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Abstract

Deep learning-based models have become essential for the progress in object de-

tection, but they are heavily dependent on the data with which they are trained.

The optimal constitution of this training data to support the model learning the

patterns of the data is not yet fully understood. One subtopic of this area is the

relevance of image domains which is investigated within this thesis. Image do-

mains and their associated classes influence the visual attributes of images and

therefore lead to systematic di↵erences between domain classes (e.g., time of the

day or weather). This work proposes a process to evaluate the relevance of image

domain classes and to measure their impact on object detection models.

Further on, the impact of image domain-based sampling on the model perfor-

mance is evaluated. The BDD100K dataset was used as the data source for the

experiments. Cleaning and label validation processes were developed to prepare

the dataset. The relevance of an image domain class and the impact of domain-

based sampling were tested with the YOLOv5s-P6 model. Twelve image domain

classes, belonging to three image domains (weather, time of the day and scene)

were investigated. Ten out of twelve image domain classes are considered relevant

for the performance of the object detection model.

Three model groups, trained with stratified sampled data, were tested against

models trained with randomly sampled data. Stratified sampling was not superior

in any of the conducted comparisons. Instead, the object size distribution in the

training data of the models showed significant impact on the model performances.

ii



Contents

List of Figures v

List of Tables vii

Acronyms viii

1 Introduction 1

2 Preliminaries 3

2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Artificial Neural Networks in Object Detection . . . . . . . . 4

2.1.2 Imbalance in Object Detection . . . . . . . . . . . . . . . . . 9

2.2 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Validation Methods . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Significance Tests . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 BDD100K Dataset . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Image Domains . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Image Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Image Featurization . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.3 UMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.4 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.5 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . 28

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Method 31

3.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Label Database . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Duplicate Image Identification . . . . . . . . . . . . . . . . . 32

3.1.3 Label Verification . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



3.2 Image Domain Class Relevance Test . . . . . . . . . . . . . . . . . . 39

3.2.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Domain-based Data Sampling Test . . . . . . . . . . . . . . . . . . 46

3.3.1 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . 46

4 Evaluation 49

4.1 BDD100K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 General Findings . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Image Domain Distribution . . . . . . . . . . . . . . . . . . 52

4.1.3 Duplicate Images . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.4 Label Validation . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Image Domain Relevance . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Visual Di↵erences – Test Results . . . . . . . . . . . . . . . 59

4.2.2 Image Domain Relevance Test – Test Results . . . . . . . . 61

4.2.3 Result Consistency . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Impact of Domain-Based Data Sampling . . . . . . . . . . . . . . . 71

4.3.1 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Summary & Future Work 80

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A Supplementary Figures 88

B Experiment Parameters 90

iv



List of Figures

1 Overview of object detection architectures with examples (leaves) . 5

2 Schematic drawing of a multi-stage object detection architecture . . 6

3 Schematic drawing of a single-stage object detection architecture . . 7

4 Schematic drawing of a transformer based object detection archi-

tecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Precision-recall curves for multiple object classes . . . . . . . . . . . 18

6 Example images with bounding box annotations . . . . . . . . . . . 23

7 Iterative process to identify and remove redundant images. . . . . . 32

8 Process for time of the day label, based on the elevation of the sun. 34

9 Process for time of the day label based on visual image clusters. . . 35

10 Process to relabel daytime/night images. . . . . . . . . . . . . . . . 37

11 Relabeling process of scene images. . . . . . . . . . . . . . . . . . . 39

12 Process to identify relevant image domain classes. . . . . . . . . . . 40

13 Subprocess to identify visual di↵erences. . . . . . . . . . . . . . . . 41

14 Subprocess to test image domain classes for relevance. . . . . . . . . 42

15 Process to evaluate the impact of image domain based sampling. . . 47

16 Object count and LP-based image domain class distribution. . . . . 50

17 Main recording areas of the BDD100K training and validation videos. 52

18 Image domain distribution of the BDD100K images . . . . . . . . . 53

19 Duplicate image pair examples within the BDD100K images. . . . . 54

20 Dependent image pair examples within the BDD100K images . . . . 55

21 UMAP-reduced feature vectors of the BDD100K training and vali-

dation images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

22 Example images with the incorrect time of the day label. . . . . . . 57

23 Example images with incorrect scene labels . . . . . . . . . . . . . . 58

24 Explained variance ratio for the first 30 components. . . . . . . . . 60

25 T
2 statistic for all investigated IDCs . . . . . . . . . . . . . . . . . 61

26 Time of the day relevance test results . . . . . . . . . . . . . . . . . 63

27 Scene type relevance test results . . . . . . . . . . . . . . . . . . . . 65

28 Weather relevance test results . . . . . . . . . . . . . . . . . . . . . 68

v



29 Example detections for models trained with four di↵erent sampling

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

30 Sampling impact results: LP-based stratification vs. random sampling 74

31 Sampling impact results: LP-based stratification with maximized

instances vs. random sampling . . . . . . . . . . . . . . . . . . . . . 76

32 Sampling impact results: iterative stratification vs. random sampling 78

33 File structure of the BDD100K dataset . . . . . . . . . . . . . . . . 88

34 Exemplary sampling process for IDC night . . . . . . . . . . . . . . 89

35 Training tests of di↵erent model sizes . . . . . . . . . . . . . . . . . 92

vi



List of Tables

1 Exemplary confusion matrix . . . . . . . . . . . . . . . . . . . . . . 16

2 Comparison of driving datasets . . . . . . . . . . . . . . . . . . . . 23

3 Image labels and the corresponding classes in BDD100K . . . . . . 25

4 mAP@.50:.05:.95 estimates of the daytime impact experiment . . . 29

5 Filter-ruleset to identify redundant images. . . . . . . . . . . . . . . 33

6 Ruleset to reduce the candidate list of incorrect time of the day labels. 36

7 Filter-ruleset to identify gas station images. . . . . . . . . . . . . . 37

8 Filter-ruleset to identify tunnel images. . . . . . . . . . . . . . . . . 38

9 Filter-ruleset to identify parking lot images. . . . . . . . . . . . . . 38

10 Possible mapping from OpenStreetMap keys to BDD100K scene types. 39

11 Object classes and instance counts per class . . . . . . . . . . . . . 51

12 Result table for the visual di↵erence and IDC relevance tests. . . . . 70

13 Comparison of object instance counts between sampling strategies. . 77

14 Hardware specifications of the used machine. . . . . . . . . . . . . . 90

15 Training parameter settings for IDC relevance test . . . . . . . . . . 90

16 Training parameter settings for domain-based sampling impact test 91

17 Training time of IDC relevance test for di↵erent model scales . . . . 91

vii



Acronyms

ANN Artifical Neural Network

AP Average Precision

API Application Programming Interface

AUC Area Under the Curve

CNN Convolutional Neural Network

COCO Common Objects in Context

CV Cross-Validation

DETR Detection Transformer

DNN Deep Neural Network

FN False Negative

FP False Positive

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

GPS Global Positioning System

HAD Highly Automated Driving

IDC Image Domain Class

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IMU Inertial Measurement Unit

IoU Intersection over Union

IS Iterative Stratification

viii



LP Label Powerset

mAP mean Average Precision

MLC Multi-Label Classification

MLD Multi-Label Dataset

MOTS Multiple Object Tracking and Segmentation

NMS Non-Maximum Suppression

OSM OpenStreetMap

PCA Principal Component Analysis

R-CNN Region based Convolutional Neural Network

SSD Single Shot MultiBox Detector

SVM Support Vector Machine

t-SNE T-distributed Stochastic Neighbor Embedding

TN True Negative

TP True Positive

UMAP Uniform Manifold Approximation and Projection

YOLO You Only Look Once

ix



1 INTRODUCTION

1 Introduction

This thesis is mainly motivated by four factors. First, Highly Automated Driv-

ing (HAD) has been one major research topic in the automotive sector in recent

years. Among other benefits, HAD promises to increase road safety by avoiding

crashes, to increase independence by allowing people incapable of steering a car by

themselves to travel independently, and to free up time by removing the burden

of steering a car while traveling [33].

Second, Deep Neural Networks (DNNs) have become essential for the progress

in object detection (among other computer vision tasks such as semantic- or in-

stance segmentation) over the last years. This performance boost enables the

application of object detection in critical environments, such as HAD. However,

understanding the model’s behavior and, even more important, its limitations is

a topic of high relevance. Even though DNN-based models show the ability to

generalize to unseen situations, this skill is limited [23].

Third, compared to classical object detection approaches, the performance of

DNN-based models heavily depends on the amount and quality of data during

the training phase. For example, feature maps in a Convolutional Neural Network

(CNN) are not predefined but learned from the data [31]. This leads to the question

of how to optimally collect and assemble training datasets to improve performance

and robustness further.

Finally, there exists a lack of research on how to take image domains into ac-

count during this process of gathering and sampling data for model training and

evaluation. Image domains and their associated classes influence images’ visual

attributes, and systematic di↵erences between domain classes can be found. Ex-

amples are the time of the day and weather (see Section 2.4.2). The impact of

image domains is not yet thoroughly researched, and published experiments are

short on details about how the model comparisons have been performed. There-

fore, this thesis shall help to close the existing gap.

Two subsequent questions must be answered to evaluate the impact of image

domains on an object detection model. First, which image domains are of relevance

for such a model? An answer to this question could help to focus the data-gathering

e↵orts, and relevant image domain gaps in a dataset could be identified. Second,
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1 INTRODUCTION

can image domain-based sampling be used to improve the model performance and

its robustness once the relevant image domains are identified?

The impact of a data attribute, such as an image domain, on an arbitrary model

can not be answered in general. Instead, a repeatable process will be described

to identify relevant Image Domain Classes (IDCs) and evaluate their impact on

object detection models. The vision is that once this process is defined, it can be

applied to di↵erent datasets and models and support the gathering and assembling

of datasets in a specific use case.

The research questions that are investigated in this work are:

1. Which image domains are relevant for the training data of an object detection

model?

2. What impact does image domain-based stratified sampling of a dataset have

on the performance of an object detection model?

The object detection task has been chosen since, in automated driving, awareness

of surrounding objects is crucial for the safe and comfortable behavior of the car.

As a specific example, the BDD100K driving dataset [28] and the YOLOv5 object

detection model, [34] have been chosen.

The work is split up into four sections. The section Preliminaries describes the

fundamentals of object detection, model validation, data sampling methods, and

significance tests. Also, the selected dataset is introduced, and an overview of its

characteristics is provided.

Within the Method section, the developed methods for the dataset analysis and

cleansing are described, followed by a detailed explanation of the two performed

experiments: the image domain relevance test and the comparison of di↵erent

domain-based sampling approaches.

In the Evaluation section, the results of data cleansing and the executed ex-

periments are listed, interpreted, and set into the context of inevitable limitations.

The last Section, Summary & Future Work, sums up the most critical parts of

the thesis and reflects on possible next steps and prospects to further improve and

extend this thesis.

2



2 PRELIMINARIES

2 Preliminaries

Before detailing the part of the contribution, the relevant preliminaries are de-

scribed. The fundamentals of object detection and DNNs, sampling methods,

validation methods, evaluation metrics, significance tests, the selected dataset,

and image transformation techniques are presented. Furthermore, the thesis will

be set in the context of related work.

2.1 Object Detection

Object detection is one of the fundamental tasks in computer vision. Object detec-

tion can help to gain a detailed understanding of an image by providing information

about objects visible in the image. It is defined as the combined task of identify-

ing the 2D-location of an object in an image (object localization) and categorizing

the object into defined classes (object classification). Besides detecting objects in

static images, it can also be applied to image series. However, in the scope of this

work, only the case of static image object detection is considered. The di�culty of

this task lies in the diversity of the images and objects themselves [24]. Even if one

takes a simple object, it can be seen from di↵erent viewpoints and angles, in var-

ious positions, scales, or colors, and in changing lighting conditions and di↵erent

environments [8]. Additionally, e↵ects like partial occlusion of objects can come

into play as another aspect of complexity. The traditional approach of detecting

objects in images is divided into three sub-tasks [24]:

1. Informative region selection,

2. feature extraction and

3. object classification

When identifying regions of interest, it has to be considered, that the objects might

appear in any size and position in the image. Therefore when using techniques like

the sliding window approach, an exhaustive number of candidate windows have to

be processed, which is computationally expensive. In the sliding window approach,

smaller areas of the image (windows) are defined. The sub-images encapsulated

by the windows are evaluated at di↵erent positions (sliding) whether they contain

an object. Instead of using all possible window sizes, a predefined set of candidate

3



2 PRELIMINARIES

windows reduces the computational cost, but for the risk of potentially missing

objects [24].

Once the regions are defined, visual features have to be extracted from them.

Various feature extractors have been developed over the years, to name a few,

Hough Transform [1], or Haar-like features, as used in the Viola-Jones algorithm

[4]. However, the complexity and diversity of objects and images make it chal-

lenging to develop universal feature extractors [24]. Lastly, a classifier is used to

categorize the objects based on the extracted features.

This traditional approach with shallow region proposal algorithms and feature

extractors is considered not state-of-the-art since it is limited in multiple aspects.

Besides the expensive task of processing many candidate windows, the manual

design of robust feature extractors is challenging. DNNs helped to mitigate the

identified problems and advanced the progress in object detection [24].

2.1.1 Artificial Neural Networks in Object Detection

Ansari [25] explains the general idea of Artifical Neural Networks (ANNs). They

are designed to mimic some functionalities of brain cells in a simplified manner

by artificially replicating neurons and their network-like connections. Inspired by

the processes in the brain, an artificial neuron receives weighted input signals and

generates an output based on the applied (activation) function. Artificial neurons

can form layers that receive inputs from the preceding layer and forward their

processed output to the succeeding layer based on their connections and weights

As soon as multiple layers are ”hidden” between the input and output layers, a

network can be called deep even though there is no single definition of the required

number of hidden layers. The parameters (weights and biases) of an ANN have to

be learned. This happens by training the model with input data and evaluating

an appropriate error function. Based on the result, the weights and biases are

updated in a backward pass (backpropagation) [25].

Numerous di↵erent network architectures have been developed over the last

years. One of the most fundamental and important in the context of computer

vision and object detection is CNN. CNNs help to solve the problem of finding

4
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robust features by generating self-learned feature maps during training. Due to

the nature of convolutions, in comparison to fully connected networks, fewer con-

nections and, therefore, fewer weights are used between subsequent layers since

neurons are only connected to a small set of adjacent neurons (the receptive field).

Besides the convolution, additional transformations like pooling can be applied

[24].

CNNs provide substantial advantages over traditional (shallow) feature extrac-

tion methods. Among those are multiple convolutions of an image that enable the

model to learn features on di↵erent levels of abstraction and a wide field of recep-

tion. Since the features are learned from the training data, the features do not

have to be designed manually. Further on, the deep architecture has an increased

expressiveness compared to manually built feature extractors [24].

Object detection models based on DNNs can be divided into three di↵erent

model types as shown in Figure 1.
Object Detection

Single-Stage Detectors

SSD YOLO Family

Multi-Stage Detectors

R-CNN Family

Transformer-Based Detectors

DETR

Figure 1: Overview of object detection architectures with examples (leaves)

Multi-stage detectors like the Region based Convolutional Neural Network (R-CNN) [14]

follow a similar procedure as the traditional shallow object detection, while single-

stage detectors such as You Only Look Once (YOLO) perform localization and

classification of objects in one single pass of the network [18]. Transformer-based

models such as the Detection Transformer (DETR) [26] model use a CNN-based

feature extractor combined with a encoder-decoder transformer and a feed-forward

network to generate the predictions. Transformer-based models reached state-of-

the-art status in the well-known MS-COCO Challenge [40].

