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Abstract

Autonomous robots attempt to understand their environment in real-time. The data
structure PLANT, which this thesis introduces, clusters large amounts of data efficiently.
To detect homogeneous image regions fast, a PLANT combines an integral image with a
binary search. Moreover, a PLANT-based vision for soccer-playing robots is presented.
It enables the robots to perceive their environment with a camera resolution of 1920×
1080 pixels at a frame rate of 30 Hz. For superpixel creation, the algorithms PLANT and
PLANTm are introduced. The time complexities of PLANT and PLANTm are O(n+k · log(n))
andO(n+k·log(n)+k2), where n is the number of pixels and k the number of superpixels.
PLANT-based algorithms benefit from the spatial locality of reference, which results in
a high speed-up.

PLANT and PLANTm are compared to state-of-the-art superpixel algorithms. In the exper-
iments, no other state-of-the-art algorithm but PLANT and PLANTm achieved a frame rate
of 30 Hz at a HD resolution. At a resolution of 3504×2336 pixels, PLANT required 21 ms,
while the fastest non-PLANT-based algorithms, whose parameter were optimized for
efficiency, required 368 ms. The achieved superpixel quality is comparable with state-of-
the-art algorithms—and similar to the watershed segmentation algorithm. Thus, the use
of PLANT and PLANTm is recommended if superpixels have to be created on high-resolution
images fast.
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1 Introduction

Contemporary robots are certainly not particularly intelligent. Nonetheless, as long as
a robot performs its designated task and no unforeseeable event occurs, that robots can
appear to have some brainpower, provided that it acts and reacts properly. To react
properly, the robot has to perceive information from its environment and draw apposite
conclusions. Moreover, the robot can use perceived information to learn and thus make
better decisions in the future.

Electromagnetic waves are able to carry information. Interestingly, almost all knowledge
of outer space originates from the interpretation of quantity, direction, and frequency of
electromagnetic waves, which are observed over time. Furthermore, a high proportion of
the human brain is specialized for decoding information from visual signals [91]. Most
autonomous robots, especially those that operate in an environment that is made for
humans, are equipped with cameras as a part of their sensor system—because essential
information can be extracted from light waves. While more sensitive telescopes are still
built [33], and the human visual cortex continues evolving [72], affordable high-resolution
cameras have become obtainable. Yet, for the sake of real-time processing, many robots
do not employ high camera resolutions.

Real-time capability is crucial for most autonomous robots since they interact with the
real world. Image segmentation is an established method in computer vision to abstract
data and thus speed up subsequent processing steps. Given a segmentation, it can
be decided which segments need further processing and what kind of processing these
segments need. However, a drawback of image segmentation is that object boundaries
can get lost with the result that one segment contains pixels from more than one object.
In contrast, superpixels adhere to boundaries and group pixels into natural entities
so that essential information about the structure in the image are preserved [76]. An
object may consist of several superpixels, but no superpixel should contain pixels of more
than one object. Superpixels do not only speed up subsequent processing steps; to be
beneficial, they themselves are computed fast. There are many superpixel algorithms.
Unfortunately, there has been no algorithm so far that creates superpixels in high-
resolution images and runs on a customary computer in real-time.

It is difficult to achieve real-time on high resolutions because any algorithm that considers
each pixel runs at least in asymptotic linear time as a function of the number of pixels.
This thesis employs integral images [98] to create superpixels highly efficiently by using
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the hierarchy of memory. The integral images are computed in linear time, yet in a fast
manner. All subsequent parts of the algorithm, which may access the memory more
randomly, run in asymptotic logarithmic or constant time. More precisely, the major
contributions of this thesis are summarized as follows:

• The data structure PLANT, which is designed to partition data in real-time, is
introduced (see chapter 3).

• It is explained how a PLANT can be used to create superpixels (see chapter 3).

• It is outlined how a PLANT is employed to implement a vision for soccer-playing
robots (see chapter 4).

• The segmentation quality of the PLANT-based superpixel creation method is com-
pared to state-of-the-art superpixel algorithms (see chapter 5).

• The run times of the PLANT-based method and of fast state-of-the-art algorithms
are compared on several, especially high, image resolutions (see chapter 5).
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2 Preliminaries

Similar to most cameras, the cameras of the soccer-playing robots, for which a computer
vision is implemented in chapter 4, provide a stream of JPEG images that represent
colors using the YCbCr model. Section 2.1 explains how and why the YCbCr model
is useful. To process the YCbCr data, a PLANT, which is introduced in chapter 3, is
generated. Integral images, covered in section 2.2, are the key technique for generating
a PLANT efficiently. Section 2.3 introduces superpixels. In chapter 5, the efficiency and
quality of superpixels generated by a PLANT are compared to the superpixels algorithms
presented in section 2.4.

2.1 Color Representation

2.1.1 RGB Color Model

The RGB color model is based on the Young-Helmholtz theory [100], which have been
proved true for the most parts. The theory states that light consisting of three different
wave lengths, which are the primary colors, can form all arbitrary colors within the
wave lengths’ spectrum. The resulting color depends on the intensities of the primary
colors. Von Helmholtz presumed that the human eye possesses three types of receptors
to perceive all colors. Shades of gray are perceived when the light excites the three
receptor types with the same intensity. If none of the receptors is stimulated, black is
“perceived”.

Von Helmholtz assumed that the three types of receptor cells are most sensitive to
red, green, and blue (nowadays, it is known that the peaks are at slightly different
wavelength). In the RGB color model, a color is therefrom specified by the intensities
of the primary colors red (R), green (G), and blue (B). Each of the three color channels
is usually encoded by one byte. Therefore, a RGB triplet represents (28)
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different colors. The RGB color model is commonly applied in display devices. Usually,
displays consist of three types of light-emitting diodes or liquid crystals that emit red,
green, or blue light. There are several color spaces, including sRGB and Adobe RGB,
that specify the three primary colors. The primary colors in turn define the color gamut,
i.e. the individual colors that the RGB triplet represents.
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2.1.2 YCbCr Color Model

The brightness perception of humans is superior to their perception of color. The visual
system detects finer details of brightness variations as it consists of more rods than cones.
Accordingly, JPEG subsamples color values for compression. Since brightness and color
values correlate in the individual RGB channels, JPEG uses the YCbCr color model,
where brightness and color are separated. There are several notations and definitions for
the YCbCr color model; this thesis complies with the JPEG File Interchange Format [38].
The YCbCr color model encodes brightness into a luminance channel (Y) and color into
two chrominance channels (Cb, Cr).

Initially, a gamma correction is applied to the RGB values [44]. The gamma correction
compensates a bias of the human perception: According to the Weber-Fechner law,
humans are able to sense smaller differences of a physical stimulus if the stimulus is less
intense [28]. As a result of the gamma correction, distances of colors become more similar
to the human perception. Afterwards, the three 8-bit YCbCr values are computed as
follows:  YCb

Cr

 =

 0.299 0.587 0.114
−0.1687 −0.3313 0.5

0.5 −0.4187 −0.0813

 ·
RG
B

+

 0
128
128

 (2.1)

Equation 2.1 illustrates that the color green contributes most to the luminance value.
The chrominance values are the differences between the luminance and the channels that
are less correlated to brightness, i.e., B − Y yields Cb and R − Y yields Cr. The con-
version from RGB to YCbCr enables JPEG to subsample the chrominance components.
There are multiple subsampling modes. For example, 4:2:0 subsampling omits every
second chrominance pixels in both horizontal and vertical direction; consequently, the
resolution of both chrominance channel is quartered, and thus the size of the entire
image is halved.

2.2 Integral Images

Integral images originate from texture mapping [20] in computer graphics, where they are
referred to as “summed area tables”. Viola and Jones [98] have applied them for object
detection and termed them “integral images” for the usage in the field of computer vision.
While integral images are usually used to compute rectangular features for supervised
object detection, this thesis employs them for unsupervised detection of general object
boundaries.
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2.2.1 Pre-computation

To compute the integral image IΣ, all pixels that are located above and to the left of
the corresponding pixel in the input image I are summed up:

IΣ(x, y) =
∑
i≤x

∑
j≤y

I(i, j) (2.2)

In practise, the integral image is computed via a single pass over the image. For this
purpose, both an additional row and an additional column, which are filled with zeros,
are put in front of the first row and the first column in the integral image. Moreover,
a pointer, pointing to the current column in the previous row, and an accumulator S,
summing up the current row’s values, are defined. The accumulator is initialized to zero
for each row. While iterating over a row, the accumulator sums pixel values up (see
Equation 2.3). The value of a pixel in the integral image is obtained by adding the
accumulator and the dereferenced pointer, which yields the pixel value of the integral
image in the row above and in the same column (see Equation 2.4).

