
Freie Universität Berlin
Fachbereich Mathematik und Informatik

Takustraße 9, 14195 Berlin

MASTER THESIS

USER POSITION PREDICTION IN 6-DOF MIXED REALITY
APPLICATIONS USING RECURRENT NEURAL

NETWORKS

Oleksandra Baga
Freie Universität Berlin

Matrikelnummer 5480722
Master Computer Science

E-Mail: oleksandra.baga@gmail.com

Prof. Dr. Daniel Göhring
Fachbereich Mathematik und Informatik

Freie Universität Berlin

Prof. Dr. Tim Landgraf
Fachbereich Mathematik und Informatik

Freie Universität Berlin

Acknowledgments

This thesis was created in cooperation with the Fraunhofer Heinrich Hertz Insti-
tute.

I would like to thank Prof. Dr. Daniel Göhring, who consulted me during the work
on a thesis, and Prof. Dr. Tim Landgraf, who taught me machine learning so that I
chose my master thesis topic in the field of ML research.

Especially helpful to me during this research was Serhan Gül, researcher of Fraun-
hofer Heinrich Hertz Institute, who suggested an exciting topic for research and
supported me.

I am also grateful to Dr.-Ing. Cornelius Hellge, the head of Multimedia Communica-
tions Group at Fraunhofer Heinrich Hertz Institute, for allowing me to choose this
modern topic for my master thesis. I had great pleasure working with all members
of the Multimedia Communications Group at HHI during the time of research and
master thesis creation.

Contents

List of Figures I

Listings III

List of Abbreviations IV

1 Introduction 1
1.1 Problem statement . 1
1.2 Motivation for the research . 2
1.3 Structure of the thesis . 2

2 Fundamentals 4
2.1 Mixed reality with HMD . 4
2.2 Six degrees of freedom . 5
2.3 Motion-to-photon latency . 6
2.4 Cloud-based volumetric video streaming 7
2.5 Challenges of head motion prediction 9
2.6 Related works . 10

2.6.1 Traditional prediction algorithms 10
2.6.2 Recurrent Neural Networks 11

3 Implementation 13
3.1 6-DoF Dataset . 13

3.1.1 Data collection from HMD . 13
3.1.2 Data Exploration . 15
3.1.3 Data preprocessing . 17

3.2 Model . 21
3.2.1 Inputs and outputs . 21
3.2.2 LSTM Model . 22
3.2.3 GRU Model . 27
3.2.4 Bidirectional GRU Model . 30
3.2.5 Development . 32

Unity application . 32
Training and evaluation . 34
Hyperparameter search . 36

4 Evaluation 37
4.1 Goal of evaluation . 37
4.2 Evaluation metrics . 37
4.3 Baseline model . 38
4.4 Experiments . 42

4.4.1 First experiments . 42
Datasets . 42
Batch size . 45
Learning rate . 45
Weight decay . 46

4.4.2 Prediction with LSTM . 47
4.4.3 Prediction with GRU . 50
4.4.4 Prediction with Bidirectional GRU 52

5 Conclusion 53
5.1 Analysis . 55
5.2 Limitations and suggestions for future work 56

Bibliography

List of Figures

Fig. 1 HoloLens 2 maps itself with a mesh. 5
Fig. 2 Viewing paradigm in 3- and 6-DoF VR. Source: [21] 6
Fig. 3 M2P latency for a remote rendering system. 7
Fig. 4 High level operation of a cloud-based volumetric streaming system. 8

Fig. 5 User position plots from obtained datasets (a, b, c). 15
Fig. 6 Changes in the user’s position along the Y axis in the range from

400ms to 500ms. 16
Fig. 7 Interpolated 6-DoF dataset’s user position and orientation in quater-

nions. 19
Fig. 8 Quaternions from 6-DoF dataset’s flipped if their real part is negative. 19
Fig. 9 Enlarged quaternion plot with breaks omitted. 20
Fig. 10 Long Short-Term Memory. 23
Fig. 11 Gated Recurrent Unit. 27
Fig. 12 Unity 3D UserPrediction6DOF Project with placed obj-animation,

underlying code and scene. 33
Fig. 13 Photo made by Hololens 2 camera during the Unity Application

running on HMD with the volumetric animated object. 33

Fig. 14 Outputs of Baseline Model for x-axis. 39
Fig. 15 Outputs of Baseline Model for x, y and z axes. 40
Fig. 16 Outputs of Baseline Model for quaternions components qx, qy. qz

and qw. 41
Fig. 17 Outputs of Baseline Model for rotation data represented as Euler

angles. 41
Fig. 18 Outputs of LSTM1 model on interpolated dataset for x, y and z axes. 43

I

Fig. 19 Outputs of LSTM1 model on interpolated dataset for roll, pitch,
yaw axes. 43

Fig. 20 Outputs of LSTM1 model on dataset with flipped negative quater-
nions for x, y and z axes. 43

Fig. 21 Outputs of LSTM1 model on dataset with flipped negative quater-
nions for roll, pitch, yaw axes. 44

Fig. 22 Plot of training and validation loss with small learning rate of
Adam optimizer. 46

Fig. 23 Plot of training and validation loss with large weigh decay of Adam
optimizer. 47

Fig. 24 Outputs of LSTM2 model with ReLU activation function for x, y
and z axes. 48

Fig. 25 Outputs of LSTM2 model with ReLU activation function for roll,
pitch, yaw axes. 48

Fig. 26 Outputs of LSTM3 model with Mish activation function for x, y
and z axes. 49

Fig. 27 Outputs of LSTM3 model with Mish activation function for roll,
pitch, yaw axes. 49

Fig. 28 GRU1 outputs for position (x, y, z) for rows 5000..5500. 50
Fig. 29 GRU1 outputs for position (x, y, z) for rows 15000..15500. 51
Fig. 30 GRU1 outputs for position (x, y, z) for rows 22000..22500. 51
Fig. 31 GRU1 outputs for roll, pitch, yaw axes. 52
Fig. 32 Bidirectional GRU outputs for roll, pitch, yaw axes. 52

II

Listings

3.1 One-layered LSTM with sliding window 25
3.2 LSTM3 with Mish activation function 26
3.3 GRU1 with Sliding Window . 29
3.4 Bidirectional GRU Model . 31
3.5 Bidirectional GRU h0 Layer . 31

III

List of Abbreviations

ANN Artificial Neural Networks

AR Augmented Reality

CNN Convolutional Neural Network

CPU Central processing unit

DoF Degree of freedome

DL Deep Learning

FFN Feed-forward Neural Network

GRU Gated Recurrent Unit

HMD Head-Mounted-Display

IEEE Institute of Electrical and Electronics Engineers

KF Kalman Filter

LAT Look ahead time

LSTM Long-Short-Term Memory

M2P Motion-to-Photon

MAE Mean Absolut Error

MEC Mobile Edge Computing

ML Machine Learning

MR Mixed Reality

NLP Natural Language Processing

ReLu Rectified Linear Unit

RNN Recurrent Neural Network

RTT Round-trip time

SDG Stochastic Gradient Descent

VR Virtual Reality

3-DoF Three degree of freedom

6-DoF Six degree of freedom

IV

1Introduction

This thesis is focusing on designing and evaluation of the approach for the prediction
of human head position in a 6-dimensional degree of freedom (6-DoF) of Extended
Reality (XR) applications for a given look-ahead time (LAT) in order to reduce the
Motion-to-Photon (M2P) latency of the network and computational delays. At the
beginning of the work the existing head motion prediction methods were analysed,
and their similarities differences will be taken into account when a proposed Recur-
rent Neural Network-based predictor will be developed. Main goal is the systematic
analysis of the potential of recurrent neural networks for head motion prediction.
The proposed approach was evaluated on a real head motion dataset collected from
Microsoft HoloLens. Based on a discussion of the obtained results, suggestions for
future work are provided.

1.1 Problem statement

The correct and fast head movement prediction is a key to provide a smooth and com-
fortable user experience in VR environment during head-mounted display (HMD)
usage. The recent improvements in computer graphics, connectivity and the compu-
tational power of mobile devices fostered the progress in immersive media technolo-
gies. The way users can interact with their devices changed dramatically. With new
technologies of VR environment user becomes the main driving force in deciding
which portion of media content is being displayed to them at any time of interaction
with VR Applications [20]. Until recently the high-quality experiences with modern
Augmented Reality (AR) and VR systems were not widely presented in home usage
and were mainly used in research labs or commercial setups. The hardware for dis-
playing the VR environment was once extremely expensive but recent years became
more broadly accessible and new AR/XR applications were released. It is possible
now to experience virtual reality scenes and watch new type of volumetric media at
home and the market interest for development VR and AR applications expected to
be huge next years.
In fact, the existing on this moment virtual environments can be divided into two
main groups depending on position of the user and their ability to move inside
the VR environment. The user motion and prediction within a 3-DoF environment
has been intensely researched for years. Extending such approaches to a 6-DoF

1

environment is not straightforward, due to the change of the user’s viewing point
from inward to outward and additional three degrees of freedom [21].
Despite all mentioned above improvements, rendering of volumetric content remains
very demanding task for existing devices. Thus the improvin the performance of
existing methods, design and implementation of new approaches specially for the
6-DoF environment could be a promising research topic.

1.2 Motivation for the research

Several research works have already attempted to reduce the processing load on
the client side. Recently presented technique of the rendering on a cloud server
enabled reducing the computational load on the client device by offloading of the
task to a server infrastructure and than by sending the rendered 2D content instead
of volumetric data [13]. The rendered 2D view must correspond the current position
and orientation of a user. However, cloud-based streaming approach adds network
latency and processing delays due to sending the user position to the cloud server
and receiving the rendered image based on that, rendering a new 2D picture from
the 3D data and sending it back to a device. Thus, a rendered 2D image can appear
even later on a display than with usage of local rendering system.

A promising research topic is a reducing the Motion-to-Photon (M2P) latency by pre-
dicting the future user position and orientation for a given prediction horizon/look-
ahead time (LAT) and sending the corresponding rendered view to a client. The LAT
in this approach must be equal to or larger than the M2P latency of the network
including round-trip time (RTT) and time need for calculation and rendering of a
future picture at remote server.

1.3 Structure of the thesis

The organization of this thesis is as follows. The thesis starts from introduction
and problem statement, followed by theoretical background related to the research
topic. Literature review chapter introduces different approaches and technologies of
motion prediction algorithms. The chapters 3 and 4 show the implementation of the
presented models and evaluation of the results that were obtained during experi-
ments. Last, limitations of the presented methods are discussed and suggestions for
future wok are presented.

Chapter 1 - Introduction.
The current chapter shortly introduces a state of development on scientific field

1.2 Motivation for the research 2

achieved at a time of master thesis creation in the context on XR applications. The
necessity of timely action to improve the situation with increasing computational
and network latency is shown in problem statement section 1.1. Due to the breadth
of the research topic, the section 1.2 focuses and motivates the research topic.

Chapter 2 - Background.
The next chapter includes a review of the area being researched. It starts with a short
introduction of the concept of MR applications and presents a 6-DoF environment.
The presence and influence of a computational and network latency is covered. In
section 2.5 the challenges faced in predicting of the viewer’s position are discussed.
Last section contains an overview of previous research in the field of prediction of
user’s head position and orientation and places a master thesis’s topic in the context
of the existing literature.

Chapter 3 - Implementation.
Chapter describes practical implementation of the approach. The dataset including
data collection from head mounted display (HMD) and data understanding and
preprocessing are described in section 3.1. Model Inputs, Model architecture and
the development steps are covered in section 3.2. The implementation of Unity
Application, training and evaluation loop with PyTorch and hyperparameter search
described in the section 3.2.5.

Chapter 5 - Evaluation.
A Baseline model, used for comparing the obtained results and tuning the hyper-
parameters is described. The goal of evaluation and metrics used in this research
are covered. The conducted experiments with a data obtained from HMD for each
analysed RNN Model can be found in section 4.4.

Chapter 5 - Conclusion.
The last chapter presents a discussion about the proposed method and provides a
conclusion about the received results including suggestions for potential types of
future research.

1.3 Structure of the thesis 3

2Fundamentals

This chapter introduces theoretical background of the presented research problem.
First, the concept of mixed reality (MR) followed by an introduction of six degree of
freedom (6-DoF) environment and the difference to the three degree of freedom (3-
DoF) are described. The term motion-to-photon latency (M2P) is covered, followed
by a short discussion about an influence of M2P latency on the decreasing of user
experience. The novel developed cloud-based rendering and streaming approach
is shortly discussed in this chapter. The last section highlights challenges with
the prediction of viewer’s head pose that arises in modern XR applications. The
section 2.6 overviews the existing works done in the research field using traditional
algorithms and recurrent neural networks.

2.1 Mixed reality with HMD

Mixed reality enables breaking down the border between the virtual and real world
and provides today an experience that just a short-time ago we could only imagine
watching sci-fi movies. Terms Virtual Reality (VR), Augmented reality (AR) and
Mixed reality (MR) are often used interchangeably. VR creates the virtual envi-
ronment around user and tricks human’s senses into thinking one is in a different
environment. AR overlays a virtual object to the real world that we can see through
the lenses of special developed Head Mounted Display (HMD) or on smartphone-
based AR Application. Thus realistic images, sounds, and other sensations can be
generated by a powerful HMD and projected on transparent holographic lenses
giving a user the feeling that virtual objects have size and density. MR combines the
advantages of the VR and AR and adds an interaction between real and artificial
elements. Thus users can directly interact with virtual objects (with operations such
as scaling, rotation, or translation) in the real environment using their hands. For
example, in MR Application virtual objects can be placed on the real table in the
user’s room, picked up with a hand and moved to another place.

Volumetric video (VV) is a new type of media content to be used within AR and
MR applications [26]. Volumetric video allows to view recorded information from a
range of different angles, as if an observer was physically present in the room when
video was captured by cameras and could move around the object. This thesis uses

4

volumetric video objects placed in the real environment when running developed
MR Application for collection the user’s position and rotation data. Refer to sections
2.4 and 3.2.5 for more details about VV and how it was used in thesis.

Figure 1: HoloLens 2 maps itself with a mesh.

Nowadays different HMD with varying
performance levels and prices are avail-
able on the market. In this thesis, Mi-
crosoft HoloLens 2 was used for MR ex-
perience and data collection. It is an
updated version of the previous genera-
tion HoloLens 1 headset from Microsoft
with such improved feature as display
resolution, field of view, weight, bat-
tery lifetime. By using the AHAT (Ar-
ticulated HAnd Tracking) depth camera,
the HoloLens 2 can capture hand move-

ments to obtain hand tracking data. The built-in tracking systems allows HoloLens
to understand the environment around the user and to place stable and accurate
holograms on the correct places where they intended to be by the developer of MR
Application. The data used to track users is represented as a spatial map1. When
AR/MR Application is starting on HoloLens, HoloLens uses unique environmental
landmarks to locate itself in a space. The mesh graphic spreading over the space
is seen, as illustrated in Fig. 1, during the Application launch and this means a
device is mapping to surroundings. As user moves with HMD on their head, built-in
cameras continuously scan the environment and construct virtual world geometry
for real-world objects. The primary stereo rendering component attached to HMD
can be accessed from Unity and thus the position and orientation can obtained for
thesis purposes.