5
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Multi-Stage Detectors Modern multi-stage object detectors use a region pro-

posal framework to bridge the problem of object detection to image classification.

Even though there are multiple region proposal-based model families, the multi-

stage process will be explained with the example of the R-CNN family. Figure 2

shows a schematic drawing of a multi-stage architecture.

Figure 2: Schematic drawing of a multi-stage object detection architecture.
Region-proposals are generated in the first stage. Afterward, features are extracted
for each region and object classification is performed.

R-CNN The R-CNNmodel was initially developed after the success of AlexNet

(a CNN-based image classification model) in ImageNet Large Scale Visual Recog-

nition Challenge (ILSVRC) 2012 [14]. An additional model stage was added to

utilize the proven performance of CNNs in image classification in the object detec-

tion task. This first stage identifies areas of interest and creates region proposals

for the image. Doing so helps to solve the e�ciency problem of the sliding window

approach. The applied technique of selective search uses grouping and saliency

cues to reduce the search space and provides approximately 2k candidate windows

for an image. Afterward, in the second stage, a CNN is used to extract a feature

vector for each of the proposed regions. Finally a Support Vector Machine (SVM)

classifier is applied to classify the image regions based on the extracted features

and the regions are refined to become the final bounding boxes. The model’s ad-

vantages are the e�ciency and performance improvement compared to the existing

state-of-the-art models at the time of development [14]. However, there are also

some disadvantages, such as no actual end-to-end training due to the multi-stage

architecture or the requirement to pass a fixed-size region proposal to the detection

stage [24].

6
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Single-Stage Detectors The class of single-stage detectors contains multiple

model families. Two prominent families are presented. Single-stage detectors

have one design pattern in common: The avoidance of the region proposal stage.

Therefore, bounding box prediction and object classification have to be trained

and performed in one unified step [24]. Figure 3 shows a schematic drawing of a

single-stage architecture.

Figure 3: Schematic drawing of a single-stage object detection architecture. The
input image is used as a whole during feature extraction. Afterwards, bounding
box regression and classification are performed in one step.

YOLO: Instead of regions, the YOLO framework uses the complete image

for object detection. This is achieved by using a single CNN. Afterward, the

predictions are generated based on confidence score thresholds by applying Non-

Maximum Suppression (NMS). The general idea of the model is that the image

is divided into a grid. Each grid cell has two major prediction tasks. First, it is

predicted whether the center of one or multiple bounding boxes lies within the grid

cell, and second, if a bounding box center is found, the class of the corresponding

object has to be predicted [24]. YOLO can be trained in a simple end-to-end

training process, and its inference speed allows for an application in real-time

environments. Also, its generalization capabilities are superior to models such

as R-CNN [18]. However, the shortcomings of YOLO are di�culties in detecting

small objects [24]:

After the initial development of YOLO (YOLOv1), further improvements have

been introduced over multiple iterations, such as a change of the network’s archi-

7
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tecture to a fully convolutional network [20].

Further modifications and extensions have been made that lead to new mod-

els: YOLOv2 and v3. Afterward, the original authors of YOLO stopped their

development due to privacy concerns and the fear of military applications of their

models. However, development was continued by multiple people simultaneously,

and di↵erent versions up to YOLOv7, PP-YOLOE, and YOLOX have been pub-

lished. Tracking the improvements is di�cult due to the number of releases and

modifications that have been published. One major version that is widely used

and still under open and active development is YOLOv5 [34]. YOLOv5 is based

on YOLOv3 and completely implemented with PyTorch, which makes it easily

accessible, and the performance and robustness of YOLOv5 were improved over

multiple iterations. Further on, multiple model sizes are maintained, which in-

creases the flexibility to adjust the model size based on the available hardware and

requirements [34].

SSD: The Single Shot MultiBox Detector (SSD) [17] framework uses a dif-

ferent approach for detection, compared to YOLO’s image grid. The detection

is based on a convolutional ”base network,” which is used as a feature extractor.

Afterward, a set of predefined anchor boxes are applied on multiple additional con-

volutional layers. The layers are designed to decrease the size of the feature map

from layer to layer, to handle di↵erent object scales. The anchor boxes around

each anchor have di↵erent sizes and aspect ratios and act as detectors. [25] The

advantages of SSD are that SSD300 is slightly faster than YOLOv1 and SSD300

and SSD500 have higher accuracy than YOLOv1 [20]. The di�culties are similar

to YOLO since the performance on small objects allows for improvements [24].

Transformer Based Models The transformer-based models are the first de-

tectors that frame the object detection problem as a direct-set prediction. This

di↵ers from other approaches(single-stage or multi-stage detectors) since no post-

processing step such as NMS is used [26]. Therefore the DETR architecture is

proposed as the first fully end-to-end object detector [30]. Transformer-based

models have become state-of-the-art in object detection and dominate the leader-

board in benchmark challenges such as the MS-COCO Challenge [40]. Figure 4

8
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shows a schematic drawing of a transformer based architecture.

Figure 4: Schematic drawing of a transformer based object detection architecture.
First, image features are extracted and passed to an encoder-decoder transformer.
The generated embeddings are used in a feed forward network to perform a direct
set prediction.

DETR: The DETR framework consists of three main components. First, a

CNN backbone to extract features from the fed input image, second the trans-

former encoder-decoder, and third a feed-forward network to generate the final

bounding box coordinates and class predictions. Neither region proposals nor

grid/anchor boxes are used in the architecture. Therefore, the model does not

depend on the quality of such predefined techniques [26]. The performance of

transformer models is comparable with highly optimized multi-stage detectors,

but the models are not yet applicable to real-time environments due to slower

inference [26].

2.1.2 Imbalance in Object Detection

Multiple imbalances directly related to the objects are known. When decomposing

the object detection task into object localization and object classification, one

can see two potential sources of imbalance. In the task of object localization, a

bounding box has to be positioned and scaled. In both sub-tasks, imbalances can

exist. The positions of objects and the size/ratio of the sizes can be imbalanced

over the classes, meaning some classes can be more diverse in their scale or position

than others. These imbalances are known as scale imbalance and spatial imbalance

[22].

In the classification task, class imbalance is a well-known problem in the do-

9
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main of image classification. However, in object detection, two types of class

imbalance exist. The first one is known as a foreground-to-background imbalance.

Nearly infinitely many bounding boxes that do not contain an object exist, while

the number of actual positives is small. In addition, one also has to deal with fore-

ground imbalance, meaning an imbalance in the instance count of di↵erent classes

[22].

Besides the object-related imbalances, an additional type exists, referred to as

objective imbalance. This imbalance is related to the learning process of an ob-

ject detection model and describes imbalances in the loss functions. Since object

detection combines multiple tasks, multiple loss functions are usually used to de-

scribe the level of fit. Possible loss functions are classification loss or bounding

box loss. If those loss functions are combined but not balanced to be on the same

magnitude, one loss and, therefore, one sub-task can dominate the optimization

[22].

2.2 Sampling Methods

Validating a model in the supervised-learning setting requires splitting the avail-

able labeled data into multiple sets. When doing so, one needs to generate repre-

sentative sub-samples of the dataset.

Many sampling methods have been developed over the years. Some of them

can be applied to many datasets, such as simple random sampling. In contrast,

others are computationally expensive or restricted to a certain type of data [9].

Only sampling techniques relevant to this thesis will be introduced to limit this

introduction.

Simple Random Sampling One of the simplest but commonly used methods

is simple random sampling. The probabilistic sampling method assigns equal prob-

abilities to all samples. Assume, a dataset D of size n = |D| is used to sample a

subset T of size m = |T |, each sample x 2 D has the probability p(x 2 T ) = n
m

of being selected. This method has, in general, a low bias, is easy to implement

and is computationally cheap. However, its limitations are that, in the case of

non-uniformly distributed data or when m ⌧ n, it is prone to distort the repre-
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sentation of the original dataset. Therefore, the method is known for having high

variance [9].

Stratified Random Sampling Stratified sampling generally uses additional

intrinsic information from the data to generate a sample that appropriately rep-

resents the structure of the dataset. Therefore, before sampling, the dataset is

clustered based on the so-called strata, and samples are selected from each cluster.

Di↵erent methods exist to select the samples. In the case of stratified random sam-

pling, the samples are selected at random by applying simple random sampling for

each cluster individually. The size, of which a cluster is represented in the sample

is called quota and can be chosen based on di↵erent rules. Commonly used options

to determine the quota are equal allocation and proportional allocation [9].

In equal allocation, each cluster adds the same number of samples to the sub-

sample. For a Dataset D of size n = |D| with q clusters Ci with i = 1, . . . , q,

a sub-sample T of size m = |T | is drawn. Each cluster is represented with size

ni =
m
q in the sub-sample. When applying proportional allocation, the number

of samples per cluster is based on the cluster-size. Each cluster Ci is represented

with size ni =
m
n

|Ci|Pq
j=1 |Cj | in the sub-sample [9].

Stratified random sampling is advantageous when cluster-like structures exist

in the dataset since care is taken to represent all clusters appropriately [9].

Multi-Label Stratification The above paragraph has focused on the principle

of simple stratification with a single set of clusters/strata. However, the generaliza-

tion of this approach to multiple sets of strata is not trivial. The problem is known

as Multi-Label Stratification in the domain of Multi-Label Classification (MLC),

where Multi-Label Datasets (MLDs) have to be split in a stratified manner.

Label Powerset Transformation One approach to deal with multiple la-

bels is based on dataset transformations. The single-label-multi-class transfor-

mation, also known as Label Powerset (LP) transformation, can be applied to

transform a multi-label problem into a multi-class problem. The transformation

is performed by combining all labels of one image into one single label. This is

performed for all images. Each unique label set is added as a class to the new LP.

11
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In the case of multiple independent single-class labels, the number of classes of the

new LP is upper-bound by 2l, with l being the number of original labels [12]. In

the case of multi-class labels, the actual label powerset for a dataset with l labels,

each with ci classes, is upper-bound by Equation 1.

|LP| 
lY

i=1

ci (1)

After applying the LP transformation, the standard single-label stratification ap-

proach can be applied to generate a stratified sub-sample.

In the case of large l, the powerset transformation can lead to a situation

where |LP | ⇡ n. This would render the transformation useless regarding the

stratification since each cluster would contain only a few or even a single element

[11].

Iterative Stratification Iterative Stratification (IS) is an alternative multi-

label stratification approach proposed by Sechidis, Tsoumakas, and Vlahavas [11].

Compared to LP-based stratification, IS uses a relaxed ruleset. It can be used to

fill k-folds of size ri. The algorithm works iterative and distributes the samples of

one label per iteration. It starts with distributing the samples assigned with the

rarest label among the folds. The rationale behind this greedy approach is that

rare labels have to be distributed appropriately at first since created imbalances

might not be adjustable later on. In contrast, the distribution of frequent labels

can still be corrected in case of imbalances. In each iteration, only samples that

are assigned with the currently selected label are distributed. The selection of the

fold that receives a sample is based on the existing delta for the given label. The

fold which is missing the most samples of the current label is chosen first. In the

case of ties, among those folds, the fold which misses the most samples is selected.

In case of further ties, one of those folds is selected randomly. Again a greedy

approach is chosen to minimize the existing deltas [11].

An important di↵erence compared to the LP transformed stratification is that

each label is treated individually, while the powerset stratification works on com-

plete label sets. The advantage of the iterative approach is that the labels are
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distributed in a meaningful way over all subsets, even in the case of many di↵er-

ent labels, which would lead to sparse clusters in the LP-based stratification (few

examples per strata). The disadvantage of the given approach is that interdepen-

dencies between labels are not addressed. This can lead to a distorted distribution

of label pairs in the folds.

2.3 Model Evaluation

Designing and building a model with high generalization and prediction capabilities

is one of the main targets when applying machine learning techniques. For the

subset of supervised learning problems, a model is trained to predict an unknown

target function which is approximated by learning from the given training data

and its labels. After completing the training stage, a model should have two

skills, predicting correct outputs for data coming from the training dataset and

generalizing its predictions to unseen data. These objectives are at some point

contrary since improving the model performance on the training data can lead to

an overfit, which reduces the generalization capability. The model is starting to

learn the training examples by heart instead of learning general patterns. Stopping

training too early can lead to overall bad performance on both the training data

and unseen data. This trade-o↵ is also known as Bias-Variance Dilemma. To

properly balance the two demands, validation techniques can be applied. One

common family of techniques is called cross-validation [9].

After estimating the skill of a model using a validation technique, one needs

to be able to compare these skill estimates of multiple models with each other.

Significance tests can be used to perform a comparison. They are introduced at

the end of this section.

2.3.1 Validation Methods

During model training, its predictions for the training data are computed, and

the deviation between the predictions and the underlying ground-truth is used

to optimize the model (training loss). This evaluation loop provides a measure

for the first part of the two model objectives: the prediction capability for data

coming from the training set. However, the model’s generalization capability is still

13
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unknown. Unseen data has to be used to get an estimate for this second objective.

This data is typically referred to as validation dataset. Validation data is split-o↵

before training starts. Therefore, the model cannot use this data for parameter

optimization. The validation process introduces at least two new problems: First,

how is such a data split performed? And second, how can one ensure a robust

estimate of the model’s generalization capabilities?

Generally, a validation method defines the number and sizes of the sub-samples

used for training and validation and the sampling technique to split the data.

Cross-Validation Cross-Validation (CV) combines a whole family of methods

to validate a model’s performance. In its most simple form, the dataset is split

into two parts by applying simple random sampling. One part is used for training,

and the other is used to evaluate the generalization performance of the model [9].

Hold-Out Cross-Validation is also known as early-stopping cross-validation

or train / validation / test split. The dataset is split into three mutually disjoint

sets using simple random sampling. The training set Ttr, the validation set Tv

and the test set Tt. Ttr is used for model training, while Tv is periodically used

to evaluate the model performance on unseen data. Training is stopped when one

condition is met, either the required model performance on Tv is reached, or the

model does not improve its performance on Tv any further. This simple technique

helps to avoid overfitting the training data but at the cost that the validation set

Tv influences the training (decision of stopping). Therefore, to avoid biasing the

performance estimate, a third independent set Tt has to be used to evaluate the

model on unseen data. As an advantage of this method, the size of each sub-set

can be chosen flexibly as long as ntr + nv + nt  n holds [9].

K-Fold Cross-Validation K -fold CV generalizes the basic CV principle to

multiple training and validation splits. This approach aims to compute a robust

estimate of the model performance by measuring repetitively. This method is

especially useful when the dataset is small, and the standard hold-out approach

would require too much data for validation and testing. Using simple random

sampling, the dataset T is split into k mutually disjoint, equally sized subsets
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(folds). Each subset is used k � 1 times for training and one time for validation.

For each iteration, all folds, except one, are combined to form the training dataset,

while the remaining fold is used to validate the model performance. The same

procedure of early-stopping as in hold-out cross-validation is applied, but due to

several measurements, a dedicated testing set is omitted [9].

One disadvantage of k-fold CV for k > 2 is that the training datasets are not

independent anymore. While the validation sets are still independent, the repeated

use of each fold within the training data leads to the dependence of the training

sets. This can bias the variance estimate and increase the Type I error rate of

significance tests. The skill estimate itself stays unbiased [7].