S(x, y) = S(x− 1, y) + I(x, y) (2.3)

IΣ(x, y) = IΣ(x, y − 1) + S(x, y) (2.4)

2.2.2 Application on Images

The integral image is used to compute the sum or mean of any rectangular image region
with a time complexity of O(1). Each pixel in the integral image represents a rectangular
region. To calculate the pixel sum of a region, initially, the right bottom corner of the
region is considered. The integral value of this corner represents an area that covers the
complete region. Nevertheless, this area potentially contains pixels located above and
to the left of the region. These pixels are removed by subtracting the integral values of
the bottom left corner and the upper right corner. Consequently, the area represented
by the upper left has been subtracted twice; thus, it is added once again. In summary:
Suppose the upper left, upper right, bottom left, and bottom right corners of the region
are denoted by A = (x0, y0), B = (x1, y0), C = (x0, y1), D = (x1, y1), respectively, the
region’s pixel sum

∑
x0≤x≤x1
y0≤y≤y1

I(x, y) is calculated as follows:

∑
x0≤x≤x1
y0≤y≤y1

I(x, y) = IΣ(D)− IΣ(C)− IΣ(B) + IΣ(A) (2.5)

Equation 2.5 illustrates that three additions or subtractions and four references to the
integral image are required to compute any region’s sum. Eventually, the sum is divided
by the region’s area to obtain the region’s mean value.
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2.3 Superpixels

2.3.1 Why Superpixels?

A segmentation partitions an image into its integral components to facilitate further
processing. However, segmentation is an ill-posed problem because it has no unique
solution; Figure 2.1 illustrates this. Superpixels can be regarded as a result of an un-
supervised over-segmentation [66]; they avoid under-segmentation to preserve most seg-
ment boundaries of various ground truth data. Simultaneously, superpixel algorithms
preferably create a small number of superpixels to capture redundancy.

Before superpixels were established, Shi and Malik [84] had presented a Bayesian view
on segmentation: The interpretation of the quality of an segmentation is based on
prior knowledge. Prior knowledge comprises not only low-level cues such as coherent
brightness, color or texture, but also mid- and high-level cues. Higher-level cues combine
segments computed by low-level cues. In contrast to low-level cues, they can consider
context, instead of only relying on intrinsic object information; if the context is neglected,
it can result in a bad segmentation on natural images due to occlusion, bad illumination,
and shadows [90]. Therefore, a good segmentation is inherently hierarchical. This insight
gave rise to superpixels, which are computed through low-level cues and enable fast
higher-level processing [76].

Accordingly, superpixel creation is a preprocessing step, reducing the complexity of an
image without loosing much information. Superpixels speed up subsequent computations
significantly. For example, a graph-based segmentation algorithm runs notably faster
if the graph’s nodes consist of several hundred superpixels instead of several hundred
thousand pixels. Pixels contain redundant data because they are a result of a discrete
representation of an image, while superpixels are more natural entities, resulting from
perceptual grouping [68].

2.3.2 Range of Applications

Superpixels have been used in a wide range of image processing and computer vision
tasks. Most of the work about superpixel applications has been published in recent years.
Originally, superpixels are intended to improve image segmentation in general [76]; there
have been several enhancements [40,49,65,110]. Superpixels are also used for interactive
segmentation, where a user adapts segmentation boundaries in real-time [47,83]. In some
cases, each pixel has to be classified, i.e. each pixel obtains an object label (semantic
segmentation [32,36,51,89,108]) or each pixel is assigned to either a specific object or the
background (object segmentation [7,16,22,34,59,75,102]). In other cases such as object
recognition [92] or object detection [57, 85, 109], including human detection [67] and
path detection [21], it is sufficient to approximate the object’s position with a bounding
box.
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Figure 2.1: Segmentation is an ill-posed problem: When humans are asked to segment
images, their solutions appear reasonable but different from each other. It
is difficult to induce a segmentation that is adequate for any purpose. Su-
perpixels avoid this difficulty through over-segmentation. The images in the
leftmost position are the original images. The images to the right are ground
truth data, which were drawn by different humans. All images are part of
the Berkley Segmentation Dataset 300 [61].
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Saliency detection is a prominent application for superpixel algorithms [3, 39, 70, 73,
103, 113, 114]. These algorithms detect whether a pixel belongs to a salient image re-
gion that captures the viewers’ attention. Furthermore, superpixels also help to build a
3D-model out of a single image; they facilitate 3D-reconstruction [12, 41, 80] and depth
estimation [52, 54], which, for instance, is used for indoor scene understanding [37, 50].
Superpixels are similarly employed for optical flow and stereo matching [58,107]; by com-
bining both, scene flows [63,99] can be computed as well. Other fields of application are
data set annotation [56,108], tracking [8,101,111] and the acceleration of convolutional
neural networks [39,52].

2.4 Related Work

2.4.1 Superpixel Algorithms

There is a considerable number of superpixel algorithms. The superpixel benchmark of
Stutz et al. [88] has given a comprehensive overview of current state-of-the-art super-
pixel algorithms and has both evaluated and compared them. Beyond that, the super-
pixel benchmark has subdivided the algorithms into several categories. Graphed-based,
watershed-based, clustering-based, energy optimization, contour evolving, density-based
and path-based algorithms are relevant for this thesis. This classification is not strict;
several algorithms exhibit features of multiple categories. Selected algorithms from which
a low run time is to be expected are evaluated in chapter 5 and introduced in this sec-
tion. In the interests of brevity and clarity, acronyms in typewriter font are assigned to
these algorithms. The acronyms comply with the acronyms used by Stutz et al., they
are used in the remaining thesis. For instance, the superpixel creation algorithm that is
based on a PLANT is typeset as PLANT1.

Ren and Malik [76] introduced the term “superpixel” in their paper about normal-
ized graph cuts [84] that produce an over-segmentation. The classical Gestalt psy-
chology [104] had inspired them with its description of perceptual grouping. Normalized
graph cuts have enhanced the original graph cut algorithm [105], which has a bias to-
wards splitting smaller segments more likely into even smaller segments while neglecting
larger segments. Normalized cuts have fixed this flaw by attaching a normalization term.
The original normalized cut algorithm was rather slow, but there have been several ef-
ficiency optimizations [19, 25,106].

Felzenszwalb and Huttenlocher (FH [29]) have introduced a graph-based method, which
is faster than normalized cut algorithms. It uses Kruskal’s algorithm to build a minimum
spanning tree. The graph’s vertices represent pixels and the edges measure dissimilarities
between vertices. The regions, which are vertices, are grown by merging similar regions

1 Unlike the superpixel algorithm PLANT, the data structure PLANT itself is not typewritten (chapter 3
explains the difference).
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greedily in a bottom-up manner. The entropy rate superpixels method (ERS [55]) has
improved the quality of the bottom-up region merging used in FH significantly. ERS max-
imizes an objection function that is based on the entropy rate of a random walk on the
graph. Unfortunately, this increases the run time. As opposed to this, Pseudo-boolean
optimization (PB [115]) is a faster graph-based algorithm. It was inspired by Veksler
et al. [95], who had assigned pixels to overlapping squares. Other than Veksler et al., PB
puts vertical and horizontal strips on the image to obtain a superpixel lattice. Using the
elimination algorithm [15] for optimization, PB processed several frames per second.

Watershed-based algorithms are fast—while providing a segmentation of good quality.
First of all, the watershed algorithm [97] computes a gradient image and interprets it as
a topological terrain. In a metaphorical way, the terrain is flooded successively. Con-
sequently, the edges disappear underneath the water surface. The remaining gradients
yield the segment boundaries. This thesis considers several variations of the watershed
algorithm: Meyer has modified watershed for color images (W [64]); Neubert and Protzel
have proposed compact watershed (CW [69]), which distributes seed points on the image to
receive a compact segmentation; and Benesova and Kottman have presented a morpho-
logical superpixel segmentation (MSS [9]), which uses morphological reconstruction [96]
to remove local extrema. The latter indicated to be efficient for higher resolutions.

Simple linear iterative clustering (SLIC [2]) has adapted k-means clustering for superpixel
creation. The algorithm starts from a regular grid of initial points and lets superpixels
grow around these points. After the growing step, the update step moves the points to
the central position of their respective region. There are usually several iterations of the
growing/update-cycle in order to refine the superpixels. SLIC is rather fast; however,
preemptive SLIC (preSLIC [69]) speeds it up for real-time applications. It preempts
iterations that miss a significant change of their points in the update step. Linear
spectral clustering (LSC [48]) is another k-means-based algorithm. LSC applies clustering
to normalized cuts and thus reduced the run time of normalized cuts algorithms from
O(n

3
2 ) to O(n), where n is the number of pixels.

Van den Bergh et al. have presented superpixels extracted via energy-driven sampling
(SEEDS [93]). Just as SLIC, it starts from a regular grid of seed points. Since the growing
step slows the superpixel segmentation down, SEEDS saves this step. Instead of this,
SEEDS considers only the superpixel boundaries. It uses hill-climbing optimization to
refine the boundaries. A revisited version of SEEDS (reSEEDS [87]) affixes a compactness
term to the optimization process. Thus, reSEEDS achieved higher connectivity among
superpixels and reduced run time. Extended topology preserving segmentation (ETPS
[112]) is based on SEEDS. It stores pixels to be updated in a priority queue to realize a
coarse-to-fine segmentation. ETPS has been ranked as the top-performing algorithm in
the superpixel benchmark on all five studied data sets [88].