2.2 Six degrees of freedom

Term degrees of freedom describes how users interact with a virtual environment and
how they can move inside it. Within 3-DoF space user has only three possibilities:
look left and right, look up and down and pivot left and right. 3-DoF space does not
allow to move throughout the virtual space. Thus only rotational movement can
be tracked. In 3-DoF VR Application multimedia content is the omnidirectional or
spherical video, which represents an entire 360◦ environment on a virtual sphere
[21]. In 3-DoF space HMD enables to display only a portion of the environment
around a user. User is virtually positioned at the centre of a sphere as shown in Fig.

1https://docs.microsoft.com/en-us/hololens/hololens-environment-considerations.

2.2 Six degrees of freedom 5

2, media is displayed from an inward position and user can only change the viewing
direction (i.e., by looking up/down or left/right or tilting the head side to side) [21]
but can not interact with a media by moving closer/further. Wherever user moves
with a HMD on their head, they will remain placed in the at the centre of a sphere
and distance to a content can not be changed.

Figure 2: Viewing paradigm in 3-
and 6-DoF VR. Source:
[21]

The 6-DoF means tracking both position and ro-
tation and refers to the freedom of movement
of a rigid body in three-dimensional space. In 6-
DoF VR Application user can also change viewing
perspective by moving (e.g., walking, jumping)
inside the virtual space [21]. Thus the scene
is observed from an outward position in 6-DoF
environment and extra degree of freedom trans-
forms the virtual experience to be more natu-
ral and reflects to human movement in a three-
dimensional space. Thus the VV and other volumetric objects such meshes or point
clouds are used in MR Applications for 6-DoF scene population. User can freely
walk inside the 6-DoF environment with a HMD on a head and observe the placed
on scene volumetric objects from all points of view, and if the settings in Unity
application allow physical interaction with objects, pick and move them on the new
place.

2.3 Motion-to-photon latency

VR Application are deployed to the end-user with a goal to create an immersion of a
physical presence in a non-physical world. In the real world there is no time delay
between action taken and reaction observed. However, in AR/VR/MR Applications
the difference between the user’s head movement (action) and its corresponding
display output reflections (reaction) is defined as motion-to-photon (M2P) latency.
The presence of a delay between the physical movement and the display output
worsens HMD user experience. In worst case even sense of physical presence in
a virtual world would be lost. MTP latencies of more than 20 ms are experienced
and cause spatial disorientation and dizziness, referred to as VR sickness or motion
sickness [2, 12]. Display lag can produce a range of other perceptual effects include
degraded vision, compromised visuo-motor performance and motion sickness [2].
Different components of the HMD, such as the sensors, SOC, display and software
can affect M2P latency. Reducing the M2P latency is the key to proving the best
VR experience. Not only improving the device parameters, such a usage of more
powerful HMD processor, need to be taken in account. VR Application developers

2.3 Motion-to-photon latency 6

must consider how to deploy more light-weighted applications. If the VR Application
need to pull some data from the network or remote server, the network round-trip
time and the added processing delays will increase the M2P latency compared to a
system that only performs the processing locally [12].

Figure 3: M2P latency for a remote render-
ing system.

As this thesis evaluates the reducing the
M2P latency for VV streaming from re-
mote cloud server, the Fig. 3 from [13]
illustrates the different components of the
M2P latency for a remote rendering sys-
tem. Total M2P latency is equal to sum of
the time taken by a bit of data to travel
across the network from HMD to a server,
server delay involved in computing the
future user position and render a 2D view
and a HMD delay during sensor measure-
ments. If the user’s future head pose for a
look-ahead time (LAT) equal to or larger

than the M2P latency of the system could be predicted, it can eliminate M2P latency
and improve the quality of the VR Applications. Studies showed that display lags
of greater than 40 ms cause errors in tracking and following a target with the head
[2]. This thesis evaluates the performance of RNN Models for LAT 100 ms that is
higher than the measured M2P latency of a cloud-based volumetric streaming system
described in the next section.

2.4 Cloud-based volumetric video streaming

Volumetric video (VV) is a young technology and is used to create a content for
AR and VR Applications. Real-life video from cameras surrounding the 3D object is
stored as point clouds or 3D textured mesh sequences and builds a dynamic 3D scene
of a real 3D object. In VR Application user can walk through VR environment with a
HMD and thus VV can be looked at from any viewpoint. In almost all cases today, the
VVs objects stored and rendered locally on a users device. Photo-realistic modelling,
real-time rendering and animation of VVs is still computationally difficult. The long
sequence VV can even exceed the HMD memory capacity and could not be deployed
as a VR Application even on high-cost AR/MR HMD as HoloLens 2. There are still
no efficient hardware decoders for point clouds or meshes and software decoding
can be prohibitively expensive in terms of battery usage [12]. Thus in research
community there is a growing interest in VV compression and adaptive streaming,
as real-time streaming is necessary for some applications, e.g., telepresence and

2.4 Cloud-based volumetric video streaming 7

remote collaboration [26]. The processing and memory load on the user’s HMD can
be decreased by sending a 2D precomputed rendered view instead of the volumetric
3D content. Some previous studies reveal that participants preferred to stay in front
of static point clouds and 1 metre away from them and spent more time looking at
the frontal view and faces of human models [26]. VVs provide a feeling of a real 3D
object with a mass and a weight thus as a real 3D object they can be looked at only
from one viewpoint at on time step. Thus if the sending redundant information (for
example, a back view of a human model when the user looks at model’s front view)
can be avoided, it decrease the computational load on the user’s HMD.

Figure 4: High level operation of a cloud-based volu-
metric streaming system.

A remote rendering system takes
complex graphics computational
and rendering tasks and delivers
the result over a network to a
less-powerful client device. Fig.
4 shows an overview of a cloud-
based volumetric streaming sys-
tem proposed by Gül et al., 2020.

This thesis evaluates RNN Models and the trained model with the best performance
is intended to be used as a part of prediction system of a remote system. A detailed
software architecture of a system is described in [13]. In this system a compressed
volumetric video is stored as a single MP4 file containing video and mesh tracks [12].
The game engine (Unity) runs at a server and decodes the compressed mesh and
texture data. The HMD sensors track the user position and orientation and sends
over a network to the cloud server. Based on the user’s current pose, cloud server
calculates the future position and orientation and renders the corresponding view
from the volumetric content. The rendered view is encoded as a video stream and
sent to the client over the network. The time period between the head movement
and display of the decoded video frame to the viewer is the M2P latency of the
system which can be compensated by applying a prediction algorithm [12].

2.4 Cloud-based volumetric video streaming 8

2.5 Challenges of head motion prediction

All modern HMD has a position tracker, a device or a system of devices, that is
responsible for reporting the position and orientation of HMD to the computational
unit that generates the virtual environment images displayed in the HMD. These
images represent the view that a wearer of HMD would have seen if user was present
in VR at the position and orientation reported by position tracker [6]. While the task
of position tracking is performed by HMD hardware, the task of position prediction
of the movement of human body in the virtual reality remains challenging, and it is
still complicate to achieve high-precision estimation.

Understanding how users interact and behave in AR or VR is important when
working with HMD’s sensors. The experiment done by Zerman et al., 2021 found
out that users preferred to stay in front of static point clouds and 1-1.5 meter away
from them and spent more time looking at the faces of human models [26]. The
navigation trajectories of users within a 6-Degrees-of-Freedom (DoF) should be
additionally investigated since an extra level of interaction between user and content
is available in 6-DoF environment. The user has now the freedom to change the
viewing direction (rotating and translating the head as in 3DoF) but also to change
position inside the VR environment [20]. In a 6-DoF environment, users are not
being positioned at the centre of the spherical content any longer and the distance
changes over time when user moves due to the added degrees of freedom. Thus
viewport’s center position is not sufficient for tracking the trajectories, the additional
metrics such the spatial coordinates and user orientation are needed to obtain the
point of origin.

Following [20] Rossi et al, 2021 authored same year another work [21] dedicated 6-
DoF metrics. Researchers experimented with different metrics to perform clustering
in order to detect group of users with similar behavior in VR. The most promising
metric seems to be based on the user position on the virtual floor. Metrics based
only on viewport center, as it was used in 3-DoF, and distance failed in detecting the
group of similar users [21]. For the trajectory detection best performed a metrics
based on user position, orientation on the virtual floor and distance [21]. The
analysis above leads to the conclusions that prediction of the user’s position and
orientation on 6-DoF requires new metrics and approaches to be investigated and
implemented.

2.5 Challenges of head motion prediction 9

2.6 Related works

This section presents the overview of previous research in the field of the prediction
of user position and focuses on time series methods using different RNN architectures
such as LSTM and GRU.

2.6.1 Traditional prediction algorithms

A lot of previous approaches uses basic processing of head movement history to
predict the future movement, such as simple average, linear regression, and weighted
linear regression [18]. Work of Corbillon et al., 2017 determines the distance to the
center of viewpoint with simple average and calculates the region that receives from
server the video data with a better quality than the remaining of part the video [9].
The work of Duanmu et al., 2017 proposes prediction of the viewing direction for
segment n + 1 through linear regression based on the past view segments [11].
Approach of Xie et al., 2017 uses user’s orientation in Euler angle and leverage Linear
Regression model to apply Least Square Method and to calculate the trends of head
movements [25]. The work [22] proposes to receive from a server only the data of
covered by user’s viewport. At each point of time, the client requests data which
would be played in the future. Taghavi et al., 2017 use Weighted Linear Regression
to predict the next viewport based on window with the latest viewport samples.
Researchers mentioned that a client can continue playback of at least a low-quality
version of the video when the download time of next video portion varies [22].

Analysis done by Qian et al., 2016 indicates that at least in the short term, viewers’
head movement can be predicted with accuracy > 90% by even using simple methods
such as linear regression [19]. The different approaches were compared such as
computing the average value, using the linear regression with all samples and with
weighted linear regression with recent samples. With weighted linear regression the
average prediction accuracy for short-term values was higher than 90% across all
users. However in the longer term it is more difficult to achieve the good result and
the average accuracy drops to about 70% [19].

A method to apply saliency algorithms to VR video viewings was presented by
Aladagli et al., 2017 in work [1]. Cross-correlation analysis used for measuring
the relationship between the predicted fixation sequences and the recorded head
movements [1]. Based on works mentioned above, Nguyen et al., 2018 proposed
panoramic saliency algorithm in order to learn the dependence of head tracking logs
and saliency maps from the past video frames.

2.6 Related works 10

2.6.2 Recurrent Neural Networks

As was explained above, traditional prediction algorithms can not be used directly
on a new media content in 6-DoF VR Applications. The user position and rotation
data is coming as time series with a sequential order that is crucial to be followed
in order to predict correctly the next future step for a look-ahead time. A sequence
of inputs can be processed with Artificial Neural Network (ANN) called Recurrent
Neural Network (RNN). Moreover, RNN can processes input with remembering its
state while processing the next sequence of inputs. It is known that standard RNN
has difficulties to learn long-term dependencies with gradient descent [5]. Though
RNN can robustly store information, it yields a problem of vanishing gradient that
make leaning difficult [5]. In the last decade, RNN algorithms have been adopted for
motion prediction of 3D sequences with long-term dependencies taken into account.
For example, the work of Crivellari et al., 2020 targets traces of tourists in a foreign
country and tries to predict the motion of people in the environment they never seen
before. LSTM-based model is used thus for analyzing the tourists’ mobility patterns
[10].

The authors Aykut et al., 2018 claims their research to be first work that applies deep
learning for head motion prediction. The authors experimentally confirmed that
Feed-forward Neural Network (FFN) indeed had difficulties to learn for different
delays. The decision to use LSTM-based architectures Aykut et al., 2018 reasoned
with feedback loop and ability to establish a way of memory and share weights
over time [3]. Conducted by researchers experiments showed that the LSTM-based
architecture leads to a significant improvement of the MAE and RMSE metrics [3].
The LSTM-based methods were compared also to widely used approaches like the
Linear Regression and a Kalman Filter based optimal state estimate. Thus Aykut et
al., 2018 demonstrated a substantial improvement of the deep predictor for latencies
in the range of 0.1–0.9 s [3].

Next year Aykut et al., 2019 experimented in their work [4] with GRU model that
belongs to the group of recurrent neural networks (RNN). Authors considered GRU
usage because it is computationally more efficient, as it has fewer parameters and
states than LSTM units [4]. Proposed in the research GRU-based network is able to
improve the MAE and RMSE compared to mentioned above LSTM model, especially
for larger delays [4].

Researchers Karim et al., 2018 developed long short term memory fully convolutional
network (LSTM-FCN). In the proposed models, LSTM block is augmented by an fully
convolutional block [15] identical to the convolution block in the CNN architecture
proposed by Wang et al., 2018 in their work [24]. Karim et al., 2018 tried to reduce

2.6 Related works 11

the rapid model’s overfitting by transformation of input to have N variables with a
single time step [15].

In work of Chang et al., 2020 used in addition to standard LSTM networks also
bidirectional LSTM (Bi-LSTM) networks, which is stacked two LSTM networks in
forward and backward directions. Standard LSTM networks can only consider the
past information and Bi-LSTM networks can capture both past and future information
by two opposite temporal order in hidden layers [7]. Experimentally, authors
found that the basic LSTM performs the best comparing to Bi-LSTM and Temporal
Convolutional Network [7].

GRU Model and additionally a bidirectional LSTM (Bi-LSTM) network are used
for action recognition based on sensor signals from HMD in work [16]. Similar as
in work [7] the LSTM model performed better compared to Bi-LSTM and a GRU
outperformed both models. Authors said that the possible reason could be the
short-term correlation of human actions in their dataset and that Bi-LSTM with
its complicated model structure is rather suitable for long-term actions [16]. The
experiments provided in these works clearly indicate that GRU unit can outperform
LSTM unit. However, researches suggested that the choice of the RNN model can
depend heavily on the dataset and corresponding task [8].

2.6 Related works 12

3Implementation

This chapter presents the steps of development and implementation of the proposed
approach. The Unity Application for HoloLens was deployed on HMD and raw data
with measures and dimension columns was obtained. This data was analysed and
preprocessed to ensure that the captured data can be used in corresponding machine
learning models. The model architecture was implemented and experimentally
improved during training and evaluation steps.

3.1 6-DoF Dataset

This section describes how the dataset was obtained, analysed and presents the
visualisation of the user’s head position and rotation. Almost all machine learning
approaches require not only row data collection but also data exploration and
preprocessing steps to be done before training begins.

3.1.1 Data collection from HMD

The real 6-DoF dataset must be used as training data from which the model can
learn the spatial and time dependencies. In this master thesis HoloLens 2, the
second iteration of Microsoft’s head-mounted mixed reality device, was used for
data collection. The user position and orientation were obtained with the Unity
application developed for this purpose. The Main Camera in Unity is automatically
configured to track head movements. More details about Unity application can
be found in section 3.2.5. Using the Main Camera, a user position (x, y, z) and
orientation in quaternion (qx, qy, qz, qw) were logged in a csv-file. Quaternions
obtained from HMD will be used to define a rotation by four numbers. Quaternion
representations are very convenient for operations such as composition or rotations
and coordinate transformation [23]. For these reasons quaternions are chosen for
the representation of the user head’s rotation in three dimensions. Compared to the
dataset in [12], the additional parameters were recorded from the Main Camera
in order to add more information during training processes. Thus the world-space
speed of the camera in metres per second was recorded. Unity velocity has the speed
in (x, y, z) defining the direction. The obtained 6-DoF dataset has 10 features used

13

in the training process: position (x, y, z), orientation (qx, qy, qz, qw) and velocity
(x, y, z).