RxK-Fold Cross-Validation Repeated k-fold CV generalizes the valida-

tion process even further. Here, the previously described k-fold cross-validation

is repeated r times. In this case, the training and test sets overlap over multi-

ple repetitions. Within one repetition, all k-folds are mutually disjoint [6]. The

problem of dependent training sets remains, while another source of dependence

is introduced since testing sets also overlap over multiple repetitions.

Stratified RxK-Fold Cross-Validation The above introduced general method

of rxk fold cross validation can also be combined with di↵erent sampling tech-

niques such as stratified random sampling, or in the multi-label case, e.g., LP

transformed stratified random sampling can be applied. The validation mechanics

stay the same, while the method to generate the folds is changed.

Random Resampling Random resampling repetitively divides the dataset into

two disjoint sets. A training set Ttr of size ntr and a validation / test set Tv of

size nv. The size of the subsets is not fixed, but usually, the training set is larger

than the validation set. In each repetition, the sub-sets are drawn using the simple

random sampling method. Datasets overlap over multiple repetitions. The model

is trained using the training set, and the final skill estimate is performed on the

validation set. This validation method is simple but at the drawback of dependence

of the training and the test sets [3].
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2.3.2 Evaluation Metrics

A skill estimate is required to validate and compare models. The metrics depend

on the task of the model. In object detection, multiple performance measures

have been developed or adapted. Common metrics are Precision, Recall, Average

Precision (AP), and mean Average Precision (mAP). Di↵erent variants of AP

are widely used across the object detection community as primary performance

indicator to compare models [27] (e.g. in the Common Objects in Context (COCO)

detection challenge).

Basic Performance Measures Knowledge about the composition of a confu-

sion matrix (see Table 1) is fundamental for the understanding of advanced metrics

in object detection.

Ground-Truth

Positive Negative Total

Predictions
Positive TP FP TP + FP

Negative FN TN FN + TN

Total TP + FN FP + TN N

Table 1: Exemplary confusion matrix

The following definitions are taken from [27]:

• True Positive (TP): correctly detected ground-truth bounding box.

• False Positive (FP): incorrectly detected object without the existence of a

ground-truth bounding box or non-su�cient overlap with existing ground-

truth bounding box.

• False Negative (FN): undetected existing ground-truth bounding box.

• True Negative (TN): no detection for an area where no bounding box exists

in the ground-truth data.

The last measure (TN) is not used in object detection since infinitely many TNs

exist. Whether a detection is correct or incorrect is based on the similarity be-

tween the predicted bounding box Bpr and the ground-truth bounding box Bgt.

The similarity is measured using the Intersection over Union (IoU), also known

as the Jaccard-Index. The formula to compute the IoU is given in Equation 2.

16



2 PRELIMINARIES

Categorization of predictions into TPs, FPs and FNs is performed based on one

threshold t for the IoU. For IoU � t the prediction is categorized as correct, if

IoU < t the prediction is categorized as incorrect [27].

IoU =
area(Bpr \Bgt)

area(Bpr [Bgt)
, with IoU 2 [0, 1] (2)

Precision can be derived from the above-introduced measures. It provides a

measure of how good the actual predictions of a model are by comparing the TPs

against all predictions. Therefore, precision P is the ratio of correct predictions

among all predicted bounding boxes as shown in Equation 3 [27].

P =
TP

TP + FP
, with P 2 [0, 1] (3)

Recall Recall, also known as sensitivity, can as well be derived using the basic

measures from above. It provides the ratio of correct predictions among all ground-

truth bounding boxes. This indicates how much of all relevant objects a model

detects. Equation 4 shows the formula to compute the recall [27].

R =
TP

TP + FN
, with R 2 [0, 1] (4)

Precision-Recall Curve Since both precision and recall provide only an iso-

lated view of the model performance; both measures can be combined into the

precision-recall curve to create a more general measure of the model performance.

Figure 5 shows exemplary precision-recall curves for multiple object classes. The

confidence score, which describes the confidence of the model that a given pre-

diction is correct, is used to generate this curve. The predictions are ordered

descending by confidence. Generally, when considering only predictions with high

confidence, a higher precision but a lower recall is expected. The precision-recall

curve is expected to be (monotonically) decreasing when the predictions are sorted

descending by confidence.

Average Precision The perfect detector is expected to find all objects (Recall

= 1) and to predict correctly (Precision = 1). The area under this ideal precision-
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Figure 5: Precision-recall curves for multiple object classes. Predictions with an
IoU� 0.5 are considered as TP. The precision is evaluated for 101 recall values and
interpolated.

recall curve is, in this case, maximized to 1.

AUCideal = 1, with AUC 2 [0, 1] (5)

A good detector is expected to have a high Area Under the Curve (AUC) since this

indicates a good precision/recall ratio for a wide range of confidence scores. In ac-

tual applications, the precision-recall curve is not smooth but ”zig-zagged”. There-

fore to compute an estimate for the AUC, interpolation methods are used [27]. One

interpolation method which is implemented in the COCO Application Program-

ming Interface (API) for evaluation is the 101-point interpolation. Therein, the

precision value is measured at 101 recall levels: [0 : 0.01 : 1] [36]. The 101 mea-

surements are interpolated by taking the maximum precision at or above a given

recall level. This transforms the ”zig-zagged” line into a step-like function. The

enclosed area below the curve can be computed by summing over all segments, as

shown in Equation 6 [27].

AP101 =
1

101

X

R2{0,0.01,...,0.99,1}

Pinterp(R), (6)
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with

Pinterp(R) = max
R̃:R̃�R

P(R̃) (7)

One last step is necessary to obtain the mAP. Until now, all introduced metrics

are computed on the object class level. The AP of multiple object classes can be

combined into one metric by computing the mean. See Equation 8 for the mAP

computation with N classes [27].

mAP =
1

N

NX

i=1

APi (8)

The AP and mAP measures, as introduced, are considering one IoU threshold

and all object sizes. Further variants exist, such as the mAP@.50:.05:.95 which av-

erages the performance over 10 IoU thresholds or mAPSMALL which only considers

objects < 322px size [27].

2.3.3 Significance Tests

Model validation methods are used to estimate the skill of a specific model. Com-

parison of these skill estimates can be performed by applying statistical significance

tests. The introduced tests have been selected based on their application within

the thesis.

Wilcoxon’s Signed Rank Test This test is the non-parametric pendant to

the paired Student’s t-test and therefore does not depend on the assumption of

normally distributed data. The test can be either a one-sample or two-sample test

using matched pairs. The test investigates whether the location of the median

✓ is equal to a given constant. In the two sample test n paired measurements

(X1, Y1), . . . , (Xn, Yn) are transformed into their di↵erences Di = Xi � Yi and the

median of the di↵erences is investigated. The null hypothesis and the two-sided

alternative are shown in Equation 9 [10].

H0 : ✓ = 0 vs. H1 : ✓ 6= 0 (9)
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The di↵erences are ranked based on their absolute values |Di|. The ranks are

between 1 (for the smallest di↵erence), and n (for the largest di↵erence). In

general, ties are not expected due to the continuity assumption. However, in

applications, non-zero di↵erence ties are typically handled by assigning an average

rank to the tied di↵erences. Zero di↵erences are also not to be expected due to

the continuity assumption. If they occur, they are included in the ranking process

but are removed when computing the test statistic. The ranks are aggregated into

the test statistics R
+, R� and R as shown in Equations 10 to 12, which can be

used interchangeably [10].

R+ =
X

Di>0

rank(|Di|) (10)

R� =
X

Di<0

rank(|Di|) (11)

R = R+ � R� (12)

Assumptions as defined in [10]:

1. The di↵erences Di have to be mutually independent.

2. The distribution F from which Di is sampled has to be continuous and

symmetric about the median.

The null hypothesis H0 is rejected in the two-sided case at significance level

↵ if R+ � w↵/2 [10] (or R
� � w↵/2). Critical values w↵ are tabulated or can be

computed by permuting the rank signs [10].

Wilcoxon’s Rank Sum Test The Rank Sum Test is the non-paired variant

of Wilcoxon’s Signed Rank Test. Therefore the Null-hypothesis and two-sided

alternative are identical to Equation 9. Also, the same assumptions are valid. The

test statistic is defined for two sample-groups G1 and G2 in [10] as:

W =
NX

i=1

iVi with Vi =

(
1, if i-th smallest sample 2 G1

0, otherwise
(13)
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For tied observations, the mean rank can be computed. The test, as introduced,

is not robust against variance di↵erences among the two sample groups. However,

a variant exists that can be used in that case [10]. The null hypothesis is rejected

when W exceeds a critical value w↵/2 in the two-sided case.

Hotelling’s T
2 Test This test can be seen as the multivariate variant of Stu-

dent’s t-test. One-sample and two-sample variants exist. The two-sample test

investigates whether the multivariate means of two distributions are equal (two-

sided):

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2 (14)

Assumptions In the case of p measured variables, the following assumptions

are made for the Hotelling’s T 2 test, as defined in [5]:

1. The two samples are drawn from a p-dimensional normal distributionNp(µ1,⌃1)

and Np(µ2,⌃2) respectively.

2. The samples are drawn independently.

3. The covariance matrices are equal ⌃1 = ⌃2 = ⌃ but can be unknown.

The T
2 test statistic is defined in characteristic form as shown in Equation

15 and provides a standardized distance measure for the two sample mean vectors

ȳ1 and ȳ2 [5].

T
2 = (ȳ1 � ȳ2)

0
✓

1

n1
+

1

n2

◆
Spl

��1

(ȳ1 � ȳ2), (15)

with Spl being the unbiased estimator for the covariance matrix ⌃,

Spl =
1

n1 + n2 � 2
(W1 +W2), (16)

W1 =
n1X

i=1

(y1i � ȳ1)(y1i � ȳ1)
0 = (n1 � 1)S1, (17)

W2 =
n2X

i=1

(y2i � ȳ2)(y2i � ȳ2)
0 = (n2 � 1)S2, (18)
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and ȳ being the mean vectors.

ȳ1 =
n1X

i=1

y1i

n1
, ȳ2 =

n2X

i=1

y2i

n2
(19)

(n1 � 1)S1 and (n2 � 1)S2 are unbiased estimators of (n1 � 1)⌃1 and (n2 � 1)⌃2.

As derived in [5].

H0 is rejected when T
2 � T

2
↵,p,n�1. The critical value T

2
↵,p,n�1 can be computed

from the T 2 distribution for a given significance level ↵, the number of variables p

and the adjusted number of samples n� 1 = n1 + n2 � 1.

Assumption-Violation If the assumption of normality is violated, the same

approach as for the Student’s t-test can be applied. Based on the multivariate

central limit theorem, for large n, ȳ is approximately normal distributed even if the

sample y is not normally distributed [5]. In the univariate case, n�1 = 30 is widely

accepted as the threshold to assume normality of the mean. However, to achieve a

good approximation of the standard normal distribution in the multivariate case,

n depends on p. Rencher proposes a method in [5] to estimate the required size

of n based on the univariate case, by keeping the ratio of T
2
↵,p,n�1 and T

2
↵,p,1

approximately equal to the univariate case. For ↵ = 0.05:

T
2
0.05,1,30

T
2
0.05,1,1

⇡ 4.171

3.841
⇡ 1, 086

!
=

T
2
0.05,p,n�1

T
2
0.05,p,1

(20)

E.g. for p = 4, n � 1 � 90 and for p = 10, n � 1 � 200 is required to remain in

the large sample size domain.

When violating the assumption of equal covariance matrices, either a correction

as defined in [2] can be performed or the sample sizes n1 and n2 have to be kept

equal to obtain a robust version of Hotelling’s T 2 Test.

Further methods, such as bootstrapping or permutation-based variants, can be

applied, e.g., to derive a non-parametric p-value.
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2.4 Data

Multiple open-source datasets are suitable for image-based object detection in

the context of automated driving. A comparison of a subset of existing driving

datasets is presented in Table 2. At least two components are necessary to use an

image dataset for model training and validation: (1) the images and (2) additional

annotations accompanying them. The annotations contain information about the

visible objects in an image. Typically they are provided in the form of bounding

box labels which contain details about the class, size, and position of an object.

Figure 6 shows example images annotated with the provided bounding box labels.

Figure 6: Example images from the BDD100K dataset with bounding box anno-
tations.

KITTI CityScapes Mapillary BDD100K

# Train / val img 7481 3475 20000 80000

# Test img 7518 1525 5000 20000

Multiple locations No Yes Yes Yes

Multiple weather No No Yes Yes

Multiple seasons No Yes Yes Yes

Multiple times of the day No No Yes Yes

Multiple scene types Yes (No) Yes Yes

Multiple recording

sources

No No Yes Yes

Table 2: Comparison of driving dataset for object detection, based on [41],[13],
[19] and [16]

.
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For the comparison in Table 2, only the part of each dataset that is suitable for

object detection is considered. The size of the datasets varies significantly from

approximately 3’500 labeled images in CityScapes, up to 80’000 in BDD100K.

CityScapes does contain more images, but since it is not directly built for 2D-

object detection, only for 3475 images, instance-based annotations are provided,

which can be transformed into bounding boxes. In addition, some indicators for the

diversity of the datasets are given in Table 2. The most diverse dataset regarding

the location is the Mappillary dataset since it is recorded at multiple globally

distributed locations. In contrast, the KITTI dataset is recorded at only one

location, the metropolitan area of Karlsruhe.

For weather -, time of the day- and recording source-diversity, two groups ex-

ist. The more diverse datasets regarding these indicators are Mappillary and

BDD100K. CityScapes and KITTI provide only daytime images in non-adverse

weather situations, recorded with a small set of recording systems.

In this context, a scene type describes the surrounding scene and not the driv-

ing situation itself. CityScapes is, as to be expected, recorded in urban environ-

ments only. The other datasets provide additional imagery, e.g., from highway-,

countryside-, and, in the case of Mapillary, even o↵-road scenes.

Regarding the Mapillary dataset’s recording scheme, one must mention that

not all images are exclusively recorded with driving vehicles. But, street-level data

is collected, which is recorded by di↵erent sources (e.g. pedestrians) [19]. The

images provided in the other datasets are solely recorded with vehicles.

2.4.1 BDD100K Dataset

The BDD100K dataset will be introduced in more detail since it is the dataset

used within this thesis’s practical part. The dataset contains images/videos and

annotations for multiple computer vision tasks such as 2D-object detection, lane

marking, driveable area detection (vehicle localization), semantic instance segmen-

tation, and Multiple Object Tracking and Segmentation (MOTS). Therefore, the

dataset is suitable for multitask learning [28].

Dataset Collection and Split The dataset comprises 100k video recordings,

collected and uploaded crowd-source based. The videos are provided by thousands
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of riders and are recorded during approximately 50k di↵erent rides [28]. All videos

have been recorded with the rear-camera of an iPhone 5 [42] which provides a

video resolution of 1280x720px at 30fps. Each video clip is 40 seconds long. The

keyframe at the 10th second of each video is taken to transform the video recordings

into images. The videos are mainly recorded in five broader areas: San Francisco,

the Bay Area, Berkeley, New York [28], and Israel/West Bank.

The dataset is split into three chunks. The largest junk, the training dataset,

contains 70k images, the validation dataset contains 10k images, and the test

dataset contains 20k images. For the training and validation datasets, additional

data such as bounding box annotations are published [28]. As usual, the annota-

tions for the testing dataset are not publicly available for benchmarking reasons.

All classes labeled in the BDD100K dataset are shown in Table 11.

