinates and considered in
the subsection 3.1.4.

Single camera calibration was performed using MatLab Singe Camera Calibrator App. The
calibration workflow is demonstrated in the Figure 3.31:

1https://de.mathworks.com/help/vision/ug/using-the-single-camera-calibrator-app.html
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Figure 3.3: Single camera calibration steps based on official documentation

For the current work checkerboard calibration pattern was created. Images of the calibration
pattern were obtained according to the guidelines provided in .

After loading the images, the application automatically detects the points of the pattern.
Calibration is performed after parameters adjustment, including the selection of the camera
model (pinhole camera or fish-eye). The user of the application also defines if the skew coeffi-
cient and tangential distortion should be calculated. Calibration is performed automatically
based on the approach proposed in [40]. The Calibrator app visualizes a pattern keypoint
detected in a calibration image and a corresponding world point projected into the same
image (See Figure 3.4 below).

Figure 3.4: Single camera calibration detections

Intrinsic parameters as well as reprojection error for each image are obtained as a result of
the calibration. Actual values of intrinsic parameters and reprojection errors are considered
in the subsection 4.1.1.

Intrinsic calibration is an iterative procedure. Despite there are measures such as repro-
jection error that allow to estimate the accuracy of parameters (see subsection 4.1.1), the
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final estimation of results is possible only after extrinsic calibration, since both intrinsic
and extrinsic calibration parameters define how accurate is resulting projection. More than
12 single-camera calibration sessions were performed in order to find satisfactory intrinsic
parameters.

3.1.4 LiDAR-Camera calibration

This section describes the LiDAR-Camera calibration that was performed to find the extrinsic
parameters that establish the correspondences between 3D LiDAR coordinate space and 3D
camera coordinate space. The transformation from 3D camera coordinate space to 2D image
space is defined by intrinsic parameters of the camera that were obtained at the previous step
and described in the subsection 3.1.3. It is also assumed that the intrinsic parameters of the
LiDAR sensor are calibrated by the manufacturer in advance.

The extrinsic LiDAR-Camera calibration is performed using a checkerboard calibration
pattern based on the approach that is described in [41]. The workflow for extrinsic calibration
is demonstrated on the Figure 3.5 and consists of several steps. These steps include:

• Acquisition of synchronous LiDAR and camera data that capture checkerboard pattern.

• Extraction of the 3-D information of the checkerboard from both the camera and LiDAR
sensor (this step is automated in the LiDAR-Camera Calibrator App).

• Obtaining the rigid transformation matrix using the checkerboard corners and planes.
The rigid transformation matrix consists of the rotation matrix R and translation vector
t (this step is automated in LiDAR-Camera Calibrator App).

• Evaluation of the calibration accuracy based on the translation, rotation, and reprojection
errors calculation (calculation of the errors is automated in LiDAR-Camera Calibrator
App).

Figure 3.5: LiDAR-Camera calibration workflow

35



3 Methods

The approach that is implemented in LiDAR-Camera Calibrator App is based on the ideas
proposed in [41] by Zhou et al. and is described in the subsection 2.3.2.

The LiDAR-Camera calibration procedure was repeated more than 50 times on different
datasets, combinations and amounts of images as well as with different intrinsic parameters
of the camera that were extracted in advance due to the high sensitivity of the algorithm to
the input data. LiDAR-Camera calibration results are described in the section 4.1.

3.2 Object detection via transfer learning

3.2.1 Transfer learning approach

Deep learning became popular due to the ability of the neural network to approximate any
random nonlinear function with minimal error and generalize over a large amount of data.
A vast amount of data is necessary in order to conduct supervised training of the neural
network. Even though there are many domain-specific datasets, the creation of a high-quality
dataset for each domain where deep learning could be applied is tough. Thereby, transfer
learning became one of the cornerstone techniques that enable the adaptation of neural
networks that were pretrained on the data from another domain.

Transfer learning definition, provided in [44] by F.Zhuang et al.:

A domain D is composed of two parts, i.e. a feature space χ and a marginal
distribution P(X). D = {χ, P(X)}, where X is an instance set and is defined as X =
{x|xi ∈ χ, i = 1, ..., n}, n - number of instances. In [45] a domain is defined as the
scope of application for the algorithm. A task τ consists of a label space Y and
a decision function f , i.e. τ = {Y, f }. The decision function f is an implicit one,
which is expected to be learned from the sample data.

Given some/an observation(s) corresponding to mS ∈ N source domain(s) and
task(s) (i.e. {(DSi , τSi)|i = 1, ..., mS}), and some/an observation(s) about mT ∈ N
target domain(s) and task(s) (i.e.,{(DTi , τTi)|i = 1, ..., mT})), transfer learning uti-
lizes the knowledge implied in the source domain(s) to improve the performance
of the learned decision functions f Tj(j = 1, ...mT) on the target domain(s).

If mS equals 1, the scenario is called single-source transfer learning, otherwise it is a
multi-source transfer learning scenario. mT represents the number of the transfer learning
tasks. In current work, scenario with mS = 1 and mT = 1 is considered.

The goal of transfer learning is to learn a more accurate decision function on the target
domain.

In [44] and [46] the transfer learning approaches are categorized into four groups:

• instance-based,

• feature-based,

• parameter-based, and
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• relational-based.

Instance-based transfer learning approaches are mainly based on the instance weighting
strategy. Feature-based approaches transform the original features to create a new feature
representation. Two subcategories could be distinguished: asymmetric and symmetric
feature-based transfer learning. Asymmetric approaches transform the source features to
match the target ones. In contrast, symmetric approaches attempt to find a common latent
feature space and then transform both the source and the target features into a new feature
representation. The parameter-based transfer learning approaches transfer the knowledge at
the model/parameter level. Relational-based transfer learning approaches mainly focus on
the problems in relational domains. Such approaches transfer the logical relationship or rules
learned in the source domain to the target domain. [44]

Another taxonomy of transfer learning approaches is proposed by L.T.Triess et all in [45].
Depending on whether annotated data is available in source or target domain transfer learning
methods are divided into 3 groups (See Figure 3.6):

• Transductive Transfer Learning (annotated data only in source domain),

• Unsupervised Transfer Learning (no annotated data),

• Inductive Transfer Learning (annotated data in target domain).

Figure 3.6: Taxonomy of the transfer learning methods presented in [45] by L.T.Triess et al.

In the current work Transductive Transfer Learning approach is employed in two scenarios.
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In the first scenario pretrained on MS COCO object detection model is used in order to
label the unlabeled Infineon dataset. In this case, the data may differ in their feature space or
follow a different data distribution [45].

During the training of the object detector, the weights of the backbone obtained based
on the MS COCO dataset are frozen while the weights in the neck and detection head are
updated. Training is conducted in order to enable the model to recognize a specific set of
object classes that does not present in MS COCO. The advantage of this approach is that a
relatively small amount of data is sufficient for such training.

In the second scenario, Domain Adaptation is utilized when the information about the
environment that was extracted from camera image data (labels) is used in order to train an
object detection model based on LiDAR depth maps. In this case, training is carried out with
updating the weights of all layers of the neural network.

The availability of a highly accurate object detection model for camera data allows to
annotate a significant amount of data in a reasonable time while the projection of depth maps
on the image plain enables to use labels obtained by the camera-based object detector for
training LiDAR depth maps based object detection model.

3.2.2 Object detection performance estimation

Estimation of the performance of object detection models is typically based on the measure
called Intersection over Union (IoU). Many object detection model use anchor-based detection
methods that assume that a number of anchors (center points of the possible objects) is
scattered across the feature map. Bounding boxes of various scales and aspect ratios could be
built around the anchors. During training, anchors are assigned to objects (positive anchors)
or background (negative anchors) by threshold their Intersection over Unions (IoUs) with the
ground-truth bounding boxes.

Intersection over Union (IoU) is a measure that evaluates the overlap between ground truth
and predicted bounding boxes and is widely used for the evaluation of 2D and 3D object
detection algorithms performance:

IOU (Intersection over Union) =
Area o f Overlap
Area o f Union

(3.5)

Figure 3.7: Intersection over Union

During inference, the anchors independently predict the object’s bounding box where the
box with the highest classification score is retained after the Non Maximum Suppression
procedure.
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Mean Average Precision (mAP) summarizes object detection model performance across all
possible object classes. The mAP is calculated as the area under the precision-recall curve
(AUC), averaged across all object classes.

In the first step Average Precision (AP) is calculated for each class. In the object detection
task the settings for Precision and Recall calculation are as follows:

• True Positive (TP) detections are those detections where IoU with the ground truth (GT)
is above the predefined threshold.

• False Positive (FP) detections are those detections where either the IoU with GT is
below the predefined threshold or the bounding boxes that have IoU with a GT that has
already been detected.

• True Negative (TN) detections are not considered since the scene is expected to contain
at least one object.

• False Negative (FN) detections: those ground truth bounding boxes for which no
detections were found.

Each predicted bounding box has a confidence value for the given class. The scoring method
sorts the predictions by the confidence in descending order and computes the cumulative
Precision and Recall for each prediction:

Precision =
TP

(TP + FP)
(3.6)

Recall =
TP

(TP + FN)
(3.7)

In order to compute the interpolated Precision-Recall curve, the maximum Precision that
has a corresponding Recall′ ≥ Recall is selected for each value of Recall. The Average
Precision(AP) is calculated as the average of selected Precisions.