TurboPixels [46] is a representative for contour evolution algorithms. It computes geo-
metrical flows to grow regions. Once again, seed points are placed regularly at the
beginning. The contours of the segments are evolved iteratively. In each iteration the
evolution speed is decreased; it converges to zero until no further evolution is possible.
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TurboPixels has been sped up by eikonal region growing clustering (ERGC [14]). ERGC

uses a fast merging method and was able to segment images obtained by CT scanning
in real-time.

Comanicui and Meer [18] have proposed a density-based algorithm that applies mean
shift for mode-seeking to a density image. Quick shift (QS [94]) decreased the run time
of the mode-seeking step by using the faster Euclidean medoid shift [82] instead of mean
shift. PathFinder (PF [24]) is a representative for path-based superpixel algorithms.
It uses dynamic programming to compute minimum-cost paths along boundaries. The
superpixel benchmark [88] reported that PF is one of the fastest superpixel creation
algorithms available.

This thesis focuses on reducing computation time using a customary CPU. Nevertheless,
it is worth mentioning that GPU implementations [11, 77] of superpixel algorithms en-
abled a high speed-up by more than an order of magnitude at high resolutions. However,
PLANT enables similar run times without requiring a GPU architecture by employing inte-
gral images. Whereas there are a few approaches that use integral images for various
steps in the image segmentation process [1, 6, 13, 30], current state-of-the-art superpixel
algorithms do not use them.

2.4.2 Vision of Soccer-playing Robots

Successful robot soccer teams reach a frame rate of 30 Hz for all computation. As
computer vision is computationally expensive, they have only considered pixels on scan
lines or grid lines and thus have skipped data [62,74,78], or they have run the vision at
a low resolution [4, 27, 62, 78]. As a result, the robots have not been able to recognize
the ball across the field.

The FUmanoids already have used integral images for their vision [81]. For each channel
of the YCbCr color model, they calculate an integral image. The colors are classified
into eight logical colors [79] and a integral histogram, which consists of eight integral
images, is calculated. They detect objects through a binary search, which generates a
binary tree [23, 71]. Each node of the tree refers to an image region and the detected
object consists of, possibly merged, leaves. With this approach, the usage of a resolution
of 960× 720 pixels at a frame rate of 30 Hz became achievable—while considering every
pixel in the image. The PLANT-based vision that is presented in chapter 4 omits the
computation of the integral histogram and only computes the integral image of the
three YCbCr channels. As a consequence, the robots can process even higher image
resolutions.

Holz et al. [42] have implemented a real-time plane segmentation of point clouds. They
model objects through planes, where normals of the planes are estimated by smoothing
them with image patches that are calculated out of integral images. The FUmanoids have
studied the combination of plane segmentation and binary search for object detection
in point clouds [86]. For this, they have built a tree of planes whose nodes split by
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estimating a proper split location and direction. Unfortunately, the tree generating
procedure showed some indirections and frequently met impasses in several local minima.
In contrast, a PLANT is more consistent and prevents this, which results in completely
different segmentations. Accordingly, the way of building the partition tree is designed
entirely different in chapter 3.

2.4.3 Summary

In short, there are numerous superpixel algorithms that strive for reducing run time while
producing applicable superpixels. There has been no implementation of a superpixel
algorithm on customary hardware that achieves real-time frame rates for processing
high-resolution images. The FUmanoids have employed integral images that enable
the processing of a large number of pixels. This thesis continues the idea of using
integral images by suggesting a superpixel algorithm that can be applied to large images
efficiently (see chapter 3).
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3 Superpixel Creation Using a PLANT

This chapter defines the data structure PLANT and describes how this data structure
is generated. Furthermore, it is explained how a PLANT is used to create superpixels.
Two major superpixel creation techniques, PLANT and PLANTm, are presented. For both
PLANT and PLANTm, this chapter discusses characteristic superpixel properties.

3.1 What is a PLANT?

The objective of building a partition-locating, axis-aligned, and node-queuing tree—a
PLANT—is to obtain leaves that enclose homogeneous regions. Initially, a PLANT con-
sists solely of one root node. The root node contains a box, which is a multidimensional
interval, that encloses exactly the data to be analyzed. To grow a PLANT, nodes split
into further nodes. A priority queue manages which node splits next; it contains all
current leaf nodes of the tree and pops the most heterogeneous node if requested. When
a node splits, an axis-aligned hyperplane partitions the data into two half-spaces. Each
of the box-shaped half-spaces belongs to one of the two newly created nodes. The hy-
perplane is fitted into a selected location for the purpose of separating dissimilar data.
The building process completes as soon as the heterogeneity of all nodes fall below a
certain threshold or the PLANT consists of a predefined number of leaves.

A PLANT can be conceived as a binary space partitioning tree [31] that is similar
to a k-d tree [10]. Notwithstanding, there are crucial differences between PLANTs
and k-d trees. A k-d tree alternates the splitting direction successively and positions
the hyperplane at the median data point in order to obtain two nodes featuring the
same amount of data—regardless of the data’s content. As opposed to this, a node
of a PLANT splits in a certain direction and at a certain position so that the split
creates two half-spaces containing data clusters that are as dissimilar as possible to each
other. Moreover, the split maximizes the homogeneity of the resulting nodes’ data. The
metrics for dissimilarity, heterogeneity, and homogeneity are undetermined by design;
they depend on the kind of data and the field of application.
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3.2 Generating a PLANT

Without loss of generality, this section outlines the algorithm for two-dimensional images
and describes the binary search for a split in horizontal direction; the algorithm is
applicable for high-dimensional data and other split directions as well. For multi-channel
images, only the two image dimensions are considered because partition planes that are
orthogonal to the image plane are required. The individual channels can be regarded
as individual features. A weighted arithmetic mean is used to combine the features; the
weights are equal per default, but they are adjustable.

3.2.1 Partition Locating

The goal of the partition locating step is to locate the most significant edge in an image
region for a determined direction. A binary search is used to find this edge quickly.
Initially, the split locations is assumed to be at the center, so that a vertical line splits
the image region into two halves of equal size. This temporary assumed split location
is subsequently termed pivot location. A step size, which is initially set to a quarter
of the image regions’ width, is defined. Then, the pivot location is moved by the step
size both to the left and to the right. Accordingly, one node consists of three quarters
of the original image region, and the other node consists of the remaining quarter (see
Figure 3.1). The difference of the average values of the respective resulting nodes is
computed. If the difference that resulted from the movement to the left is higher than the
difference that resulted from the movement to the right, the left pivot location remains,
while the right pivot location is discarded. If it is lower, the right pivot location remains,
while the left pivot location is discarded. In the unusual case that both differences are
equal, the pivot location stays at its original center location.

For the next iteration, the step width is halved. Additionally, the half to which the pivot
location has not moved to is cut off from the image region. Thereby, each iteration finds
boundaries more locally than the previous iteration did. The pivot location is adapted
iteratively as long as the step size is not less than four pixels. If it becomes less than
or equal to three pixels, the averaging image gradient filter in horizontal direction Ḡx is
applied for each of the remaining positions, and the pivot location is set to the position
featuring the highest absolute filter response. The averaging gradient filter is defined as
follows:

Ḡx =

[
−1 −1 . . . −1

1 1 . . . 1

]T
(3.1)

The number of rows in the non-transposed matrix Ḡx equals the height of the image
region in pixels. Finally, the pivot location yields a vertical partitioning line that splits
the heterogeneous image region into two more homogeneous regions.
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(a) (b)

Figure 3.1: These both filters are used to calculate dissimilarities in each iteration. If
the dissimilarity computed by the left filter is bigger than the dissimilarity
computed by the right filter, the left pivot location is used in the next iter-
ation. The same applies vice versa. Otherwise the pivot location does not
change.

3.2.2 Node splitting

To identify the node that splits next, a PLANT employs a priority queue. The priority
of a node is equal to its heterogeneity. The heterogeneity is already calculated while
the above-mentioned partition location is searched. In each iteration of the search, an
adapted pivot location is determined by the filters displayed in Figure 3.1. Each time the
pivot location changes, its corresponding filter (Figure 3.1a, if pivot has moved to the
left; Figure 3.1b, if pivot has moved to the right) yields a dissimilarity. This dissimilarity
is weighted by a factor, which is halved in each iteration. The weighted dissimilarities are
accumulated. At the end, the sum is multiplied by the node’s length of the investigated
direction (i.e. by the width for a search in horizontal direction). The result yields the
directional heterogeneity. The heterogeneity of a node is the maximum of its directional
heterogeneities. As soon as another node needs to be split, the priority queue pops the
most heterogeneous node, and the node is split in its most heterogeneous direction at
the precomputed split location.

3.3 Superpixel Creation

A straightforward option to create superpixels is to reinterpret each leaf of a PLANT as
a superpixel. This approach will be referred to as PLANT in this thesis. An alternative
approach, subsequently called PLANTm, is to merge the leaves of a PLANT into super-
pixels. Leaves that form a diagonal line are particularly often similar; therefore, they
are expected to merge frequently.