The datasets were recorded in the laboratory space. HMD was presented to users
and the basic functions were explained. During data recording, users freely walked
wearing HMD in laboratory space. The Unity application, running on HMD, not
only recorded the mentioned parameters but also had a volumetric animated object
placed 3 metres ahead of the user in the Mixed Reality environment. No personal
data was recorded during these sessions and all traces are obtained anonymously.
Thus, after an Unity application was launched, users could immediately see the
animated object. The several traces were recorded for at least 10 minutes each.
It allows to have enough data after splitting the dataset into training, test and
validation partitions. Table 3.1 show the first 20 rows from the raw dataset obtained
from HoloLens 2 and used in training. Although the dataset has 10 columns, the
table 3.1 presents only timestamp and position (x, y, z) columns.

timestamp x y z

2.649431 0.004954389 0.003402365 0.01010712
2.66943 0.00459053 0.003120769 0.01130438
2.698009 0.003960807 0.002990472 0.01276976
2.719285 0.003730714 0.003037783 0.01305151
2.746641 0.003252693 0.003489003 0.01368421
2.764094 0.003153284 0.003518121 0.01400959
2.780033 0.003087142 0.003409061 0.01435899
2.802086 0.003021815 0.00314023 0.01473305
2.815575 0.002789935 0.003551113 0.01506916
2.832602 0.002527435 0.003542757 0.01534094
2.848514 0.002212256 0.003605011 0.01565307
2.863769 0.001921757 0.003369405 0.01590317
2.879648 0.001668522 0.00348538 0.01607716
2.89686 0.001501704 0.003624826 0.01627397
2.913541 0.001487849 0.00359472 0.01643924
2.930006 0.001501501 0.003769569 0.01669565
2.948201 0.001617525 0.004252479 0.01697758
2.964302 0.001755987 0.004224311 0.01721937
2.97978 0.001838901 0.004487753 0.01747578
2.997117 0.002005509 0.005007531 0.01782864

Table 3.1: Raw data from HoloLens 2.

The first column in the dataset is timestamp. It is obvious that the timestamp
appears in the raw dataset not linearly and comes with different pauses. Even the
high-cost HMD, like used in this research HoloLens 2, is sometimes unstable in
frame rate during collecting data. Due to signal processing and propagation delays,
distance in time between two consecutive samples was either increased or decreased.
In the Unity Application, the frame rate is 60 Hz which means that data is expected
to be collected every 0.016(6) seconds. Data on some expected timestamps seemed
to be unavailable in HMS for recording. Between two sequences with bigger time

3.1 6-DoF Dataset 14

gaps, some records may be considered to be missed. To deal with the above situation,
the preprocessing steps must be done. They are described in a section 3.1.3 below.

3.1.2 Data Exploration

The next step after data was gathered for machine learning, is data exploration.
The goal of this initial step is, firstly, a data visualisation for understanding of
dataset characterizations. As already stated in section 3.1.1, a user position (x, y, z),
orientation in quaternion (qx, qy, qz, qw) and the world-space speed of the camera
for each direction in (x, y, z) was obtained from Main Camera in Unity application
launched on HMD.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

seconds

−15

−10

−5

0

5

10

15

d
eg

re
es

qx

qy

qz

(a) Dataset 1556

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

seconds

−15

−10

−5

0

5

10

15

d
eg

re
es

qx

qy

qz

(b) Dataset 1623

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

seconds

−15

−10

−5

0

5

10

15

d
eg

re
es

qx

qy

qz

(c) Dataset 1703

Figure 5: User position plots from obtained datasets (a, b, c).

First, let’s start with the analysis of user position data. The figures 5a, 5b, 5c show
dataset named 1556, 1623 and 1703 correspondingly. As a matter of fact, plotted
dataset were already interpolated on the preprocessing step. Although interpolation
was done before data exploration, the details about interpolation can be found in
section 3.1.3. The names of datasets means only a timestamp in format HH : MM

when a dataset was obtained from HMD in laboratory space. Thus the unique name
of csv-files on the HMD system was guaranteed for the day of experiment. In this

3.1 6-DoF Dataset 15

thesis the names will be used to identify each of all three datasets. Fig. 5 shows only
3 chosen datasets from those obtained in laboratory space. All datasets indicate the
same behaviour of VR users with HMD looking at the VV projected in VR space as
was found out in works [12, 26]. The MAE and RMSE metric results tend to be
similar for every dataset during training and testing.

All traces were recorded over 10 minutes long on average 12 minutes. All traces were
then shortened to a precise length of 10 minutes to ensure equal data length for the
purpose of visualisation and analysis. The observations based on the sample traces
can be made similar as it was done by Gül et al., 2020 in their work [12]. The user
rarely moves along the y-axis. The y-axis shows the vertical movement that the users
could make if they sit down or stand up. Based on the data obtained, users walked
around a volumetric object in virtual reality and did not make particularly noticeable
and prolonged attempts to examine the object at the lower point of the projection on
a laboratory’s floor since vertical movement requires more effort to crouch down and
stand up. The laboratory space where the dataset was obtained was not cluttered
with furniture thus users could walk around the volumetric object projected into
their HMD. The figure 6 shows an enlarged y-axis in the range from 400ms to 500ms
and thus proves there is no significant change in the vertical position of the user.

400 420 440 460 480 500
seconds

0.4

0.2

0.0

0.2

0.4

de
gr

ee
s

y

Figure 6: Changes in the user’s position along the Y axis in the range from 400ms to 500ms.

Spatial coordinate systems on Windows (HoloLens runs on the Windows Holographic
OS) must be right-handed according to the Microsoft documentation. However Unity
documentation points that Unity uses a left-handed convention for its coordinate
system and experiments performed in Unity with HoloLens 2 during implementation
step proved that spatial coordinates in dataset recorded from left-handed system.
In both kinds of coordinate systems, the positive X-axis points to the right and the
positive Y-axis points up (aligned to gravity). In the recorded dataset positive Z-axis
points away from a user. Spatial coordinate system of HoloLens expresses coordinate
values in metres. The mean of position for axes are X = −0.71, Y = 0.01, Z = 1.58
for dataset 1556. This statistical indicator helps to judge the movement pattern in
the VR environment projected inside the particular laboratory space. The user’s
movement along the X axis is shifted 0,7 m to the left side in the direction of the
negative axis. This can be explained by the position of origin of the coordinates
when the Unity application was launched. If the application was not launched strictly

3.1 6-DoF Dataset 16

in the centre of the room, but rather closer to the window or wall on one side of
the room, then the user had less room space from the side of the window or wall.
The Y-axis shows no significant change in the movement and thus rather reflects the
difference of the HMD position on the head when the user makes steps walking in
the room. Mean of Y-axis of dataset 1556 shows the average user was about 1,58
m back from the origin of the coordinate system. The VV object of a real animated
human was placed 3 metres ahead of the user. It seems that users are required to
step back 1-2 metres to be able to see the whole height of the placed VV object
respecting the limited Field of View (FoV) of HoloLens 2. Microsoft website1 states
the headset’s aspect ratio is 3:2, horizontal Field of View (FoV) of 43◦ and a vertical
of 29◦. Indeed the standard deviation for axes X = 3.23, Z = 3.92 shows that the
user circled the hologram (VV of a human) with an average distance 3-4 metres
looking at the volumetric object from all sides. For Y-axis Ystd = 0.015 corresponds
to a distance deviation from the measured mean when the user was walking in the
room without significant movement up (like jumping) or down (sitting down on the
floor).

3.1.3 Data preprocessing

As was mentioned in section 3.1.1, the raw sensor data obtained from the HoloLens
was unevenly sampled at 60 Hz and had different temporal distances between
consecutive samples. The data preprocessing step transforms the data into a format
that is more easily and effectively can be processed and visualised. Table 3.2 shows
20 first rows from the resulting dataset after upsampling the positional data with
linear interpolation.

Gül et al., 2020 obtained the similar raw dataset from the same HMD and interpo-
lated it to obtain temporally equidistant samples. Same as it was done in work [12],
the position and velocity data were upsampled using linear interpolation. Spherical
linear interpolation was used to interpolate between rotations represented by quater-
nions and table 3.3 lists 20 first rows from the resulting dataset after upsampling
the rotational data.

After the interpolated dataset was plotted as figure 7, the important observations
based on the sample trace could be done. While the user position data plots look
appropriate for machine learning algorithms, the graph with orientation shows data
that is not the perfect case for usage with machine learning technologies and could
decrease the prediction rate. The real part qw and the component qy of quaternion
have obviously discontinuous (sharp change of sign) making it hard for a predictor to
learn. An orientation on quaternions is used in training, thus this data requires a few

1https://www.microsoft.com/en-us/hololens/hardware

3.1 6-DoF Dataset 17

timestamp x y z

0.0 0.004954389 0.003402365 0.01010712
5000000.0 0.0048331026667 0.003308667 0.0105062067
10000000.0 0.00471181633333 0.003214633332 0.01090523
15000000.0 0.00459053 0.003120769 0.01130438
20000000.0 0.004485576166 0.00309903333 0.0115486078
25000000.0 0.00438062233 0.00307733667 0.011792899
30000000.0 0.0042756685 0.0030556205 0.01203707
35000000.0 0.004170714667 0.0030339033 0.0122813
40000000.0 0.00406576084 0.00301218867 0.01252553
45000000.0 0.003960807 0.002990472 0.01276976
50000000.0 0.00390328375 0.00300229975 0.0128401975
55000000.0 0.0038457605 0.0030141275 0.012910635
60000000.0 0.00378823725 0.00302595525 0.0129810725
65000000.0 0.003730714 0.003037783 0.01305151
70000000.0 0.003651043834 0.00311298635 0.01315696
75000000.0 0.003571373667 0.00318818967 0.01326241
80000000.0 0.003491703003 0.003263393 0.01336786
85000000.0 0.003412033332 0.0033385963 0.01347331
90000000.0 0.003332363167 0.003413799667 0.01357876
95000000.0 0.003252693 0.003489003 0.01368421

Table 3.2: Interpolated positional data from HoloLens 2.

qx qy qz qw

0.05225104 -0.0092471 -0.01470939 0.998482825
0.052829134 -0.0094018 -0.01476541 0.9984501
0.053407194 -0.0095559 -0.0148214108 0.99841708
0.053985240 -0.00971031 -0.0148774088 0.9983836
0.054563231 -0.0098646 -0.0149333515 0.99834990
0.054967034 -0.0099280 -0.0147404755 0.99832999
0.055370826 -0.0099914 -0.014547596 0.998309876
0.055774607 -0.0100548 -0.0143547143 0.998289554
0.056178376 -0.0101182 -0.0141618293 0.9982690
0.0565821344 0.0101816 -0.01396894 0.998248298
0.0568467445 -0.0102414 -0.01378002 0.99823527
0.0567612581 -0.01029217 -0.01360108 0.998242075
0.0566757694 -0.01034289 -0.013422148 0.998248830
0.0565902782 -0.01039361 -0.013243212 0.9982555436
0.0565037268 -0.01044992 -0.0130706110 0.998262133
0.0563820024 -0.010691806 -0.01310865 0.998265955
0.0562602738 -0.010933688 -0.01314669 0.998269703
0.0561385409 -0.011175569 -0.013184732 0.9982733762
0.0560168039 -0.011417450 -0.013222770 0.99827697

Table 3.3: Interpolated rotational data from HoloLens 2.

additionally preprocessing steps. Usually, when doing calculation with quaternions,
quaternions must be normalised to a unit length in order to represent valid rotations
[23]. During experiments with quaternions in the obtained dataset was detected
that quaternion magnitudes ||q|| are equal to 1. Thus the data came from a HMD
already normalised, so that a quaternion in the dataset kept the orientation as it was
during the user’s movement with a magnitude equal to 1.0.

3.1 6-DoF Dataset 18

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

m
et

er
s

x

y

z

seconds

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

d
eg

re
es

qx

qy

qz

real qw

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

seconds

−150

−100

−50

0

50

100

150

d
eg

re
es

yaw

pitch

roll
Figure 7: Interpolated 6-DoF dataset’s user position and orientation in quaternions.

Next, quaternions between neighbouring points in the obtained dataset represent
the very similar orientation made by the user wearing HMD step by step. The
orientation plot on figure 8 has discontinuities that can be seen on qw line. As a
consequence of the discontinuity (sharp change of line from negative to positive area
with the same amplitude) the two neighbouring quaternions with similar rotation
have significant 4D vector space between them. It makes predictions worse than
what can be proved by RMSE and MAE rotation metrics. Flipping the sign will
not affect the rotation, but it will ensure that there are no large jumps in 4D vector
space when the rotation difference in rotation space (SO(3)) is small. If the negative
component of quaternions is flipped into positive then the dataset, representing
the same rotation without creating an artificial discontinuity in the space, will be
available for model training.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

seconds

0.0

0.2

0.4

0.6

0.8

1.0

d
eg

re
es

qx

qy

qz

real qw

Figure 8: Quaternions from 6-DoF dataset’s flipped if their real part is negative.

The figure 9 represents quaternions of the original interpolated dataset on the upper
part of the plot and the normalised flipped quaternions on the lower part of the plot.
The quaternion’s components were flipped only if their real part became negative.
Different from figure 8 the limit of y-axis is set to [-1, 1] on figure 9 so that the result
of inverting the quaternion is easy to compare to the original data. Figure 9 shows
plotted data with length of 20 seconds in range 162 - 182 s from both datasets.

3.1 6-DoF Dataset 19

seconds
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

d
eg

re
es

qx

qy

qz

real qw

170 180

seconds

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
d

eg
re

es

qx

qy

qz

real qw

Figure 9: Enlarged quaternion plot with breaks omitted.

Thus the two representations of quaternions were blended into one data set, omitting
discontinuities in the time series as can be seen presented on Figure 8. Indeed, the
RMSE and MAE rotation metrics were improved when the model was trained
with a dataset with quaternions without sharp sign changes. More information can
be found in section 4.4.

3.1 6-DoF Dataset 20

3.2 Model

The section describes the inputs and architecture of evaluated LSTM, GRU and
Bidirectional GRU models. A model itself is a mathematical representation that
produces expected output based on a given input.

3.2.1 Inputs and outputs

The correctly chosen model can discover and learn the patterns in the input dataset
while being trained in order to predict new data after training. In the sections
3.1.2 and 3.1.3 the obtaining and structure of 6-DoF is covered. After the data
preprocessing step, the interpolated dataset with flipped negative quaternion was
used for model training. The dataset itself can not be used with a model directly
and a sequence data must be prepared to feed as an input into an RNN model. The
6-DoF dataset is a two-dimensional array. The first dimension of the 6-DoF dataset
represents the number of timesteps of the recorded dataset. The second dimension
represents the number of features of the input sequence. During data collection
a 6-DoF dataset with 10 features was created. Recorded in dataset features are
position (x, y, z), orientation (qx, qy, qz, qw) and velocity (x, y, z) data.

However PyTorch’s LSTM and GRU models expect all of their inputs to be 3D tensors.
Thus 2D data must be converted into 3D data. The meaning of the axes of these
tensors is important. The first axis by default is the sequence itself, the second
indexes instances in the batches, and the third indexes features of the input. By
specifying PyTorch’s parameter batchfirst = true the input and output tensors were
provided as (batch, seq, feature) instead of (seq, batch, feature). This change does
not apply to hidden or cell states and thus tensor containing the initial hidden for
each element in the batch must be initialised as (D ∗ layers, batch, hidden). D is 1
for LSTM and GRU Models and equal to 2 for their bidirectional variant.