Another performance measure that is used for object detection model evaluation is F1-score.
F1-score is the harmonic mean of precision and recall. It is calculated based on precision and
recall values for each class via the following formula:

F1_score = 2 ∗ Precision ∗ Recall
Precision + Recall

(3.8)

3.2.3 Object detection model architecture

YOLOv5 object detection architecture has been utilized in current work. YOLOv5 consists
of 4 main parts: input, backbone network, neck, and detection head. The input contains the
preprocessing of the image data, such as mosaic data augmentation and auto-learning of
anchor bounding boxes. Mosaic data augmentation implies the usage of the 4-image mosaic
during training instead of a single image [23] allowing learning objects in different contexts.
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The Backbone is a convolutional neural network that extracts features from images. YOLOv5
uses BottleneckCSP as a backbone. CSPNet [24] (Cross Stage Partial) Network architecture is
based on DenseNet [47], which was designed to avoid vanishing gradient problem in deep
neural networks. In DenseNet, each layer is concatenated with additional inputs from all
preceding layers. CSPNet separates the feature map of the base layer into two parts, one part
goes through a dense block and a transition layer; the other part is then combined with the
transmitted feature map to the next stage.

Figure 3.8: DenseNet and CSPNet architecture

YOLOv5 uses SPP [25] (Spatial Pyramid Pooling) structure in the backbone in order to
extract features of different scales and generate a multi-scale feature map to improve detection
accuracy.

YOLOv5 neck uses PAN [26] (Path Aggregation Network) structure in order to aggregate
extracted features.

YOLOv5 architecture is demonstrated in the Figure 3.9, Figure 3.10, and Figure 3.11 below.

40



3 Methods

Figure 3.9: YOLOv5 architecture overview based on [48]
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Figure 3.10: YOLOv5 architecture overview based on [48]. Building blocks

Figure 3.11: YOLOv5 architecture overview based on [48]. SSP

YOLOv5 uses YOLOv3 head with GIoU-loss [49].
IoU is a normalized measure that is invariant to the scale and due to this property, is

usually used as a basis for performance measures calculation in order to evaluate object
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detection algorithm performance. Nevertheless, if two objects do not overlap, the IoU value is
zero and does not reflect how far the two shapes are from each other. In this case, if IoU is
used as a loss, its gradient will be equal to zero and cannot be optimized. GIoU extends the
concept of IoU and covers non-overlapping cases as well [49]. GIoU is calculated according to
the algorithm provided in [49]:

Figure 3.12: GIoU calculation based on [49]

For two arbitrary convex shapes (volumes) A, B ⊂ S ∈ Rn, we first find the smallest
convex shapes C ⊂ S ∈ Rn enclosing both A and B. A ratio between the area occupied
by C excluding A and B is calculated and divided by the total area occupied by C. This
represents a normalized measure that focuses on the empty area between A and B. GIoU
value is calculated as IoU minus the ratio.

GIoU loss preserves the main properties of IoU and addresses the situation when there is no
intersection of predicted and ground truth bounding boxes. Figure 3.13 below demonstrates
a correlation between GIoU and IoU. In case of intersection of the predicted bounding box
and ground truth bounding box, GIoU is equal to IoU, while in the case of no intersection
between predicted and ground truth bounding boxes GIoU reflects the distance and could be
used for model optimization while IoU is equal to zero.
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Figure 3.13: Correlation between GIoU and IOU for overlapping and non-overlapping samples
based on [49]

The YOLOv5 has several variants of architecture that differ mainly by their parameters size:
YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), YOLOv5x (extra
large) for training with an image size of 640x640 pixels. Additional series of models called P6
(YOLOv5n6, YOLOv5s6, YOLOv5m6, YOLOv5l6, YOLOv5x6) is created for training on the
image of higher resolution 1280x1280. The P6 series includes an extra output layer for the
detection of larger objects. P6 models benefit the most from training at higher resolution and
produce better results. YOLOv5 models vary not only in the number of parameters, but also
show different inference speed and accuracy.

Figure 3.14: YOLOv5 (P6 series) models comparison based on [9]

All experiments in the current work were conducted on the architecture YOLOv5m6 (35.7
million parameters) since it provides a good trade-off between speed and accuracy.
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3.3 Label filtering and adaptation for LiDAR based model training

3.3.1 Label filtering approach

Label filtering and adaptation is an important step that is necessary in order to prepare
high-quality data for depth maps-based object detection model training.

It is more important for autonomous vehicles to detect and avoid objects that are closer in
comparison to far away objects. It is assumed that close objects have a larger size in the image.
Therefore, label filtering is aimed at keeping such objects for model training and elimination
of small, far, or highly occluded objects at first approximation to this challenge, while in the
future the model can be improved for more accurate detection of the small or highly occluded
objects as well.

Labels are filtered according to the following considerations:

• Label filtering based on the field of view,
Since the camera and LiDAR field of view vary in the Infineon setup, some objects that
are present in image data are not visible for LiDAR. Labels for such objects should be
excluded from consideration for LiDAR-based object detection model training.

• Label filtering based on occlusion rate,
Detection of highly occluded objects is a complex task that requires a robust approach
and they are excluded for simplification of the development and validation of the depth
map-based OD model. In future work it is possible to split the objects into 3 categories
of difficulty related to the occlusion rate similar to KITTI dataset [6].

• Label filtering based on number of points inside the bounding box,
Objects that are represented by the small number of points either have a small size and
are located close to the sensor, located far from the sensor setup or highly occluded.
After experimental exploration, a minimum threshold value for the number of points
is set to N = 30 in order to exclude difficult cases for model training. The minimum
possible value has been set, which nevertheless allows small or partially visible objects
to be left.

• Bounding box adjustment based on the assumption about the object location.
Despite the calibration of the sensors, the data from the camera and LiDAR do not
match completely, especially for moving objects. The reason lies in the difference in tech-
nologies: while the camera takes a picture almost instantly, scanning the environment
by LiDAR takes more time.

The approach is based on point cloud clustering and the allocation of clusters to the
boundaries of objects. In order to find the location of the object, the clustering of the 3D
point cloud was carried out, followed by the allocation of the clusters to bounding boxes
extracted by camera-based object detector. Then the bounding boxes of the objects were
adjusted based on the location of the 2D projection of the cluster.

Label filtering and adaptation algorithm is described in the following section in more detail.

45



3 Methods

3.3.2 Label filtering algorithm

The label filtering algorithm is presented in the scheme below. The first step is the ground
points extraction and removal (See subsection 3.3.3 below). This approach ensures more
accurate clustering in the next step as well as a more accurate calculation of the number of
points within the bounding boxes that may belong to the object. After ground extraction,
coarse filtering of labels is performed (See subsection 3.3.4 below) as well as clustering of
non-ground 3D points based on the DBSCAN algorithm. The last step of the algorithm is the
allocation of clusters (See subsection 3.3.5 below).

Figure 3.15: Labels filtering and adjustment

46



3 Methods

3.3.3 Ground segmentation

Ground segmentation and removal is an important step that has a great impact on the results
of the next steps - point cloud clustering and cluster allocation to labels. It allows to identify
and exclude ground points that do not belong to any object. Besides, the density of points in
the point cloud is uneven and for objects near the LiDAR sensor density is very high. Ground
removal allows to avoid the situation when close objects together with the land on which
they are located, are treated by the density based clustering algorithm as a single cluster. The
example of such situation is demonstrated in the figure below (See Figure 3.16).

Figure 3.16: Example of point cloud clustering without and with preliminary ground segmen-
tation.

On the left picture on the Figure 3.16 clustering was conducted without preliminary ground
segmentation. As a result, the density-based clustering algorithm classified most of the points
as the same cluster. Moreover, some ground points formed several clusters that further could
be incorrectly used for allocation to object labels.

On the right picture on Figure 3.16 ground segmentation and removal were conducted
before clustering. As a result, objects such as a person, trees, etc. were identified as separate
clusters by the algorithm. However, the picture shows that the points belonging to the ground
are still present in the scene and form several separate clusters. Unfortunately, it was not
possible to eliminate such points completely in all the frames.

In the current implementation, RANSAC is utilized for ground segmentation since this
algorithm is often used for plane fitting on point cloud data and has shown itself as a reliable
approach.

Ground plane fitting with RANSAC

RANSAC [50] (RANdom Sampling and Consensus) is an iterative approach for estimation
parameters of a mathematical model from data that contains outliers via repeated random
sub-sampling. RANSAC assumes that data contains both inliers and outliers, the voting
scheme is utilized by RANSAC in order to find the optimal model parameters.
RANSAC is widely used for ground plane fitting based on point cloud data. The algorithm
included the following steps that are repeated k times, where k - number of iterations:
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Step 1. Sampling of the set of n points from data uniformly and at random, where n -
minimum number of points, that is required for a model of interest. For plane fitting a
minimum number of 3 points are necessary.

Step 2. Model fitting to the set of n points. For the case of plane fitting, plane equation
parameters are calculated. The plane equation in the Cartesian form:

ax + by + cz + d = 0 (3.9)

Constants a, b, c, and d could be derived from following equations, if n=3 points are
sampled from the dataset:

a = ((y2 − y1)(z3 − z1)− (z2 − z1)(y3 − y2)) (3.10)

b = ((z2 − z1)(x3 − x1)− (x2 − x1)(z3 − z2)) (3.11)

c = ((x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x2)) (3.12)

d = −(ax + by + cz) (3.13)

Step 3. Calculation of the deviation of all data points outside the sample of n points from the
fitted model. For the plane fitting case, a Cartesian distance is calculated. The distance
from the point to the fitted model is tested against threshold t. If the distance is smaller
than t, the point is considered an inlier, otherwise, the point is considered an outlier.