Metadata Besides the basic data necessary for 2D-object detection, additional

metadata is available. Among other attributes, these are:

• Global Positioning System (GPS) based geographic coordinate, speed- and

course measurements,

• Inertial Measurement Unit (IMU) based acceleration data

• the timestamp at which the image/video was recorded

• an anonymized ID of the rider who recorded the image

In addition to metadata directly recorded with the imagery, additional image labels

are provided. The labels and their corresponding classes are shown in Table 3.

The distribution of the classes in the BDD100K dataset will be discussed in the

evaluation section (see 4.1.2).

Label Classes

Weather Clear, Partly Cloudy, Overcast, Rainy, Snowy, Foggy, Un-

defined

Scene City Street, Highway, Residential, Gas Station, Tunnel,

Parking Lot, Undefined

Time of the Day Daytime, Night, Dawn/Dusk, Undefined

Table 3: Image labels and the corresponding classes in BDD100K
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2.4.2 Image Domains

The term image domain has to be defined to lay the ground for upcoming sections

of this work. Yu et al. and Romera et al. describe that images di↵er in their

properties between domains, meaning that within a domain, a certain level of

similarity can be expected. This domain di↵erence / domain gap might a↵ect the

performance of an object detection or semantic segmentation model [28], [23].

Further on, models trained on a non-diverse dataset (diversity regarding the

image domains) are prone to overfit the characteristics of their training data, as

shown in [28].

One can conclude that within one domain, some visual attributes of an image

are bound or at least systematically biased towards a specific peculiarity. This

means the visual appearance of an image is influenced or even dominated by the

domain it comes from.

To name the most prominent domain example within the driving context: time

of the day and especially the di↵erences between the two domain classes, daytime

and night, are both visually dominant and heavily influential regarding the per-

formance of an object detection / semantic segmentation model [28], [23].

The term image domain is therefore not bound to a closed set of characteristics but

rather loose. Therefore, the parameters influencing an image are heavily context-

dependent and have to be defined with the data at hand or at least with a clear

vision of how the application context of a model will be. For this thesis, the image

domains investigated are shown in Table 3, but further domains exist, such as the

season, the country, or the environmental situation (e.g., topography), to name a

few.

In a previous section, object detection imbalances have already been mentioned.

However, the image domain distribution introduces another potential source of

imbalance. For example, datasets such as CityScape or KITTI cover only a small

subset of the existing domain diversity. However, even more diverse datasets, such

as BDD100K, do not achieve to represent all the domains in su�cient size (this

will be shown in the evaluation section).
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2.5 Image Transformation

The transformation from image matrices to vectors and their distance determina-

tion requires a set of methods that are explained in the following part.

2.5.1 Image Featurization

Dimension reduction techniques can be applied to ease the comparison of images.

For example, one non-linear technique used in [39] is the CNN-based image fea-

turization. A pre-trained ResNet model, of which the last layers (fully connected

block) are cut o↵, is used to generate a dense representation of an image, the feature

vector. This reduces the image size to 512 ⇥ 1. The open-source implementation

used in this thesis is available under [37].

2.5.2 Cosine Similarity

The similarity of the feature vectors can be measured by measuring the vector

distance. The applied measure to compare images in [39] is the cosine similarity.

However, other measures exist. By design, the cosine similarity does compare the

similarity in the angles and not the magnitude of the vector, in comparison to,

e.g., the Euclidean distance. The formula used to compute the cosine similarity

is given in Equation 21. k measures the similarity of two row vectors x and y by

computing the L2-normalized dot product. For identical vectors k = 1 and for

vectors pointing in the opposite directions k = �1.

k(x,y) =
xy>

kxkkyk , with k 2 [�1, 1] (21)

2.5.3 UMAP

Uniform Manifold Approximation and Projection (UMAP) is a technique to reduce

the dimensions of a dataset. Its approach is based on constructing and simplifying

a k-neighbor graph of the data. Its main objective is to preserve local distances

of the data. However, compared to other dimension reduction techniques such

as T-distributed Stochastic Neighbor Embedding (t-SNE) it also preserves more
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of the global structure while being computationally more e�cient. Three axioms

are made that are fundamental to UMAP. (1) That there exists a manifold on

which the data is uniformly distributed. (2) This manifold is locally connected,

and (3) The topological structure of this manifold shall be preserved. This mani-

fold is approximated with a k-neighbor graph and simplified to a low-dimensional

representation. This representation is used to reduce the dimensions of the data

[21].

2.5.4 PCA

PCA is a linear non-parametric method to transform the dimensions by chang-

ing the basis such that the signal-to-noise ratio is maximized for each dimension

and the redundancy is minimized (correlation of dimensions). This is achieved

by maximizing the variance and minimizing the covariance, which is a covariance

matrix diagonalization. For an m dimensional dataset, this is achieved by itera-

tive selecting m orthogonal vectors pi in the direction of the maximum possible

variance. The requirements of maximizing the variance for each vector p and the

orthogonality lead to an ordered set of m vectors with descending variance. The

vectors form a new basis for the dataset [15].

2.5.5 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) can be used for data clustering purposes. The

fundamental assumption of a GMM is that the data is drawn ”from a mixture of

a finite number of Gaussian distributions with unknown parameters” [32]. When

providing the number of clusters (components) (e.g. by visual inspection or due

to an information criterion) the parameters of the Gaussian distributions can be

approximated iterative by applying an expectation-maximization algorithm. After

initializing the components (e.g., with k-means or randomly), the algorithm con-

sists of two steps. First, the probability of each data point to be generated by the

components is computed. Second, the parameters of the components are updated

such, that the likelihood is maximized for the determined assignment [32].
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2.6 Related Work

Besides this thesis, further publications investigate the e↵ects of image domains

in object detection and related computer vision tasks.

In the paper released with the BDD100K dataset, image domain e↵ects were

briefly investigated. This was done by splitting the data based on one domain,

e.g., time of the day. Then, multiple models were trained using the prepared

datasets, e.g., containing only daytime, non-daytime, or random samples. Each

training set included 30k images. After training, the models were tested on three

di↵erent test sets. The first set only included images from the daytime class, the

second only included images from non-daytime classes, and the third set was the

default validation dataset. All three models were evaluated on all test datasets,

and the mAP was measured. The evaluation results in Table 4 show that all three

models perform better on daytime images than on non-daytime images. However,

the daytime model and random model are on par for the daytime dataset and

the default validation dataset, while the random model is superior for the non-

daytime dataset. The non-daytime model outperforms the daytime model on the

non-daytime dataset but is inferior in all remaining comparisons. The experiment

is identically performed for the scene type city street [28].

It is important to note that the paper is short on the specific experiment design.

However, it remains unclear whether the instance distribution is comparable for

all training sets and how training and testing were conducted in detail. Also, how

the distribution of the other image domains was handled is not explained. It is

concluded that both experiments show significant results, meaning the investigated

domain classes are relevant for the performance of the object detection model, even

though it is not stated how the decision about significance has been made [28].

The original result table of the daytime experiment is shown in Table 4.

Train

Test
Daytime Non-Daytime Validation

Daytime 30k 30.6 23.6 28.1

Non-Daytime 30k 25.9 25.3 25.6

Random 30k 29.5 26.0 28.3
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Table 4: mAP@.50:.05:.95 estimates of the daytime impact experiment performed
in the BDD100K paper [28].

The authors of the CityScapes dataset have performed a similar experiment

applied to semantic segmentation. They split their dataset in a stratified manner,

based on four criteria: (1) size of the cities, (2) geographic east-west location, (3)

geographic south-north location, (4) time of the year at recording [16].

The e↵ects of extreme values of these characteristics are investigated by training

a semantic instance segmentation model on the default validation dataset. This

set contains 500 images and represents the diversity of the data within the four

characteristics. The model is evaluated on subsets of the test dataset, which are

designed to expose the model to extreme values of the four groups [16].

As a result, the e↵ects of the four characteristics are small (variation of approx

1.5% in model performance) except for ”time of the year” for which a larger e↵ect

is observed (3.9% performance increase on the end of the year subset). It is

hypothesized to be ”[...] due to softer lighting conditions in the frequently cloudy

fall” [16]. Again, the experiment design is only briefly described, and handling of

possible confounding factors, such as an imbalanced instance distribution, is not

explained.

Besides investigating the impact of domain-based data sampling, some publica-

tions take a di↵erent approach to the problem of domain discrepancy. Romera et al.

observe a performance decay of semantic segmentation models during nighttime.

They propose a method of domain adaption by applying a Generative Adversarial

Network (GAN) on the images to transform them from day to night and vice versa.

This allows for two possibilities to tackle the domain gap. Either the amount of

well-labeled night images during training can be increased (day-to-night transfor-

mation), or the multi-domain-class problem can be reduced to the daytime domain

during inference (night-to-day transformation) [23].
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3 Method

The Method section introduces all methods that have been developed in the prac-

tical work of the thesis. Often a combination of existing techniques was applied

to achieve a specific objective. First, an overview of the Label Database genera-

tion will be given. This database is the pivotal point for steps like sampling or

evaluating the image domain distributions. Afterward, the design of the two main

experiments is explained.

3.1 Dataset Preparation

The BDD100K dataset is available in the form of several directories and files, and

for the task of object detection, three parts of the dataset have been used. (1) the

images, (2) the label annotations, and (3) the info files. The entire file and folder

structure of the dataset can be found in the Appendix, Figure 33.

3.1.1 Label Database

To be in the position of performing quick and versatile analyses, the provided

metadata, split over thousands of files, was stored in one single database. The key

of this database is the unique image id.

Data from the bounding box labels (version 2020) was extracted in the first

step. The labels provide details about all objects visible in the images (object class

and 2D-bounding box). In addition, the metadata about the weather, scene type,

and time of the day was added for each image. The bounding box information

was aggregated into object counts for each image. The aggregation was performed

on class and size levels. The classes, labeled in the BDD100K dataset are shown

in Table 11. The size thresholds applied are taken from the COCO detection

challenge. Objects whose bounding box area is Bbarea < 322 pixels are categorized

as small. For bounding boxes 322  Bbarea < 962, the objects are categorized as

medium and for bounding boxes 962  Bbarea, the objects are categorized as large

[27].

In the second step, data stored in the info files was added. Those files have been
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generated together with the original video recordings. Therefore, data for many

attributes is available in a time-series format. Each file contains information about

the ride (rideID), location (latitude, longitude, speed, course, accuracy), start-

and end timestamps, and details about the acceleration (x,y,z). Since the time-

series data is provided in di↵erent granularity, the keyframe (at the 10th second)

does not necessarily match the sensor data resolution. Therefore, the sensor data

points were matched by taking the closest data point based on the time di↵erence

between the data point’s timestamp and the keyframe’s timestamp. Finally, the

actual keyframe timestamp was computed using the start timestamp provided in

the info file and a time o↵set provided in the label file.

3.1.2 Duplicate Image Identification

After the initial data collection, the data quality had to be verified. The inde-

pendence of the images is essential to obtain an unbiased estimate of the model

performance. Therefore a process has been established to identify duplicate and

dependent images. An image is categorized as duplicate when it is an identical

copy of another image in the dataset. An image is categorized as dependent when-

ever it is strongly related to another image by, e.g., the same driving situation &

position. The second condition cannot be transformed into a clear rule but rather

into a range where cut-o↵ values have to be defined.

The implemented data cleaning process is shown in Figure 7. The applied

ruleset to remove images is shown in Table 5. As an alternative to the cumbersome

cleaning process, one could also remove all images except one per rider and remove

images taken in close-by geographic positions. However, this would dramatically

shrink the size of the dataset and is therefore not preferred.

Before comparing the images with each other, they were transformed from their

Figure 7: Iterative process to identify and remove redundant images. The image
distances (visual, spatial, and temporal) are computed, and images are compared
based on a predefined ruleset.
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original shape 1280 ⇥ 720 ⇥ 3 to 512 ⇥ 1 vectors. In the second step, pairwise

distances are computed between the feature vectors. The applied distance measure

is the cosine similarity. Step three matches the most similar image to each image.

Until this step, the process is taken from Stage et al. in [39].

These steps unavoidably lead to approx. 80k matches. Further rules have to

be applied to distinguish between actual duplicate or dependent images and only

similar-but-di↵erent images.

Therefore in step four, the spatial- and temporal distances between the images

and their closest matches are computed. Afterward, a filter-ruleset is applied (see

Table 5). Each rule is applied independently. This means that for an image to be

selected for removal by a rule, e.g., rule one, it has to be recorded with a maximum

spatial distance of 1 m and a maximum temporal distance of 1 day with respect

to its matched image. If these criteria are met, the image is marked as duplicate

or dependent and is removed from the database. The idea behind the multi-rule

approach is that one has the flexibility to restrict one dimension tightly while

releasing the other dimensions, which might be fuzzy due to imperfections in the

data collection process.

• Rule 1 is designed to detect images recorded at the same location.

• Rule 2 shall identify images recorded within a short timeframe.

• Rule 3 filters out visual duplicates.

• Rule 4 is a relaxed combined variant of rules 1 and 2 for images taken by the

same rider.

• Rule 5-A and 5-B are relaxed variants of rule 3 for images taken by the same

rider.

Rule Spatial dist Temporal dist Cosine sim Same ride Night

1  1m  1day - - -

2  1000m  10sec - - -

3 - - � 0.98 - -

4  1000m  10min - Yes -

5-A - - � 0.94 Yes No

5-B - - � 0.95 Yes Yes
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Table 5: Filter-ruleset to identify redundant images. All conditions of a rule have
to be matched. Images that are matched by a rule are removed from the dataset.

Finally, to deal with duplicate / dependent series of images, the whole process is

applied in an iterative manner. After each iteration, the size of the image set is

compared with the size after the preceding iteration. If the set size does not change,

no further dependent images have been identified, and the process terminates.

3.1.3 Label Verification

The quality of the image domain labeling is of particular relevance for this work

since the impact of image domain-based stratified sampling is investigated. Indi-

vidual processes are necessary for each image domain to verify the labeling quality.

Time of the Day The labels are verified by computing additional time of the

day labels based on di↵erent data sources. Afterward, the labels are compared

with each other.

Elevation of the Sun Based Label Based on the image timestamp Timage

and spatial location Limage, a time of the day label can be assigned by estimating

the elevation of the sun. The process is shown in Figure 8. The astronomical

definitions of dawn Tdawn, sunrise Tsunrise, sunset Tsunset and dusk Tdusk are used to

map a tuple of (Timage, Limage) on the provided daytime categories [29]. The key

timestamps Ti are computed based on Limage and the day of recording. Afterwards,

Timage is mapped on the categories. The mapping is shown in Equation 22.

Figure 8: Process to generate a time of the day label, based on the elevation of
the sun.
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�(Timage) =

8
>>>>>><

>>>>>>:

night, Timage < Tdawn

dawn/dusk, Tdawn  Timage < Tsunrise

daytime, Tsunrise  Timage < Tsunset

dawn/dusk, Tsunset  Timage < Tdusk

night, Tdusk  Timage

(22)

An open-source implementation is used to compute the critical timestamps for the

elevation of the sun [29].

Cluster Based Label After image featurization, the 512⇥1 feature vectors

can be further reduced by applying classical dimension reduction techniques. When

applying UMAP, one can see that two clusters are formed. They separate daytime

from night quite clearly (see Figure 21). This situation can be exploited to generate

a second label. Once the UMAP reduction is performed, a clustering algorithm

such as GMM can be applied. The discovered clusters are used as additional

daytime and night labels. The cluster-based labeling process is shown in Figure 9.

Figure 9: Process to generate a time of the day label based on visual image clusters.