Usually in machine learning the dataset will be split randomly, as there’s no depen-
dence from one observation to the other. With time series representing user position
and rotation this is not a case and data have to be split with respect to time depen-
dencies. The 6-DoF contains positional data without any seasonal characteristic and
there is no obvious way to split data in groups. It is decided to split the dataset into
three datasets: training, validation and test dataset. The split ratio is 60:20:20 for
each corresponding dataset. Thus first 60% of data used for training, next 20% for
validation and the rest 20% for testing. No dimensional shuffle was applied to keep
the original time dependencies. During training loop on each epoch model trained
on training dataset in train() mode that allows the learning process with updating

3.2 Model 21

of model weights. In the end each epoch model was explicitly set into evaluation
mode by calling the eval() function mode to turn off gradients computation and
validate on the validation dataset. After the model was repeatedly trained for 500
epochs, the model then predicted new data on a never seen before test dataset.

The last step to prepare a 6-DoF dataset to be used as model input is using time steps
as features. Having a historical data of user position and orientation, the next value,
X(t+n) must be predicted by a model from the previous n observations Xt,X+1, ...,
and X(t+n−1). Since the future values that must be predicted are already recorded
in the dataset, a sliding-window approach can use prior time steps to predict the
next time step and thus turn a time series dataset into a supervised learning problem.
With a simple for-loop lagged observations can be created from input by shifting
the values in a column by n times and removing the first n columns. The original
dataset was interpolated using linear interpolation for position data and SLERP is
used for quaternions. Thus, an interpolated dataset is an evenly-sampled dataset
with a sampling rate of 200 Hz (5 ms). The LAT of 100 ms is used for evaluation.
Thus 20 future values corresponding the LAT = 100ms must be predicted by LSTM
and compared with real data to evaluate the prediction.

Finally, the spit datasets with added sliding window were exported in standard binary
npy-files format of NumPy. The format stores all of the shapes and the information
necessary to reconstruct the array correctly even on another machine with a different
architecture. Thus the spitting of the dataset is not required every time when the
model trains with different hyperparameters on the GPU cluster.

3.2.2 LSTM Model

Recurrent neural networks have recently shown promising results in many machine
learning tasks, especially when input and/or output are of variable length and are
coming as time series with a sequential order. Unfortunately, the known problem of
RNN that was observed many years ago by e.g., Bengio et al., 1994 that it is difficult
to train RNNs to capture long-term dependencies because the gradients tend to
either vanish (most of the time) or explode (rarely, but with severe effects) [5]. New
approaches are needed to be implemented to reduce the negative impacts of this
issue. Since a traditional recurrent unit overwrites its content at each time-step, a
LSTM unit is able to decide whether to keep the existing memory via the introduced
gates. The Long Short-Term Memory (LSTM) has a number of minor modifications
[8] since it was initially proposed in work [14]. Analysis done by Qian et al., 2016
indicates that in the short term users’ head movement can be predicted with accuracy
> 90% by even using simple methods such as linear regression [19]. However in the
longer term it is more difficult to achieve the good result and the average accuracy

3.2 Model 22

drops to about 70% [19]. Thus the LSTM model was chosen to evaluate with the
6-DoF dataset based on long term dependencies of the data.

Since LSTM is a special kind of RNN, the RNN architecture will be briefly introduced
first. RNN block consists of a single computation layer with a tanh activation
function that is used to help regulate the values flowing through the network. The
tanh function squishes values to always be between -1 and 1. RNN has the ht

function of the previous cell state ht−1 and the current inputXt. The architecture
of LSTM is complexer and consists of several computational blocks that control
the flow of information through the cell. The key building block behind LSTM is
a structure known as gates. They allow LSTM to avoid the weight conflict when
making decisions about which information from the past and current timestamp is
important for correctly mapping inputs to outputs. In other words, the network can
decide how to use gates when it is needed to keep or override the information in a
memory cell or access the current memory cell [14].

Figure 10: Long Short-Term Memory.

The LSTM architecture is illustrated2 on Fig. 10. Using the first gate ft model decides
which information should be omitted from the cell in that particular time step. The
sigmoid function uses the previous state (ht-1) along with the current input xt and
computes the cell state using formula:

ft = σ(Wifxt + bif +Whfht−1 + bhf) (3.1)

where ft is the forger gate, ht is the hidden state at time t, ht−1 is the hidden state
of the layer at time t − 1 or the initial hidden state at time 0, σ is the sigmoid
function. All LSTM gates have sigmoid activations that is similar to the tanh

2Source: Prof. Dr. Tim Landgraf, Lecture 13: Recurrent Neural Networks, WS 20/21: Machine
Learning

3.2 Model 23

activation but squishes values between 0 and 1. This function is useful for forgetting
the information since any number getting multiplied by 0 is 0 and thus disappears
from the cell state.

With it cell state ct will be updated. First, the previous hidden state and current
input are passed into a sigmoid function on input gate:

it = σ(Wiixt + bii +Whiht−1 + bhi) (3.2)

The transformed values between 0 and 1 meaning 0 means not important, and 1
means important will be multiplied on cell gate c̃t with the tanh output of the hidden
state and current input:

c̃t = tahn(Wigxt + big +Whght−1 + bhg) (3.3)

New cell state first gets pointwise multiplied by the forget vector and if these values
near 0 they will be dropped from the cell state. The result from the input gate is
pointwise added and thus a new cell state is created with values that the neural
network finds relevant.

ct = ft � ct−1 + it � c̃t (3.4)

The output gate is the last in LSTM calculations and decides what the next hidden
state should be. Hidden state is also used to make a prediction because it contains
information of previous inputs and thus helps to learn long term dependencies.
The sigmoid function gets the previous hidden state and the current input and tanh
function gets the newly calculated cell state. And similar to previous step tanh output
with the sigmoid output are multiplied to decide what information the hidden state
should carry. The new cell state and the new hidden is then carried over to the next
time step.

ot = σ(Wioxt + bio +Whoht−1 + bho) (3.5)

ht = ot � tahn(ct) (3.6)

Model implementation, training loop and evaluation are done in Python using
PyTorch. Model has input [batch, sequence, features] with sequence equal to 20 last
values which corresponds to 100 ms of historical data and 10 features that contain
3 positional, 4 rotation and 3 velocity columns. The batch size was set to 27. The
hidden dimension is set experimentally after parameters grid search on GPU Cluster
to be equal 512. Adam optimization algorithm is used, the maximum number of
epochs was set to 500, early stopping technique (patience = 7, min. delta = 0,05)
was used to avoid overfitting. Additionally, the learning rate was decreased by 50%
from the initial value of 0.0001 every 30 epochs. The learning rate is a parameter that
determines how much an updating step influences the current value of the weights.

3.2 Model 24

Adjustable learning rate was proposed in works [3, 4] and implementing this option
had improved prediction and allowed the model to learn patterns correctly without
overfitting. Weight decay of Adam optimiser experimentally is set to a small value of
1e− 12 . Thus this additional term in the weight update rule causes the weights to
exponentially decay to zero, large weights were less penalised and the model could
successfully learn the long term dependencies and thus constantly decrease both
training loss and validation loss and stabilise them at a specific point.

The high performance was achieved even without additional activation functions
with simple one-layered architecture represented below:

LSTMModel1 (
(lstm): LSTM (10, 512, batch_first =True)
(fc): Linear (in_features =512 , out_features =7, bias=True)
==
Layer (type:depth -idx) Output Shape Param #
==
LSTMModel1 [128 , 20, 7] --

--- LSTM: 1-1 [128 , 20, 512] 1 ,073 ,152
--- Linear : 1-2 [128 , 20, 7] 3 ,591

==
Total params : 1 ,076 ,743
Trainable params : 1 ,076 ,743
Non - trainable params : 0
==

Listing 3.1: One-layered LSTM with sliding window

Since only position and rotation data of similar range is used in the 6-DoF dataset, no
scaler for the features is applied. Experiments showed that normalisation of values
between [0..1] and between [-1..1] results in higher MSE and RMSE. Already
preprocessed interpolated datasets with flipped negative quaternions are loaded in
with respect to sequential order as training, validation and test dataset from npy-files.
Additional extended LSTM architectures were implemented and tried with HoloLens
2 6-DoF dataset. For example, the non-linear activation functions ReLU and Mish

were tried in order to get more sensitivity to the activation sum input and avoid easy
saturation. Thus the nodes in the model should be only deactivated if the output
is less than 0. Model variant with ReLU experimentally resulted in higher MAE

and RMSE compared to LSTM1 and therefore was rejected for a final deployment.
Since the LSTM2 Model has the similar architecture as the following LSTM3, it is
not listed separately.

LSTM3 uses a new activation function Mish that was presented in machine learning
scene in 2019 in work [17] and is a self-regularised non-monotonic activation
function which can be mathematically defined as f(x) = xtanh(softplus(x)). Mish
is a smooth, continuous activation function and allows better gradient flow compared

3.2 Model 25

to ReLU that tends to have a lot of sharp transitions [17]. The LSTM3 model
improved MAE and RMSE metrics. Model’s batch size changed to 210. Additional
linear layer with additional Mish-function is added in order to double the hidden
size of LSTM. Weight decay of Adam optimiser is experimentally set to 3e− 14 with
the LSTM3 model.

LSTMModel3 (
(lstm): LSTM (10, 512, batch_first =True)
(mish_1): Mish ()
(fc_1): Linear (in_features =512 , out_features =1024 , bias=True)
(mish_2): Mish ()
(fc_2): Linear (in_features =1024 , out_features =7, bias=True)

==
Layer (type:depth -idx) Output Shape

Param #
==
LSTMModel2 [1024 , 20, 7] --

--- LSTM: 1-1 [1024 , 20, 512] 1 ,073 ,152
--- Mish: 1-2 [1024 , 20, 512] --
--- Linear : 1-3 [1024 , 20, 1024] 525 ,312
--- Mish: 1-4 [1024 , 20, 1024] --
--- Linear : 1-5 [1024 , 20, 7] 7 ,175

==
Total params : 1 ,605 ,639
Trainable params : 1 ,605 ,639
Non - trainable params : 0
==

Listing 3.2: LSTM3 with Mish activation function

LSTM4 Model is a three-layered stacked LSTM with an additional dropout added
after all but the last recurrent layer and Mish activation function. This design
decision is made in order to test whether adding more components to the neural
network could mean the improvement upon a simpler model on 6-DoF dataset.
By adding more LSTM layers the model parameters that have to be trained were
increased 5 times from 1,605,639 to 7,901,191 trainable parameters. When the
model parameters are getting large in count, the model gets more complex, having
hard time fitting on the training instances as it needs to optimise parameters in
a way that can optimally fit the training instances. The time needed for training
increased noticeable even on GPU Cluster. Finally, LSTM4 resulted in significantly
higher MAE and RMSE metrics and thus this architecture is rejected.

Models LSTM1 and LSTM3 are considered to be the best evaluated LSTM models
that can predict the future data based on past 20 values (100 ms) in a 6-DoF VR
environment using sensor data from HMD for LAT of 100 ms. Although sufficient
results for prediction and low MAE and RMSE metrics are already obtained with the

3.2 Model 26

LSTM model, the GRU and bidirectional models will be implemented in order to
evaluate their performance and potentially to find the better model architecture.

3.2.3 GRU Model

Another approach called a gated recurrent unit (GRU) can adaptively capture de-
pendencies of different time scales without having a separate memory cell [8]. It
is similar to an LSTM, but only has two gates - a reset gate and an update gate.
Although architecture does not provide an output gate, with fewer parameters it can
generally be easier and faster to be trained than LSTM. GRU Model can catch the
long-term dependencies in the data obtained from HMD that are otherwise hidden by
the effect of short-term dependencies from the standard RNN models. This chapter
describes GRU models that are implemented to predict future values with a 6-DoF
dataset obtained from HoloLens 2.

Figure 11: Gated Recurrent Unit.

The GRU architecture is illustrated3 in Fig. 11. GRU avoids the vanishing gradient
problem of a standard RNN with only two gates that decide what information should
be passed to the final output. The update gate plugs xt into the network unit
and multiplies with its own weight Wiz. The same multiplication is done with the
previous hidden state h(t− 1) that has its own weight Whz. Both results are added
together and a sigmoid activation function is applied to squash the result between 0
and 1. The mathematical expression of this calculation is as following:

zt = σ(Wizxt + biz +Whzht−1 + bhz) (3.7)

3Source: Prof. Dr. Tim Landgraf, Lecture 13: Recurrent Neural Networks, WS 20/21: Machine
Learning

3.2 Model 27

where zt is an update gate, ht is the hidden state at time t, ht−1 is the hidden state of
the layer at time t− 1 or the initial hidden state at time 0, σ is the sigmoid function.
With these matrix multiplications, the model can determine how much of the past
information from previous time steps needs to be passed to the next to predict future
values.

The reset gate does what its name means - gate can reset the state of the model and
thus the model decides how much of the past information to forget. It is a useful
option when context changes in the historical data and previous values are not more
relevant to produce future values. With a powerful update gate the model can decide
to copy all the information from the past and eliminate the risk of vanishing gradient.
The formula of the reset gate is:

rt = σ(Wirxt + bir +Whrht−1 + bhr) (3.8)

Both gates will affect the final output. A new memory content will use the reset gate
to store the relevant information from the past. It is calculated as follows:

nt = tahn(Winxt + bin + rt ∗Whnht−1 + bhn) (3.9)

As the last step, the network calculates a vector which holds information for the
current unit and passes ht to the network. The formula shows that the update gate
is used to determine what information from previous steps will be passed into the
memory. Additionally, recently calculated new memory gate nt controls the amount
from current data to be added into long memory. That is done as follows:

ht = (1− zt) ∗ nt + zt ∗ ht−1 (3.10)

GRU model implementation, training loop and evaluation are done similar to LSTM
in Python using PyTorch. Model has the same input [batch, sequence, features] with
sequence equal to 20 last values and 10 features (3 positional, 4 rotation and 3
velocity columns). The batch size was increased to 29. The hidden dimension is 512
nodes. Same as with LSTM, Adam optimization, the extended version of stochastic
gradient descent and nowadays common algorithm for ML tasks, used for GRU
Model. Adjustable learning rate is modified to decrease by 60% from initial value of
0.0001 every 50 epochs. Weight decay kept the same value of 1e− 12 .

The maximum number of epochs was set to 500, an early stopping technique with
the same patience and delta as in LSTM was used to avoid overfitting. Model requires
less epochs to learn and can predict better than LSTM. Although the error decreases
very slowly after 150-200 epochs, the model converges to a smallest achievable error

3.2 Model 28

after near 500 epochs. The model is overtrained with 1000 epochs if trained without
early stopping technique.

Different to LSTM Model, the best performance was achieved with pure GRU model
without additional activation functions with simple one-layered architecture repre-
sented below:

GRUModel1 (
(gru): GRU (10, 512, batch_first =True)
(fc): Linear (in_features =512 , out_features =7, bias=True)
)
==
Layer (type:depth -idx) Output Shape

Param #
==
GRUModel1 [512 , 20, 7] --

--- GRU: 1-1 [512 , 20, 1024] 804 ,864
--- Linear : 1-2 [512 , 20, 7] 3 ,591

===
Total params : 808 ,455
Trainable params : 808 ,455
Non - trainable params : 0
===

Listing 3.3: GRU1 with Sliding Window

From the listing above it is clear that pure GRU1 has 25% less trainable parameters
as pure LSTM1 and twice less trainable parameters as LSTM3 that uses additional
activation and linear functions. Moreover the result of prediction of future values are
preciser than those obtained with LSTM1 and LSTM3 and has significant smaller the
MAE and RMSE metrics (more information about results of prediction with LSTM
and GRU models can be found in chapter 4.4.2 and 4.4.3).