For the case of plane fitting, the distance from the point with coordinates (xi, yi, zi) to
the plane is calculated in the following way:

Distance =
axi + byi + czi + d√

a2 + b2 + c2
(3.14)

Step 4. If there the number of inliers for the model is larger than the minimum number of
inliers to consider the model as a good fit, then the model is added to the collection of
good fits.

After these steps are completed the best model is chosen from the collection of good fits based
on the fitting error as a criterion.

The examples of the ground segmentation via RANSAC (k=2000, n=3, t = 0.15) are demon-
strated in the Figure 4.21, page 78.

Iterative approach to ground plane fitting

RANSAC is a non-deterministic algorithm since its result depends on random samples. It
could exhibit different behaviors on different runs even for the same input point cloud.
Therefore, it is necessary to control the results obtained by the algorithm.

In order to check if the fitted plane via RANSAC is (or could be) a ground plane, the angle
α between the fitted plane and the X-Y plane in LiDAR coordinates has been checked.
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The angle between two planes is calculated according to the following formulas in the
Cartesian form:

Given that plane equations in Cartesian form a1x + b1y + c1z + d1 = 0 and a2x + b2y + c2z +
d2 = 0

cos α =
a1a2 + b1b2 + c1c2√

a2
1 + b2

1 + c2
1

√
a2

2 + b2
2 + c2

2

(3.15)

Considering that the second plane is the X-Y plane and its equation is 0x + 0y + 1 ∗ z = 0,
the formula could be simplified in the following way:

cos α =
c1√

a2
1 + b2

1 + c2
1

(3.16)

Angle between two planes:
α = cos−1 (cos α) (3.17)

The reference value of 30◦ has been chosen based on the analysis of the collected data:
since the data was collected in a static and dynamic manner, the inclination angle between the
ground plane and the X-Y plane varies. In most cases, the value of the angle α is in the range
[5◦; 10◦]. However, there are also exceptional cases, when the angle exceeded the specified
values. It happened when the operator wearing a helmet with sensors setup tilted the head.
In order to cover all cases, including exceptional cases the reference value of 30◦ was used.

If for the found plane α ≥ 30◦, the inlier points are excluded from further consideration
and the RANSAC plane fitting is repeated on points that are identified as outliers.

The procedure is repeated until a plane with α less than 30◦ is found, but no more than 10
times. Experiments have shown that as a rule the ground plane is found in 1-3 iterations, in
exceptional cases, up to 7-8 iterations are required. Therefore, the number of iterations equal
to 10 covers almost all cases. The search is also terminated if the number of remaining outlier
points is less than 500. Considering that the average point cloud consists of 5000 points and
the ground plane includes a significant number of points that often exceeds 1000 points, it is
unlikely that in the remaining 500 points ground plane could be found. At the same time the
chance that, following the formal criteria, the algorithm will find a plane that will satisfy the
criteria, but will not be the ground, increases.

An example of an iterative ground segmentation result is shown in Figure 3.17. For the
given point cloud first and second iteration resulted in the fitted planes with α1 = 85.82◦

and α2 = 56.73◦ respectively. Ground plane was found after 3 iterations of RANSAC with
α3 = 7.51◦.
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Figure 3.17: Iterative approach to ground segmentation

3.3.4 Labels coarse filtering

Label coarse filtering is basic filtering based on the fact that in the current sensor setup camera
has a wider field of view than LiDAR and thus some objects that were detected based on
image camera data do not present in LiDAR point cloud and thus are irrelevant for LiDAR
based object detector. Besides, some objects are highly occluded or located far from the sensor
setup and represented by just a few points in the point cloud. Detection of such objects is a
complex task, they are excluded from the training of the current model for simplification.

Labels are considered in the order from the nearest object to the furthest one based on the
assumption that the closer the object is located to the sensor setup, the higher will be the
value ymax - lower border of the bounding box on the image, considering that the (0,0) is a
upper left corner of the image. Labels are considered consequently. The first step of the coarse
filtering is a check of the number of projected points inside the bounding box. If the number
is lower than the minimum number of points, then the label is eliminated from consideration.

The next step is an adjustment of the bounding box to the LiDAR field of view and a check
of the non-occluded area. The non-occluded area is calculated with respect to the bounding
boxes of the objects in front of the current bounding box (bounding boxes with higher ymax).

non occluded area = number of non occluded pixels (3.18)

non occluded rate =
non occluded area

(xmax − xmin)(ymax − ymin)
(3.19)

where xmin, xmax, ymin, ymax - minimum and maximum coordinate of the bounding box along
x and y axes on the image plane respectively. In case the bounding box is occluded to a
very high extent or there are points only in the occluded part of the bounding box, the
bounding box is eliminated. Label coarse filtering algorithm is shown in the scheme below
(See Figure 3.18).
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Figure 3.18: Labels coarse filtering

3.3.5 3D point cloud clustering and cluster allocation

Clustering of 3D point cloud with DBSCAN

DBSCAN (Density-based spatial clustering of applications with noise) - density-based cluster-
ing non-parametric algorithm. Given a set of points in the space, DBSCAN groups together
points with many nearby neighbor points, marking as outliers the points that lie alone in
low-density regions.

Hyperparameters:

• eps - the radius of the neighborhood,

• min_points - minimum number of points required to form a cluster.

DBSCAN is a recursive algorithm that starts at a random point and analyzes the number of
points in the neighborhood eps of the current point and each point in the neighborhood and
classifies points into 3 categories:

• core points: a point pi is a core point if at least min_points points are within distance
eps of it (including pi).

• reachable points: a point qi is a reachable point if it is located within a distance eps to
the core point.
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• outliers: all points that are not reachable from any other point are outliers or noise
points.

Core points and reachable points form a cluster. Hence each cluster contains at least one
core point; non-core points are a part of a cluster but have the number of points in eps that is
smaller than min_points and are called "edge" points.

The main advantage of this algorithm over other widely used clustering algorithms is that
it does not require specifying the number of resulting clusters. Hyperparameters are set
based on the structure of the underlying data. This approach ensures accurate results of the
algorithm on homogeneous data. However, if the point cloud contains groups of points with
different structure (density of points), the algorithm may result in inaccurate clustering (See
section subsubsection 3.3.5).

Iterative clustering on point cloud

Any clustering algorithm is unsupervised and its results depend on the data structure and
applied hyperparameters values. In the case of the DBSCAN algorithm, such hyperparameters
are epsilon (the radius of a neighborhood) and a minimum number of points in epsilon.

The algorithm uses the values of these hyperparameters to the entire point cloud, however,
the distance between neighbor points for near and far objects could greatly vary. Thus, using
the same values of epsilon and a minimum number of points for the entire point cloud might
give incorrect results: with the same value of epsilon and the minimum number of points in
epsilon, with low epsilon, distant objects can be classified as outliers, and with high value -
objects located near the sensor could be combined into one cluster.

In order to solve this problem, clustering with DBSCAN is performed in 2 iterations:

Step 1. Clustering of the entire point cloud with the hyperparameters values eps = 0.5,
min_points = 10 that allows to cluster near objects in separate clusters.

Step 2. Clustering of the outlier points with the hyperparameters values eps = 1.5, min_points
= 10 that allows to cluster distant objects more accurately.

In the Figure 3.19 results of step 1 and step 2 are demonstrated. After DBSCAN clustering
(step 1) several large distant objects, such as trees and a building, fell into the outlier group
(marked in black color). After step 2 the problem is solved - such objects are clustered
correctly.
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Figure 3.19: Iterative clustering on point cloud: (a) Step 1, (b) Step 2.

Point cloud clusters allocation to labels and adjustment of labels

Cluster allocation to labels and final adjustment of labels is the most important step in the
filtering algorithm since the final quality of the labels depends on the correctness of the
allocation. Since at this stage there is limited information about the clusters based on the
point cloud and about the location of the objects based on the camera data, the correct
allocation of clusters to labels for all possible cases (different object classes, varying scales of
objects, areas of the scene with a highly dense objects) is a complex task.

Despite the clustering is carried out in 3D space, the allocation of clusters to 2D labels is
conducted in 2D image space based on the 2D projections of clusters.

At the allocation step labels are considered sequentially in the order from the nearest
object to the furthest one based on the assumption that the closer the object is located to
sensor setup, the higher will be the value ymax - lower border of bounding box on the image,
considering that the (0,0) is a upper left corner of the image.

The algorithm of the clusters to labels allocation is described below.
Given that N - total number of labels after camera-based object detection:
For labeli in [label1,...,labelN]:

1. Extend bounding box by a fraction (extension by 40%).

Note: At the next step of the algorithm, a set of clusters is selected, which are considered
candidates for cluster-label allocation. And one of the selection criteria is that
the center of the cluster must be located inside the bounding box. An increase
in bounding box size allows to find a correspondence between the objects in the
image and the projection of the LiDAR 3D points in case of a lack of camera and
LiDAR scene synchronization. The value of 40% has been chosen after a series of
experiments in order to cover the most complex cases in the dataset.

2. Find all clusters that

• have a center inside the extended bounding box,

• have points density rate > minimum points density rate.

Note: Points density rate = number of cluster points/(bounding box height * bounding
box width). The minimum point density rate is set to 0.0007 based on the results of
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experiments. Such value allows to keep relatively small clusters in the case when
due to different field of view, the object in LiDAR is represented by a small number
of points. For example, there are many cases in the data when there is a pedestrian
in the camera images, however, only his head is visible in LiDAR data and thus
the relative point density might have a value that slightly exceeds the threshold
of 0.0007). At the same time, such a threshold helps to prevent the allocation of
the cluster of the small object, like a pedestrian or tree, to the label of the building
when this small object is located in front of the building and the center of its point
cloud projection is the closest to the center of the bounding box of the building.