Identification of Incorrect time of the day Labels The new labels

can be used to generate a list of candidate images that are probably incorrectly

labeled. This list is generated by comparing the original labels with the cluster-

based and elevation of the sun-based labels. The original time of the day label

was visually inspected, and the vast majority of the labels were verified as correct.

Therefore it is taken as the baseline label. Images are categorized as incorrectly

labeled candidates if both generated labels di↵er from the original. The complete

relabeling process is shown in Figure 10.

The ruleset shown in Table 6 is applied to reduce the candidate list. All

conditions have to be met by an image, otherwise the image is removed from the

candidate list.
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With rules 1 and 2, dawn/dusk or undefined labeled images are removed. The

dawn/dusk transition period is relatively short. Therefore, a slight inaccuracy in

the timestamp or location can render the generated label incorrect. In addition,

the clustering-based label only distinguishes between daytime and night due to the

two-clusters formed by the data.

Rule 3 removes tunnel images since it is impossible to verify a time of the day

label without exposure to natural illumination.

Rule Description

1 Original time of the day label is ”daytime” OR ”night”

2 Computed elevation of the sun label is ”daytime” OR ”night”

3 Scene type is not ”tunnel”

Table 6: Ruleset to remove ambiguous images from the candidate list of incorrectly
labeled time of day images. All conditions have to be matched by an image to
stay on the candidate list.

Finally, the remaining candidate images are transformed to the LAB color space.

The first channel L provides the lightness value of a pixel (li,j) and the latter

two channels A and B provide color values. The average lightness l̄ per image is

computed as the mean value over all pixels per image. For an image with width w

and height h, l̄ can be computed as shown in Equation 23. Afterward, the images

are sorted by l̄. Visual inspection is used to define cut-o↵ values l̄crit,d and l̄crit,n.

Daytime images of the candidate list with l̄ < l̄crit,d are relabeled to night images.

Night images with l̄ > l̄crit,n are relabeled to daytime images.

l̄ =
1

wh

wX

i=1

hX

j=1

li,j (23)

Scene type The second image domain that was validated is the scene type.

Again, the approach of identifying discrepancies between the originally provided

and an additionally generated label is used. The applied method is based on the

spatial location to identify the scene type. An existing implementation to query

an OpenStreetMap (OSM) API, based on a (latitude, longitude) tuple is adapted
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Figure 10: Process to relabel daytime/night images. The labels are compared, and
the candidate list is reduced based on predefined rules. Images are sorted by their
perceptual lightness, and cut-o↵ values are defined visually.

[38]. For each image, the street type of the closest street within a distance of 20m

is returned. In addition, the information if a tunnel or bridge is found within this

radius is returned. To also identify scene types like gas stations or parking lots,

amenities are searched within the distance of 200m. If one is found, the image is

flagged accordingly. The process is shown in Figure 11.

The generated data points are compared with the existing labels to validate

the scene label. Unfortunately, the street type categories di↵er between BDD100K

and OSM. A mapping as shown in Table 10 is required, to match the street/scene

types. The class city street which is the largest class in the scene domain (see

Figure 18) can not be mapped since no corresponding class exists in the OSM

data tags. This gap renders automated validation useless. Therefore, the e↵orts

are focused on the manual verification of minority classes.

Gas Stations By applying the rules shown in Table 7, one can generate a

list of potential gas station images such that they can be inspected visually. Rule

1 selects all images for which a gas station was found in proximity. Rule 2 selects

those images recorded on a service street, which is often chosen as the street type

for links between gas stations and highways [35]. Rule 3 matches those BDD100K

scene types that could be easily confused with gas stations.

Rule Description

1 OpenStreetMap gas station found with 200m radius

2 OpenStreetMap street type is service

3 BDD100K scene type is undefined OR parking lot

Table 7: Filter-ruleset to identify gas station images. All rules have to be matched
at once.
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Tunnel Incorrectly labeled tunnel images can be identified similarly to gas

station images. A filter ruleset is applied to generate a candidate list of potential

tunnel images. Rule 1 selects the images that are flagged as tunnel based on the

OSM results. Rule 2 selects all images for which a mismatch in the two labels is

found. The resulting list of images is inspected manually.

Rule Description

1 OpenStreetMap tunnel found within 20m radius

2 BDD100K Scene type is 6= tunnel

Table 8: Filter-ruleset to identify tunnel images. All rules have to be matched at
once.

Parking Lot Incorrectly labeled parking lot images are identified with the

same approach. The filter rules can be found in Table 9. Rule 1 selects only those

images that are flagged as recorded in proximity to a parking area. Rule 2 selects

the images not yet labeled as a parking lot and can be potentially confused with

parking spaces.

Rule Description

1 OpenStreetMap parking lot entrance OR parking space found within

200m radius

2 Scene type is undefined OR tunnel Or gas stations

Table 9: Filter-ruleset to identify parking lot images. All rules have to be matched
at once.
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Data-tag OpenStreetMap Keys BDD100K

Scene

highway motorway, trunk, primary, secondary, tertiary highway

highway residential residential

highway service -

tunnel yes, avalanche protector tunnel

amenity fuel, charging station gas stations

amenity parking, parking space, parking entrance parking lot

Table 10: Possible mapping from OpenStreetMap keys to BDD100K scene types.

Figure 11: Relabeling process of scene images. The image location is extracted and
compared to available OpenStreetMap information. Di↵erent rules are applied to
identify possible scene types like gas stations, tunnels, or parking lots. Eventually,
the images are inspected and relabeled manually.

3.2 Image Domain Class Relevance Test

This experiment is designed to answer the first research question: Which image

domains are relevant for the training data of an object detection model? Therefore,

the image domains relevant for the performance of an object detection model shall

be identified. Since a domain as a whole is very diverse, the domain classes are

investigated directly. It is assumed, that images within one IDC di↵er visually

from images that are not part of this specific IDC. Therefore, the first step is to

measure the magnitude of these visual di↵erences. Afterward, the impact of the

IDCs is tested in trained object detection models and compared against baseline

performances.

3.2.1 Experiment Design

The relevance of an IDC is tested by the impact of the presence/absence of the IDC.

This idea follows the question, does it have an impact on the model performance
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if the IDC is represented in the training data? The hypotheses are:

• H0 = Absence of the selected IDC in the training dataset does not have

an impact on the model performance.

• H1 = Absence of the selected IDC in the training dataset does have an

impact on the model performance.

The end to end process is shown in Figure 12. The process steps will be

explained one by one.

Figure 12: Process to identify relevant image domain classes. A selected image
domain class is tested for visual di↵erences to obtain a first indication. Afterward,
the class is tested by comparing the model performances of trained object detection
models.

Evaluation of Visual Di↵erences The first step, after selecting a candidate

IDC, is to evaluate visual di↵erences. This is done by comparing the feature

vectors of the images, which are generated by applying the image featurization

technique explained in the preliminaries. The images are split based on one IDC.

Two groups are formed (1) images part of the IDC, and (2) images not part of the

IDC. The vector means of both groups are compared by performing Hotelling’s T 2

test. The resulting T
2 test statistic is a distance measure for the two mean vectors.

Since the feature vectors encode visual attributes of the images, the T
2 statistic

is interpreted as the mean visual di↵erence of the image groups and, therefore, as

the visual di↵erence introduced by the IDC. The image domains not tested in the

given test are fixed to a single class in both groups (the majority classes for the

data containing images of the investigated IDC) to avoid the confounding impact

of other image domains. Therefore, only the investigated IDC varies between the

groups. For example when testing the IDC night, the two groups are di↵erent
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regarding the time of the day domain. One group only contains night images,

the other group only contains daytime, dawn/dusk, undefined images. The other

domains are fixed for both groups. Scene is fixed to city street and weather is

fixed to clear, since those are the majority classes for images with the time of the

day label night.

Since the required assumptions of normal distributed data and equal covari-

ance matrices can not be guaranteed, two precautions are taken. First, the test

is performed on a sample size such that the large sample approximation holds.

Second, the samples of both groups are generated such that n1 = n2. Therefore

the test can be considered robust against inequalities of the covariance matrices.

Further on, the test is performed in a permutation-based manner. This approach

ensures a non-parametric p-value since it is generated based on data permutations.

As explained in the Preliminaries, the required sample size to assume the nor-

mality of the mean vectors depends on the number of variables. Principal Compo-

nent Analysis (PCA) is applied to reduce the required sample size. This method

is chosen since it only performs a centered rotation of the coordinate system and

ensures to maintain the most of the variance with the minimum number of dimen-

sions. However, it does not distort the distances in the data [15]. After applying

the transformation, a proposal for the number of variables is generated by iden-

tifying the knee in the explained variance ratio-plot. The proposed number of

variables is used to determine the required sample size based on the approach,

shown in Equation 20.

Once the preparation regarding dimension reduction is completed, the IDCs

are evaluated using Hotelling’s T 2 test. This subprocess is shown in Figure 13.

Figure 13: Subprocess to identify visual di↵erences. The di↵erence is evaluated
by performing Hotelling’s T 2 test on reduced feature vectors.

The process can be repeated for all IDCs and the resulting T
2-values are used

to prioritize the IDCs for the next experiment steps. The validity of the obtained

prioritization and whether this step can be used to identify a cut-o↵ point is

investigated in the evaluation section (see Section 4.2.3).
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IDC Relevance Evaluation Method For each relevance test, two sets of mod-

els are compared. One set is trained on datasets including the investigated IDC,

and the other set is trained on datasets excluding the investigated IDC. Both

model sets are validated on unseen validation data, including the investigated

IDC. Afterward, the performance is compared. An IDC is said to be relevant for

the object detection model if the performance of the two model groups significantly

deviates on the validation subset that consists of images of the same IDC.

The subject of interest in this experiment is the impact of a specific IDC.

Therefore in an ideal world, both models would use identical training datasets,

with the only di↵erence being the presence/absence of the investigated IDC in

one dataset. Of course, this is not possible with actual field-recorded image data.

However, multiple aspects must be monitored to match this requirement as closely

as possible.

1. The investigated IDC should be represented in a significant size (in one of

the two datasets).

2. Both datasets need to be of comparable size.

3. Both datasets should contain the same images (except for the investigated

IDC).

4. Both datasets should have a comparable number of instances per object class.

5. Both datasets should represent the diversity of the original dataset.

To draw further conclusions about the impact across the IDCs, the share of the

investigated IDC in the sample should be comparable across the experiments.

Figure 14: Subprocess to test image domain classes for relevance. Models are
trained on di↵erent data splits that either include or exclude the tested class.
Afterward, the model performances are compared.
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To stick with those requirements, the process shown in Figure 14 was defined.

The ratio of the investigated IDC rIDC is fixed to 29% and is comparable over

multiple experiments. The drawn sample represents the diversity of the original

dataset due to stratified sampling. The used strata are the LP transformed multi-

class labels, which encode the image domain classes. The sample size ratio rsample

of 25% of the dataset ensures enough flexibility for later adjustments. The ratio

of the investigated IDC and the sample size ratio rsample interact with each other

and depend on the IDC size nIDC and the dataset size ndataset. Equations 24 and

25 provide bounds for the parameter choices.

rsample rIDC ndataset  nIDC (24)

(1� rsample(1� rIDC))ndataset � nIDC (25)

After the sample is drawn, a 10-fold stratified CV split is created. This allows

for multiple comparisons of the models, which is necessary to obtain a robust result.

For the validation strategy and the number of folds contradictory requirements

exist. On the one hand, the number of folds should be maximized to obtain many

comparable measurements, which can help to obtain a more robust estimate of

the performance di↵erence. On the other hand, since the size of the data used

for all folds is fixed by rsample, using more folds reduces the size per fold. This

can increase the variance for each estimate since the measurement is taken on

a smaller validation set. No ideal applicable validation strategy exists. Based on

Bouckaert and Frank, a 10-fold split was chosen. While the 10-fold split introduces

a variance bias due to overlapping training folds [3] other strategies such as the

5x2-split have shown lower replicability [6]. The preferable validation methods

based on the literature are inapplicable in real-world deep-learning scenarios with

limited resources. E.g., the corrected 10 ⇥ 10-CV and 100⇥resampling method

lead to a training time increase by factor 10.

After step two, the process splits into two branches. In the lower branch, the

10-fold CV split is used as is, to train ten di↵erent models. In the upper branch,

the folds are adjusted. All images of the tested IDC are replaced in a stratified

manner with images from other classes of the same image domain. These samples
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are drawn from the remaining pool of unused images.

Since the preceding step can a↵ect the object instance distribution of the sam-

ple, the resampled part is again adjusted, by replacing images one by one to ap-

proximate the original object instance distribution. The images are selected based

on the instance count delta. The object class that deviates the most (relative

measure) from the count in the unmodified fold is adjusted by replacing images

with only a few instances of the class against images with many or vice versa. The

process is performed image-wise, and the instance count deltas are updated after

each iteration until the deviation is smaller than a given ✏. In the applied method,

the parameter ✏ = .10 is chosen such, that extreme object instance deviations are

reduced, while some flexibility is kept to avoid modifying the complete sample and

therefore to change the stratification too much. The pseudo-code is presented in

Algorithm 1.

These steps ensure adherence to three requirements: First, comparable fold

size. Second, similar object instance distribution, and third comparable image

domain distribution of both 10-fold CV splits. An example of the sampling process

for the IDC night is provided in the appendix in Figure 34. Finally, both model

sets are trained followed by validation on the unmodified validation folds. The

mAP is used as performance indicator and computed for multiple validation fold

subsets. The decision about the relevance of an IDC is taken based on performance

di↵erences on validation images of the investigated IDC. The computed mAP

measures are compared visually and by applying Wilcoxon’s Signed Rank Test at

significance level ↵ = .05. This test is chosen since the normal distribution of the

mAP measure can not be assumed, and due to the small sample size of only ten

comparisons, one cannot use the large sample size approximation. In addition, the

measurements are clearly paired since the models are evaluated on the same ten

validation folds (and trained on very similar training sets).

When executing the experiments, specific training parameters must be chosen,

and a model must be selected. YOLOv5 includes a whole variety of scaled model

architectures from n (nano) up to xl (extra-large). The model chosen for the ex-

periments is the YOLOv5s-P6. The size small was chosen since its performance

characteristics o↵er a good trade-o↵ between performance and resource consump-

tion. Its performance is between nano and medium, while its training time is only
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Algorithm 1 Sampling Algorithm to adjust the instance distribution

procedure adj folds(folds incl idc, folds excl idc, obj classes, unused imgs)
eps .10 . Threshold (can be lowered iterative)
classes obj classes . Defined object classes
n number of folds
i 0
img pool unused imgs . Remaining image pool
while i < n do

fold incl folds incl idc[i]
fold excl folds excl idc[i]
max inst delta, max delta class  comp delta(fold incl, fold excl)
while |max inst delta| > eps do

if max inst delta > 0 then . Instances missing in fold excl. IDC
sort(fold excl, by=max delta class, how=ascending)
sort(img pool, by=max delta class, how=descending)

else . Too many instances in fold excl. IDC
sort(fold excl, by=max delta class, how=descending)
sort(img pool, by=max delta class, how=ascending)

end if
new image img pool[0]
img pool img pool[1 :] + fold excl[0]
fold excl fold excl[1 :] + new image
max inst delta, max delta class  comp delta(fold incl, fold excl)

end while
i i+1

end while
end procedure

Algorithm 2 Instance Delta Computation

procedure comp delta(fold incl, fold excl, classes)
max inst delta 0
max delta class None
for cl in classes do

cur delta fold incl[cl].count()� fold excl[cl].count()
cur delta cur delta/fold incl[cl].count()
if |cur delta| > |max inst delta| then

max inst delta cur delta
max delta class class

end if
end for

return (max inst delta, max delta class)
end procedure
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slightly increased in comparison to nano (see Appendix in Table 17 and Figure

35). The models are trained from scratch for 85 epochs to balance performance

improvement with training time. The resulting model of the last epoch is taken.