Additionally to GRU1 several different architectures were implemented and tested.
The GRU2 model has ReLU -activation function and GRU3 has Mish-activation
function. Similar to LSTM, using ReLU did not improve the predictions. Different
from LSTM, the use of Mish also worsened the results.

Slightly different architectures using the Mish activation function were implemented
and tested with parameters grid search on GPU Cluster. GRU31 uses only one Mish

activation compared to LSTM3 and GRU3 with two activation layers accompanied
with linear layers. GRU32 and GRU35 use additional dropout layer(s) with different
parameters and combinations with linear layer(s). In GRU33 adaptive max pooling
over an input signal is done in part to help over-fitting by providing an abstracted
form of the representation. Both models performed worse than those one without
dropout techniques even though it was tried to train the model longer for 1000 or

3.2 Model 29

2000 epochs. Every architecture including GRU1 was also tried as 3-layered and
8-layered stacked GRU and all results similar to stacked LSTM were significantly
worse and took noticeable more computational time as 1-layered variants.

Thus model GRU1 is considered as the best evaluated model that accurately predicts
the future values for LAT of 100 ms based on past 20 values (100 ms) in 6-DoF VR
environment using sensor data from HMD.

3.2.4 Bidirectional GRU Model

The last RNN variant evaluated in this master thesis is a bidirectional GRU model.
From related works it is known that despite the complex architecture and more
historical data available for analysis and training, the prediction results do not
exceed the results of a simple model. This section aims to check whether the results
of prediction on 6-DoF dataset are similar to those from related works.

A typical state in an RNN (simple RNN, GRU, or LSTM) relies on the past and the
present events. A state at time t depends on the states x1, x2, ..., xt−1, xt. However,
there can be situations where a prediction depends on the past, present, and future
events. Theoretically if the future information will be available during the prediction,
it can increase the prediction accuracy. For example, predicting a user’s position
in the future to be included in a sequence of movements might require us to look
into the future, i.e. a particular future position at time t could depend on a future
event like turning right, left, accelerating or stopping. Bidirectional RNNs enable
straight (past) and reverse traversal of input (future). Computationally Bi-RNNs are
a combination of two simple RNNs for moving data beginning from the start of the
data sequence, and parallel to that a backward moving occurs beginning from the
end of the data sequence. Based on the type of used RNN blocks, Bi-RNN can either
be simple RNNs, GRUs, or LSTMs. This section describes the usage if Bi-GRU Model
because the best results were achieved with GRU1 Model and therefore no Bi-LSTM
implementation was undertaken.

A Bi-GRU has an additional hidden layer to accommodate the backward training
process. At any given time t, the forward and backward hidden states are updated
as follows:

At(Forward) = σ(W forward
xa xt + bforward

a +W forward
aa At−1) (3.11)

At(Backward) = σ(W backward
xa xt + bbackward

a +W backward
aa At+1) (3.12)

3.2 Model 30

where σ is the activation function, W is the weight matrix, and b is the bias. The
hidden state at time t is given by a combination of At(Forward) and At(Backward).
The output at any given hidden state is:

Ot = Ht ∗Way + by (3.13)

During the training of Bi-GRU forward and backward passes happen simultaneously
and thus updating the weights for the two processes could happen at the same
point of time. If standard RNN Backpropagation Through Time algorithm would be
applied to Bi-RNN, it could lead to erroneous results. Thus, a modified algorithm is
used for training a Bi-RNN to accommodate forward and backward passes separately.
Thereby both the forward and backward passes together train bidirectional model.

Model implementation done similar to GRU in Python with PyTorch. When parameter
bidirectional = True is specified in nn.GRU , PyTorch takes care about correctness
of forward and backward passes and combines two GRU models by doubling the
hidden dimension size. The output will be (batch, sequence, hiddensize ∗ 2) where
the hiddensize ∗ 2 features are the forward features concatenated with the backward
features. The model is listed below:

GRUModelBiDir1 (
(init_linear): Linear (in_features =10, out_features =10, bias=True)
(bi_gru): GRU (10, 512, batch_first =True , bidirectional =True)
(out_linear): Linear (in_features =1024 , out_features =7, bias=True)
)
===
Layer (type:depth -idx) Output Shape

Param #
===
GRUModelBiDir1 [512 , 20, 7] --

--- Linear : 1-1 [512 , 20, 10] 110
--- GRU: 1-2 [512 , 20, 1024] 1 ,609 ,728
--- Linear : 1-3 [512 , 20, 7] 7 ,175

===
Total params : 1 ,617 ,013
Trainable params : 1 ,617 ,013
Non - trainable params : 0

Listing 3.4: Bidirectional GRU Model

The interesting aspect is that PyTorch requires the initialisation of h0 initial state to
use a doubled amount of layer dimension. This one layered GRU will be initialised
in PyTorch as 2-layered. It was already proved by experiments on GPU Cluster that
any combination of stacked RNN Models leads to lower prediction accuracy. Anyway
it is worth evaluating whether the accommodated separately forward and backward
passes could improve the model performance.

3.2 Model 31

Initializing hidden state for first input with zeros
h0 = torch.zeros(self. layer_dim * 2, x.size (0) , self. hidden_dim).

requires_grad_ ()

Listing 3.5: Bidirectional GRU h0 Layer

Listing above shows GRUModelBiDir1 that was implemented and evaluated addi-
tionally with GRUModelBiDir2 model with Mish activation function. Same as in
the work of Chang et al., 2020, the Bi-GRU performs the worst among all models.
The details of evaluation can be found in the section 4.4.4.

3.2.5 Development

This section presents as well the development of the Unity application for obtaining
the dataset, as the training loop in PyTorch used for all models and shortly describes
a process of developing a GPU application.

Unity application

An application was developed in Unity with the Mixed Reality Toolkit (MRTK)
and deployed on HoloLens 2. The goal of the application is to obtain the user
position and orientation during the time when a user wears a HMD. MRTK provides
a cross-platform input system, components, and common building blocks for spatial
interactions. The Unity Application was finally built using Visual Studio and deployed
using Wi-Fi connection. To enable the deployment on HoloLens 2, Windows 10 has
Developer Mode to be turned on and HoloLens must be paired with a Visual Studio
using a PIN displayed on HoloLens. Later in the final App version, that was used for
data collection, the volumetric animated object was added in the scene. It consists
of 359 frames each with its own mesh. It drastically increased the size of Unity App
and the deployment using USB was used instead of Wi-Fi connection.

In Unity, the Main Camera is always the primary stereo rendering component
attached to HMD and it is rendering everything the user sees 4. The starting position
of the user is set to (0, 0, 0) during the application launch and the Main Camera tracks
movement of the user’s head. Although HoloLens allows building a world-scale
application, the room-scale experience was selected for a spatial coordinate system.
This lets users walk around within the 10-meter boundary which is quite enough
for user’s movements inside the laboratory space and simultaneously watching the

4https://docs.microsoft.com/en-us/windows/mixed-reality/develop/unity/camera-in-unity

3.2 Model 32

volumetric video object. Fig. 13 illustrates the implemented Unity 3D Application
window with placed obj-animation, underlying code and scene.

Figure 12: Unity 3D UserPrediction6DOF Project with placed obj-animation, underlying
code and scene.

Figure 13: Photo made by Hololens 2 camera
during the Unity Application run-
ning on HMD with the volumetric
animated object.

As this research aims to find an ap-
proach to reduce the M2P latency during
rendering and delivering the volumet-
ric content to the end-user device, the
volumetric animated object was placed
three metres ahead of the user in Unity
application. Fig. 13 presents the photo
made in the mirror by a HoloLens cam-
era with HMD placed on the master the-
sis author’s head. The volumetric object
placed in the room between the author
and a mirror in the room and Fig. 13
shows what the author saw at that time
on the HoloLens screen. Users wearing
HMD thus were asked to look at ani-
mated volumetric objects and to move
freely inside the laboratory space. Ani-
mation frames of VV objects are saved

as an obj-files and contain information about the geometry of 3D objects. obj file
allows colour and texture information to store in an associated file format called the
Material Template Library (MTL). Multi-color geometric models render using these
two files together. obj-files are not supporting animation. The animation of the VV

3.2 Model 33

object in order to create an imitation of placed VV in the VR environment was quite
challenging during programming in Unity. Finally, a volumetric animation object
created programmatically with a loop that cycles through each individual frame with
the corresponding mesh and calculated speed to give the user the experience of a
real volumetric video.

User position and rotation data are logged in csv-file. This raw data has been
converted into datasets on the preprocessing step described in section 3.1.3 and thus
original interpolated dataset, the transformed with flipped negative quaternions and
several normalised datasets were used in experiments during model development
and hyperparameters search.

Training and evaluation

All evaluated models are implemented in Python with Python-native framework
PyTorch. After the model with the inner layered structure was initialised using tensor
input and output size, the training loop needed to be explicitly implemented in
PyTorch.

The main components of the training loop are the model itself, the loss function, and
the optimiser. Models creation are described in section 3.2. PyTorch’s loss function
MSELoss() is used for creation of criteria that help to measure the error of mean
squared format that is squared L2 normalisation. It computes the average value
of the squared differences that lie between the predicted and actual values. The
value of MSELoss() will always be a positive number, irrespective of whatever signs
the predicted and actual values have. During training loop on every epoch when
working with batched input, PyTorch will adjust model weight parameter in such
way that value of MSELoss() tends to be 0.00

PyTorch’s optimizer is an algorithm used to change the attributes of the neural
network such as weights and learning rate in order to reduce the losses. The standard
optimiser is Gradient Descent used heavily in linear regression and classification
algorithms. The known problem of the vanishing gradient was first discovered by
Hochreiter, a German computer scientist, back in 1991 [14]. Bengio, a professor
at the University of Montreal, also discovered the vanishing descent problem but
a bit later – he wrote about it in 1994 [5]. Network weights are assigned at the
start of the neural network with the random values, which are close to zero, and
from there the network trains them up. Briefly say, the vanishing descent problem
rises from the starting weight value close to zero and repetitive multiplication of
inputs xt, xt−1, xt−2, ..., xt−n by this value so that mathematically gradient becomes

3.2 Model 34

less and less with each multiplication. The lower the gradient is, the harder it is
for the network to update the weights and the longer it takes to get to the final
result. Additionally, in RNN the training of the current cell is based on inputs that
are coming from previous untrained layers. So, because of the vanishing gradient,
the whole network is not being trained properly.

Adam optimizer is the extended version of stochastic gradient descent and was
first introduced in 2014. The name is derived from adaptive moment estimation
and uses estimations of the first and second moments of the gradient to adapt the
learning rate for each weight of the neural network. The first moment is mean,
and the second moment is uncentered variance calculated with no mean subtracted.
The moments are not treated as the network’s parameters nor constants, they can
be thought of as some intermediate results of computing the output of the layer.
PyTorch optimizer Adam is used in evaluated models to reduce the training and
validation losses in batches and epochs.

Training of any kind of neural network is a repetitive process, looping back and forth
between forward-prop and back-prop. During each epoch in training, there are two
stages: training and validation. After each training step, the network’s weights are
tweaked a bit to minimise the loss function. On the validation step the current state
of the model is evaluated to check if there has been any improvement after the most
recent update. When two for loops are created, the train() mode must be activated
during training and the eval() mode during the validation. With the train() mode
the network’s weights will be updated in order to reduce the training loss on the
next epoch, the eval() mode signals the model that there is no need to calculate
the gradients. The model parameters, such as batch size, learning rate and weight
decay must be set correctly so that the training and validation can decrease parallel
on each epoch. Normally, on the very first epochs, the validation loss is greater
than the training loss and the model is unable to accurately model the predicted
validation data, and hence generates higher error. During model training on every
epoch the training loss and validation loss both decrease and after some amount of
epochs stabilise at a specific point. The model converges upon a final solution and
it is a good fit when the loss is low and stable and at this moment model’s training
must be stopped. It is possible to train models for a very long period so that the
validation loss stops to decrease and starts to increase again. It means the model
is overtrained and cannot generalise on new data. Regarding the very low training
loss, the model produces higher error on validation test and high error on test
dataset. The early stopping technique was used to prevent overfitting with stopping
the training when both losses are low and stable. The early stopping algorithm is
implemented manually in this thesis using Python and built into the final Python
application UserPrediction6DOF .

3.2 Model 35

Hyperparameter search

Model’s training and validation loss are calculated on every epoch and in best
case must decrease parallel every epoch and stabilise on a very low point. The
model hyperparameters influences the training process and can drastically change
the final result, leading to overfitted, underfitted or successfully learned model.
Hyperparameters are the variables which determines the network structure or how
the network is trained. In this master thesis the following hyperparameters must be
tuned: the number of hidden layers, optimizer’s learning rate, weight decay, batch
size, and number of epochs. For example, the learning rate of Adam optimiser is
a hyperparameter because it is set before model see the the training data. On the
other hand, the weights of a neural network and the first and second moments of the
Adam’s gradient are not its hyperparameters because they are trained and modified
during training loop.

For the hyperparameter tune the grid search is applied. Grid search is a process that
searches exhaustively through a manually specified subset of the hyperparameter
space of the evaluated model. Every training of the model during 500 epochs on
6-DoF dataset takes on CPU up to 2 hours with up to 95% of CPU usage. The grid
for the exhaustive search is created with Bash-script that sets hidden − dim and
batch− size in the loop to be equal power of two; lr− adam and lr−multiplicator
are float numbers with a floating-point step.

The hyperparameters search is done using the VCA GPU cluster which is installed with
the SLURM resource manager/scheduler for GPU based HPC (High Performance
Computing). Singularity container is similar to a light-weight Virtual Machine that
is used to containerize the application with the required environment and software
stack and submit the container to run as a job in the cluster. Using VCA GPU the
computation time for every job (one model training with one set of hyperparameters)
is reduced from 2 hours to 15 minutes. For every evaluated model on average
over hundred jobs were launched for the initial hyperparameters search and few
dozens for parameter tuning. With export command hyperparameters can be set
with Bash as environment variables and with nohup all of jobs can be scheduled
for computation with preventing the jobs from being aborted automatically if the
connection to the remote machine is closed. The UserPrediction6DOF application
detects whether a parallel computing platform cuda is available and if it is a case
then reads the model parameters from environment variables. The result of every
job arrives as tar-archive with all written out-files. Therefore Bash script is created
for automatically opening hundreds of archives, finding the evaluation metrics and
merging the result in one log-file for future analysis and visualisation purposes.

3.2 Model 36

4Evaluation

Chapter describes the evaluation metrics and performed experiments, visualises
prediction results.

4.1 Goal of evaluation

The goal of model evaluation is an estimation of the generalisation accuracy of a
model on future unseen data. This master thesis aims to evaluate whether RNN
neural networks modification as LSTM, GRU and bidirectional variant are able to
reduce the positional and rotation error for given look ahead time of 100 ms. This
LAT is higher than normal acceptable latency in VR applications and even higher
that measured M2P latency in cloud streaming platform presented in work [13].
Since the successfully trained best evaluated model is intended to be build in the
server infrastructure, the goal of evaluation is to find out how using of RNN model
can reduce the positional and rotational error and thus improve the quality of
delivered from cloud server VV content by calculating the proper future 2D image
from volumetric data.