3. Allocate the “closest” cluster based on the Euclidean distance from the bounding box
center to the cluster center based in 2D projection.

• Cluster center is calculated according to the following formula:

(
x_min + (x_max˘x_min)

2
;

y_min + (y_max˘y_min)
2

) (3.20)

where x_min, x_max – minimum and maximum coordinates of cluster point in 2D
projection along X-axis, y_min, y_max – minimum and maximum coordinates of
cluster point in 2D projection along Y-axis.

4. Adjust bounding box size and location according to the size and location of the selected
cluster.

5. Extend bounding box size by a fraction (extension by 10%).

Note: Small extension by 10% is made in order to more accurately capture the entire
object in case of inaccuracies during clustering.

6. Exclude allocated cluster from further consideration for remaining labels.

3.4 LiDAR 2D depth maps extraction

A depth map is an image representation that contains information regarding the distance to
the surfaces of objects around. Depth map representations reduce the dimensionality of the
LiDAR data in order to generate 2D images. 2D depth map generated from 3D point cloud
contains the same information, but at the same time ensures the low memory consumption
and latency of the model during processing in comparison to other approaches, for example,
voxel-based approaches that require computationally heavy 3D convolutions [34]. In current
work, accurate and precise projection of the LiDAR depth map onto the image is necessary in
order to be able to use the labels obtained via camera based object detector.

For this purpose Single Camera and LiDAR-Camera calibration was carried out (See
section 3.1, section 4.1). Extrinsic parameters between LiDAR and the camera allow to
make transformation from LiDAR 3D coordinates to Camera 3D coordinates, while intrinsic
parameters, obtained on a single camera calibration step allows to perform the subsequent
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projection on the image plane. 2D coordinates on the image of the 3D point are obtained
based on the following formula:

[ui, vi] = Mint ∗ Mext ∗ [xi, yi, zi]
T (3.21)

where [ui, vi] - image coordinates alone X and Y axes, [xi, yi, zi]
T - 3D coordinates of the point

of point cloud, i = [1,...,N], where N is a number of points in Point cloud, Mint - intrinsic
parameters of camera, Mext - extrinsic parameters of camera and LiDAR. Camera images
obtained during data acquisition (See section 2.4) have a size [848,480]. Therefore points, that
have coordinates outside the range [0:847;0:479] are eliminated from further consideration.

For each point depth information is extracted. Since the potential application of current
work - object detection for obstacle avoidance and path planning in drones, Infineon was
interested in the calculation of the distance to the objects alone X-Y plane. Therefore, the
following formula was used for depth information extraction:

di =
√

x2
i + y2

i (3.22)

where xi, yi - coordinates of the point in 3D LiDAR space along X and Y axes. The resulting
depth map is stored as an RGB image in ".png" format, where depth information is encoded
as a color, as well as a NumPy array.

Several examples of depth maps and corresponding projections on the images are demon-
strated in the Figure 3.20 below.
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Figure 3.20: Examples of the 2D depth maps obtained based on 3D point cloud
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3.5 Fusion of camera and LiDAR labels

In current work, the late fusion strategy is utilized. Late fusion is the most popular sensor
fusion strategy since it requires the least amount of computational resources, and is relatively
simple. Late fusion strategy allows to combine the results of completely different object
detection models for each of the modalities. The late fusion strategy in current work has
been chosen based on the requirement of Infineon Technology AG to develop object detection
models that could operate based data from on each modality independently. A high-level
scheme of the fusion approach that is utilized in current work is demonstrated in the Figure 1.3.
Data of each modality is processed separately by object detection models that are trained on
2D camera data and on 2D depth maps. The resulting labels are fused at the last step of the
object detection pipeline.

The fusion pipeline is demonstrated in the Figure 3.21 below.

Figure 3.21: Fusion pipeline

Fusion of resulting labels from the camera-based and LiDAR-based object detection model
is performed based on IoU (Intersection over Union, See subsection 3.2.2 for detailed explana-
tion) of the camera and LiDAR labels with the assumption that "best" combination of camera
and LiDAR labels will have the highest total IoU. At the Step (1) IoU between all camera and
LiDAR labels is calculated:
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camera_label1 .. camera_labelj .. camera_labelM

lidar_label1 IoU11 .. IoU1j .. IoU1M

.. .. .. .. .. ..
lidar_labeli IoUi1 .. IoUij .. IoUiM

.. .. .. .. .. ..
lidar_labelN IoUN1 .. IoUNj .. IoUNM

(3.23)

for i ∈ [1, N], for j ∈ [1, M], where N - number of LiDAR labels, M - number of camera
labels.

At the Step (2) sum of IoU for each label is analyzed: labels from each modality that do
not have an intersection with any of labels from another modality (sum of IoU = 0) are taken
in the final label list without any changes:

• lidar_labeli : ∑M
j=1 IoUi,j = 0

• camera_labelj : ∑N
i=1 IoUi,j = 0

LiDAR labels are augmented with a minimum distance that is calculated based on recovered
3D coordinates of the point that have projections located inside the bounding box. The
minimum distance is calculated along the X-Y plane according to the following formula:

distmin =
√

x2
i + y2

i (3.24)

, where i ∈ [1, K], K - total number of point projections inside bounding box, xi, yi - restored
coordinates in 3D space along X and Y axes.

In minimum distance calculation, occlusion is not taken into account. For camera labels
that do not have IoU with any LiDAR labels, the minimum distance is set to 0.

LiDAR labels [1,N′], N′ ≤ N and camera labels [1,M′], M′ ≤ M are subject to search for
"best" combination of pairs of LiDAR-camera labels.

At the Step (3) identification of pairs of LiDAR-Camera labels via optimization routine.
Objective function:

f = maximize(
N′

∑
i=1

M′

∑
j=1

IoUi,j ∗ vari,j) (3.25)

where vari,j - binary variable and takes value 1 if a combination of lidar label i and camera
label j is used in the final solution.

Decision variable is vari,j for any combination of i and j.
Since each label from each modality could be used only once to make a pair with a label

from the other modality, the constraints for the optimization function are:

∀i ∈ [1, N′] :
M′

∑
j=1

IoUi,j ≤ 1 (3.26)
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∀j ∈ [1, M′] :
N′

∑
i=1

IoUi,j ≤ 1 (3.27)

An optimization procedure is implemented via open source PuLP library 2 (Python). PuLP
utilizes the simplex method combined with other algorithms (ex.: branch-and-bound and
cut-generation). The Simplex Method is the earliest solution algorithm for solving linear
programming problems by hand. It is an efficient strategy for solving a series of systems of
linear equations and takes advantage of the geometry of the problem: it visits the vertices of
a feasible set and checks each visited vertex for optimality. By using a greedy strategy while
jumping from a feasible vertex to the next adjacent vertex, the algorithm terminates at an
optimal solution.

As a result, pairs of LiDAR-camera labels with the maximum total IoU are found. Labels
for which a pair was not found during the optimization process are stored in the resulting
list of fused labels without any changes. For such LiDAR labels, the minimum distance is
calculated according to the formula above 3.24 in Step 2. For camera labels that do not have
IoU with any LiDAR labels, the minimum distance is set to 0.

At the Step (4) fusion of pairs of LiDAR and camera labels is performed. Fusion strategy
is described at the figure Figure 3.21: For lidar label [obj_classlidar, u_minlidar, v_minlidar,
u_maxlidar, v_maxlidar] and camera label [obj_classcamera, u_mincamera, v_mincamera, u_maxcamera

,v_maxcamera], fused label is formed in the following way:

• obj_class f used = obj_classcamera

• u_min f used = min(u_minlidar; u_mincamera),

• u_min f used = min(u_minlidar; u_mincamera),

• v_min f used = min(v_minlidar; v_mincamera),

• u_max f used = max(u_maxlidar; u_maxcamera),

• v_max f used = max(v_maxlidar; v_maxcamera).

Each of the resulting fused labels is augmented with the minimum distance calculated
according to the formula above 3.24.

The last Step 5 of the label fusion algorithm fully occluded labels are eliminated if they
are fully occluded by the label with the same object class. This step is provided according to
the requirement by Infineon for drone use case when the detection of nearby objects is of the
most importance in order to avoid obstacles. Detection of fully occluded objects is not of high
importance for this use case.

On the figure Figure 3.22 below an example of the labels fusion results is demonstrated:

• (a) contains labels from the camera-based object detection model,

2https://coin-or.github.io/pulp/
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• (b) contains labels from the LiDAR depth map-based object detection model,

• (c) contains resulting labels after fusion.

Figure (a) shows the accurate detection of object classes in a camera-based object detection
model, while in picture (b) LiDAR incorrectly identified classes for two objects - a pedestrian
and a cyclist. Picture (c) contains accurate object classes and bounding box detection after
the fusion step. For example, the bounding box of the tree in the center of the picture has
changed based on information from both the camera and LiDAR and is more accurate in
comparison to (a) and (b).

Figure 3.22: Fused object class identification
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4.1 Camera-LiDAR Calibration

4.1.1 Single camera calibration

3 datasets for single camera calibration were recorded (each dataset contained 100-200 frames)
and more than 12 single camera calibration sessions were conducted with use of Matlab
Single Camera Calibrator App. A unique set of 10 to 40 images was used as an input in each
session.

