Logo der Freien Universität BerlinFreie Universität Berlin

Fachbereich Mathematik und Informatik


Service-Navigation

  • Startseite
  • Personen
  • Kontakt
Hinweise zur Datenübertragung bei der Google™ Suche
Fachbereich Mathematik und Informatik/Informatik/

Dahlem Center for Machine Learning and Robotics

Menü
  • Members

    loading...

  • Open Positions

    loading...

  • Publications

    loading...

  • Teaching

    loading...

  • Theses

    loading...

  • Projects

    loading...

  • News

    loading...

  • Videos

    loading...

  • FAQs

    loading...

Mikronavigation

  • Startseite
  • Informatik
  • Arbeitsgruppen
  • Dahlem Center for Machine Learning and Robotics
  • Theses
  • Completed theses
  • Master-/Diploma-theses
  • 2016
  • Visual IMU - Estimating Ego-Motion Using Optical Flow and Depth Images

Dimitri Schachmann:

Visual IMU - Estimating Ego-Motion Using Optical Flow and Depth Images

Kurzbeschreibung

For robots it is crucial to accurately determine their own motion, be it for localization, trajectory generation or collision avoidance. This problem of ego-motion estimation is in general hard to solve. Different kinds of sensors can be applied to estimate the motion of a robot, but it is always a trade-off between multiple quality factors and the monetary cost of the system. One approach is to use cameras and optical flow, which proved challenging due to inherent ambiguities of observed motion.

This work presents a new approach to solving the ego-motion problem by using visual data only and a unique combination of existing computer vision techniques. Depth information from stereo data is used to remove scale ambiguity and a known calibration with respect to the ground allows to filter out foreign motion. Focusing on applications with approximately downward-looking cameras, a transformation of the camera images into a top view perspective aids a feature based optical flow algorithm to match points in the environment. RANSAC (Random Sample Consensus) and an Unscented Kalman Filter are then applied to fit a nonholonomic motion model to the matched points.

A working implementation was developed and evaluated on experiment data in the course of this work. The results promise a successful application as an ego-motion estimator during low speed, start-up and braking maneuvers.

 

Betreuer
Raúl Rojas, Daniel Göhring
Abschluss
Master of Science (M.Sc.)
Abgabedatum
11.07.2016
Projekt
  • AutoNOMOS

Downloads

  • Masterarbeit Dimitri Schachmann
be-digital Pressekonferenz am 07.12.15Mexico Oktober 2015MiG Mexico 2015Finalisten German Open 2014Simulator-Erfinder: Professor Raul Rojas (l.) und David Dormagen von der AG Intelligente Systeme und RobotikMadeInGermany in MexicoThe Tony Sale Award winners 2014: Robert B Garner (L) and  Raul Rojas (R), Nov. 2014Able und BakerCarolo-Cup-Team2014Formalisierung und Automatisierung von Gödels GottesbeweisAutoNOMOS-Team 2011Besuch Senatorin Yzer am 22.03.13Die autonomen Fahrzeuge der AG Intelligente Systeme und RobotikArchaeocopterMulticopterEntwicklung einer Roboterbiene

Dates

spinner

News

spinner

Service-Navigation

  • Startseite
  • Personen
  • Kontakt

Diese Seite

  • Drucken
  • RSS-Feed abonnieren