A Python-based application used for model training on HoloLens 6-DoF datasets,
evaluation and for processing the job results and metrics from GPU Cluster.

Below, first a Baseline model, an experimental setup and the evaluation metrics are
discussed, before presenting the obtained results and discussing the limitations of
evaluated models.

4.2 Evaluation metrics

Evaluation metrics are used to measure the quality of the predictions made by ma-
chine learning models. This thesis similar to work [12] uses two of the most common
metrics Mean Absolute Error (MAE) and root mean squared error (RMSE).

37

Mean Absolute Error (MAE): MAE measures the average error over the test sample
of the absolute differences between prediction and actual observation without
considering their direction.

MAE = 1
n

n∑
j=1
|yj − ymean| (4.1)

Root mean squared error (RMSE): RMSE measures the average magnitude of the
error with square root of the average of squared differences between prediction and
actual observation.

RMSE =

√√√√ 1
n

n∑
j=1

(yj − ymean)2 (4.2)

Both MAE and RMSE express average model prediction error in units of the variable
of interest, both metrics can range from 0 to inf and are indifferent to the direction
of errors. They are negatively-oriented scores, which means lower values are better1.
Since the errors in RMSE are squared before they are averaged, the RMSE gives a
relatively high weight to large errors. Normally, The RMSE result will always be
larger or equal to the MAE.

For calculation the metrics for positional data the Euclidean distance (L2 norm) is
used. Rotational metrics calculated with a distance between quaternions represented
as an angle between their 3D orientations using a formula:

angularDistance = 2 ∗ arccos(real(p ∗ conj(q))) (4.3)

where p and q are unit quaternions representing two rotations in the same basis and
q∗ denote the quaternion conjugate.

4.3 Baseline model

To understand how an evaluated model predicts and helps to reduce the M2P latency,
some essentially a simple model that acts as a reference in a machine learning
project must be implemented first. A Baseline model can lack complexity and may
have little predictive power. The LSTM and GRU model should predict much better
than a Baseline model and thus by comparing the metrics it can be understood how
reasonable it is to implement and use the chosen approach. It is intended to use a
Baseline model as benchmarks for trained models. There is no rule for what is a good

1https://medium.com/human-in-a-machine-world/mae-and-rmse-which-metric-is-better

4.3 Baseline model 38

or bad model’s prediction. The criteria of model evaluation depends on the dataset
and use case. A mean square error gives a value in units of the original dataset. For
example, if a model predicts the prices of apartments in Berlin, then MAE of 1000
is a very good result and market’s players would desire to have a trained model to
work on the real estate market. However, it is abysmal for a model that predicts the
price of average lunch in Berlin’s restaurant. Thus a simple predictor is needed to
predict future data so that predicted values can be compared with the real values
using the same evaluation metrics as is used for RNN models.

The Baseline in this thesis is similar to the reference model used in the work [12]
and represents the operation of the system without prediction. It is assumed that the
prediction time is set equal to the M2P latency of 100 ms such that the prediction
completely eliminates the latency. Implemented Baseline is a deterministic model,
meaning that it produces an expected output given the same input. For LAT of 100
ms a prediction time N is equal to 20 samples. The position and rotation data xt is
simply propagated N samples ahead in the Baseline prediction and set as the user
position and rotation at time xt +N , i.e. Baseline(xt) = xt+N .

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500
Sample, row

4.6

4.8

5.0

5.2

5.4

5.6

5.8

Co
or

di
na

te
s f

or
 X

 p
os

iti
on

 o
f a

n
us

er
, m

et
er

s

x_target
x_predicted

Figure 14: Outputs of Baseline Model for x-axis.

The Fig. 14 shows the first 500 real values and the corresponding output of the
baseline for positional axis x. From the plot of the Baseline model outputs, it is clear
that the model is 20-step behind reality. It copies with a given delay the falling trend
and all fluctuations of the given axis.

The Fig. 15 shows the 500 real values and the corresponding output of the baseline
for all three positional axes x, y, z. The plot samples 500 elements starting from
the 2500 row and thus no missing data is seen on Baseline output for the first 20

4.3 Baseline model 39

elements as it is plotted in Fig. 14. However, the Fig. 15 highlights the limitations
of the usage of naive predictor that will deliver 2D image created from volumetric
video content with a delay of 100 ms that is unappropriated delay for a human to
experience in VR application without physical consequences like motion sickness
[2]. The mean square error for the all three positional axes MAEpos = 0.067m and
root mean square error RMSEpos = 0.068m meaning the average distance between
predicted position and the real position is equal to almost 7 cm. It is not crucial
when a user looks at the big VV object, like a volumetric human hologram, from a
distance of 3-4 metres. But if a user interacts with the small VV objects presented
in the VR environment, then this distance becomes a significant difference between
what user will see with a delay and where the VR object would be placed for delayed
position.

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
or

di
na

te
s f

or
 a

 p
os

iti
on

 o
f a

n
us

er
 (x

, y
, z

),
m

et
er

s

x_target
x_predicted
y_target
y_predicted
z_target
z_predicted

Figure 15: Outputs of Baseline Model for x, y and z axes.

It is worth to mention that in the case if real data is neither increasing nor decreasing
in the given interval and fluctuates near the constant value, as it seen at y-axis,
than the delay of the Baseline output is more not obvious when visualised due the
overlapping of two graphs. In fact, the Baseline outputs have the same delay as
those with good visualised delay as, for example, x-axis.

Fig. 16 shows the Baseline outputs for quaternions components qx, qy, qz and qw.
Same as with positional data, the same delay of 20 samples is present on rotational
data. For all four quaternion components calculated metrics are: MAErot = 14.61◦

and RMSErot = 21.24◦.

Because metrics of rotational data are measured in degrees, for visualisation pur-
poses, orientations are given in the Fig. 17 as Euler angles (yaw, pitch, roll), although
prediction is performed in the quaternion domain.

4.3 Baseline model 40

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ro
ta

tio
n

of
 a

n
us

er
 in

 q
ua

te
rn

io
ns

 (q
x,

 q
y,

 q
z,

qw
)

qx_target
qx_predicted
qy_target
qy_predicted
qz_target
qz_predicted
qw_target
qw_predicted

Figure 16: Outputs of Baseline Model for quaternions components qx, qy. qz and qw.

Figure 17: Outputs of Baseline Model for rotation data represented as Euler angles.

The evaluated RNN model is considered to be successfully trained if the MAE

and RMSE metrics at least for positional or rotational data can show significant
improvement comparing to a Baseline output.

4.3 Baseline model 41

4.4 Experiments

In the experiments implemented models were trained with different hyperparameters
and evaluated using MSE and RMSE metrics.

4.4.1 First experiments

Datasets

This section describes the difference of prediction results done by a model LSTM1
on different types of 6-DoF datasets. As already stated in section 3.1.3, original
row dataset is not used in model training and was preprocessed before training was
started. The following dataset were created and tried:

• Interpolated dataset: Row dataset was interpolated so that missing values
were inserted with linear interpolation for positional data and spherical linear
interpolation for rotational data.

• Flipped dataset: Interpolated dataset with flipped negative quaternions so
that neighbouring quaternions are representing same rotation without signifi-
cant 4D vector space between them

• Normalised dataset: Feature scaling (Min-max normalisation) is applied on
the dataset’s positional values to scale data in the range [0..1].

• Position: Only positional data (x, y, z) as separate dataset to predict future
position.

• Rotation: Only rotational data (qx, qy, qz, qw) as separate dataset to predict
future rotation.

Figures 18 and 19 show the predictions of the LSTM1 model on an interpolated
dataset. The mean square error for the all three positional axes MAEpos = 0.019m
and root mean square error RMSEpos = 0.028m meaning the average distance
between predicted position and the real position reduced from 7 cm to 2 cm if
LSTM1 on interpolated dataset is used instead of Baseline. For all four quaternion
components calculated metrics are: MAErot = 16.92◦ and RMSErot = 23.28◦.
LSTM1 predicts the rotation on an interpolated dataset worse than the Baseline
model. The goal of the next experiment is to evaluate whether the flipping of

4.4 Experiments 42

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
or

di
na

te
s f

or
 a

 p
os

iti
on

 o
f a

n
us

er
 (x

, y
, z

),
m

et
er

s

x_target
x_predicted
y_target
y_predicted
z_target
z_predicted

Figure 18: Outputs of LSTM1 model on interpolated dataset for x, y and z axes.

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

70

60

50

40

30

20

10

0

10

Ro
ll,

 p
itc

h,
 y

aw
 in

 d
eg

re
es

roll_x_target
roll_x_predicted
pitch_y_target
pitch_y_predicted
yaw_z_target
yaw_z_predicted

Figure 19: Outputs of LSTM1 model on interpolated dataset for roll, pitch, yaw axes.

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
or

di
na

te
s f

or
 a

 p
os

iti
on

 o
f a

n
us

er
 (x

, y
, z

),
m

et
er

s

x_target
x_predicted
y_target
y_predicted
z_target
z_predicted

Figure 20: Outputs of LSTM1 model on dataset with flipped negative quaternions for x, y
and z axes.

4.4 Experiments 43

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

70

60

50

40

30

20

10

0

10

Ro
ll,

 p
itc

h,
 y

aw
 in

 d
eg

re
es

roll_x_target
roll_x_predicted
pitch_y_target
pitch_y_predicted
yaw_z_target
yaw_z_predicted

Figure 21: Outputs of LSTM1 model on dataset with flipped negative quaternions for roll,
pitch, yaw axes.

negative quaternions can improve rotational prediction as it was expected on the
preprocessing step.

Figures 20 and 21 show the predictions of the LSTM1 model on a dataset with
flipped negative quaternions. The mean square error for the all three positional axes
MAEpos = 0.013m and root mean square error RMSEpos = 0.015m meaning the
average distance between predicted position and the real position reduced from
7 cm to approx. 1.3 cm if LSTM1 on dataset with flipped negative quaternions is
used instead of Baseline. For all four quaternion components calculated metrics
are: MAErot = 13.49◦ and RMSErot = 18.47◦. Thus LSTM1 predicts the rotation
on an flipped dataset slightly better than the Baseline model and there is also an
improvement compared to prediction with interpolated dataset. Next experiments
aim to evaluate whether the normalisation of positional data and dataset division
can improve evaluation metrics.

For the sake of place saving the plots of the rest datasets will not be added in
the thesis. The division of dataset on pure positional dataset and pure rotational
does not improve the prediction error. For positional dataset MAEpos increased to
0.078m and root mean square error jumped to to 0.091m what means that MAEpos

error increased by 116.41% and RMSEpos by 133, 82% compared to a Baseline.
Surprisingly, opposed to the last experiment, in rotational dataset MAErot decreased
to 11.81◦m and root mean square error reduced to 16.64◦. It seems that for a
prediction of the rotation the positional data can be eliminated from a dataset. The
most interesting experiment done with a normalized dataset, Only position (x, y, z)
was scaled in range [0..1]. The MAEpos is slightly lower than Baseline’s and is
equal to 0.056. This value must be considered as bad prediction because the better
results are obtained with two previous datasets. Additionally, RMSEpos increased

4.4 Experiments 44

significantly to 0.197 what is by 289% worse than a Baseline prediction. However, it
is surprising that rotational MAErot decreased to 9.87◦m and RMSErot reduced to
12.72◦.

For the LSTM1 model the best prediction is done for a future position using interpo-
lated dataset with flipped negative quaternions and for rotation using a dataset with
normalised position. The analysis of this phenomena is done in section 5.1.

Batch size

A significant impact on the performance e.g. the prediction accuracy has a batch
size used in LSTM or GRU models. The batch-size helps to learn the common
patterns as important features by providing a fixed number of samples at one time.
So that the model thus can distinguish the common features by looking at all the
introduced samples of the batch. In most cases, an optimal batch size is set to 64.
When this batch size was initially used with the LSTM model, it gave significant
high MSE, RMSE, train and validation errors. Based on the performance observation
during experiments with LSTM parameters, batch size fine-tuning was done. The
experiments done by Aykut et al in their works [3] and [4] proved that appropriate
batch size can be found in range 29 - 211 (512 - 2048). Notice that a power of 2
is used as a batch size. The overall idea is to fit a batch of samples entirely in the
CPU/GPU. Since, all the CPU/GPU comes with a storage capacity in power of two,
it is advised to keep a batch size a power of two. Using a number different from a
power of 2 could lead to poor performance. Experimentally is proved in this thesis
that similar to works [3, 4] batch size of 28 - 210 (256, 512 and sometimes 1024)
produces the best prediction result on 6-DoF dataset if the other hyperparameters
are set correctly. The smaller batch sizes (32, 64 and 128) resulted in the high values
of evaluation metrics and it was obvious to notice during experiments the improving
the metrics with increasing the batch size.

Learning rate

Learning rate is a parameter of the extended version of stochastic gradient Adam
optimizer. The learning rate determines how much an updating step influences the
current value of the weights.

If the learning rate is large then a correspondingly large modification of the weights
wi happens on each epoch. In general, too large learning rate overshoots the local
minimum in a cost function.

4.4 Experiments 45

The small learning rate does not allow the model to neither successfully learn
patterns in the data nor generalise them on the validation data. The prediction on
the test data done by a model trained with a small value of learning rate results
in significant high error. Fig. 22 shows the training and validation loss of the
150 epochs of training with a learning rate of 1−6 that finished with MAE = 3.70.
Models can neither learn on training data nor predict the new data on validation
dataset.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
epoch, n

3.0

3.5

4.0

4.5

5.0

Tr
ai

n
an

d
va

lid
at

io
n

lo
ss

Train_loss
Val_loss

Figure 22: Plot of training and validation loss with small learning rate of Adam optimizer.

In works [3, 4] by Aykut et al the adaptively reducing learning rate is used. So that
in the master thesis a learning rate decay scheduler was used to decrease the initial
learning rate of 0.001 every 50 epochs by 50%. The values for learning rate, the
amount of epochs to keep the value the same and the multiplier were found during
experiments with grid parameters search.

Weight decay

Adam optimizer has an additional term in the weight update rule that causes the
weights to exponentially decay to zero, if no other update is scheduled. With weight
decay after each update, the weights are multiplied by a factor less than 1. This
prevents the weights from growing too large, and can be seen as gradient descent
on a quadratic regularisation term. Thus weight decay is a regularisation technique
used to avoid over-fitting. Indeed experiments showed that relatively large weight
decay equal to 1−4..1−8 make it possible for a model to overtrain so that training loss
permanently decreases but validation loss fluctuates on the high level. Model can

4.4 Experiments 46

not generalise the learned pattern and predict successfully future values on never
seen before data.

0 10 20 30 40 50 60 70 80 90 100
epoch, n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Tr
ai

n
an

d
va

lid
at

io
n

lo
ss

Train_loss
Val_loss

Figure 23: Plot of training and validation loss with large weigh decay of Adam optimizer.

Fig. 23 illustrates both training and validation loss with large weight decay set to
1−6 of Adam optimizer. For the illustrative goal to avoid an elimination of the feeling
of distance difference due to scale and to emphasise it, plot shows only 100 first
epochs. It is seen that validation loss remains on high lever and starts to increase.

Best values for weight decay parameter of Adam optimizer set to 1−12 for LSTM and
GRU model after parameter grid search on GPU cluster.

4.4.2 Prediction with LSTM

This section presents the results of best prediction using LSTM models and also
shows the predictions with LSTM variants that are considered to fail either to predict
better than Baseline or to be used as improvement compared to Baseline predictions.
The role of different parameters such as batch size, learning rate and weight decay
is described in section 4.4.1. The training and evaluation is this and next sections
are done on an interpolated dataset with flipped negative quaternions.