To prepare the merging, the PLANT is traversed to find adjacent leaves for each leaf.
The traversal starts at a initial leaf, successively visits all parent nodes up to visiting
the root node, and visits all children that touch the initial leaf and have not been visit
before. If a child is a leaf, it is neighbor. Once identified, the neighbors are attributed
to their respective leaf; thus, the PLANT is not required to be traversed more than

14



once per leaf. Adjacent leaves merge if their dissimilarity is below a certain threshold1.
When leaves merge, their areas, their neighbors, and their properties merge as well.
For example, the property “mean color” merges by averaging the colors and weighting
the average by the area of their respective leaf. The merging is performed in several
iterations. In each iteration, no leaf is involved in more than one merge with another
leaf. This prevents unbalanced merging.

The intention of the merging procedure is to obtain a better segmentation for the same
number of superpixels. In contrast, the disadvantage of merging is that it increases the
run time for superpixel creation. A merged superpixel is compactly represented by a list
of nodes2 that contain boxes.

3.4 Properties of PLANT-Superpixels

3.4.1 Regularity

Several applications require regular superpixels such as applications using Markov ran-
dom fields [26, 32, 36, 47]. Yet, there are multiple definitions of regularity. Giraud
et al. [35] maintain that a regular superpixel features a smooth contour, a solid shape,
and a balanced pixel distribution. Smoothness describes the ratio of the contour length
to the length of its convex hull. Solidity specifies the ratio of the superpixels area to
its convex hull’s area. Balance considers the spatial distribution of pixels belonging to
the superpixel: Within a well-balanced superpixel, the difference of the horizontal and
vertical variance of pixel positions from the superpixels barycenter is small.

As PLANT produces rectangles, the superpixel’s contour is identical to its convex hull.
Hence, both smoothness and solidity are optimal. As mentioned above, weighted dis-
similarities are accumulated to compute the directional heterogeneity. The weighted
dissimilarities are multiplied by the length of the image patch in the respective di-
rection. By weighting the length factor, balance can be adjusted. PLANTm produces
superpixels whose convex hull is not necessarily identical to their contour. Furthermore,
it disregards balance, although introducing a balance term appears possible if required.
Eventually, PLANTm usually creates less regular superpixels than PLANT.

3.4.2 Connectivity

Connectivity means that each superpixel represents a connected set of pixels [46]. Some
superpixel algorithms such as SLIC do not enforce connectivity [2]. The leaves of a

1 If the dissimilarity threshold equals zero, PLANTm outputs the same superpixels as PLANT. Thus,
PLANTm can be seen as a generalization of PLANT.

2 For efficiency, the “list of nodes” is implemented as a std::vector of pointers to nodes.
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PLANT are rectangles. Therefore, superpixels created by PLANT are inherently con-
nected. In the merging step, only superpixels are joined that share a common boundary.
That implies that at least one pixel of each original superpixel is connected with the
respective other original superpixel; the resulting superpixel is thus connected as well.
Consequently, both PLANT and PLANTm ensure connectivity.

3.4.3 Controllability

Controllability means that the number of superpixel are adjustable by a parameter [88].
Considering the superpixel algorithms that are compared to PLANT and PLANTm in this
thesis, all but FH and QS provide such a parameter. Nevertheless, hardly any algorithms
is accurately controllable. Almost all algorithms output a number of superpixels that
is different from the preset number of superpixels. ERS is the solely algorithm of these
that can be controlled accurately.

Thanks to its priority queue, which pops nodes one by one, PLANT is accurately con-
trollable as well. In contrast, PLANTm is controllable, but not accurately controllable.
Apparently, PLANTm could likewise employ a priority queue. Notwithstanding, it has to
be studied how a priority queue can be applied reasonably since it is not clear how many
nodes the other priority queue in the preceding splitting step should generate.

3.4.4 Efficiency

While the properties mentioned above are considered secondary in this thesis as PLANT
has not been optimized for them, the principal goal of this thesis is to generate super-
pixels efficiently. More precisely, the focus is to enable a complete vision for soccer-
playing robots (see chapter 4) to run on a stream of HD images with at least 30 frames
per second. Superpixels facilitate this, but the superpixel creation cannot receive all
run time available because it is a preprocessing step; subsequent computations require
processing time as well. Moreover, superpixels are generated to accelerate subsequent
computations. Therefore, efficiency is the essential property for superpixel algorithms.

PLANT and PLANTm are fast because they apply integral images. The time complexity of
computing the integral image is T (n) = c · n = O(n), where n is the number of pixels,
and c is a constant factor. Compared to other superpixel algorithm, PLANT and PLANTm

can be implemented so that c is notably small. Despite its name, random access memory
(RAM) can be accessed faster sequentially than randomly because the memory hierarchy
utilizes the spatial locality of reference. The constant factor c is small because memory
cells are not accessed randomly but successively. The successive accesses particularly
results in a high cache hit ratio as the prefetcher uses the regular access pattern to load
suitable cache lines; furthermore, the cache lines are processed completely. Thus, run
time does not only depend on the number of operations but also on the usage of the
hierarchy of memory; PLANT and PLANTm consider both.
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After each split, both resulting nodes are searched for a vertical and a horizontal partition
location; it is a binary search, which has logarithmic time complexity. The binary search
is applied for each node. A PLANT that generates k superpixels consists of 2 · k − 1
nodes including k leaves. Thus, the node creation has a time complexity of O(k · log(n))
altogether. Consequently, the total time complexity for PLANT is O(n+ k · log(n)).

Although the merging procedure employs the tree structure of a PLANT, it is not ensured
that the PLANT is balanced3. Thus, the time complexity for finding all respective
neighbors is O(k2) in the worst case. Afterwards, each leaf is compared to its neighbors;
therefore, for the comparison part, O(k2) is an asymptotic upper bound as well. The
time complexity of the actual merging procedure is negligible. Accordingly, the worst-
case time complexity of PLANTm is O(n+ k · log(n) + k2).

Predefining the number of resulting superpixels leads to small variations of PLANT’s
run time, which is beneficial for real-time applications. Furthermore, the growing of a
PLANT can be preempted at any time; PLANT does not need to be completed in order
to produce a reasonable result, i.e., it can be sufficient if less than the preset number of
superpixels is generated. PLANT trades off its run time against its precision of results.
Hence, PLANT is eligible for hard real-time scheduling [53].

3.5 Interim Conclusion

A PLANT is a partition tree that divides data into homogeneous regions. By inserting
a partitioning plane, a node splits into further nodes. A binary search determines the
plane’s location. The binary search examines mean values of features in selected regions;
it employs integral images to compute the mean feature values of any region in constant
time. If another node is requested to split, a priority queue determines which node splits
next—it returns the most heterogeneous of all current leaves.

The superpixel creation algorithm PLANT interprets each leaf of a two-dimensional PLANT
as a superpixel. Beyond that, the superpixel creation algorithm PLANTm merges similar
adjacent leaves to obtain superpixels. Both algorithms, but especially PLANT, properly
comply with most superpixel properties. With a notably small constant factor, PLANT
and PLANTm have order of n time complexity, where n is the number of pixels. Besides,
the time complexity of both algorithms depends on the number of resulting superpixels.
A detailed evaluation of their run times is given in chapter 5.

3 However, it is possible to implement balancing for a PLANT if it becomes necessary.
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4 Application to Vision of
Soccer-playing Robots

PLANT has been employed within the context of the student project FUmanoids in the
first place. The PLANT data structure has been developed to lay the groundwork for
the computer vision of the soccer-playing robots of the FUmanoids team as described
in the team description paper for the RoboCup 2017 competition [23].

4.1 Requirements

The FUmanoids robots compete in the Kid Size class of the Humanoid League. Only
human-shaped robots, equipped with human-like sensors, featuring a height between
60 cm and 90 cm are allowed to participate in this competition. The rules of the Hu-
manoid League [43] evolve continuously. In early RoboCup competitions, the rules
covered some important elements of soccer merely, in order to establish a flow of play
in the matches. As the ambition is to converge to the FIFA’s laws of the game, these
rules are adjusted through the years.

Recent rule changes have affected the appearance of the ball, of the goals, and of the
playing field. Concretely, the robots play on a field consisting of artificial turf. Artificial
turf features a variant brightness due to reflections and shadows of the blades of grass.
Pixelwise classification of the robot’s environment, as described by Rughöft [79], becomes
thus more difficult. Consequently, an improved segmentation, considering the spacial
environment of the pixels, needs to be done. In addition, instead of playing with a
completely red ball, the current rules state that half of the ball’s surface area must be
colored white, while the remaining area’s appearance is undefined.

It is essential for a soccer robot not to confuse the ball with other entities such as field
lines or goalposts. For the purpose of a proper classification result, with high precision
and recall, a ball candidate should not consist of a too small number of pixels. When
using a HD resolution (1280× 720 pixels), the robots robustly recognize a ball that is up
to approximately 5 m away without any false positive detection. To see the ball across
a humanoid soccer field with the dimensions of 9 m × 6 m, the robot’s camera has to
deliver images in Full HD resolution, which is 1920×1080 pixels. The processing of such
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a large image constitutes the run-time bottleneck for the robot’s cognition. The whole
cognition is intended to run with a frame rate of 30 Hz on an ODROID-X2 featuring
a 1.7 GHz quad-core CPU. Up to the point where ball candidates and goalposts are
detected, the computer vision should not have spent more than 25 ms on computing
because it needs to be considered that the remaining parts of the cognition require some
time for execution as well. As there is a lack of algorithms that can be implemented to
detect the objects that fast, PLANT-based algorithms have been developed to extract
the essential information from the stream of high-resolution images.