The P6 model is chosen since the input resolution for these models is 1280x1280px.

Therefore, the images can be used in their native resolution. Other available model

groups process 640x640px images, which lead to a significant performance decrease

during tests.

Details about the training setup are provided in the appendix. The hardware

setup of the machine that was mainly used, can be found in Table 14. The cus-

tomized hyperparameters can be found in Table 15.

3.3 Domain-based Data Sampling Test

After identification of the relevant IDCs, the impact of image domain based sam-

pling shall be measured to answer the second research question: What impact does

image domain-based stratified sampling of a dataset have on the performance of

an object detection model? Therefore, again, the performances of trained models

are compared with each other.

3.3.1 Experiment Design

As a preparatory step, the image domain classes are relabeled to reflect the gained

knowledge about the relevance of the classes. Relevant IDCs remain as individual

classes, while non-relevant IDCs are grouped together as one class within the image

domain. IDCs with too few samples are kept since no decision about their relevance

was made.

For all sampling methods that are going to be compared, a 10-fold CV split is

formed. The used part of the data is increased to 50% since, unlike to the first

experiment, no dataset adjustments have to be made post-sampling.

The baseline performance (Baseline) is obtained by ignoring the existence of

IDCs. The naive sampling method of simple random sampling is applied to gen-

erate the training folds.

The first alternative sampling approach (A1 ) is the straightforward application

of the approach used in the previous experiment: LP-based stratified sampling.
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The second alternative (A2 ) applies the same approach but also tries to maxi-

mize the object instances to isolate the impact of IDC based sampling from instance

count deviations. The maximization is done by selecting the images for each strata

based on their instance count.

The third alternative A3 is based on a di↵erent sampling approach, the IS,

which also ensures stratified sampling but is less restrictive. The advantage is that

sparse clusters are avoided at the cost of not adjusting for inter-image-domain

dependencies. The testing process is shown in Figure 15

Figure 15: Process to evaluate the impact of image domain based sampling. Three
stratified sampling strategies are compared against random sampling in their im-
pact on the model performance.

To ensure that all models are evaluated on unseen data, only the original

training set of the BDD100K is used to sample the training folds. Therefore, the

validation dataset is kept for model comparison. Based on this validation dataset,

multiple subsets are drawn with random and stratified sampling strategies. The

used validation datasets are:

• Complete validation dataset

• Random sampled subset of the validation dataset

• LP-Stratified sampled subset of the validation dataset based on the IDC

distribution in the validation dataset

• LP-Stratified sampled subset of the validation dataset based on the IDC

distribution in the training dataset

• IS sampled subset of the validation dataset
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The models of approach A1 to A3 are compared against the Baseline models.

The measurements can not be paired since the training sets are independent for

each model group and the validation datasets are identical for all models. The

performance is compared visually and by applying Wilcoxon’s Rank Sum test.

↵ = 0.05 is chosen as significance level.

The models are all trained with identical training parameters which can be

found in the Appendix in Table 16. The same model (YOLOv5s-P6) as in the

previous experiment is used. Due to a changed sample size and a changed training

objective, in comparison to the IDC relevance tests, the models are trained for 150

epochs. This parameter was defined based on training experiments conducted in

advance.
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4 Evaluation

First, the identified characteristics and issues of the dataset will be explained. Af-

terward, the performed experiments are evaluated. Finally, this chapter concludes

with the limitations of the work identified during the design and execution of the

experiments.

4.1 BDD100K

The BDD100K results and evaluation section consists out of the analysis of the

dataset characteristics and the performed cleansing and relabeling steps.

4.1.1 General Findings

Some first findings were made while preparing the Label Database. Since each

image label does not only contain bounding boxes but also additional information

such as scene type, weather, or time of the day, each image should be accompanied

by a label. However, this is not the case. For 137 images in the training dataset, no

labels are provided. In addition, one info file is missing. Since the actual labeling

rules are unknown, the images were removed from the dataset. Therefore only

79 862 of 80 000 images remain in the combined training and validation dataset.

For the remaining images, the object instance distributions were compared.

Figure 16 provides an overview of the object count for all object classes in all

sizes. One can see that only ten images do contain zero objects. The peak of this

right-skewed distribution is located at 15 object instances (3354 images), and the

median is located at 17 object instances.
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Figure 16: Distributions for images from the BDD100K dataset. Left: Distribution
of the object count per image, counted for all object classes and sizes. Right:
Distribution of the LP-transformed image domain class sets.
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Class per img median per img mean total

bicycle* 0 0.10 8075
bus 0 0.17 13528
car* 9 10.06 797651
motorcycle* 0 0.04 3469
other person 0 0.00 211
other vehicle 0 0.01 885
pedestrian* 0 1.32 104644
rider* 0 0.07 5173
train* 0 0.00 143
trailer 0 0.00 73
truck* 0 0.40 31844
tra�c light* 1 2.69 213481
tra�c sign* 3 3.42 271495
total 17 18.30 1450672

Table 11: Object classes and instance counts per class for all sizes. (*) indicates
that a class is considered in performance evaluation.

When considering the instance distributions at the object class level, one can

see in Table 11 that the number of instances per image heavily depends on the

class. Multiple cars are commonly seen in one image, but most of the other classes

are rare. The most extreme di↵erence among the classes considered relevant for

evaluation by the BDD100K authors is between car and train. In total, 797 651

car labels and only 143 train labels are found within all training and validation

images.

Within the existing info files, 80 images are missing location data. These images

remain unverified in those steps where location data is necessary (e.g., to compute

spatial distances) but are kept in the dataset.

Regarding the location distribution, one must mention that the vast majority

of the images was recorded in New York City, with approximately 62 735 images.

In Northern California (San Francisco, Berkeley, and Bay Area), 9194 images

were recorded. In addition, 6719 images were recorded in Israel / West Bank.

These three areas account for 99.3% of the images in the BDD100K dataset. The

ground truth for this ratio is 79 197, which is the number of cleaned training and

validation images with location data available. The mentioned areas are shown
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in Figure 17. The remaining images are recorded in other regions of the United

States of America.

Figure 17: Main recording areas of the BDD100K training and validation videos.
Left to right: San Francisco including Bay Area and Berkeley (9194), New York
(62 735), Israel and West Bank (6719)

4.1.2 Image Domain Distribution

Figure 18 shows the distribution of the three image domains. The time of the day

domain is distributed among three classes, plus one minority class undefined, which

contains examples where no assignment can be made, e.g., in the tunnel. Daytime

and night are within the same magnitude, while the transition phase (dawn/dusk)

only constitutes a minor part.

The scene domain distribution is heavily skewed. City street is the majority

class with a share of more than 62% within the domain. Highway and residential

represent approximately 25% and 12% of the data, while the other four classes

only represent approximately 1% of the data.

Also the weather domain distribution is skewed, but not as extreme as the

scene. The class clear represents approximately 53% of the data. Overcast and

undefined account for 13% and 12% of the data, while snowy, rainy and partly

cloudy are in the range of 7.5% to 8%. Foggy is visible on approximately 2h of

the images.

Besides the independent image domain distributions, one can also look at the

di↵erent combinations of the three image domains. Under the application of the

LP transformation, one can investigate the distribution for the concatenated label

sets. Figure 16 shows the distribution of the transformed IDC sets. One needs to

52



4 EVALUATION

Figure 18: Image domain distribution of the BDD100K training and validation
images. Left: Time of the day, center: Scene, right: Weather

mention that the undefined classes have been removed in the figure since they do

not specify a clear state of an image domain but are a loose bin for uncategorizable

images. The plot shows that a few ubiquitous class combinations represent the

majority of the data. The four most common class sets represent approximately

52.5% of the dataset, and the eleven most common class sets represent 77.1%. On

the other hand, the 28 rarest class sets in the dataset are assigned to less than ten

samples each. Twenty-four class sets are not represented at all in the dataset.

Even though the BDD100K dataset is diverse compared to other driving datasets

and shows multiple non-standard/adverse situations, most of this dataset is con-

tributed by a small subset of the available states. For example, in the four most

common class sets, three sets show clear weather, the scene type is city street in

three cases, and only day and night are represented.

Important to name is that not all IDCs are independent of each other. For ex-

ample, deciding whether the sky is cloudy or overcast during nighttime is di�cult.

Also, the weather situation in a tunnel is most often not defined. This reduces

the set of possible combinations, or at least it biases the distribution of the com-

binations because some combinations can be observed only in rare situations. For

example, the weather is still perceivable when driving in an avalanche protector.
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4.1.3 Duplicate Images

The process shown in Figure 7 is applied to the dataset to identify and remove

duplicate or dependent images. The thresholds of the ruleset provided in Table 5

have been determined based on a visual inspection of the image set. By applying

this process, 492 images were removed from the training dataset and 94 images

from the validation dataset. Thereof only three image pairs show actual duplicates

with a cosine similarity of 1. Figure 19 shows two of these examples.

Figure 19: Duplicate image pair examples within the BDD100K training and val-
idation images.

Besides duplicate images, also dependent image pairs have been identified.

Examples are shown in Figure 20. One can see that the term dependent image is

fuzzy. While some pairs show nearly identical images (top row), others are recorded

at the same location, but the situation changed (center row). The examples shown

at the bottom row are recorded at di↵erent locations but in similar situations.

The e↵ectiveness of this process was iteratively verified by inspecting the re-

maining image pairs and fine-tuning the ruleset. Since the most similar remaining

image pairs show independent images, one can conclude that the heavily depen-

dent pairs have been identified. One must mention that the process’s pivotal point

is the pairwise image matching based on their cosine similarity. Duplicates and

multiple duplicates of the same image are detected due to this similarity-based

matching and the iterative approach. However, if dependent images are visually

more di↵erent from their dependent image than another independent image, one

cannot detect this dependent pair.

After removing the identified images, the dataset and label database was re-

duced to 79 277 images.
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Figure 20: Dependent image pair examples within the BDD100K training and
validation images. Top: nearly duplicates, center: similar location but di↵erent
situation, bottom: di↵erent location but similar situation.

4.1.4 Label Validation

The second dataset modification step is aimed at the quality improvement of the

IDC labels. Validation processes are proposed for two out of three image domains:

time of the day and scene type. Validation of the weather label was, in coordination

with the supervisor at FZI Berlin, excluded from the scope of this work.

Time of the Day Labels The necessary process steps to validate the time of

the day labels, are shown in Figures 8, 9 and 10. The steps are (1) computation of

the time of the day label based on the elevation of the sun, (2) computation of the

cluster-based time of the day label, and (3) application of filter rules, label com-

parison and relabeling. As explained in the methods section, only the daytime and

night labels were validated since the transition phase dawn/dusk is present only

during a short period of the day. Relabeling them might be prone to errors since

small inaccuracies in the timestamp, spatial location, or sun elevation estimation

could already lead to a wrong label suggestion. In addition, the clustering process

only identifies two clusters (daytime and night). Therefore, no cluster-based label

could be generated for the dawn/dusk phase. The clustering results, including the
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relabeled images, are shown in Figure 21. In total, 152 images originally labeled as

daytime were identified as actual night images, and 251 images originally labeled

as night were identified as actual daytime images. Figure 22 shows examples of

incorrect labeled images.

Figure 21: UMAP-reduced feature vectors of the BDD100K training and validation
images, color based on time of the day label. Relabeled images are highlighted in
a di↵erent color.

Instead of applying the automated filter ruleset, which is used to increase the

precision of this method, one could also manually verify the candidate list of suspi-

cious images, which is generated based on di↵erences between the computed labels

and the original label. In this manual approach, one could also verify dawn/dusk

labels. In 7500 cases the elevation of the sun-based generated label is di↵erent

from the original. This would reduce the manual inspection e↵ort significantly

since only approximately 9.4% of the total image dataset would need to be in-

spected. However, to do so, clear rules must be provided about distinguishing

between dawn/dusk and daytime or night.

Scene Labels To identify incorrect scene labels, the process presented in Figure

11 is applied for the classes: gas station, tunnel and parking lot.
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Figure 22: Example images with the incorrect time of the day label. Top row:
incorrect daytime label, bottom row: incorrect night label.

Gas Stations In total, only 33 images are labeled with scene type gas sta-

tions. one can find four additional samples by applying the filter rules shown in

Table 7. After visual inspection of the candidate images, four examples are rela-

beled to gas stations. Distinguishing a gas station image from a parking lot image

is complex. E.g., the top center image in Figure 23 shows a parking space at a gas

station. A clear ruleset needs to be developed to reduce ambiguity.

Tunnel 44 incorrectly labeled images were found that actually show a tunnel

scene by applying the filter rules of Table 8. This is approximately 28% of the

existing tunnel images in the BDD100K dataset. Therefore either the label quality

regarding tunnel is poor compared to other evaluated IDCs or the applied manual

method is superior over the more automated processes. Figure 23 (center) shows

examples of incorrect labeled tunnel images.

Parking Lot Seven images not labeled as parking lot images were identified

by manual review of the candidate list after applying the filter rules shown in

Table 9. The problem with identifying parking lot images is the ambiguity of the

label. It is di�cult to visually identify whether the car is actually parking on

a static image. The bottom left example of Figure 23 shows a di�cult labeling

situation. The car is (probably) still on a public road, but a parking lot is visible
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in the image. Which label should be assigned? Therefore, the categories need to

be described such that clear decision rules exist.

Figure 23: Example images with incorrect scene labels. Top row: incorrect gas
station images, center row: incorrect tunnel images, bottom row: incorrect parking
lot images.

4.2 Image Domain Relevance

The following part describes how the image domain classes were tested for rele-

vance. The idea behind this test is to identify whether an image attribute that

one can assign to images is relevant for the performance of an object detection

model. This shall help to evaluate which image characteristics must be considered

when designing or extending an object detection image dataset. The first research

question shall be answered with this test: Which image domains are relevant for

the training data of an object detection model? The relevance of an IDC in the

context of this work is defined as follows. An IDC is relevant if its absence during

training leads to a significant performance di↵erence on images of the same IDC.
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The designed process tests the e↵ect of the absence of a specific IDC on the model

performance. With the conducted comparison, the performance di↵erences be-

tween models which did see samples of the IDC during training and models which

did not see any samples of this IDC are investigated. The overall test steps are

shown in Figure 12.

The performance measure used to compare the models is mAP for IoU� 0.5.

This measure is commonly used in object detection. It reflects precision and

recall and is also sensitive to performance di↵erences in di↵erent classes. However,

it also has some shortcomings. In the context of automated driving, not single

metrics need to be optimized, but the car’s behavior needs to be safe and reliable.

Therefore minor di↵erences in the mAP performance metrics due to class confusion

or slightly decreased IoU that do not lead to changes in the behavior are not that

critical. Since the IoU threshold is set to 0.5, which is at the lower end of the scale,

this is to some extent reflected.

4.2.1 Visual Di↵erences – Test Results

A pre-assessment can be used to generate the first indication about visual di↵er-

ences and, therefore, indicate the relevance of an IDC. It will be evaluated whether

the results of this test are consistent with the actual performance di↵erences mea-

sured in the IDC relevance tests. The sub-process to identify visual di↵erences is

shown in Figure 13.