The estimation of single camera calibration is performed based on reprojection error. A
reprojection error is a distance between a pattern keypoint detected in a calibration image,
and a corresponding world point projected into the same image1. The mean reprojection error
is estimated for each image in the calibration session and then the overall mean is calculated.
Therefore, the results obtained in different calibration sessions are not directly comparable,
since a different set of images is used as an input for each session. Consequently, only the
results of the session that were used in this work are shown. The results of the other sessions
are not demonstrated.

The calibration session, the results of which were used further in the current work, was
carried out on the basis of 32 images. Mean reprojection error is estimated for each of 32
images, an overall mean error value is equal to 0.13 pixel (See Figure 4.1).

Figure 4.1: Single camera calibration error estimation

1’https://de.mathworks.com/help/vision/ug/evaluating-the-accuracy-of-single-camera-
calibration.htmlEvaluatingCameraCalibrationExample-4’
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Resulting intrinsic matrix, obtained after camera calibration:

Mint =

 fx 0 0
0 fy 0
u0 v0 1

 =

570.7652146 0 0
0 572.5377849 0

420.2553067 259.6667927 1

 (4.1)

where fx, fy - horizontal and vertical focal lengths respectively expressed in pixel units,
u0, v0 - optical center (principal point) of the image.

4.1.2 Camera-LiDAR calibration

37 datasets, 200-500 frames each, were recorded for the purpose of LiDAR-Camera calibration.
More than 30 calibration sessions were conducted via the Matlab LiDAR-Camera calibrator
App in order to find satisfying extrinsic parameters between LiDAR and the Camera. Similar
to single camera calibration, each session was run on a unique set of images. For each session,
a different number of images was used - from 20 to 120.

Since for each session the errors are calculated for a specific set of images, the results of the
sessions are not directly comparable. Therefore, in addition to the error calculation, a visual
analysis of the resulting projection was carried out (described in the current section below).
Similar to the previous section on Single Camera Calibration, only the results of the session,
which were used in further experiments, are described.

Camera-LiDAR calibration is evaluated based on 3 metrics that are calculated for each image
(Description of the metrics is provided in the official documentation of Matlab LiDAR-Camera
calibrator App2):

• Translation Error - The difference between the centroid coordinates of the checkerboard
planes in the point clouds and those in the corresponding images, in meters.

• Rotation Error -The difference between the normal angles defined by the checkerboard
planes in the point clouds and those in the corresponding images, in radians.

• Reprojection Error - The difference between the projected (transformed) centroid coordi-
nates of the checkerboard planes from the point clouds and those in the corresponding
images, in pixels.

The values of translation, rotation and reprojection error obtained after calibration are
shown in the Figure 4.2 below.

2’https://de.mathworks.com/help/lidar/ref/estimatelidarcameratransform.htmlmw1aea5c0d − 1756 − 480e −
ba44 − a55 f 5a3ee4a5′

62



4 Experiments and Evaluation

Figure 4.2: Camera-LiDAR calibration error estimation

The calibration was performed based on 27 images. The value of the translation error varies
from 0.0146m to 0.1062m with a mean of 0.066m and a standard deviation of 0.027m. The
values of rotation error vary from 0.75◦ to 6.11◦ with a mean 3.77◦ and standard deviation is
1.59◦. Reprojection error is estimated in pixels and does not exceed 9.2px, while the minimum
value is equal to 1.17px, the mean is equal to 4.77px, and the standard deviation is 2.74px.

Resulting extrinsic matrix that was obtained after calibration:

Mext = [R|T] =

 0.999686098 −0.005442685 −0.024455747 −0.121739535
0.02440216 −0.009703409 0.99965513 0.167662746

−0.005678113 −0.999938109 −0.009567549 0.056827091

 (4.2)

The results of the calibration were assessed visually based on the projection of the checker-
board. The checkerboard has been placed in 6 positions relative to the sensors (close to the
sensor, distant from the sensor; on the left side, center, and on the right side of the scene).
The example Figure 4.4 shows that the point cloud of the checkerboard and person in the
center position is projected onto the image the most accurately, while the projections of the
checkerboard and person in the left and right positions are not perfectly aligned with the
corresponding objects in the image.

Figure 4.3: Camera-LiDAR calibration results demonstration
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The Figure 4.4 below demonstrates the improvements of the projection of the point cloud
after calibration in comparison to the projection obtained based on spherical coordinates. The
scene contains only static objects (buildings, fences, trees). The image on the right side shows
that the projection obtained based on calibration is accurate, and the contours of objects, such
as a tree or the windows of a building, match well. Therefore, the obtained results are suitable
for further sensor fusion experiments.

Figure 4.4: Example of the 3D-2D projection of point cloud without and with calibration

4.2 Camera based object detection

4.2.1 Camera based object detection experiments

Environment

Training of object detection models was conducted at Infineon GPU farm equipped with
NVIDIA TESLA P40 GPU with the following specification:

Parameter Value
MEMORY SIZE (PER BOARD) 24 GB GDDR5

CUDA CORES 3840
Computing power 12 TFLOPS

INTEGER OPERATIONS (INT8) 47 TOPS (Tera-Operations per Second, boost clocks)

Table 4.1: GPU specification

All implementation including all data preprocessing, label filtering, and sensor fusion
steps, is completed in Python language (3.9). Official Pytorch implementation of YOLOv5 by
Ultralytics3 was used.

3https://github.com/ultralytics/yolov5
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Data preparation for training

In order to conduct object detection model training using the transfer learning approach and
prepare the model that will be able to detect the custom set of object classes (pedestrian,
cyclist, building, tree, and fence), a part of Infineon unlabeled dataset (See section 2.4) was
selected and annotated.

Since there are only 5 object classes and this number does not cover the whole variety of
objects that can be found in the environment, some assumptions were made: for example,
tall grass was annotated as a tree, a cyclist who walks next to a bike has been annotated as a
cyclist.

The data frames were selected with steps equal to 10 from a dynamically recorded dataset
that contains 2340 frames in total, and with a step equal to 20 - from a statically recorded
dataset that contains 8000 in total. As a result, 234 frames were selected from a dynamically
recorded dataset and 400 were selected from a statically recorded dataset, 634 frames in total.
This sample of data was annotated via labelImg framework4.

Annotated dataset of 634 images was divided into train-test-validation parts in proportion
60%, 20%, and 20% correspondingly using a Python script. Thus, 380 images were used for
training, 127 images were used for test, and 127 - for validation. The structure of the dataset
folder is shown in the Figure 4.5.

Figure 4.5: Structure of the dataset used for camera based object detection model training

4https://github.com/heartexlabs/labelImg
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Figure 4.6: Distribution of the object classes in train, test and validation part of the dataset

On the Figure 4.6 above the distribution of the object classes is shown. Since object classes
3 - "fence" and 4 - "cyclist" are underrepresented, the dataset is imbalanced.

Labels are stored in YOLO format. For each image, a label file with the following name
"<image_filename>.txt" is stored. Each row of the label file encodes one object and contains
a string of 5 values in the following order [object_class x_center y_center width height].
Object_class is encoded by integer number i, i = 0, ..., N − 1, where N - total number of object
classes. In the current dataset the following encoding is applied:

• 0 - pedestrian,

• 1 - tree,

• 2 - building,

• 3 - fence,

• 4 - cyclist.

The image size alone X and Y axes is considered equal to 1 and x_center, y_center, width and
height of the object are calculated relative to the image size. Example of the label in YOLO
format: [2 0.290 0.531 0.256 0.391].
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Figure 4.7: Data label in YOLO format

Configuration files

The configurations for the YOLOv5 training are divided into three files with ".yaml" extension:

• data-configurations file (data.yaml)

• model-configurations file (model.yaml)

• hyperparameters-configurations file (hyp.yaml)

Data-configurations file data.yaml is used by the model in order to access the images during
training. Data.yaml contains a summary about the dataset, including paths to train, test, and
validation data, number of classes as well as class names (See Figure 4.8 below).

Figure 4.8: Data-configurations file for YOLOv5 object detection model training

In the model-configurations file, the architecture of the model is defined. Ultralytics
provides the model-configurations for each of models discussed in subsection 3.2.3. During
the training, the model-configurations file is read and the model is built based on the
architecture specified. This flexible approach provides opportunities to experiment with
the architecture and adapt it to specific needs. Model-configurations file for YOLOv5m6
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object detection is shown at the Figure 4.9. Default YOLOv5m6 architecture was used during
training, and the number of object classes was set to 5. The anchor box parameters can be
ignored since auto-learning of anchor box sizes is integrated into the object detection model
training pipeline. Parameters "depth_multiple" and "width_multiple" are multipliers that are
applied to the number of layers and filters of the network correspondingly in order to balance
network depth and width. Higher multiplier values result in higher network parameters
number size and accuracy. However, a higher number of model parameters requires more
computational resources and training time while the inference speed decreases.
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Figure 4.9: Model-configurations file for YOLOv5m6 object detection model training

Hyperparameters for the training, including the data augmentation, learning rate, etc. are
defined in the hyperparameters-configurations file that includes 28 hyperparameters. Ultra-
lytics provides 3 versions of the hyperparameters-configurations file: hyp.scratch-low.yaml,
hyp.scratch-medium.yaml, and hyp.scratch-high.yaml.
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In order to set a model baseline, training was performed with hyp.scratch-medium.yaml.
Values for each hyperparameter are shown in the Figure 4.10 below.