4.2 Field Contour Extraction

The field contour divides the image into two segments: Field and non-field. Anything
outside the field needs not to be considered in subsequent processing steps; by omitting
non-field pixels, computation time is saved. In accordance with the laws of the game,
the field is an even area of artificial green grass. A field-colored border strip, which
has a width of at least 70 cm, surrounds the field. The appearance of the world beyond
the border strip is not defined at all. Virtually always, the field is bounded and the
color alters behind the border strip; therefore, it can be assumed that the field color is
discontinued.

Whether a YCbCr-triplet is classified as a field color mainly depends on the values of
the chrominance channels. The field color is almost independent of the luminance. In
addition, undesirable reflections and shadows of the lawn are projected onto the Y-
channel. Hence, only both chrominance channels are considered to extract the field
contour. When a node of a PLANT is split, there are eight distinct cases regarding the
arrangement and the classified colors of the resulting nodes: Both of the nodes either
feature field color or not, and the split could be made horizontally or vertically.

Initially—when the PLANT consists of a single node, which contains the whole image—
the field contour is assumed to be on the bottom border of this node. While the PLANT
creates new nodes, the field contour adjusts itself within the range of the corresponding
nodes. The field contour ascends to the split location if, firstly, the respective split
occurred in vertical direction, secondly, the upper node features no field color, but thirdly,
the lower node features field color, and finally, the current field contour is situated below
the split location (see Figure 4.1c). Likewise, the field contour ascends to the top of a
node if, firstly, it results from a split in horizontal direction, secondly, the respective
node features field color, and finally, the current field contour is situated below the top
of the respective node (see Figures 4.1g, 4.1h, and 4.1i). As opposed to this, the field
contour descends to the bottom of a node if and only if, firstly, it results from a split
in horizontal direction, secondly, the respective node features no field color, and finally,
the current field contour is current field contour is situated between the top and the
bottom of the respective node (see Figures 4.1f, 4.1g, and 4.1h). In all remaining cases,
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(f) (g) (h) (i)

Figure 4.1: Field contour extraction. All eight variants of resulting nodes after splitting
are represented. Top: Splits in vertical direction. Bottom: Splits in hori-
zontal direction. Green illustrates that the node is classified as field; gray
illustrates that the node is classified as non-field. The red line shows the
position where the field contour moves to. The field contour is adjusted to
the top of a green node only if it moves the field contour up; likewise, the
field contour is adjusted to the bottom of a gray node that resulted from a
horizontal split only if the field contour crossed this gray node before. No
red line means no adjustment.
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including the remaining node arrangements (see Figures 4.1a, 4.1b, and 4.1d), the field
contour stays at its position.

As the playing field is constructed on a level ground, nodes that are completely located
above the horizon will not split further. By then, the field contour is a sequence of
horizontal lines. The center points of these lines add up to interim field contour points.
To remove outliers, in the end, the field contour points are smoothed to a convex hull
by Andrew’s monotone chain algorithm [5], which computes the convex hull efficiently.
Figure 4.2 illustrates the intermediate steps and the result of the field contour extrac-
tion.

4.3 Object Detection

To detect objects, another PLANT is built. As stated above, the robot considers only the
area below its horizon to detect the field. Likewise, it considers only the area below the
field contour to detect objects of importance. Accordingly, nodes that are situated above
the field contour do not split further. The surface of the ball is defined to contain at least
50 % white color, while the goalposts are defined to be completely white. Consequently,
white blobs are detected to generate proposals for these objects. To detect the white
blobs, it is sufficient to build a PLANT by considering only the Y-channel of the YCbCr
color model. A white blob is detected when a node’s mean color is classified as white
and its split results in two nodes whose mean colors are white as well (see Figure 4.3).
A node that is a part of a white blob does not split further. Similarly, a node whose
smallest side projected to the ground is smaller than 5 cm, which can be computed by
applying the camera matrix, does not split further.

The result is an image containing non-overlapping bounding boxes of white regions,
which can be interpreted as superpixels. These bounding boxes are the basis for the
ball and goalpost detection. In this section, the objects of interest are soccer balls and
goalposts; the perception of these object is essential for playing soccer. Other objects
such as field lines, which are defined to be white, or other robots, which are defined to
have black feet and colored jerseys, could be detected in a similar way.

4.3.1 Ball Detection

A detected white blob is an approximate estimation of a potential ball location in the
image. Figure 4.4 shows a scenario in which six white blobs are detected, while only one
contains the ball. Therefore, these object proposals need to be processed further. At
first, the bounding boxes that contain white blobs are trimmed. Sometimes the bounding
boxes clearly contain non-white areas as Figure 4.5 shows. The trimming is realized by
building another PLANT. This trimming PLANT is built considering the Cb and Cr
channels of the YCbCr color model. Using both chrominance channels, especially green

21



Figure 4.2: Processing steps of the field contour extraction; nodes are displayed in their
mean color. Top left: PLANT after first split. The split matches the field
contour roughly. Top center: Increased number of nodes. Corner of the field
becomes visible. Top right: Increased number of nodes. This segmentation
would be sufficient at this point. Bottom left: Final PLANT. The algorithm
stops at a certain threshold. Bottom center: Superimposed resulting field
contour as a red line. Bottom right: Original image including the field
contour.
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Figure 4.3: White blob detection. All eight variants of resulting nodes after splitting
are represented. White illustrates that the mean color of a node is classified
as white. Gray illustrates that the mean color of a node is not classified as
white. A blue frame is considered as a bounding box of a white blob. A
red framed node splits further; in contrast, the nodes that are contained in
a blue frame do not split further.

Figure 4.4: White blobs for ball detection. Left: Illustration of PLANT that is built to
find white blobs. Center: Black rectangles mark white blobs. Right: Marked
white blobs in the original image.
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areas are separated well from the ball. While the trimming PLANT is generated, each
leave that is not colored white is trimmed (see Figures 4.6a,4.6b, 4.6c, 4.6f, 4.6g, and
4.6h). Additionally, white nodes splitting into two white nodes do not split further and
result in an improved bounding box that encloses a white blob (see Figures 4.6d and
4.6i). The trimming PLANT is usually rather small regarding the number of nodes.
Unlike the white blob PLANT, the lower bound for the size of a node is one pixel.

Sometimes multiple boxes superimpose the ball. Therefore, boxes that touch each other
are merged (see Figure 4.7a). Yet, the merged boxes do not necessarily cover the whole
ball. Often only the upper half of the ball is found because it is much brighter than the
lower half. This is why, next, the size of the bounding box is adapted to the expected
size of the ball. The center point of the box’s top side is the fix point while the size is
adapted.

Following this, the position of the bounding box is further improved. A fast mode
seeking algorithm is implemented that utilizes integral images by comparing average
color values of boxes. Mean shift is commonly used for mode seeking [17], but it would
be unnecessarily computationally expensive at this point. In the proposed method, the
initial bounding box is moved in all four possible directions (vertically up and down,
horizontally left and right) by an offset, which is initially set to a quarter of the ball’s
diameter, to check whether any of these positions fits better. A box fits better if the
sum of its average chrominance values is higher. If another positions fits better, the
box is moved to that respective position. Subsequently, the offset is halved and the box
is moved again. A well fitting bounding box location is found when the offset equals
one pixel. Figure 4.7b shows the resulting bounding box. To obtain even better results,
this step could be repeated until convergence. Though, this is not necessary in this
application; thus, only one iteration is performed.

Eventually, some final checks are done. Firstly, it is checked whether the mean color
of the bounding boxes is distinct from the field color. Secondly, it is checked whether
the upper half of the bounding box has higher average luminance than the lower half
because the upper half of the ball usually reflects more light. Figure 4.7c demonstrates
that these two sanity checks can eliminate several bounding boxes. Finally, the Kullback-
Leibler (KL) divergence [71] and a support vector machine (SVM) is applied to sort out
the remaining false positives. Both the KL divergence and the SVM are comparatively
time-consuming. Only a few bounding boxes can be checked within a millisecond. This
is acceptable for real-time applications if not many boxes need to be classified, but
applying a sliding window would be too computationally expensive. Exactly this is the
reason why creating a PLANT for preprossing is necessary: It drops the total run time
for the classifiers significantly.
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Figure 4.5: Trimming white blob boxes in ball detection (magnified image section). Left:
Black bounding boxes contain detected white blobs. Right: Bounding Boxes
after trimming are colored yellow; dark yellow for unchanged boundaries
and bright yellow for new boundary lines. Red color indicates a part of a
bounding box that has been trimmed off. Bright yellow and red lines can be
seen on the left of the ball; they enclose the trimmed off area.