During preprocessing step Euler angles (yaw, pitch, roll) were calculated from quater-
nions and these parameters are used for visualisation purposes. The quaternions of
the model’s predictions are also converted to Euler angles so that MAE and RMSE

units in degrees are similar to plotted information.

4.4 Experiments 47

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
or

di
na

te
s f

or
 a

 p
os

iti
on

 o
f a

n
us

er
 (x

, y
, z

),
m

et
er

s

x_target
x_predicted
y_target
y_predicted
z_target
z_predicted

Figure 24: Outputs of LSTM2 model with ReLU activation function for x, y and z axes.

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

60

40

20

0

Ro
ll,

 p
itc

h,
 y

aw
 in

 d
eg

re
es

roll_x_target
roll_x_predicted
pitch_y_target
pitch_y_predicted
yaw_z_target
yaw_z_predicted

Figure 25: Outputs of LSTM2 model with ReLU activation function for roll, pitch, yaw axes.

The best prediction results with LSTM1 are already presented in figures 20 and 21
in the section above. Thereby LSTM1 model has best performance on interpolated
dataset with flipped negative quaternions and all evaluation metrics were improved.
MAEpos = 0.013m, RMSEpos = 0.015m, MAErot = 13.49◦ and RMSErot =
18.47◦. Compared to Baseline this means 80% improvement of prediction for position
and almost 10% improvement for rotation. The average distance between predicted
position and the real position reduced from 7 cm to circa 1.3 cm.

Fig. 24, 25 displays the same range of prediction outputs for the LSTM2 model
with the ReLU activation function. It was mentioned in section 3.2.2 that this
architecture experimentally leads to higher evaluation errors compared to LSTM1
model. Indeed, MAEpos = 0.055m, RMSEpos = 0.185m, MAErot = 22.86◦ and
RMSErot = 30.88◦. In Fig. 24 and 25 it is clear to see that distance between
predicted values and real values is larger compared to LSTM1 and is similar and

4.4 Experiments 48

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
or

di
na

te
s f

or
 a

 p
os

iti
on

 o
f a

n
us

er
 (x

, y
, z

),
m

et
er

s

x_target
x_predicted
y_target
y_predicted
z_target
z_predicted

Figure 26: Outputs of LSTM3 model with Mish activation function for x, y and z axes.

somewhere worse than with the Baseline model. Thus graphs for roll and pitch have
bigger gaps between real and predicted values. The predictions for x and z axes do
not exactly follow the trend of the graph and real and predicted values have obvious
distance between plotted graphs.

The same outputs for the LSTM3 model with Mish activation function are illustrated
in Fig. 26, 27. This architecture experimentally can improve the evaluation metrics
comparing both to LSTM1 and Baseline models. The best metrics are as follows:
MAEpos = 0.012m, RMSEpos = 0.014m, MAErot = 13.18◦ and RMSErot =
17.28◦.

In Fig. 24 and 25 The predictions for x and z can almost exactly follow the trend
of the graph (that was is smaller MAE means graphically) and real and predicted

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

70

60

50

40

30

20

10

0

10

Ro
ll,

 p
itc

h,
 y

aw
 in

 d
eg

re
es

roll_x_target
roll_x_predicted
pitch_y_target
pitch_y_predicted
yaw_z_target
yaw_z_predicted

Figure 27: Outputs of LSTM3 model with Mish activation function for roll, pitch, yaw axes.

4.4 Experiments 49

values have almost no obvious big distance between plotted graphs. There are also
slight improvements of roll and pitch predictions but the evaluation metrics are still
not low enough to allow predictions to exactly repeat the graph of real values.

A three-layered stacked LSTM4 model with introduced additional dropout added
after all but last recurrent layer and Mish activation function has similar to LSTM2
positional error but the rotational error drastically increased to MAErot = 42◦ and
RMSErot = 48◦. The more complex model not only requires significantly more time
to train but also has problems optimising parameters in a way that can optimally fit
the training instances.

4.4.3 Prediction with GRU

This section presents the best result achieved with a pure GRU model without
additional activation functions with simple one-layered architecture.

GRU1 is the best evaluated model. It results with the smallest positional and
rotational error. The evaluation metrics are: MAEpos = 0.009m, RMSEpos =
0.011m, MAErot = 8.68◦ and RMSErot = 12.29◦. Compared to Baseline this means
87% improvement of prediction for position and almost 40% improvement for
rotation. The average distance between predicted position and the real position is
reduced from 7 cm and GRU1 average error is less than 1 cm.

GRU1 results for rotation prediction on the full interpolated dataset with flipped
negative quaternions outperformed the results of experiment done with a dataset
containing only rotational data. Recall, in that experiment MAErot decreased to
11.81◦m and root mean square error reduced to 16.64◦ comparing to predictions
done by the same model on the dataset containing position and rotation.

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Co
or

di
na

te
s f

or
 a

 p
os

iti
on

 o
f a

n
us

er
 (x

, y
, z

),
m

et
er

s

x_target
x_predicted
y_target
y_predicted
z_target
z_predicted

Figure 28: GRU1 outputs for position (x, y, z) for rows 5000..5500.

4.4 Experiments 50

15000 15020 15040 15060 15080 15100 15120 15140 15160 15180 15200 15220 15240 15260 15280 15300 15320 15340 15360 15380 15400 15420 15440 15460 15480 15500
Sample, row

4

3

2

1

0

Co
or

di
na

te
s f

or
 a

 p
os

iti
on

 o
f a

n
us

er
 (x

, y
, z

),
m

et
er

s

x_target
x_predicted
y_target
y_predicted
z_target
z_predicted

Figure 29: GRU1 outputs for position (x, y, z) for rows 15000..15500.

22000 22020 22040 22060 22080 22100 22120 22140 22160 22180 22200 22220 22240 22260 22280 22300 22320 22340 22360 22380 22400 22420 22440 22460 22480 22500
Sample, row

1

0

1

2

3

4

5

6

Co
or

di
na

te
s f

or
 a

 p
os

iti
on

 o
f a

n
us

er
 (x

, y
, z

),
m

et
er

s

x_target
x_predicted
y_target
y_predicted
z_target
z_predicted

Figure 30: GRU1 outputs for position (x, y, z) for rows 22000..22500.

Figures 28, 29 and 30 plot predicted values over real for position data (x, y, z). The
range took so that first it is the same 500 samples near to the beginning of the
dataset as used for visualisation with previous models. Additionally to emphasise
accuracy the 500 samples in the middle of the dataset are taken and the same
amount of samples is chosen near the end of the dataset. In Fig. 31 illustrates
the same 500 samples of rotational data. The evaluation metrics for rotation
are still not low enough to allow predictions to exactly repeat the graph of real
values. Compared to the results of LSTM1 on the full interpolated dataset with
flipped negative quaternions, there is a visual improvement and reduction of the gap
between the predicted- and real-graphs on the plotted range. Evaluation metrics
for rotation are improved and root mean squared error significantly decreased. The
square operation is applied to the mean error and thus RMSE penalises bigger
errors. It can be said that GRU1 rotational predictions have less outliers with higher
distance to real data.

4.4 Experiments 51

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

70

60

50

40

30

20

10

0

10

Ro
ll,

 p
itc

h,
 y

aw
 in

 d
eg

re
es

roll_x_target
roll_x_predicted
pitch_y_target
pitch_y_predicted
yaw_z_target
yaw_z_predicted

Figure 31: GRU1 outputs for roll, pitch, yaw axes.

4.4.4 Prediction with Bidirectional GRU

The bidirectional GRU was evaluated as the last RNN variant. The goal of this
evaluation is to check whether the bidirectional GRU will perform on a 6-DoF
HoloLens dataset similar as is described in the section 2.6.2. Indeed, experiments
showed that bidirectional GRU predicts worse than its unidirectional variant and
even worse as the LSTM model. The best result that Bi-GRU can produce after 500
epochs of training with 1024 hidden dimensions is only twice better for position
than an output of a Baseline model. However the rotation predictions are even
worse that a Baseline outputs.The best metrics are as follows: MAEpos = 0.030m,
RMSEpos = 0.041m, MAErot = 30.19◦ and RMSErot = 33.78◦. Fig. 32 shows the
best prediction Bi-GRU could produce for a rotation and it is clear that the distance
between real measured and predicted data is too significant to be able to consider
these results as good. The similar behaviour is obtained for position but not plotted
separately in the thesis. Additionally, Bi-GRU training took longer on GPU Cluster
due the doubled hidden dimension size and on a local machine it is impossible to
run the algorithm and get results in reasonable time.

2500 2520 2540 2560 2580 2600 2620 2640 2660 2680 2700 2720 2740 2760 2780 2800 2820 2840 2860 2880 2900 2920 2940 2960 2980 3000
Sample, row

70

60

50

40

30

20

10

0

10

Ro
ll,

 p
itc

h,
 y

aw
 in

 d
eg

re
es

roll_x_target
roll_x_predicted
pitch_y_target
pitch_y_predicted
yaw_z_target
yaw_z_predicted

Figure 32: Bidirectional GRU outputs for roll, pitch, yaw axes.

4.4 Experiments 52

5Conclusion

The different RNN-based architectures are designed in order to predict the future
user’s position and rotation in a 6-dimensional degree of freedom (6-DoF) of Ex-
tended Reality (XR) applications. The goal of evaluation of the designed models is
an understanding whether proposed approaches can help to reduce the M2P latency
of cloud-based streaming service for a given look-ahead time (LAT) of 100 ms.

For a comparison of the results of the RNN-based models a simple Baseline model was
implemented as a reference and the evaluation metrics were first calculated for this
model. The experiments done in this thesis on a real head motion dataset collected
from Microsoft HoloLens showed that proposed models can predict significant better
than a Baseline model and thus it is reasonable to build the best model in the
prediction engine of the cloud-based streaming service from work [13]. It is worth
mentioning the work of Serhan et al., 2020 where a Kalman filter-based framework
for prediction of head motion was designed for the same cloud-based service [12].
This master thesis presents the models that not only predict significantly better than
Baseline model, but also have smaller MAE and RMSE metrics compared to a
previous approach based on Kalman Filter. Thus the goal of the master thesis is
reached and it can be clearly seen that GRU model can significantly reduce the M2P
latency of network and computational delays.

First, the real 6-DoF dataset was obtained for the research and conducted experi-
ments. For this purpose an application was developed in Unity with the Mixed Reality
Toolkit (MRTK) and deployed on HoloLens 2. Main Camera in Unity is always the
primary stereo rendering component attached to HMD and it is rendering everything
the user sees and is automatically configured to track head movements. The settings
allowed users to walk around within the 10-metre boundary. This is quite enough
for the user’s movements inside the laboratory space and simultaneously watching
a volumetric animated object that is placed 3 metres ahead of the user in the VR
environment. Using the Main Camera, 6-DoF datasets were logged in a csv-file.

The obtained from HoloLens 6-DoF dataset was first explored, preprocessed and
finally discovered discontinuities in the quaternions were fixed and thus evaluation
metrics can be improved compared to the original interpolated dataset. When LSTM
architecture is predicted on an interpolated dataset, the average distance between

53

predicted position and the real position is reduced from created by Baseline 7 cm
to just 2 cm. But for all four quaternion components calculated metrics showed
that LSTM1 predicts the rotation on an interpolated dataset worse than the Baseline
model. The mean square error on fixed dataset with flipped negative reduced the
distance between predicted position and the real position from 7 cm to approx. 1.3
cm For all four quaternion components the LSTM model predicts the rotation on a
flipped dataset slightly better than the Baseline model compared to prediction with
interpolated dataset the improvement is obvious.

Summing up, it can be said that the LSTM-based architectures on flipped interpo-
lated dataset leads to a significant improvement of the MAE and RMSE metrics
compared to a Baseline model. One-layered LSTM improves MAEpos by 80% and
MAErot by 7,5% compared to a Baseline. The architecture supplemented with a
linear layer Mish activation function improves MAEpos by 82% and MAErot by
10% compared to a Baseline once again.

The best performance, however, is achieved by the GRU-based model. The experi-
ments proved that it is possible to improve MAEpos by 85% and MAErot by 40%
compared to a Baseline. Compared to LSTM prediction, GRU has smaller MAEpos

by 24% and MAErot by 36%. The average distance between predicted position and
the real position is reduced from 7 cm and GRU1 average error is less than 1 cm.
This is considered as an acceptable error for such a huge M2P latency of 100 ms. As
it was said, selected for experiments M2P latency is higher than measured network
and computational delays in cloud streaming service. Additionally, performing ex-
periments for smaller latency resulted in even smaller MAE and RMSE metrics if
compared to the metrics with 100 ms latency. It must be mentioned that a Baseline
outputs for a smaller latency are literally the original outputs delayed for a smaller
latency. As expected, the Baseline metrics are thus also decreased if M2P latency
decreases.

Any variant of layered architecture needs significantly more time to train and despite
the fact of the complexer architecture can not catch the spatial dependencies in
dataset and have higher training and validation errors. The bidirectional RNN-based
model presented by Bi-GRU could not improve metrics of the unidirectional model.
Bi-GRU performed approximately twice better for position prediction and even worse
for rotation prediction than the Baseline.

The Python application UserPrediction6DOF is a result of this work and can
be used in the future for a preprocessing of the new obtained datasets, training
routine and prediction of user position and rotation in 6-DoF virtual environment
for different M2P latencies.

54

5.1 Analysis

Same as in the work of Chang et al., 2020, the basic GRU performs the best among
all models. Work [7] pointed out that it could be possibly due to the short-term
correlation of human actions, so it isn’t often required during prediction tasks to
consider the long term complexity. The important feature of LSTM is an ability to
keep the existing memory via the introduced gates and thus to detect an important
feature from an input sequence at an early stage and carry this information (the
existence of the feature) over a long distance. This results in ability to capture
potential long-distance dependencies [8].

The GRU takes a linear sum between the existing state and the newly computed state
similar to the LSTM but does not have any mechanism to control the degree to which
its state is exposed, but exposes the whole state each time [8]. Chung et al., 2014
emphasise the fact that any important feature, decided by either the forget gate of
the LSTM unit or the update gate of the GRU, will not be overwritten but maintained
as it is [8]. The LSTM unit controls the amount of the new memory content and
does not have any separate control of the amount of information flowing from the
previous time step. The GRU differs and controls the information flow from the
previous activation when computing the new and does not independently control
the amount of the candidate activation being added via update gate [8].

For the prediction of rotational data the positional data can be eliminated from a
dataset. The key to this phenomena can lay in the user behaviour during dataset
recording. Because the users were told to keep their sight mainly on the volumetric
object placed in the MR environment, users tended to turn their head always in
direction to a VV even if they walked far enough from the object. Observations of
users during data recording showed that users usually prefer to move away from the
object, looking at it, and then turn around 180 degrees and continue moving towards
the object back or go around it from one side. Thus position data and rotation data
can be split and only rotational data and velocity can be used to predict the rotation
of the user in XR Application.

In contrast to the above, the rotation must be kept in a dataset for prediction of the
position. Eliminating the rotation data or/and the velocity does not improve the
prediction error compared to a Baseline and to the prediction on the full interpolated
and flipped dataset.

GRU1 results for rotation prediction on the full interpolated dataset with flipped
negative quaternions outperformed the results of experiment done with a dataset
containing only rotational data.