Figure 4.10: Hyperparameters-configurations file for YOLOv5m6 object detection model train-
ing with medium data augmentation

Training the object detection model

Model training and convergence are influenced by hyperparameter values, including the
following:

• Number of Epochs - the number of times to iterate over the dataset,

• Batch Size - the number of data samples propagated through the network before the
parameters are updated,

• Learning Rate - the hyperparameter that determines the step size at each iteration
(batch/epoch). Smaller values yield slower learning speed, while larger values may
result in unpredictable behavior during training5.

Initial weights for training were obtained from the checkpoint of the model that was
pretrained on MS COCO dataset during 300 epochs. Training using transfer learning approach
was conducted with freezing weights of 12 layers of the backbone network:

python train.py --batch 16 --epochs 200 --data data/infineon_OD_14-08.yaml
--weights ’yolov5m6.pt’ --img 1280

5’https://pytorch.org/tutorials/beginner/basics/optimizationtutorial.html′
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--cfg models/infineon-yolov5m6_OD_14-08.yaml
--hyp data/hyps/hyp.scratch-med.yaml --cache --freeze 12
--project ’runs-inf-08-14’ --name ’feature_extraction’

A training of several models with batch_size = 8, 16, 32 that result in 47, 23, and 11
gradient updates in one epoch correspondingly, and the number of epochs = 150, 200, 300
was conducted in order to find values of batch_size and number of epochs that provide the
best training results. All experiments were conducted with Stochastic Gradient Decent (SGD)
optimizer with Nesterov momentum, initial learning rate equal to 0.01, and SGD momentum
equal to 0.937. The choice of the optimizer has been made based on the comparison of
optimizers (SGD, ADAM, ADAMW) that was conducted by authors of YOLOv5. YOLOv5
has been trained on the VOC dataset over 50 epochs with batch sizes equal to 16 and 64.
Authors showed that models which have been trained with SGD optimizer converge faster
and reach higher values of mAP after training6. A comparison of model performance and
losses is provided in the graphs below:

Figure 4.11: Comparison of the object detection YOLOv5m6 model performance trained with
batch_size = 8, 16, 32 over epochs = 150, 200, 300.

6Results of the comparison are provided in https://user-images.githubusercontent.com/26833433/147961825-
8a9d81ba-9374-499f-80a7-60925b4c8328.png
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All models showed high performance with a slight difference in values of train and valida-
tion losses. After experiments the following parameters have been chosen: batch_size=32, a
number of epochs = 200, which has a good trade-off between performance and training time.

Despite the classes in the dataset are imbalanced and the classes "pedestrian", "tree" and
"building" are significantly better represented than the rest, all performance measures achieve
the same high values regardless of class (See Figure 4.12).

Figure 4.12: Performance measures values by object classes for YOLOv5m6 model trained
over 200 epochs with batch_size 3.

Another experiment was performed in order to analyze whether it is possible to improve
the model performance using additional data augmentation. Thus the training was conducted
based on hyp.scratch-high.yaml hyperparameters-configurations file. In addition to image
mix-up augmentation, mosaic, left-right flip, translation, scale, and color adjustment (HSV
Hue, Saturation, and Value) that present in hyp.scratch-medium.yaml, segment copy-paste
data augmentation technique is introduced in hyp.scratch-high.yaml. Hyperparameters
values of the hyperparameters-configurations file (hyp.infineon.scratch-high.yaml) that were
used for training, are shown in the figure below:
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Figure 4.13: Hyperparameters-configurations file for YOLOv5m6 object detection model train-
ing with high data augmentation

Comparison of results obtained after training the model with high data augmentation
hyperparameters showed no improvement in model performance (See Figure 4.14 below).
The model with medium data augmentation has validation box and objectness loss 0.00016
and 0.00121 lower correspondingly than the model with high data augmentation, while
performance measures mAP_0.5 and mAP_0.5:0.95 values are higher by 0.00094 and 0.0086
after 200 epochs. Therefore, the model trained with high data augmentation is discarded. The
model trained over 200 epochs with medium data augmentation and batch size equal to 32
has been chosen for further experiments.
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Figure 4.14: Comparison of the object detection YOLOv5m6 model performance with medium
and high data augmentation hyperparameters

4.2.2 Object detection model training results

The losses and performance measures values over the entire training process are visualized
on the figures below (Figure 4.15, Figure 4.16).

YOLOv5 loss function is composed of three parts:

• box_loss — bounding box regression loss (Mean Squared Error).

• obj_loss — the confidence of object presence is the objectness loss (Binary Cross Entropy
with logits).

• cls_loss — the classification loss (Cross-Entropy).

The values of losses and performance metrics mAP@0.5 and mAP@0.5:0.95 that were
achieved after training are shown in the table Table 4.2 below:
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Parameter Value
train/box_loss 0.015239
val/box_loss 0.009765
train/obj_loss 0.036410
val/obj_loss 0.021030

train/cls_loss 0.001838
val/cls_loss 0.000717

Precision 0.98803
Recall 0.99616

mAP@0.5 0.99430
mAP@0.5:0.95 0.92158

Table 4.2: Losses and performance measures values achieved at the end of the training of the
object detection model over 200 epochs

Figure 4.15 below demonstrates that all three loss values decrease very fast during the first
25 epochs. During epochs 26-200, there is a gradual decrease in losses. Validation losses are
consistently lower than training losses during the whole training.

Figure 4.15: Camera based object detection model performance (training and validation losses)

Similar to losses, performance measures of the model increase very fast up to 25_th epoch
with a gradual increase till the end of the training. Model reaches the value of 99% mAP@0.5
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and 92% mAP@0.5:0.95.

Figure 4.16: Camera based object detection model performance (mAP)

After the training, the best and last weights are saved in files best.pt and last.pt. Both files
are identical since the best performance was achieved at the end of the training. The size of
each of the files is 70Mb.

4.2.3 Object detection results

In the figures Figure 4.17, Figure 4.18, Figure 4.19, and Figure 4.20 several examples of object
detections are shown. All images were recorded in good weather conditions under bright
daylight.

Scenes Figure 4.17(a) and Figure 4.17(b) contain building, trees, pedestrian and cyclists.
Some of the objects are slightly occluded. Detections of the objects in both images are very
accurate.

Figure 4.17: Camera based object detection examples (a,b)
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Figures Figure 4.18(c) and (d) are a part of the sequence that was recorded on a bridge,
along which many people are moving. Therefore these images contain a large amount of
highly occluded objects. In image (c) there are two highly occluded pedestrians that were not
detected while in image (d) all detections are correct.

Figure 4.18: Camera based object detection examples (c,d)

Scene Figure 4.19(e) contains only static objects (buildings and trees) that are either close
or distant from the camera and thus have different scales on the image. Most of the objects
are clearly visible. All detections are very accurate. Scene Figure 4.19(e) contains both static
and moving objects. In the middle of the image, there are several distant objects. There is a
double detection of the distant cyclist - the object detection model classified it as pedestrian
and cyclist.

Figure 4.19: Camera based object detection examples (e,g)

In the image Figure 4.19(i) there is a person sitting on the chair. This is not a typical
example for the current dataset, however, the detection of this object is correct. At the left side
of the Figure 4.19(i) there is a small part of a bicycle wheel that was also detected correctly as
a cyclist.
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Figure 4.20: Camera based object detection examples (i,h)

4.3 Labels filtering experiments and results

4.3.1 Ground segmentation

Iterative ground segmentation fits the ground plane in a maximum of 10 attempts and returns
ground and non-ground point clouds. In case the ground plane was not found in a maximum
of 10 attempts, the entire point cloud is considered as non-ground. Several examples of
ground segmentation results are shown at Figure 4.21. Inlier points of the fitted ground plane
as marked in red. All other points that are considered as non-ground points are shown in
purple.

Figure 4.21: Ground segmentation. Examples
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In picture (a) a complex case of segmentation is shown. There is a large number of points of
a non-ground plane in the point cloud (the wall of the building). With the use of an iterative
approach to ground segmentation and the subsequent exclusion of point of fitted planes
which have angle α to X-Y plane greater than 30◦. As a result, we can see that ground points
were correctly identified. Nevertheless, a certain amount of points of another object (person)
were also identified as inliers for the fitted ground plane. Pictures (b), (c), and (d) demonstrate
a more common situation when the ground plane is represented by a sufficiently large number
of points and is fitted by the ground segmentation algorithm in 1-3 iterations. All steps of
ground segmentation of the scene (c) have been described earlier in subsubsection 3.3.3 and
demonstrated in the Figure 3.17, page 50.

4.3.2 Clustering of 3D point cloud

Results of the clustering of the non ground point are presented on the Figure 4.22 below.

Figure 4.22: Clustering with DBSCAN. Examples

The pictures show that the objects are clustered very accurately. However, in some scenes,
there are ground points that remained in the point cloud after ground elimination and are
clustered together with the object. This may affect the results of the next steps, such as
allocating clusters to labels and bounding box adjustment, as the presence of the ground
points could change the size and location of the clusters in the 2D projection. Such a situation
is demonstrated in the scene (d) in the Figure 4.22, the cluster marked in orange contains a
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person and several ground points.
In order to avoid such situations, the distance_threshold (the maximum distance a point

can have to an estimated plane to be considered an inlier) could be increased at the ground
segmentation step. However, this will also lead to the situation when a number of points
belonging to objects near the ground (for example, feet of pedestrians, the lower part of a tree
trunk) could be classified as ground and excluded from consideration.

The ground segmentation, as well as clustering, are performed in an unsupervised manner
on the entire dataset, and for all scenes and objects in the dataset, a unified set of hyperpa-
rameters is used. Therefore, the set of hyperparameters was chosen in order to provide the
most accurate results for most cases based on visual evaluation of results. However, there are
some exceptions when the selected set of parameters is not optimal for individual objects.