(a) (b) (c) (d)

(f) (g) (h) (i)

Figure 4.6: Trimming white blobs. All eight variants of resulting nodes after splitting
are represented. White illustrates that the mean color of a node is classified
as white. Gray illustrates that the mean color of a node is not classified as
white. A blue frame is considered as a bounding box of a white blob. A red
framed node splits further; in contrast, all other nodes do not split further.
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4.3.2 Goalposts Detection

The white blobs are not only used for ball detection, but also for goalposts detection.
There are four goalposts on the field. Each goal consists of two goalposts, which have
a distance of 260 cm, while both goals are 900 cm apart. Goalposts do not have plenty
of features. It is known that they are white and that they have certain dimensions. So,
at first, the white blobs are filtered by size (see Figure 4.8). It is checked whether white
blobs of the respective dimensions can be a part of a goalpost. However, the size filter
is rather permissive in order to not create false negatives. Only boxes that substantially
differ in size are eliminated here. Next, the potential goalposts are validated by checking
their environment. Additionally, the relative position of the goalposts from the robot are
estimated. For these purposes the potential goalposts are scanned up- and downwards.

A goalpost is scanned downwards to locate its relative position on the field. The scanning
consists of multiple iterations. Each iteration moves the box downwards by a certain
offset (i.e. a quarter of the box’s width). Moreover, the same offset is applied to move
copies of the downwards shifted box to the left and to the right. Then it is checked
which of the three (left, central, right) boxes overlaps the most with a goalpost. For
this, the box with the highest average luminance is chosen. This process is iterated until
none of the three newly created boxes matches the goal color anymore, and the central
box of these three matches the field color. Figure 4.9a shows the initial superpixels and
the final boxs touching the field.

The final box contains pixels of both a goalpost and the field. Therefore, also the edge
between both is contained in this box. This edge is detected by creating another PLANT
within the box. The edge detection PLANT, which considers all three channels of the
YCbCr color model, consists of only two leaves. The central point of the separation line
is the point where the goalpost touches the field; it is plotted for each goalpost candidate
in Figure 4.9b. As this point is situated on the field, the camera matrix can be employed
to measure its distance from the robot.

A goalpost is scanned upwards for validation; it is checked whether the goal post crosses
the field contour. The upwards scan is done similarly to the downwards scanning de-
scribed above—but in the other direction. The termination criterion also differs: The
scan is stopped as soon as the box touches the field contour. The final boxes of the
upwards scan are illustrated in Figure 4.9c. If, by contrast, within an iteration none
of the three newly created boxes contains the goal color, the respective superpixels are
marked as an invalid goalpost candidate.

Since a goalpost can consist of several superpixels, multiple goalposts can be detected
inside the same goalpost. From these detected goalpost candidates, which are true
positives, one has to be selected. It is usually negligible which of the candidates is
chosen. As a decision has to be made, a candidate originating from a brighter and larger
superpixel is preferred. For this, all goalpost candidates that are less than 1 m apart
are checked against each other pairwise. The respective goalposts candidates featuring
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(a) (b) (c)

Figure 4.7: From bounding boxes containing white blobs to a bounding box that con-
tains the ball. Left: Merging adjacent boxes. Yellow boxes merge to blue
boxes. Center: Resizing the boxes to ball size and shift them to non-green re-
gions. Blue boxes transform to magenta boxes. Right: Fast sanity checks to
eliminate false positives. All magenta boxes are identified as false positives.
The cyan box remains as a valid bounding box.

Figure 4.8: Filter white blobs for goal detection. Left: Illustration of PLANT that is
built to find white blobs. Center: Black rectangles mark white blobs. Right:
Red rectangles mark potential goalpost superpixel. Black rectangles are
eliminated. The left black rectangle is discarded because it is too wide. The
right black rectangle is discarded because it is too low.
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(a) (b) (c) (d) (e)

Figure 4.9: Extracting a goalpost from white blobs. (a) Red rectangles enclose white
blobs. Final rectangles after downwards scanning are colored cyan. (b)
Points mark ascertained goalpost positions. (c) Red rectangles enclose white
blobs. Final rectangles after upwards scanning are colored cyan. (d) The
three detected goalpost candidates are marked by black lines. (e) The yellow
marked position is the final position of the goalpost.
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the darkest original superpixel are discarded until only one goalpost candidate remains
within a radius of 1 m. This candidate is selected as the final goalpost (see Figure
4.9d).

4.4 Interim Conclusion

A PLANT has been used to implement the computer vision for a humanoid soccer-
playing robot. Since the nodes of a PLANT split at significant edges, the structure of
an image is analyzed while the PLANT is created. Additionally, the PLANT smooths
the textured grass by computing the average colors for its nodes; so, the pixel are put
into context and outliers are prevented. Instead of using the PLANT to create all
superpixels, specialized small PLANTs are generated with the purpose to improve the
run time. These specialized PLANTs feature specialized termination criteria and are
built on selected color channels. Figures 4.10a and 4.10b illustrate the PLANTs that
extract the field contour and detect white blobs. Figure 4.10c shows a summarizing image
in which the field contour and a ball in front of two goalposts is detected. Furthermore,
this chapter has also presents a fast mode seeking algorithm to improve the positions of
bounding boxes. This PLANT-based vision allows the robots to run with a frame rate
of 30 Hz at a Full HD resolution. A detailed run time evaluation of a superpixel creating
PLANT is given in chapter 5.

(a) (b)
(c)

Figure 4.10: Summary of the robot’s vision. Left: PLANT to extract field contour.
Center: PLANT to extract white blobs. Right: Extracted field contour,
ball, and goalposts are marked.
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5 Experiments

This chapter evaluates the superpixel creation algorithms PLANT and PLANTm, which
are introduced in section 3.3. They are compared to selected superpixel algorithms
presented in section 2.4. The focus is on the evaluation of run times. Additionally, it is
examined whether the algorithms produce superpixels of proper quality. All experiment
were conducted using the benchmark framework provided by Stutz et al. [88].

5.1 Run Times

Setup

The run times of superpixel creation algorithms were compared on several image resolu-
tions; especially, high resolutions were considered. For lack of data sets of high-resolution
images featuring ground truth segmentations, the fundus data set from Köhler et al. [45]
was used for efficiency evaluations. The data set is composed of 45 images with a resolu-
tion of 3504×2336 pixels. While keeping their aspect ratio, the images were downscaled
nine times by 38.2%. Consequently, the image sizes of the resulting 10 different scales
varied approximately from 0.1 to 8.2 megapixels. The data set was split into a training
set, comprising 12 images, and a test set, comprising 33 images. The training set was
used for parameter tuning, whereas the test set was only used for the final experiments.
All experiments ran on an Intel Core i5-6200U processor. Two cores, which process data
with a clock rate of 2.3 GHz, are attached on its socket. Both cores share an L3 Cache
with a capacity of 3 MB.

Experiment I

Method The run times for the six lower image scales—up to a resolution of 1339 ×
891 pixels, which are 1.1 megapixels—were measured. It was attempted to produce
1000 superpixels in all trials. The number of superpixels for ERS and PLANT was ac-
curately controllable. For the other algorithms, parameters were chosen that result in
approximately 1000 superpixels.
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Evaluation Figure 5.1a illustrates the run times from a resolution of 402× 267 pixels
up to a resolution of 1339× 891 pixels. It displays that PLANT has the lowest processing
time on all image scales. PLANTm is faster than all non-PLANT-based algorithms for
resolutions that are higher than approximately 0.25 megapixels.

Experiment II

Method For some algorithms, their parameters can be tuned to reach a faster run time.
Thus, the parameters were adapted to produce 1000 superpixels with a minimum run
time. In contrast to Experiment I, additional parameters that do not affect the num-
ber of superpixels were adapted, which potentially lowers the quality of the resulting
superpixels. This experiment was conducted on the same data as Experiment I. Mini-
mizing the run time of PLANTm would result in the PLANT algorithm, which applies no
merging at all; thus, PLANT can be considered as a fast version of PLANTm. As PLANT had
already been evaluated in Experiment I and cannot be optimized further by adjusting
parameters, PLANT and PLANTm are not considered in this experiment.

Evaluation The run times for the original and fast versions of the algorithms are shown
in Figure 5.1b. The fast versions of the algorithm are denoted by attaching a f to the
acronyms. Figure 5.1b illustrates that especially preSLICf, SLICf and SEEDSf achieved
low run times.

Experiment III

Method This experiment considers the run times at resolutions up to 8.2 megapixels
(see Figure 5.2a). ETPS has been ranked as the top performing algorithm in the su-
perpixel benchmark [88]. For this experiment, it was therefore assumed that all other
superpixel algorithms generate superpixels of lower quality. Hence, algorithms whose
both run time and slope of run time were higher than those of ETPS at a resolution of
1339× 891 pixels were not considered for this experiment. These algorithms are shown
grayed out in Figures 5.1a and 5.1b.