As explained, the required sample size depends on the number of variables in-

cluded in the test. The multivariate approximation of the large sample size domain

is based on the univariate case, and its behavior when applying it to hundreds of

variables is not known. To reduce the number of dimensions, one can perform

PCA on the 512 feature variables of the image vectors. The optimum trade-o↵

between explained variance and added dimensions can be found by identifying the

knee of the explained variance ratio plot, shown in Figure 24.

The first four components are used in the visual di↵erence analysis in the given

case. Equation 20 is used to determine the minimum number of samples with

p = 4. Based on Equation 27 one can look up the minimum number of samples

to apply the large sample size approximation in [5]. For n � 90 this condition is
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Figure 24: Explained variance ratio for the first 30 components of the PCA trans-
formed image feature vectors. The knee is found by visual inspection.

fulfilled.
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After determining the minimum sample size, Hotelling’s T 2 test was performed

with the 13 IDCs that fulfill the sample size requirement. Two samples are drawn

per test, one with images from the IDC and the other one with images not from

the IDC. The two samples are fixed in the other two image domains to isolate the

e↵ect of the IDC. This shall help to reduce confounding factors. The results for

the IDCs are shown in Figure 25.

Each T
2 value provides a distance measure for the mean vectors of the two

groups tested. In the plot, one can see two magnitude levels for the T 2 value. Night

and daytime are the two classes that di↵er the most from the other classes within

their image domain. This is expected since the lighting situation has a dominant

e↵ect on the overall visual appearance of an image. Besides that, the other eleven

variables only show minor mean di↵erences, while two are not significant at the

level ↵ = 0.05.

Based on these results, the expectation is, that night and daytime show the
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Figure 25: Log scaled plot of the T 2 statistic for all investigated IDCs, ordered by
value. The image domains not a↵ected by a test were fixed to the majority classes.

strongest performance di↵erence in the following test, while the other IDCs show

smaller but comparable performance di↵erence, except for overcast and residential

for which no significant performance di↵erence is expected.

4.2.2 Image Domain Relevance Test – Test Results

To test relevance of the IDCs, the process shown in Figure 14 is applied. Sampling

tests performed upfront showed that, by selecting rsample = 25% and rIDC = 29%,

the lower and upper bound requirements defined in the Equations 24 and 25 can

be fulfilled for most of the classes. For twelve out of thirteen classes that were

tested for visual di↵erence in the previous step, the requirements derived from

Equations 24 and 25: 5748  nIDC  65 205 are fulfilled. The tested IDCs are

listed in Table 12. The only class that is not represented in su�cient size is the

scene class undefined.

At first, some important preliminary information is provided, which needs to

be considered while interpreting the following results.

• The model, which includes the tested IDC, sees approximately 29% of this

IDC in the training data.
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• The model which excludes the tested IDC does not see a single image of this

IDC in the training data.

• This di↵erence also a↵ects the distribution of the other IDCs of the same

image domain in the sample since replacing 29% of the training data with

images from other IDCs increases their share in the training data.

• An IDC is relevant if its presence/absence leads to a significant performance

di↵erence on images of the same IDC.

• The sampled training datasets are, due to resource limitations, small in the

domain of deep learning.

The results will be presented and discussed image domain-wise. All Y-axes are

fixed to the same scale to improve the comparison of the e↵ect sizes. For each

IDC, the mAP performance is compared on di↵erent subsets of the corresponding

validation dataset. These are the complete validation fold (full), one subset for

each IDC of the image domain, and a subset containing all images except those of

the tested IDC.

The mAP is computed by averaging the class-wise AP value for IoU� 0.5

for all object classes that are present on more than 1500 images in the training

dataset. This decision is based on a recommendation of the YOLOv5 authors,

which provide this guideline for the training dataset size [34]. This is fulfilled for

the object classes pedestrian, car, truck, bus, bicycle, tra�c light and tra�c sign.

A summary of the results is provided at the end of this section in Table 12

Time of the Day The result plots will be explained once in more detail to

introduce them to the reader.

All result plots for the image domain time of the day are shown in Figure 26.

Each plot shows the median di↵erences of the mAP for IoU � 0.5. The median

is computed based on the paired performance di↵erences between all ten models

(10-fold CV) of both model groups. Each plot shows the test result for one of

the three tested IDCs. The median mAP di↵erence is plotted to indicate the

strength of the e↵ect, while the color encodes whether the result is significant at

the significance level ↵ = 0.05. Wilcoxon’s Signed Rank test is performed to test

for di↵erences. This test is chosen since it does not require normal data distribution

and is designed for paired measurements. The test assumes independence of the
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sample pairs, which is true for the validation datasets. However, it is violated for

the training datasets (each fold is used k�1 times for training). This violation can

bias the variance estimate of the distribution and has to be taken as a limitation.

The performance estimate remains unbiased.

Figure 26: Time of the day relevance test results. Top left: daytime, top right:
dawn / dusk, bottom: night

Daytime results: The models trained on images including the daytime IDC

perform significantly better on the daytime validation images (+3.70%), therefore

daytime is a relevant IDC. Further on, also the performance on dawn/dusk is

influenced significantly positive (+3.14%). The performance on night is signifi-

cantly worse (-0.92%) than for the comparison models which did not see daytime

during training. The overall performance on non-daytime is on par for both model

groups. One has to consider that for the model that did not see daytime during
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training, the share of night is larger than for the model that saw daytime in the

training data. Therefore the positive e↵ect on dawn/dusk can be due to a similar-

ity between daytime and dawn/dusk. In contrast, the negative e↵ect seen for night

can be because the comparison model saw more night images during training.

Dawn/Dusk results: The models which saw dawn/dusk images during training

performed significantly better on dawn/dusk images (+0.83%). Therefore dawn/-

dusk is relevant. Further on, the performance on daytime is also significantly

improved (+0.25), while the performance on night is not significantly di↵erent.

Overall on non-dawn/dusk an improvement is measured. This result is in line

with the daytime results and supports the existence of similarity e↵ects between

daytime and dawn/dusk images. At the same time, the absence of a negative e↵ect

on night images shows that some similarities exist here.

Night results: The performance di↵erence between the models that trained on

night images and those that did not train on night images is the largest within this

experiment (+7.22%). Therefore, night is relevant. For dawn/dusk, the presence

or absence of night images does not make a di↵erence in performance, while a

negative e↵ect is seen for daytime (-0.82%) if night images are part of the training

data. This also explains the negative e↵ect on non-night images (-0.73%). Again

a similarity between night and dawn/dusk can be seen. The negative e↵ect on

daytime can again be because the model which did not see night in training did

see more daytime image samples.

The results for the image domain time of the day show that in the given exper-

iment, dawn/dusk acts as a transition between night and daytime, while it might

be closer to daytime. However, one needs to mention that this similarity’s strength

is not predefined and depends on the applied labeling rules. When defining custom

quota for the strata, one should be aware of the similarity between daytime and

dawn/dusk.

Scene For the scene type, only highway, city street and residential have been

tested, since the other IDCs are not represented in su�cient size. The result plots

are shown in Figure 27.
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Figure 27: Scene type relevance test results. Top left: highway, top right: city
street (excl. pedestrians), bottom left: residential, bottom right: city street (incl.
pedestrians)

Highway results: The models trained with highway images perform signifi-

cantly better (+1.12%) on highway validation images than those trained without

highway images. Therefore, highway is relevant. Replacing city street and residen-

tial images with highway images seems to significantly worsen the performance on

city street (-0.32%) and also a tendency is noticeable on residential (-0.35% non-

significant). The constraint is, as explained, that adding highway to the dataset

unavoidably leads to fewer city street and residential images in the training set.

Therefore one can only conclude that learning on highway images does not gen-

eralize to city street and residential images as good as learning directly on these

IDCs.
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City street results: First, one has to mention that city street images show

statistically more pedestrians than non-city street. This significant di↵erence led

to the fact that even though the instance distribution was adjusted, the deviation

for the pedestrian class was larger than the accepted ✏ = 10%. Therefore two

performance measures are computed, one including the pedestrian class and one

excluding pedestrians. City street images as part of the training data lead to a

significantly improved validation performance on city street images (+1.06% excl.

pedestrian / +1.69% incl. pedestrian). Therefore, city street is a relevant IDC.

In addition, training on city street images also leads to a better performance on

residential images (+0.95% / +1.02%) and at least to comparable performance

on highway images (+0.23% non-sign. / +0.39% sign.). The comparison of both

results (including and excluding pedestrians) shows that adding the class to the

mAP computation does increase the performance di↵erence. This supports the

hypothesis that the number of instances is relevant for the model’s performance

since the model trained with city street images did see more pedestrians and shows

an increased performance among all validation subsets. However, a general o↵set

by adding the pedestrian class is not to be expected, since the di↵erences are

evaluated. Therefore, the increase in the di↵erences can be associated with the

imbalanced instance distribution.

Again some similarity between residential and city street classes can be as-

sumed. One reason for this could be overlapping labels. In addition, similarity

in the scene composition (buildings next to the street, parking cars) can be ex-

pected. The absence of a negative e↵ect on highway could be due to the higher

visual complexity of city street images since more complex scenes are expected to

appear at a higher rate than in highway images (e.g., intersections, pedestrians,

di↵erent view angles and occlusion). Therefore, even though the city street scenes

di↵er from highway scenes, the model can generalize to the highway class to some

extent.

Residential results: Residential images in the training data do not significantly

increase performance on residential validation images. Therefore, residential is not

a relevant IDC. In addition, neither the performance on city street nor on highway

is significantly di↵erent under the presence or absence of residential images. The
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assumed similarity between city street and residential images might not be the

relevant factor when interpreting the positive e↵ect of city street on residential.

When accepting the fact that city street images have a positive impact on other

IDCs, one needs to keep in mind that for the highway and residential tests, also

city street images were present in the training data. Therefore, the e↵ect explained

in the preliminary information of this section has to be considered. For example,

removing residential images automatically leads to more city street images in the

training data. This biases the result when the e↵ects of the IDCs are not isolated.

Weather Weather is the domain for which most tests have been conducted.

The result plots are shown in Figure 28.

Clear results: Adding clear weather images to the training data does not signif-

icantly improve performance in any of the subsets. Therefore, clear is not relevant

based on the used definition of relevance. A significant decrease can be seen for

overcast, snowy and undefined, while for partly cloudy and rainy the performance

is not significantly worse. Clear is the largest class within the weather domain

in the dataset. In addition, clear is often chosen as the weather label for night

images, even when the weather situation is barely recognizable.

Rainy results: Rainy images in the training data lead to a significant per-

formance improvement on rainy validation images (+1.16%). Therefore rainy is

relevant. Adding rainy images leads to a significant performance decrease (-0.56%)

on partly cloudy validation images. For all other classes, the presence or absence

of rainy does not make a di↵erence. Even though by intuition, rainy might be

correlated with an overcast sky, no positive e↵ect can be found for rainy images on

overcast. Therefore, the dominant visual di↵erence for rainy images might not be

the sky and the typical lighting situation of an overcast sky but rather raindrops

on the windshield or reflections due to wet roads/cars.

Snowy results: Snowy images in training significantly improve the performance

on the snowy validation set (+0.95%). Therefore, snowy is relevant. The second

positive significant e↵ect is seen on rainy images, which is even stronger (+1.20
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%). All other classes do not show significant di↵erences. The observed correlation

between snowy and rainy is not reciprocated.

Figure 28: Weather relevance test results. Top left: clear, top right: rainy, center
left: snowy, center right: partly cloudy, bottom left: undefined, bottom right:
overcast
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Partly cloudy results: The models that saw partly cloudy images during train-

ing performed significantly better on the partly cloudy validation set (+0,87%).

Therefore partly cloudy is relevant. Additional positive significant e↵ects are ob-

servable on the overcast (+0.69%) and undefined (+0.36%) validation sets. La-

beling partly cloudy and overcast probably leads to overlapping labels. Therefore

a certain similarity between those classes is to be expected. The positive e↵ect on

undefined could also be due to a similarity between partly cloudy and undefined

weather, which shows in many cases overexposed skies.

Undefined results: Undefined images in training lead to a significant perfor-

mance improvement on images of class undefined. Therefore, undefined is relevant.

Undefined images do have a positive significant e↵ect on overcast (+0.52%). No

other significant e↵ects are observable. When manually inspecting the weather

class undefined, one can find many images with overexposed (white) skies which

can be due to a cloudy sky and a specific lighting situation. Therefore a certain

similarity for at least some images can be expected between the classes undefined

and overcast.

Overcast results: The models that trained on data including overcast images

performed significantly better on the overcast validation set (+1.35%) than the

comparison models. Therefore, overcast is relevant. Adding overcast images to

the training data does have a significant positive e↵ect on undefined (+1.06%)

and clear (+0.42%), while no other significant e↵ects can be observed.

The class clear was found to be the only non-relevant weather IDC, at the same

time it is the largest class within this image domain. However, when considering

the negative e↵ects of clear on overcast, snowy and undefined, one could still be

interested in actively controlling the ratio of clear weather images like for example

limiting the share of the class, when defining the strata size manually. The corre-

lation between overcast and undefined is reciprocated and could be due to some

similarities between the classes. In addition, this similarity is also supported by

the results of partly cloudy and clear, where overcast and undefined are a↵ected

in the same direction and magnitude.
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4.2.3 Result Consistency

The e↵ect sizes estimated with the visual di↵erence are partially consistent with

the results obtained from the actual performance comparison. The results are

summarized in Table 12. Daytime and night show by far the largest e↵ect sizes in

both tests. However, one of the two non-relevant classes (clear) shows a significant

di↵erence in Hotelling’s T 2 test. Overcast, which has not shown a significant visual

di↵erence in the T 2 test, is relevant for the model performance and shows an e↵ect

size comparable to the other IDCs. Therefore the visual di↵erence test can be

conducted to identify large di↵erences. However, the size of the di↵erences can not

be transferred directly to the model performance as measured in this experiment.

Image

Domain

Class Visual Di↵erences

Significant

IDC is

Relevant

Time of day Daytime Yes Yes

Time of day Dawn/Dusk Yes Yes

Time of day Night Yes Yes

Scene Highway Yes Yes

Scene City Street Yes Yes

Scene Residential No No

Scene Undefined Yes -

Weather Clear Yes No

Weather Rainy Yes Yes

Weather Snowy Yes Yes

Weather Partly Cloudy Yes Yes

Weather Undefined Yes Yes

Weather Overcast No Yes

Table 12: Result table for the visual di↵erence and IDC relevance tests. (Scene
class undefined was not tested for IDC relevance due to too small sample size.)
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4.3 Impact of Domain-Based Data Sampling

The following section describes and discusses the results of the experiment intro-

duced in Section 3.3. Its purpose is to identify the impact of image domain-based

stratified data sampling methods on object detection models. The research ques-

tion that guides this experiment is: What impact does image domain-based strat-

ified sampling of a dataset have on the performance of an object detection model?

Of course, this question can only be answered for the given model, dataset, and

chosen stratification techniques, but the process can be reused for di↵erent use

cases.

The process to test the impact of domain-based stratified data sampling meth-

ods is shown in Figure 15. Again a 10-fold split was chosen to increase the ro-

bustness of the performance measure compared to a single estimate at the cost of

generating dependent training datasets. The ratio of data used during training was

increased to 50% of the complete dataset, to utilize more of the available data while

keeping enough flexibility for the di↵erent sampling strategies. The main metric

used to compare the model performances is mAP for IoU � 0.5. However, also the

averaged mAP for IoU levels from 0.5 to 0.95 is used. Validation datasets with

di↵erent sampling strategies are chosen to test for performance di↵erences based

on the data structure. The prediction results of di↵erent sampling strategies for

one example image are shown in Figure 29
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Figure 29: Example detections for models trained with four di↵erent sampling
strategies. Top left: Model trained with random sampled data. Top right: Model
trained with LP-based stratified data. Bottom left: Model trained with LP-based
stratified data with maximized instances. Bottom right: Model trained with iter-
ative stratified data.