4.3.3 Cluster allocation to labels

The Figure 4.23 below demonstrates the results of the filtering algorithm:

• The top row shows the labels obtained using the YOLOv5 object detector based on
camera data,

• The 2nd row shows the results of the ground plane fitting,

• The 3rd row demonstrates the projection of the non-ground point cloud after clustering:
outliers and clusters with the number of points less than the minimum threshold
value of 30 points were removed, the label of each cluster contains cluster ID and the
coordinates of the cluster center,

• The last row shows the resulting labels for the LiDAR point cloud data after all steps of
the filtering algorithm: coarse filtering, ground plane fitting and removal, non-ground
point cloud clustering, cluster allocation and labels adjustment.

All examples show that after filtering the labels clearly correspond to the LiDAR field of
view. Labels that do not contain a minimum number of 30 points have been removed. The
remaining labels have been adjusted.

Examples (a), and (b) show that the bounding boxes of the "person" have been shifted
significantly and correspond to the position of points in the point cloud related to a person.

In pictures (a), and (c) the bounding boxes of the building on the left side of the scene also
have been changed significantly - they have been adjusted based on the position and size of
the corresponding clusters in the point cloud. The same situation is observed in picture (b).
However, a small cluster was allocated to the bounding box of the building, since its center
was closer to the center of the object bounding box.

Due to insufficient correspondence between the camera and LiDAR data, in the areas with
a high density of objects, the algorithm could produce inaccurate results, since clusters of
other objects may be located closer to the center of the bounding box than the cluster of the
desired object. An example of such a situation is shown in picture (c): in the right part of the
scene, there is an incorrect allocation of the tree cluster to the bounding box of the building.
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Since the resulting labels are designed to be used for training the object detector based on
LiDAR depth maps, such cases require manual correction.

Figure 4.23: Examples of cluster to label allocation and bounding box adjustment

4.4 LiDAR 2D depth maps based object detection experiments and
results

4.4.1 LiDAR 2D depth maps based object detection experiments

Environment and Configuration files, including model configuration and model hyper-
parameters, are described in the section on camera-based object detection experiments
(subsection 4.2.1).
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Data preparation for training

The dataset for training the LiDAR depth map-based object detection model consists of
two parts: 2D depth maps projections, described in section 3.4, and labels. Labels were
obtained based on detections, obtained by a camera-based object detection model. Detections
were filtered based on the field of view of LiDAR and other factors (See section 3.3 for a
detailed description of the approach and algorithm). In order to improve the training data
quality, the labels were further adjusted manually using the framework labelImg7. According
to estimations, about 10% of labels have been adjusted. The resulting dataset for depth
maps-based object detection model training contained 1265 images. Dataset was divided
into 3 parts: train, test, and validation in proportion 0.6, 0.2, and 0.2 using a Python script.
Therefore, the training subset contains 759 depth maps, test and validation subset contains
253 depth maps each. Structure of the dataset folder is shown in the Figure 4.24 below.

Figure 4.24: Distribution of the object classes in train, test and validation part of the dataset

As well as in training data for the camera-based object detection model, the dataset for
LiDAR-based object detection is imbalanced. The distribution of the object classes is shown
in the Figure 4.24 above. 8% of objects have a class label 3 - "fence" and 8% of objects have a
class label 4 - "cyclist". These classes are underrepresented.

Object detection model training
Depth maps-based object detection model training was conducted with weights pretrained

on the MS COCO dataset. Command line to start the training process:

python train.py --batch 8 --epochs 150 --data data/infineon_LOD_27-08.yaml
--weights ’yolov5m6.pt’ --img 1280 --cfg models/infineon-yolov5m6_OD_14-08.yaml
--hyp data/hyps/hyp.scratch-med.yaml --cache --project ’runs-inf-08-27’
--name ’feature_extraction’

7https://github.com/heartexlabs/labelImg
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The first model has been trained over 150 epochs with a batch size equal to 8. The second
model has been trained over 200 epochs with a batch size equal to 16. The Hyperparameters
configuration file that was used during the training, is shown in Figure 4.10. All experiments
were conducted with a Stochastic Gradient Decent (SGD) optimizer with Nesterov momentum
with an initial learning rate equal to 0.01, and SGD momentum β equal to 0.937. A comparison
of model performance and losses is provided in the graphs below:

Figure 4.25: Comparison of the depth map based object detection YOLOv5m6 models perfor-
mance.

Both models showed very high performance. The model that has been trained over 200
epochs (Model-2) showed slightly better performance at the end of training with the value
of mAP@0.5 equal to 0.99498 and mAP@0.5:0.95 equal to 0.93667, while the model that has
been trained over 150 epochs (Model-1) reached the following values: mAP@0.5 = 0.99496
and mAP@0.5:0.95 = 0.90687. Nevertheless, due to time constraints and the high quality of
all models, the experiments on sensor fusion were conducted based on the Model-1 that has
been trained first during 150 epochs.

4.4.2 Object detection model training results

The values of losses and performance metrics mAP@0.5 and mAP@0.5:0.95 that were achieved
after training are shown in the table Table 4.3 below:
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Parameter Value
train/box_loss 0.014624
val/box_loss 0.00965
train/obj_loss 0.022768
val/obj_loss 0.013905

train/cls_loss 0.001475
val/cls_loss 0.000341

Precision 0.99623
Recall 0.99365

mAP@0.5 0.99496
mAP@0.5:0.95 0.90687

Table 4.3: Losses and performance measures values achieved at the end of the training of the
object detection model over 150 epochs

The change of the objectness, classification and box losses and performance measures values
over the entire training process is visualized on the figures below (Figure 4.26, Figure 4.27).

Graph Figure 4.26 shows that the most noticeable decrease in losses occurs up to epoch 75,
however, after that, a steady decrease in the losses is observed as well. Validation losses are
consistently lower than training losses during the whole training. Despite the final values
of training and validation classification loss 0.001475 and 0.0003409 after training of LiDAR-
based object detection model are lower than corresponding values 0.001838 and 0.000717 of
camera-based object detection model. Some misclassifications present in resulting detections
by the model for LiDAR 2D depth map data.
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Figure 4.26: LiDAR depth maps based object detection model performance (training and
validation losses)

The mAP@0.5 reaches the value of 0.9811 at epoch 31. In the rest of the training, the
value of mAP@0.5 continues to increase and reaches 0.99496 at epoch 149. The mAP@0.5:0.95
converges slowlier and gradually increases throughout the training, reaching the value 0.90687
(See Figure 4.27).

Figure 4.27: LiDAR depth maps based object detection model performance (mAP)
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After the training the best and last weights are saved in files best.pt and last.pt. Both files
are identical since the best performance was achieved at the end of the training. The size of
each of the files is about 70Mb which is similar to the size of the weights of the camera-based
object detection model.

4.4.3 Object detection results

Object detection results in daytime scenes

Examples of detections by the model are demonstrated in the Figure 4.28, Figure 4.29, Fig-
ure 4.30, and Figure 4.31 below. Detections were performed on the depth maps, nevertheless,
the results are demonstrated in the projections of depth maps on the images, since such
representation provides better opportunities for visual analysis.

Object detection results of several complex scenes are shown in the Figure 4.28. Scenes
(b) and (c) contain the usual cityscape. In scene (e) only the heads of the pedestrians are
visible to LiDAR, nevertheless, pedestrians are detected correctly. There is a highly occluded
pedestrian in scene (f), however, the object is detected and the correct class is assigned to the
object.

Figure 4.28: Accurate detection of complex scenes (Example 1)

Figure 4.29 contains some more examples of scenes with objects of different scales, for
example, scene (i), as well as examples of scenes that contain densely located objects, for
example, scene (d). Almost all objects were detected and correctly classified. Occluded
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pedestrians in scenes (d), and (e) are not detected.

Figure 4.29: Accurate detection of complex scenes (Example 2)

Several examples of scenes that contain highly occluded objects are shown in Figure 4.30.
In scenes (a) and (b) there are two pedestrians highly occluded by a cyclist. In scene (a) one
of the pedestrians is detected while detection for the second is missing. In scene (b) both
pedestrians are detected and classified correctly. In scene (d) there are also 2 pedestrians that
are highly occluded by the cyclist. Only one of them is detected.
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Figure 4.30: Accurate detection of highly occluded objects

In the Figure 4.31 only the upper part of the person is in the LiDAR field of view and the
classification of the person varies depending on the position of the hands. In scene (b) the
angle of the raised arms corresponds to the angle of the branches of the tree and therefore the
person is classified as a tree. In scene (d) pedestrian is classified as a cyclist. The classification
is incorrect, however, only the upper body of the person is not enough to determine if it is a
cyclist or pedestrian.
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Figure 4.31: Classification of the person based on position of hands (pedestrian, tree, cyclist)

Object detection results in nighttime scenes

Poor illumination is an example of conditions when the camera sensor provides insufficient
information for reliable and accurate object detection. LiDAR does not depend on illumination
and, therefore, can compensate for such drawback of the camera.

In Figure 4.32, Figure 4.33, examples of detections by camera-based (left picture in each
row) and LiDAR-based (right picture in each row) object detection models in nighttime are
provided.

Nighttime data has not been included in the training dataset for both camera and LiDAR-
based object detection models. Therefore after training on daytime data, the camera-based
object detection model is not able to correctly detect and classify objects. As a result, the
whole scene is detected as one object and classified as a tree. On the contrary, LiDAR-based
object detection model provides quite accurate results.