Evaluation PLANT and PLANTm were the only superpixel algorithms running with a
frame rate of at least a 30 Hz on images with at least HD resolution, i.e. 1280 × 720
pixels (see Figure 5.2a). Nevertheless, PLANTm failed to reach a frame rate of 30 Hz at
the full resolution. The fastest non-PLANT-based algorithm was SLICf with 368 ms.
The slope of PLANT and PLANTm were significantly lower than the slope of the other
superpixel algorithms (see Figure 5.2b). Although the run times of PLANT and PLANTm

are asymptotic linear, in the range of the examined image resolutions, the run times
still appeared to increase in a sub-linear manner as the graphs for PLANT and PLANTm in
Figure 5.2c are almost a line with a minor kink. This motivated Experiment IV.
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(a) Run times of superpixel algorithms for producing 1000 superpixels on lower resolutions.
Algorithms that are slower than ETPS are not consider in subsequent run-time experiments.
PLANT is the fastest algorithm on all resolutions.
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(b) Some Algorithms can be sped up by choosing different parameters. Fast Algorithms that
are faster than ETPS are further considered. This is true for SLICf, preSLICf and SEEDSf.

Figure 5.1: Experiments I and II
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No algorithm but PLANT and PLANTm were able to produce superpixels on HD images with
a frequency of 30 Hz on the experimental setup.
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(b) The linearly scaled graph represents the same data as Figure 5.2a. It illustrates that the
slope of the run time over the resolution is much smaller for PLANT and PLANTm than for
the other algorithms. They scale significantly better.
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(c) The log-linear graph for PLANT and PLANTm looks almost like a straight line, which indicates
constant or logarithmic behavior. A small kink can be seen starting at around 3 ·106, which
indicates a transition into linear behavior.

Figure 5.2: Experiment III

Experiment IV

Method The run times were measured for the different components of PLANT and
PLANTm (see figure 5.3b). The components for PLANT are: Firstly, the conversion of
an image to an integral image, and secondly, the generation of a PLANT. In addition,
PLANTm involves the merging procedure as a third step.

Evaluation PLANT needed the same time for the integral image conversion and for
generating the PLANT at approximately 1.5 million pixels. For higher resolutions, the
PLANT creation was faster than the integral image conversion. More precisely, for an
image with the dimensions of 1339× 891 pixels, both the conversion and the generation
required nearly 3 ms; the total time was 5.5 ms. PLANTm had the same conversion time
because the conversion only depends on the image size. Its generation time was nearly
5 ms as more superpixels were produced for subsequent merging. The merging itself
required nearly 12 ms, resulting in a total time of around 19 ms. On the full resolution
of 3504×2336, the conversion time was much higher. PLANT and PLANTm required 17 ms.
By contrast, the generation time was only slightly higher—less than 4 ms for PLANT and
almost exactly 6 ms for PLANTm. PLANTm required nearly 12 ms for merging. As a result,
the total time for PLANT and PLANTm were 21 ms and 35 ms, respectively. Figure 5.3a and
5.3b illustrate that the conversion behaves linearly and the PLANT generation behaves
logarithmically. The run time of the merging procedure does not depend on the number
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of pixels; thus, it has roughly constant behavior. In summary, the asymptotic most
complex term, which is the conversion to an integral image, did not become prevalent
until the image is composed of a vast number of pixels.

5.2 Superpixel Quality

Metrics

To compare the quality of different superpixel algorithms, a quantitative evaluation
was conducted. The metrics boundary recall, undersegmentation error, and explained
variation are used in most superpixel studies. Furthermore, they are expressive and do
not correlate much more than necessary [88]. However, it is difficult to quantify solutions
of the ill-posed segmentation problem. Therefore, the metrics can only provide a rough
estimation of the superpixel quality.

Boundary Recall Boundary recall (Rec) measures the fraction of detected boundary
pixels from the ground truth data [60]:

Rec =
TP

TP + FN
(5.1)

A ground truth boundary pixel is regarded as detected if a pixel in a predefined, small
local neighborhood is classified as boundary—it is a true positive (TP). Every ground
truth boundary pixel that remains undetected is a false negative (FN). High-quality
superpixel segmentations achieve a high boundary recall since they contain superpixels
that adhere to many ground truth boundaries.

Undersegmentation Error Each pixel of a superpixel should belong to the same ob-
ject in the real world. The undersegmentatiton error (UE) represents the quantity of
pixels that leak into another ground truth segment. There are several formulae for its
calculation, this thesis uses the formula defined by Neubert and Protzel [68]:

UE =
1

N

∑
Gj∈G

∑
Pi∈P

min(|Pi ∩Gj|, |Pi \Gj|) (5.2)

G consists of all ground truth superpixels, P consists of the computed superpixels, and
N is the total number of pixels. As a result, the number of pixels that cross a boundary
of the ground truth segmentation are counted and divided by the total number of pixels.
High-quality superpixel segmentations achieve a low undersegmentation error since their
superpixels are rarely part of more than one object.
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(a) PLANT consists of a convert part to compute the integral image and a build part to generated
the tree. In PLANTm a merge part follows. It can be seen that building has logarithmic run
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0 2 4 6 8

·106

0

10

20

30

image resolution (pixel)

ti
m

e
(m

s)

PLANTm merge
PLANTm generate
PLANTm convert
PLANTm total
PLANT generate
PLANT convert
PLANT total

(b) The same data in a linearly scaled graph. It illustrates that the convert time is linear.
The linear convert time becomes predominant at around 1.5 million pixels for PLANT. For
PLANTm it becomes predominant at around 4 million pixels.

Figure 5.3: Experiment IV
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Explained Variation The explained variation (R2) measures the variation of the image
that is explained by the superpixels if they are represented by their mean color. It is
calculated as follows:

R2 =

∑
i(µi − µ)2∑
j(xj − µ)2

(5.3)

µi is the mean color of the i-th superpixel, µ is the mean color of the image, and xj is
the pixel value of the i-th pixel. High-quality superpixel segmentations achieve a high
explained variation since they can represent most information of the image by their
superpixels.

Experiment V

Setup and Method The segmentation quality of the superpixel algorithms were eval-
uated on the Berkley Segmentation Data Set 500 (BSDS500) [61]. It is the commonly
used for superpixel evaluation and also segmentation evaluation in general. BSDS500 is
composed of outdoor scenes. The data set comprises a test set of 200 images, a training
set of 200 images, and a validation set of 100 images. Their resolution is 481 × 321
pixels. Each image features between four and eight ground truth segmentations, which
were produced by humans. All human segmentations should be reproducible by using
superpixels as the elementary element. Accordingly, the ground truth segmentation
that scores worst was regarded for all metrics. These worst score were averaged over the
images.

The parameters of the algorithms were tuned on the training set to produce 300, 1500,
and 7500 superpixels with a high boundary recall and a low undersegmentation error.
The objection function maximized the difference between both. Consequently, three
parameter sets were obtained. Subsequently, the parameters were linearly scaled between
the first and the second and the second and the third parameter set to produce additional
data points (similar to the benchmark [88]).

Evaluation Figure 5.4 illustrates the results of this experiment. It shows that PLANTm
expectedly performed slightly better than PLANT. The quality of superpixels produced
by PLANTm and PLANT, which is illustrated in Figure 5.5, was similar to the quality of
superpixels produced by W. It was confirmed that ETPS is currently the top-performing
superpixels algorithm. SLIC and its variations (SLICf, preSLIC, preSLICf) performed
better than PLANT and PLANTm, whereas SEEDSf and PF performed worse than PLANT

and PLANTm.
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Figure 5.4: Experiment V: It can be seen that PLANT and PLANTm perform in the same
order of magnitude as other superpixel algorithms. It can be seen that it
ranks similar to watershed algorithms, while most SLIC- and SEEDS-based
algorithms perform better and PF and SEEDSf perform worse.
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Figure 5.5: From superpixels reconstructed images. Each superpixel is represented by
its mean color. All images are part of Berkley Segmentation Dataset 500 [6].
Left: 1500 PLANT superpixels. Center: 1500 PLANTm superpixels. Right:
Original images.
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5.3 Interim Conclusion

PLANT and PLANTm are efficient superpixel creation algorithms. Applied on high-resolution
images, they are more than an order of magnitude faster than other fast state-of-the-art
superpixel creation algorithms. The conversion of an image to an integral image is the
asymptotic most complex part of the algorithm; yet the conversion’s absolute time is low
at the regarded image resolutions. The quality of the superpixels produces by PLANT and
PLANTm represents the average of state-of-the-art algorithms. Both algorithms perform
similar to W.

Suppose superpixels has to be produces for a large image in short time, it is recom-
mendable to use PLANTm. Compared to other superpixel creation algorithms, it provides
a significant speed-up. If the resulting run time is not sufficient, PLANT can be employed.
It enables a further noticeable speed-up without forfeiting much superpixel quality. Pro-
vided that a higher superpixel quality is required, while the superpixels still have to be
created fast, linear iterative clustering methods (SLIC, SLICf, preSLIC, preSLICf) are
appropriate algorithms. If the superpixel quality is prioritized, the use of ETPS is ad-
visable. ETPS has a higher run time than the algorithms mentioned above, but it is
not inefficient; it supports frame rates higher than 1 Hz for superpixel creation on high
resolutions.
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6 Conclusion and Future Work

6.1 Conclusion

A PLANT is a binary space partitioning tree. Its leaves encompass homogeneous re-
gions. To achieve real-time performance, a PLANT uses a precomputed integral image
to partition an image. Once the integral image is computed, the PLANT can efficiently
create nodes through a binary search over image regions of decreasing sizes. The su-
perpixel creation algorithm PLANT considers each leave of a PLANT as a superpixel,
whereas the superpixel creation algorithm PLANTm merges leaves to obtain superpixels.
PLANT and PLANTm comply with characteristical superpixel properties; in particular, both
are designed to be efficient.