4.3.1 Test Results

The performance of each model group on the validation datasets is compared

against the performance of the baseline model group to evaluate the impact of

di↵erent sampling strategies. The following plots are similar to the result plots

introduced for the image domain relevance tests in Section 4.2.2. However, they

are generated using Wilcoxon’s Rank Sum test since the evaluation results are not

paired.

LP-Based Stratified Sampling The first comparison is performed between the

model group trained with randomly sampled data (Baseline) and the model group

trained with LP-stratified data (A1 ). The results are shown in Figure 30 (top

left). The model performances are compared on five di↵erent validation sets. The

left-most data point shows the performance on the complete BDD100K validation

dataset. No significant di↵erence is found between the Baseline models and the
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A1 models. All other data points show subsets of the validation dataset based

on di↵erent sampling strategies. A significant di↵erence can be found for only

one of them, the random sample. Even though the median mAP performance

di↵erence is small (-0.42%), the Baseline models perform better on the random

sample than the A1 models. This result is surprising since one would not expect

a specific repeatable structure of a random sample due to its randomness. The

right-most data point shows the performance di↵erence on a validation dataset that

is generated with LP-based stratified sampling based on the IDC distribution of

the training data. This means the sampling strategy is identical to the sampling

strategy used to generate the training data for the A1 models. However, no

significant performance di↵erence is found.

When investigating further on this performance di↵erence on the random sam-

ple, the performance can also be measured when split by di↵erent object sizes

(Figure 30 bottom). Both models perform similar for small objects, but the Base-

line models are slightly superior for medium and large objects.

In addition, the mAP can be measured over di↵erent IoU thresholds from 0.5 to

0.95 (Figure 30 top right), here a similar result can be found, with the exception

that also for the complete validation set, a slight performance di↵erence exists.

Again, the Baseline models perform slightly better.
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Figure 30: Sampling impact result comparison of models trained with LP-
based stratified sampled data and randomly sampled data on di↵erent validation
datasets. Top left: for IoU � 0.5. Top right: averaged for IoUs from 0.5 to 0.95.
Bottom: on the random sample validation set split for object sizes.

LP-Stratified Sampling with Maximized Instances The second compari-

son is performed between the models trained with randomly split data (Baseline)

and the models trained with LP-stratified data for which the object instance count

is maximized (A2 ). The result shown in Figure 31 (top left) is clear. The Baseline

models outperform the A2 models on all validation datasets. The largest di↵erence

is seen on the random sample dataset (-1.45 % median mAP di↵erence). A similar

but not as strong result is obtained for the comparison over di↵erent IoUs (0.5 to

0.95) (top right). Here the largest di↵erence is -1.26 % median mAP di↵erence.
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If one groups the mAP by object size, as shown in Figure 31 on the bottom,

one can see more detailed how the model performance di↵ers. The A2 models

outperform the Baseline models on small objects by a small margin. Nevertheless,

the e↵ect is reversed on medium and large objects. Table 13 shows the object

size distribution for the di↵erent sampling strategies. One can see that the data

sampled with strategy A2 consists out of images with more objects. However, the

number of small objects increases disproportionately. Therefore, even though the

total number of object instances is higher for the model trained on stratified data,

the performance is worse. Therefore, not only the number of instances, but also

the balance of instance sizes seems to be important for the model performance.
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Figure 31: Sampling impact result comparison of models trained on LP-based
stratified data with maximized object instances and models trained on randomly
sampled data. Top left: comparison over the validation datasets for IoU � 0.5.
Top right: comparison over the validation datasets for di↵erent IoUs from 0.5 to
0.95. Bottom: mAP comparison for object sizes small, medium, and large on the
complete validation dataset.
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Object

sizes

Baseline

Random

A1

LP-based

stratified

A2

LP-based stratified

max. instances

A3

Iterative

stratified

Small 10.12 10.12 14.37 10.12

Medium 5.82 5.83 7.50 5.83

Large 2.31 2.32 2.62 2.32

Table 13: Comparison of the mean object instance count per image and size for
the training samples generated by the four di↵erent sampling strategies.

Iterative-Stratified Sampling The third comparison is performed between the

model group trained with iterative stratified data (A3 ) and the model group

trained with random data (Baseline). The results are shown in Figure 32 (top

left) and are similar to the Baseline - A1 comparison. No significant di↵erences

are found on the complete validation dataset or the iterative stratified sample of

the validation dataset. However, the performance on the random validation sam-

ple shows a slight significant di↵erence (-0.21% median mAP di↵erence) (Base-

line models show a slightly improved performance compared to the A3 models).

On none of the stratified validation samples, a performance di↵erence was found.

When comparing the performance based on di↵erent IoUs, also on the full vali-

dation dataset a slight performance di↵erence can be found (-0.10% mAP median

di↵erence).
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Figure 32: Sampling impact result comparison of models trained with itera-
tive stratified sampled data and randomly sampled data on di↵erent validation
datasets. Top left: for IoU � 0.5. Top right: averaged for IoUs 0.5 to 0.95. Bot-
tom: mAP comparison for object sizes small, medium, and large on the complete
validation dataset.

Result interpretation Two key findings can be extracted from this experiment.

First, the applied image domain-based sampling techniques do not lead to superior

model performance on the evaluated validation sets. In fact, on one subset, the

randomly drawn validation sample, the performance of all models trained with

stratified data is slightly worse than that of the models trained with random data

when evaluating with the IoU� 0.5. When averaging over multiple IoU-thresholds

from 0.5 to 0.95, the performance di↵erences become smaller for the first two

comparisons, but the overall trend is maintained. However, except for the A2
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approach with maximized object instance counts, the median di↵erences are very

small (< 0.5% mAP).

Second, maximizing the object instances leads to side e↵ects impacting the

model performance. The intuitive rationale that more object instances lead to

extended training and, therefore, to a better performance was found in the IDC

relevance tests for the class city street and the object class pedestrian. However,

the ratio between object sizes is shifted towards smaller objects when forcing to

maximize the object instance count with the applied sampling strategy. This leads

to an improvement in the model’s mAP performance on small objects but also to

a decline on medium and large objects.

As a result, the applied stratified sampling strategies are not superior to random

sampling in any of the tested cases but the performance di↵erences between the

Baseline, A1 and A3 are very small. A stratified sampling technique can therefore

be used to ensure, that all relevant image domain classes are part of the training

dataset without the cost of major performance decline. For random sampling an

even image domain class distribution can not be guaranteed, especially in the case

of small clusters.

What remains is to develop a method to transfer the knowledge, gained in the

IDC relevance tests, into a sampling technique, such that the model performance

increases. The approach of selecting the strata size based on the existing IDC

distribution did not lead to a significant impact.

The constant performance di↵erence of the model with maximized instance

counts shows that other e↵ects, such as the object size distribution, have to be

monitored and controlled to further reduce confounding factors of the conducted

experiments.
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5 Summary & Future Work

The following section recaps the most important results of the thesis and provides

an overview about possible next steps.

5.1 Summary

In total, three major steps were completed within this thesis:

1. The BDD100K dataset was cleaned, and the existing scene and time of the

day labels were validated.

2. Image domain relevance tests were conducted to identify IDCs that show a

significant impact on the performance of an object detection model.

3. The impact of domain-based sampling approaches was investigated and com-

pared to the naive method of random sampling.

Cleansing and validating the dataset disclosed multiple issues. The selected

dataset is not as diverse as expected, and previously unknown deviations from

the o�cial documentation exist, namely, the unmentioned recording locations in

Israel / West Bank. The label validation process showed that even though the

label quality is high, there is a significant amount of wrong time of the day and

scene labels, and more subtle cases exist for which clear labeling rules need to be

documented and published to refer to a unified baseline.

The image domain relevance tests show that ten of the twelve tested IDCs are

relevant for the object detection model. Even though the strongest e↵ects were

found for those classes that di↵er visually the most (daytime and night), also other

classes show relevant e↵ects but on a smaller scale (except for residential scenes

while clear weather shows significant but only negative e↵ects). The correlation

between the visual di↵erence assessment and the IDC relevance test is limited.

Both tests identified the two magnitude levels consistently, but the visual di↵erence

test can not be used as implemented to distinguish between significant and non-

significant IDCs. The two classes clear and overcast were incorrectly classified by

the visual di↵erence analysis.

The assumption that instance distribution di↵erences are important and should

be monitored is supported by the di↵ering results for the city street class when
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including or excluding the imbalanced pedestrian class. See Figure 27

The domain-based sampling experiments show no significant performance dif-

ferences when comparing models trained on LP-based stratified or iterative strati-

fied datasets with models trained on randomly sampled data, with one exception.

The models trained with stratified data showed a slightly inferior performance on

the randomly sampled validation sub-set. See Figures 30 and 32. Therefore, these

sampling techniques can be used to ensure coverage of all relevant image domain

classes while maintaining a comparable performance level to models trained with

randomly sampled data.

In contrast to these results, a strong e↵ect was observed for changes in the

object instance balance. The models trained on LP-based stratified data, for

which the number of object instances was maximized, showed a declined mAP

performance compared to the models trained with randomly sampled data. Maxi-

mizing the objects leads to a disproportionate increase of small objects compared

to medium and large objects. Even though the models were trained with more

instances of all object sizes, a negative e↵ect on the model’s performance was

observed for medium and large objects. See Figure 31.

5.2 Future Work

Numerous improvements can be added, and the scope of the work can be extended.

Some ideas on how one could proceed are mentioned in this section. The first set of

potential next steps is concerned with label quality. Improved validation routines

could be developed, such as validating scene types by using the actually driven

trajectories and not only single location points. This approach could also ease the

identification of parking cars. In addition, the scene label should be validated on

maps that reflect the historic street and amenity network at the recording time,

while in the used implementation the current state of OpenStreetMap was used.

The weather data validation was not included in this work. The label validation

would require clear rules for categorizing the images and a data source that delivers

granular weather data for a given location and time. Further on, the time of the

day label verification could be improved by including the dawn/dusk validation

with additional rules.
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Another potential improvement would be a more detailed comparison of the

generated data splits. In the current implementation, the object instance distri-

bution is compared in the data splits, but the distribution of the object sizes is

not monitored or controlled. Also, additional image domains, such as seasons or

locations, can be included and monitored or even tested. Finally, one could in-

vestigate whether the hypothesis formulated in the CityScapes paper regarding a

performance increase during fall [16] is also supported with BDD100K data on the

object detection task.

Since only 12 of the 18 labeled image domain classes have been investigated,

developing techniques or extending the dataset such that all IDCs can be investi-

gated would also be a possibility to extend the thesis.

One large and probably the most important field of further improvement is to

work on the result transfer of the IDC relevance tests to a (stratified) sampling

strategy. The sampling techniques applied in this work did not lead to a significant

improvement in the model performance. Therefore, a strategy to determine the

optimal image domain class distribution for the training data needs to be developed

and tested. Challenges are the large solution space of the optimization problem,

the interaction of IDC dimensions, and resource-consuming model training.
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[7] Janez Demšar. “Statistical Comparisons of Classifiers over Multiple Data

Sets”. In: Journal of Machine Learning Research 7 (Dec. 2006), pp. 1–30.

issn: 1532-4435.

[8] Pedro F. Felzenszwalb et al. “Object Detection with Discriminatively Trained

Part-Based Models”. In: IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 32.9 (2010), pp. 1627–1645.

83

https://doi.org/10.1162/089976698300017197
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1109/CVPR.2001.990517


REFERENCES
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A Supplementary Figures

|_ images

|_ 100k

|_ train

|_ 0a0a0b1a-7c39d841.jpg
...

|_ val

|_ b1c9c847-3bda4659.jpg
...

|_ test

|_ cabc30fc-e7726578.jpg
...

|_ labels

|_ det_20

|_ det train.json

|_ det val.json

|_ info

|_ 100k

|_ train

|_ 0a0a0b1a-7c39d841.json
...

|_ val

|_ b1c9c847-3bda4659.json
...

Figure 33: File structure of the BDD100K dataset
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Figure 34: Exemplary sampling process for IDC night. In the first step, a 10-fold
sub sample of size 25% is drawn. The share of night images in this sample is 29%.
Afterwards by using the remaining image pool, the modified sample is generated by
replacing the night images with non-night images. Eventually the object instances
in both 10-fold sub samples is compared and adjusted by replacing images in the
modified sample with images of the remaining image pool.
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B Experiment Parameters

Hardware Setup

Machine Parameters

CPU 2x AMD EPYC 7742 64-Core Processor

RAM 16x 32GB DDR4 RAM

GPU 4x Nvidia A100 PCIe 40GB

Disk 2x 447.1 GB NVMe SSD in raid 1

Table 14: Hardware specifications of the machine used for training and validation.

Training Parameters

Hyperparameter Value

Initial learning rate 0.01

Final learning rate ratio 0.5892

Momentum 0.937

Optimizer weight decay 0.0005

Warmup epochs 3.0

Warmup momentum 0.8

Warmup bias learning rate 0.1

Box loss gain 0.05

Class loss gain 0.5

Class BCELoss weight 1.0

Object loss gain obj 1.0

Obj BCELoss weight 1.0

IoU training treshold 0.20

Anchor-multiple threshold 4.0

Number of anchors 3

Focal loss gamma 0.0

Hue aug. 0.015

Saturation aug. 0.7

Value aug. 0.4

Rotation degree aug. 0.0

Translation aug. 0.1

Scale aug. 0.5

Shear aug. 0.0

Perspective aug. 0.0

Flip up-down prob. 0.0

Flip left-right prob. 0.5

Mosaic prob. 1.0

Mixup prob. 0.0

Segment copy paste prob. 0.0

Parameter Value

Batch size 16

Epochs 85

Data Caching RAM

Frozen layers 0

Train from scratch Yes

Table 15: Training parameter settings for IDC relevance test
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Hyperparameter Value

Initial learning rate 0.01

Final learning rate ratio 0.2674

Momentum 0.937

Optimizer weight decay 0.0005

Warmup epochs 3.0

Warmup momentum 0.8

Warmup bias learning rate 0.1

Box loss gain 0.05

Class loss gain 0.5

Class BCELoss weight 1.0

Object loss gain obj 1.0

Obj BCELoss weight 1.0

IoU training treshold 0.20

Anchor-multiple threshold 4.0

Number of anchors 3

Focal loss gamma 0.0

Hue aug. 0.015

Saturation aug. 0.7

Value aug. 0.4

Rotation degree aug. 0.0

Translation aug. 0.1

Scale aug. 0.5

Shear aug. 0.0

Perspective aug. 0.0

Flip up-down prob. 0.0

Flip left-right prob. 0.5

Mosaic prob. 1.0

Mixup prob. 0.0

Segment copy paste prob. 0.0

Parameter Value

Batch size 32

Epochs 150

Data Caching RAM

Frozen layers 0

Train from scratch Yes

Table 16: Training parameter settings for domain-based sampling impact test

nano small medium large

Time per epoch [sec.] 195 253 455 664

Time per 85 epochs [hours] 4.60 5.97 10.74 15.68

Table 17: Training time of IDC relevance test for di↵erent model scales (training
on single GPU with batch size 16)
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Figure 35: Training tests of di↵erent model sizes
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