In the Figure 4.32(a)-(b) all objects are detected and classified correctly. In the Figure 4.32(c)
detection of the tree on the left side of the frame is missing, while one of the trees in the
center of the frame is classified as a pedestrian.
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Figure 4.32: Example of object detection results by camera-based and LiDAR-based object
detection model in nighttime scenes (part 1).

In the Figure 4.33(d)-(f) trees in the left upper corner are detected as buildings. It happened
since 5 out of 8 data acquisition sessions in a static manner contained a building in the left
upper corner of the scene, resulting in it also being present in at least 39% of training data.
Therefore, the model is overfitted on this object at that position in the image. Figure 4.33(f)
contains a double detection of the person as a pedestrian and cyclist. A such mistake might
occur due to some misleading examples that were present in training data, for example, a
person walking with a bike labeled as a cyclist. Another example is the upper part of the
body of the person in the LiDAR field of view that was labeled based on information from
the camera sensor as pedestrian or cyclist. However, LiDAR was deprived of the essential
information in such a situation.
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Figure 4.33: Example of object detection results by camera-based and LiDAR-based object
detection model in nighttime scenes (part 2).

The LiDAR-based object detection model demonstrated a high quality of detection. There-
fore, the environmental perception system benefits greatly from having two multimodal
sensors. Moreover, since manual labeling of nighttime camera images is difficult, a LiDAR-
based object detection model could be used for labeling such data.

Since LiDAR provides very accurate information about the environment, while ensuring
a high level of data privacy, it could bring tremendous benefits and provide technological
breakthroughs in many fields of application, such as security, logistics, warehousing, agricul-
ture, robotics, solutions for smart cities, fleet management for car rental companies, military,
and many others.
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4.5 Fusion of Camera and LiDAR labels

In the figure Figure 4.34 below several examples of label fusion are demonstrated. For each
frame (frames 1,2, and 3) there are 3 pictures:

• (a) contains camera-based object detection results,

• (b) contains LiDAR depth map-based object detection results,

• (c) contains fused labels.

Figure 4.34: Examples of the labels fusion.

The evaluation of the obtained results was carried out visually. The utilized label fusion
approach allows to preserve the most important information from both sensors and to correct
the insufficiently accurate detection of the object class by the LiDAR-based object detection
model. The reasons for the insufficiently accurate detection of the object class are described
in the section section 4.4.

Example 1 contains a scene where most of the object classes are present. Both camera
and LiDAR object detection models identified all objects in corresponding fields of view (1a,
1b). Object classes are identified correctly. Labels after the fusion step (1c) have extended
bounding boxes based on matched camera and LiDAR labels. The resulting bounding boxes
go beyond the LiDAR field of view and are wider in comparison to bounding boxes by the
camera object detector due to a slight shift of objects between the image and the LiDAR depth
map.
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Example 2 demonstrates the performance of the object detection models as well as the
fusion algorithm based on the scene with highly occluded and distant objects. Camera-based
object detector recognizes even highly occluded pedestrians that are hardly visible to the
human eye in the middle of the image (2a). These objects are not detected by a LiDAR-based
object detector. The resulting fused labels (2c) contain the correct labels for these objects.
In the current dataset grass was labeled as a "tree". It is recognized by both camera and
LiDAR object detection models. The building is out of the LiDAR field of view and thus is
not recognized in (2b). Since the cyclist is far from the sensors and is represented by a small
number of LiDAR points, the object was not detected by the depth map-based object detector
(2b). Nevertheless, this object was detected and correctly classified by an image-based object
detector (2a) and thus has a correct label in the resulting fused labels (2c). The tree in the
middle of scene 2 is detected by both camera and LiDAR object detector. The size of bounding
boxes in (2a) and (2b) varies. The resulting fused label (2c) shows a more accurate bounding
box in comparison to labels provided by uni-modal object detectors.

In scene (3) as in previous examples, objects are detected by uni-modal object detectors in
corresponding fields of view. Camera-based object detector showed more accurate results in
the detection of occluded objects: the outermost right pedestrian is detected at (3a), while
LiDAR-based object detector did not detect this object (3b). The resulting labels after fusion
(3c) contain correct information about this object.

The results, that are obtained after fusion and shown in 1c, 2c, and 3c, demonstrate that the
chosen fusion algorithm provides accurate and correct results.
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5.1 Conclusion

Currently, there are unitary cases of real-life usage of autonomous vehicles, but mass use has
not started yet. The perception of the environment, as well as the rest of the components of
autonomous vehicles, is an active area of research and is constantly being improved through
new technologies. Environment perception is a cornerstone technology, since other compo-
nents, such as path planning, decision-making, motion and control are heavily dependent
on information about the environment. Therefore, improvements in the area of environment
perception can help to overcome the barrier between laboratory research in the field of
autonomous vehicles and their application in real life. The lack of diverse data for training
and evaluation of the quality of models for environmental perception tasks is a significant
limitation for research in this area. Annotation of the data, especially 3D LiDAR data is a
non-trivial task. LiDAR is one of the main types of sensors used for environmental perception
tasks and only several annotated datasets for narrow domains exist nowadays.

Therefore, the goal of this work was to fill this gap by creating and implementing an
approach for autolabeling of LiDAR data as well as to explore capabilities of object detection
based on multimodal camera and LiDAR data.

Current work included the following parts:

• Collection of multimodal data with the use of Infineon multisensor setup.

• Data preprocessing, including LiDAR-Camera sensor calibration, depth maps extraction,
data labeling, etc.

• Training of the object detection model for camera image data via transfer learning
approach.

• Development and implementation of the labels filtering approach based on 3D point
cloud clustering in order to obtain labels for LiDAR depth maps based object detection
model training.

• Training of the object detection model for LiDAR 2D depth maps.

• Development and implementation of the sensor fusion approach based on late fusion
strategy.

The field of deep learning started to rapidly develop just several years ago. Nevertheless,
due to the high interest in this topic and the unlimited potential of application, technologies

94



5 Conclusion and Discussion

in this field have demonstrated impressive growth. That allowed to achieve impressive results
in many areas of application, including autonomous vehicles. However, further development
of technologies is necessary, both in terms of the performance of perception models, as well as
in terms of hardware, since computing power is a significant limitation for the use of complex
AI-based models.

5.2 Limitations of the approach

A set of object classes was limited to 5 types of objects (pedestrian, tree, building, fence,
cyclist) in order to test the approach. Since the real environment is much richer, a model for
real-world application should be trained on a large set of object classes, and each of them
should be represented by sufficiently diverse examples to ensure that the model gives reliable
results in a real situation.

Due to data privacy-related issues, the dataset was collected only around the office of the
company Infineon Technologies AG with a small group of people, who agreed to participate
in the data acquisition. Since the office area has several buildings of the same type, with the
same number of floors and with a very similar design, and the same people present in all the
scenes, the data do not have enough variability for the training of the object detection model
for real-life application.

LiDAR sensor showed itself very sensitive to the position in the space - even with a slight
tilt of the head by the operator wearing a helmet with sensor setup, the resulting locations of
the objects in the point cloud did not match the data from the camera. Since this is crucial for
the current task, it was decided to record data in a static manner - the helmet was placed on a
flat surface during data acquisition. As a result, the static objects, such as trees, buildings, and
fences in each session, consisting of 600-1000 scenes, are exactly the same. Such an approach
also significantly reduces data variability and could lead to overfitting.

Since the sensors in the sensor setup are not protected from rain, the data was recorded
only in good weather conditions. In order to create a reliable system that could be applied in
real conditions, it is also necessary to train the object detection model on the appropriate data,
since for example, precipitation, such as rain and snow can introduce a significant amount of
noise in both camera and LiDAR data, while during the dark time of the day objects could be
poorly distinguishable for the camera.

In the sensor setup that was used in the current work, sensors were not sufficiently
synchronous. Moreover, the LiDAR sensor is very sensitive to position in space. For real-life
application, these issues should be resolved: the sensors should be fully synchronous and
must be resistant to changes in the position in space. Otherwise, poor quality data may cause
the object detection model to work incorrectly, which could create a dangerous situation in a
real-life situation.

5.3 Further development of the work

Work on this topic could be continued and developed in several directions:
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5 Conclusion and Discussion

• Research on model architectures for object detection and semantic segmentation based
on 3D data in order to receive 3d bounding boxes as a model output.
In the current work the object detection model is created based on 2D depth maps in
order to identify 2D bounding boxes and classes of the objects. However, the depth
information that the 3D point cloud inherently contains, could be utilized for object
detection model training in order for the resulting model to be able to identify the 3d
bounding boxes of the objects.

• Enrichment with data from other sensors, for example, with RADAR or/and ToF data.
Since the RADAR sensor is installed on the Infineon experimental sensor setup, it is
possible to obtain data on the movement direction of the objects, and thus the heading
angle of the oriented 3D bounding boxes. This data could be used in object detection
model training in order to get oriented 3D bounding boxes.

• Research on other fusion strategies, early and middle fusion, as well as research of
architectures based on features extracted from multimodal data. Sensor fusion has
great potential for application in the field of autonomous vehicles in order to ensure the
required level of safety for the real-life use of autonomous vehicles. Research in this
area is currently being actively developed since combining data from several modalities
gives a richer representation of the environment.

• Object tracking systems development.
Object detector processes each frame independently and identifies numerous objects
in the particular frame. On the contrary, an object tracker uses the entire sequence of
frames to track a particular moving object across this sequence.

• Deeper research on the topic of LiDAR-Camera calibration in order to get more accurate
results and eliminate the label filtering step that is necessary in the current work while
Camera and LiDAR data do not fully correspond.
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