5.1 Analysis 55

The evaluation metrics for user’s rotation predictions are ranged forMAErot between
14.61◦ for Baseline outputs and 8.68◦ for best GPU predictions. At first glance, such
a deviation from the real values may seem significant. The study of the human eyes
field of vision showed1 that humans have quite a wide angle of vision. Lateral field
of view is 60 degrees in total, 30 degrees to left, 30 degrees to right without moving
the eyes. Vertical field of view is 25 degrees upward and 15 degrees downward
from the straight line of sight. If the user is looking straight ahead, the eyes should
move less than 10 degrees down and maximum 30 degrees so that everything that
happens in front of the user is still in field of view. Therefore, the result of this metric,
despite the noticeable numerical value of the deviation in degrees, is considered as a
successful result of evaluation, since the projected image created from the VV still
remains in the human field of view.

The evaluated LSTM and GRU model both significantly improve the evaluation
metrics. GRU model however performs the best and thus can be used for reducing
the Motion-to-Photon (M2P) latency by predicting the future user position and
orientation for a look-ahead time (LAT) and sending the corresponding rendered
view to a client.

5.2 Limitations and suggestions for future work

Research in user’s head motion prediction can be continued and advanced models
implemented. It is recommended to continue experiments with the GRU-based
model, since even simple GRU model has the smallest prediction error. Section
2.6.2 mentions successful experiments in which the RNN model was combined with
FFN. Additionally the multivariate time series input for FNN is passed through a
dimension shuffle layer and [15] claims to improve in such a way the efficiency of
the model when the number of variables is less than the number of time steps. The
implementation of an advanced GRU model combined with FNN is recommended as
a next step in order to minimise the evaluation errors.

As future work the investigations into modelling the rotation prediction with GRU-
based model using only rotation and velocity data is recommended. The model
will probably require the new hyperparameters to be found and different sequence
length can be used compared to the model that predicts rotation with position.

Dividing the prediction approach into two parallel flows in which one predicts
position on full dataset and second rotation on rotational dataset could improve
metrics separately for rotation and position.

1https://medium.com/@catalin.macovei/positioning-of-infotainment-screen-in-cars-e4cffa1e5697.

5.2 Limitations and suggestions for future work 56

The next step would be accessing the eye gathering data from HoloLens via The
Eye Tracking API and run experiments to see whether this additional data helps to
reduce prediction error. It is worth mentioning that the developed Unity Application
will require the user to grant app permission to use eye tracking information. If
the user will reject permissions then the needed information for the model will be
missed during HMD usage.

Gathering the additional data using HoloLens Research Mode could give access to
key sensors. It is important to understand that Research Mode is opened specifically
for research applications that aren’t intended for deployment. The information from
grey-scale cameras, depth camera, accelerometer, gyro and even magnetometer can
be accessed in Research Mode. Because of limitations such data only on research
mode these additional sensors were not read during the data collection for this
master thesis.

At the end of the thesis, it is worth pointing out that the proposed models will be
beneficial in user’s head motion prediction, and can quickly be deployed in real-
time systems and embedded systems because the proposed models are small and
efficient.

5.2 Limitations and suggestions for future work

Bibliography

[1] A. Deniz Aladagli, Erhan Ekmekcioglu, Dmitri Jarnikov, and Ahmet Kondoz.
Predicting head trajectories in 360° virtual reality videos. https://ieeexplore.
ieee.org/document/8251913. date access on 29.03.22. 2017. DOI: 10.1109/
IC3D.2017.8251913.

[2] R.S. Allison, L.R. Harris, M. Jenkin, U. Jasiobedzka, and J.E. Zacher. Tolerance
of temporal delay in virtual environments. https://www.researchgate.net/
publication/2945506. date access on 17.03.22. 2001. DOI: 10.1109/VR.
2001.913793.

[3] Tamay Aykut, Christoph Burgmair, Mojtaba Leox Karimi, and Eckehard Stein-
bach. Delay Compensation for a Telepresence System With 3D 360 Degree
Vision Based on Deep Head Motion Prediction and Dynamic FoV Adaptation.
https://arxiv.org/abs/2007.14084. date access on 23.02.22. 2018. DOI:
10.1109/WACV.2018.00222.

[4] Tamay Aykut, Eckehard Steinbach, and Jingyi Xu. Realtime 3D 360-Degree
Telepresence With Deep-Learning-Based Head-Motion Prediction. https : / /
www.researchgate.net/publication/330861228. date access on 25.03.22.
2019. DOI: 110.1109/JETCAS.2019.2897220.

[5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. http://www.cs.unc.edu/techreports/93-
010/93-010.pdf. date access on 31.03.22. 1994. DOI: 10.1109/72.279181.

[6] Devesh K Bhatnagar. Position trackers for Head Mounted Display systems: A
survey. http://www.cs.unc.edu/techreports/93-010/93-010.pdf. date
access on 31.03.22. 1993.

[7] Yun-Kai Chang, Mai-Keh Chen, Yun-Lun Li, Hao-Ting Li, and Chen-Kuo Chiang.
6DoF Tracking in Virtual Reality by Deep RNN Model. https://ieeexplore.
ieee.org/document/9394069. date access on 02.04.22. 2020. DOI: 10.1109/
IS3C50286.2020.00057.

https://ieeexplore.ieee.org/document/8251913
https://ieeexplore.ieee.org/document/8251913
http://dx.doi.org/10.1109/IC3D.2017.8251913
http://dx.doi.org/10.1109/IC3D.2017.8251913
https://www.researchgate.net/publication/2945506
https://www.researchgate.net/publication/2945506
http://dx.doi.org/10.1109/VR.2001.913793
http://dx.doi.org/10.1109/VR.2001.913793
https://arxiv.org/abs/2007.14084
http://dx.doi.org/10.1109/WACV.2018.00222
https://www.researchgate.net/publication/330861228
https://www.researchgate.net/publication/330861228
http://dx.doi.org/110.1109/JETCAS.2019.2897220
http://www.cs.unc.edu/techreports/93-010/93-010.pdf
http://www.cs.unc.edu/techreports/93-010/93-010.pdf
http://dx.doi.org/10.1109/72.279181
http://www.cs.unc.edu/techreports/93-010/93-010.pdf
https://ieeexplore.ieee.org/document/9394069
https://ieeexplore.ieee.org/document/9394069
http://dx.doi.org/10.1109/IS3C50286.2020.00057
http://dx.doi.org/10.1109/IS3C50286.2020.00057

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
https://arxiv.org/abs/1412.3555. date access on 30.03.22. 2014. DOI:
10.48550/arXiv.1412.3555.

[9] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. Viewport-
adaptive navigable 360-degree video delivery. https://ieeexplore.ieee.
org/document/7996611. date access on 05.04.22. 2017. DOI: 10.1109/ICC.
2017.7996611.

[10] Alessandro Crivellari and Euro Beinat. LSTM-Based Deep Learning Model for
Predicting Individual Mobility Traces of Short-Term Foreign Tourists. https://
www.researchgate.net/publication/338377314. date access on 08.04.22.
2020. DOI: 10.3390/su12010349.

[11] Fanyi Duanmu, Eymen Kurdoğlu, S. Hosseini, Yong Liu, and Yao Wang.
Prioritized Buffer Control in Two-tier 360 Video Streaming. https://www.
researchgate.net/publication/319048432. date access on 05.04.22. Aug.
2017. DOI: 10.1145/3097895.3097898.

[12] Serhan Guel, Sebastian Bosse, Dimitri Podborski, Thomas Schierl, and Cor-
nelius Hellge. Kalman Filter-based Head Motion Prediction for Cloud-based
Mixed Reality. https : / / arxiv . org / abs / 2007 . 14084. date access on
19.02.22. 2020. DOI: 0.1145/3394171.3413699.

[13] Serhan Gül, Dimitri Podborski, Thomas Buchholz, Thomas Schierl, and Cor-
nelius Hellge. Low-latency Cloud-based Volumetric Video Streaming Using Head
Motion Prediction. https://arxiv.org/abs/2001.06466. date access on
19.02.22. 2020. DOI: 0.1145/3394171.3413699.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. https:
//www.researchgate.net/publication/13853244. date access on 31.03.22.
Dec. 1997. DOI: 10.1162/neco.1997.9.8.1735.

[15] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. LSTM
Fully Convolutional Networks for Time Series Classification. https://arxiv.
org/abs/1709.05206. date access on 14.04.22. 2017. DOI: 10.48550/arXiv.
1709.05206.

[16] Hao-Ting Li, Yung-Pin Liu, Yun-Kai Chang, and Chen-Kuo Chiang. Action
recognition and tracking via deep representation extraction and motion bases
learning. https://www.researchgate.net/publication/358012181. date
access on 01.04.22. 2022. DOI: 10.1007/s11042-021-11888-8.

[17] Diganta Misra. Mish: A Self Regularized Non-Monotonic Activation Function.
https://doi.org/10.48550/arxiv.1908.08681. date access on 24.09.22.
2019. DOI: 10.48550/ARXIV.1908.08681. URL: https://arxiv.org/abs/
1908.08681.

Bibliography

https://arxiv.org/abs/1412.3555
http://dx.doi.org/10.48550/arXiv.1412.3555
https://ieeexplore.ieee.org/document/7996611
https://ieeexplore.ieee.org/document/7996611
http://dx.doi.org/10.1109/ICC.2017.7996611
http://dx.doi.org/10.1109/ICC.2017.7996611
https://www.researchgate.net/publication/338377314
https://www.researchgate.net/publication/338377314
http://dx.doi.org/10.3390/su12010349
https://www.researchgate.net/publication/319048432
https://www.researchgate.net/publication/319048432
http://dx.doi.org/10.1145/3097895.3097898
https://arxiv.org/abs/2007.14084
http://dx.doi.org/0.1145/3394171.3413699
https://arxiv.org/abs/2001.06466
http://dx.doi.org/0.1145/3394171.3413699
https://www.researchgate.net/publication/13853244
https://www.researchgate.net/publication/13853244
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1709.05206
https://arxiv.org/abs/1709.05206
http://dx.doi.org/10.48550/arXiv.1709.05206
http://dx.doi.org/10.48550/arXiv.1709.05206
https://www.researchgate.net/publication/358012181
http://dx.doi.org/10.1007/s11042-021-11888-8
https://doi.org/10.48550/arxiv.1908.08681
http://dx.doi.org/10.48550/ARXIV.1908.08681
https://arxiv.org/abs/1908.08681
https://arxiv.org/abs/1908.08681

[18] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. Your Attention is Unique: De-
tecting 360-Degree Video Saliency in Head-Mounted Display for Head Movement
Prediction. https : / / www . researchgate . net / publication / 328370817.
date access on 15.03.22. 2018. DOI: 10.1145/3240508.3240669.

[19] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. Optimizing 360
video delivery over cellular networks. https://dl.acm.org/doi/10.1145/
2980055.2980056. date access on 12.03.22. 2016.

[20] Silvia Rossi, Irene Viola, Laura Toni, and Pablo Cesar. A New Challenge:
Behavioural Analysis Of 6-DOF User When Consuming Immersive Media. https:
/ / ieeexplore. ieee . org /document / 9506525. date access on 03.04.22.
2021. DOI: 10.1109/ICIP42928.2021.9506525.

[21] Silvia Rossi, Irene Viola, Laura Toni, and Pablo Cesar. From 3-DoF to 6-DoF:
New Metrics to Analyse Users Behaviour in Immersive Applications. https:
//www.researchgate.net/publication/357172010. 1-7. 2021. date access
on 13.04.22. 2021.

[22] Afshin Taghavi, Anahita Mahzari, Joseph Beshay, and Ravi Prakash. Adap-
tive 360-Degree Video Streaming using Scalable Video Coding. https://www.
researchgate.net/publication/320542716. date access on 05.04.22. Oct.
2017. DOI: 10.1145/3123266.3123414.

[23] Howie Choset; Kevin M. Lynch; Seth Hutchinson; George A. Kantor; Wolfram
Burgard; Lydia E. Kavraki; Sebastian Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. The MIT Press, 2005, p. 608. ISBN: 978-
0262-03327-5.

[24] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time Series Classification
from Scratch with DeepNeural Networks: A Strong Baseline. https://www.
researchgate . net / publication / 318332658. date access on 25.03.22.
2017. DOI: 10.1109/IJCNN.2017.7966039.

[25] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo.
360ProbDASH: Improving QoE of 360 Video Streaming Using Tile-based HTTP
Adaptive Streaming. https : / / www . researchgate . net / publication /
320542716. date access on 05.04.22. Oct. 2017. DOI: 10.1145/3123266.
3123291.

[26] Emin Zerman, Radhika Kulkarni, and Aljosa Smolic. User Behaviour Analy-
sis of Volumetric Video in Augmented Reality. https://ieeexplore.ieee.
org/document/9465456. date access on 13.04.22. 2021. DOI: 10.1109/
QoMEX51781.2021.9465456.

Bibliography

https://www.researchgate.net/publication/328370817
http://dx.doi.org/10.1145/3240508.3240669
https://dl.acm.org/doi/10.1145/2980055.2980056
https://dl.acm.org/doi/10.1145/2980055.2980056
https://ieeexplore.ieee.org/document/9506525
https://ieeexplore.ieee.org/document/9506525
http://dx.doi.org/10.1109/ICIP42928.2021.9506525
https://www.researchgate.net/publication/357172010
https://www.researchgate.net/publication/357172010
https://www.researchgate.net/publication/320542716
https://www.researchgate.net/publication/320542716
http://dx.doi.org/10.1145/3123266.3123414
https://www.researchgate.net/publication/318332658
https://www.researchgate.net/publication/318332658
http://dx.doi.org/10.1109/IJCNN.2017.7966039
https://www.researchgate.net/publication/320542716
https://www.researchgate.net/publication/320542716
http://dx.doi.org/10.1145/3123266.3123291
http://dx.doi.org/10.1145/3123266.3123291
https://ieeexplore.ieee.org/document/9465456
https://ieeexplore.ieee.org/document/9465456
http://dx.doi.org/10.1109/QoMEX51781.2021.9465456
http://dx.doi.org/10.1109/QoMEX51781.2021.9465456

	Titlepage
	List of Figures
	Listings
	List of Abbreviations
	1 Introduction
	1.1 Problem statement
	1.2 Motivation for the research
	1.3 Structure of the thesis

	2 Fundamentals
	2.1 Mixed reality with HMD
	2.2 Six degrees of freedom
	2.3 Motion-to-photon latency
	2.4 Cloud-based volumetric video streaming
	2.5 Challenges of head motion prediction
	2.6 Related works
	2.6.1 Traditional prediction algorithms
	2.6.2 Recurrent Neural Networks

	3 Implementation
	3.1 6-DoF Dataset
	3.1.1 Data collection from HMD
	3.1.2 Data Exploration
	3.1.3 Data preprocessing

	3.2 Model
	3.2.1 Inputs and outputs
	3.2.2 LSTM Model
	3.2.3 GRU Model
	3.2.4 Bidirectional GRU Model
	3.2.5 Development
	Unity application
	Training and evaluation
	Hyperparameter search

	4 Evaluation
	4.1 Goal of evaluation
	4.2 Evaluation metrics
	4.3 Baseline model
	4.4 Experiments
	4.4.1 First experiments
	Datasets
	Batch size
	Learning rate
	Weight decay

	4.4.2 Prediction with LSTM
	4.4.3 Prediction with GRU
	4.4.4 Prediction with Bidirectional GRU

	5 Conclusion
	5.1 Analysis
	5.2 Limitations and suggestions for future work

	Bibliography