PLANT and PLANTm are notably efficient superpixel creation algorithms. In the exper-
iments, both were more than an order of magnitude faster than state-of-the-art algo-
rithms on high-resolution images. They were the only algorithms that could produce
superpixels on images containing more than one million pixels with a frame rate of at
least 30 Hz.

The quality of superpixels created by PLANT and PLANTm is comparable to state-of-the-
art algorithms; they performs similar to the watershed segmentation algorithm, while
being distinctly faster, especially at high-resolutions. If superpixel quality is the priority
but efficiency is still not insignificant, the use SLIC or ETPS is recommended. However,
each superpixel creation algorithm produces superpixels that feature different properties,
which should also be regarded.

A PLANT was applied to implement a computer vision for soccer-playing robots. While
the PLANT for the vision is generated, nodes only split further if the split is expected
to provide useful information. The PLANT uses the mean colors, which are low-level
cues, of image regions to detect object candidates. After that, higher-level cues are
considered to complete the object detection, e.g. to verify a goalpost candidate, its
context is regarded. PLANTs enable the robot to use a higher image resolution for their
vision. Therefore, the robots obtain more information about their environment they are
interacting with, which improves their capabilities.
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6.2 Future Work

• A PLANT can be used as a part of a calibration-free vision or to bootstrap an
automatic camera calibration. A PLANT produces more leaves at a certain thresh-
old the more information the image provides, which means the parameter is better
adjusted. Parameters such as white balance and exposure can be tuned with this
method but not parameters such as contrast as it produces noise when adjusted
wrongly.

• Field lines and obstacle such as team-mates and opponent players can be detected
with a PLANT as well by searching blobs in the determined colors. Field lines
are white, and soccer robots have black feet and wear a jersey that is colored in a
predefined color.

• An enhanced merging procedure for PLANTm should be considered. A better elab-
orated merging could provide improved results and be more efficient.

• There are still several options to optimize the algorithm and its implementation.
For example, even if the chrominance values are subsampled in the input image,
the integral images for the chrominance channels are generated in the same size as
the integral image for the luminance channel. If the chrominance integral images
were generated in the same size as the chrominance input images, the number of
write operation would be reduced, which would lead to a speed-up of the integral
image conversion.
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Pluhatsch, Martin Wichner, and Raúl Rojas. Berlin United - FUmanoids team
description paper for RoboCup 2015. 2015.

[82] Yaser Ajmal Sheikh, Erum Arif Khan, and Takeo Kanade. Mode-seeking by
medoidshifts. In Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on, pages 1–8. IEEE, 2007.

49



[83] Jianbing Shen, Yunfan Du, and Xuelong Li. Interactive segmentation using con-
strained Laplacian optimization. IEEE Transactions on Circuits and Systems for
Video Technology, 24(7):1088–1100, 2014.

[84] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[85] Guang Shu, Afshin Dehghan, and Mubarak Shah. Improving an object detector
and extracting regions using superpixels. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3721–3727, 2013.

[86] Erik Sporns. New eyes for grace. Bachelor thesis, Freie Universitt Berlin, Juni
2016.

[87] David Stutz. Superpixel segmentation using depth information. Bachelor thesis,
RWTH Aachen University, Aachen, Germany, September 2014.

[88] David Stutz, Alexander Hermans, and Bastian Leibe. Superpixels: An evaluation
of the state-of-the-art. Computer Vision and Image Understanding, 2017.

[89] Joseph Tighe and Svetlana Lazebnik. Superparsing: scalable nonparametric image
parsing with superpixels. Computer Vision–ECCV 2010, pages 352–365, 2010.

[90] Antonio Torralba. Contextual priming for object detection. International Journal
of Computer Vision, 53(2):169–191, 2003.

[91] Leslie G Ungerleider and James V Haxby. ‘what’and ‘where’ in the human brain.
Current opinion in neurobiology, 4(2):157–165, 1994.

[92] Koen EA Van de Sande, Jasper RR Uijlings, Theo Gevers, and Arnold WM Smeul-
ders. Segmentation as selective search for object recognition. In Computer Vision
(ICCV), 2011 IEEE International Conference on, pages 1879–1886. IEEE, 2011.

[93] Michael Van den Bergh, Xavier Boix, Gemma Roig, Benjamin de Capitani, and
Luc Van Gool. SEEDS: Superpixels extracted via energy-driven sampling. In
European conference on computer vision, pages 13–26. Springer, 2012.

[94] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode
seeking. Computer vision–ECCV 2008, pages 705–718, 2008.

[95] Olga Veksler, Yuri Boykov, and Paria Mehrani. Superpixels and supervoxels in an
energy optimization framework. Computer Vision–ECCV 2010, pages 211–224,
2010.

[96] Luc Vincent. Morphological grayscale reconstruction in image analysis: Applica-
tions and efficient algorithms. IEEE transactions on image processing, 2(2):176–
201, 1993.

[97] Luc Vincent and Pierre Soille. Watersheds in digital spaces: an efficient algo-
rithm based on immersion simulations. IEEE transactions on pattern analysis and
machine intelligence, 13(6):583–598, 1991.

50



[98] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages
I–I. IEEE, 2001.

[99] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piecewise rigid scene flow.
In Proceedings of the IEEE International Conference on Computer Vision, pages
1377–1384, 2013.

[100] Hermann Von Helmholtz. Handbuch der physiologischen Optik, volume 9. Voss,
1867.

[101] Shu Wang, Huchuan Lu, Fan Yang, and Ming-Hsuan Yang. Superpixel tracking. In
Computer Vision (ICCV), 2011 IEEE International Conference on, pages 1323–
1330. IEEE, 2011.

[102] Wenguan Wang and Jianbing Shen. Higher-order image co-segmentation. IEEE
Transactions on Multimedia, 18(6):1011–1021, 2016.

[103] Wenguan Wang, Jianbing Shen, and Fatih Porikli. Saliency-aware geodesic video
object segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3395–3402, 2015.

[104] M. Wertheimer. Laws of organization in perceptual forms. Harcourt, Brace &
Jovanovitch, London, 1938.

[105] Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data
clustering: Theory and its application to image segmentation. IEEE transactions
on pattern analysis and machine intelligence, 15(11):1101–1113, 1993.

[106] Linli Xu, Wenye Li, and Dale Schuurmans. Fast normalized cut with linear con-
straints. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 2866–2873. IEEE, 2009.

[107] Koichiro Yamaguchi, David McAllester, and Raquel Urtasun. Efficient joint seg-
mentation, occlusion labeling, stereo and flow estimation. In European Conference
on Computer Vision, pages 756–771. Springer, 2014.

[108] Kota Yamaguchi, M Hadi Kiapour, Luis E Ortiz, and Tamara L Berg. Parsing
clothing in fashion photographs. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 3570–3577. IEEE, 2012.

[109] Junjie Yan, Yinan Yu, Xiangyu Zhu, Zhen Lei, and Stan Z. Li. Object detection by
labeling superpixels. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5107–5116, 2015.

[110] Allen Y. Yang, John Wright, Yi Ma, and S. Shankar Sastry. Unsupervised seg-
mentation of natural images via lossy data compression. Computer Vision and
Image Understanding, 110(2):212–225, 2008.

51



[111] Fan Yang, Huchuan Lu, and Ming-Hsuan Yang. Robust superpixel tracking. IEEE
Transactions on Image Processing, 23(4):1639–1651, 2014.

[112] Jian Yao, Marko Boben, Sanja Fidler, and Raquel Urtasun. Real-time coarse-to-
fine topologically preserving segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2947–2955, 2015.

[113] Dingwen Zhang, Junwei Han, Chao Li, Jingdong Wang, and Xuelong Li. Detection
of co-salient objects by looking deep and wide. International Journal of Computer
Vision, 120(2):215–232, 2016.

[114] Jinxia Zhang, Krista A Ehinger, Haikun Wei, Kanjian Zhang, and Jingyu Yang.
A novel graph-based optimization framework for salient object detection. Pattern
Recognition, 64:39–50, 2017.

[115] Yuhang Zhang, Richard Hartley, John Mashford, and Stewart Burn. Superpix-
els via pseudo-boolean optimization. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 1387–1394. IEEE, 2011.

52


	Introduction
	Preliminaries
	Color Representation
	Integral Images
	Superpixels
	Related Work

	Superpixel Creation Using a PLANT
	What is a PLANT?
	Generating a PLANT
	Superpixel Creation
	Properties of PLANT-Superpixels
	Interim Conclusion

	Application to Vision of Soccer-playing Robots
	Requirements
	Field Contour Extraction
	Object Detection
	Interim Conclusion

	Experiments
	Run Times
	Superpixel Quality
	Interim Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work


