
Department of Mathematics and Computer Science
Institute of Computer Science

Efficient Data Structures for Automated Theorem

Proving in Expressive Higher-Order Logics

submitted by
Alexander Steen

a.steen@fu-berlin.de

in partial fulfillment of the requirements
for the degree of
Master of Science

Submission date: 17.10.2014
Supervisor: PD Dr. Christoph Benzmüller
Second examiner: Prof. Dr. Marcel Kyas

mailto://a.steen@fu-berlin.de




This page is left blank until stated otherwise







Declaration of authorship

I hereby certify, that I have written this thesis entirely on my own and that I have not
used any other materials than the ones referred to. This thesis or parts of it have not
been submitted for a degree at this or any other university.

Berlin,
Alexander Steen

I



Abstract

Church’s Simple Theory of Types (STT), also referred to as classical higher-order logic,
is an elegant and expressive formal system built on top of the simply typed λ-calculus.
Its mechanisms of explicit binding and quantification over arbitrary sets and functions al-
low the representation of complex mathematical concepts and formulae in a concise and
unambiguous manner. Higher-order automated theorem proving (ATP) has recently
made major progress and several sophisticated ATP systems for higher-order logic have
been developed, including Satallax, Isabelle/HOL and LEO-II. Still, higher-order theo-
rem proving is not as mature as its first-order counterpart, and robust implementation
techniques for efficient data structures are scarce.

In this thesis, a higher-order term representation based upon the polymorphically
typed λ-calculus is presented. This term representation employs spine notation, explicit
substitutions and perfect term sharing for efficient term traversal, fast β-normalization
and reuse of already constructed terms, respectively. An evaluation of the term rep-
resentation is performed on the basis of a heterogeneous benchmark set. It shows that
while the presented term data structure performs quite well in general, the normalization
results indicate that a context dependent choice of reduction strategies is beneficial.

A term indexing data structure for fast term retrieval based on various low-level
criteria is presented and discussed. It supports symbol-based term retrieval, indexing of
terms via structural properties, and subterm indexing.
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1 Introduction

1 Introduction

Church’s Simple Theory of Types (STT) [Chu40], also referred to as classical higher-
order logic, is an elegant and expressive formal system built on top of the simply typed
λ-calculus. Its mechanisms of explicit binding and quantification over arbitrary sets and
functions allow the representation of complex mathematical concepts and formulae in a
concise and unambigious manner [Far07]. Unfortunately, as a consequence of Gödel’s
Incompleteness Theorem [Gö31], all proof calculi for full STT are necessarily incomplete,
thus eliminating the hope of effective automation. The research of Leon Henkin, however,
led to the discovery of a generalized notion of semantics for STT in which completeness
can be achieved, also called Henkin semantics [Hen50]. Today, a number of complete
proof calculi – with respect to Henkin semantics – exist for higher-order logic, among
them several well-suited for automation.

The expressivity of higher-order logic is not only exploited by mathematicians or
logicians, but also in the field of formal methods in computer science and engineering (e.g.
for software and hardware verification) and in computer linguistics. A more recent and
innovative field of study is the application of expressive logics in theoretical philosophy
and metaphysics [FZ07]. Classical higher-order logic can in fact be used to simulate a
large number of expressive logics using a semantic embedding approach [Ben10]. Hence,
efficient automation of higher-order logic also permits automation results for practical
relevant logics in philosophy and semantic systems, such as modal logics or conditional
logics [BR13, BGGR12], where commonly no special-purpose automated theorem provers
are availabe.

Motivation of the Thesis Higher-order automated theorem proving (ATP) has re-
cently made major progress and several sophisticated ATP systems for higher-order
logic have been developed, including Satallax [Bro12], Isabelle/HOL [NWP02] and LEO-
II [BPTF08]. Still, higher-order theorem proving is not as mature as its first-order coun-
terpart, and robust implementation techniques for efficient data structures are scarce.
Of course, the effectivity of an automated theorem prover crucially depends on its proof
calculus. Nevertheless, data structure choices are a critical part of a theorem prover
and permit reliable increases of overall performance, when implemented properly. Key
aspects for efficient theorem proving have been an intensive research topic [Ria03] and
have reached a maturity with respect to first-order theorem proving. The employment
of reasonable term indexing is, in particular, a key feature of state-of-the-art theorem
provers. For the first-order case, several robust term-indexing techniques exist. As for
its higher-order counterpart, only a few term indexing techniques are developed.

This thesis’ aim is to take a first step towards gathering a complete set of efficient
data structures for higher-order automated theorem proving. The data structure base
of a theorem proving system can be seen as a layered architecture which is displayed in
Figure 1.1.
The most fundamental data structure layer contains those who can generically be ap-
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1 Introduction

Figure 1.1: Layered architecture of data structures

plied in different contexts, including all common structures such as Hash tables, (self-
balancing) search trees, heaps and arrays. The layer of logical structures contains
problem-specific data structures with importance for automated reasoning (e.g. terms,
clauses, and many more). On top of that, utility structures like the term index or the
preprocessing structure offer advanced functionality for logical data structures.

This thesis discusses the following logical and utility data structures for automated the-
orem proving in a more or less detailed manner:

Term The core data structure that internally represents λ-terms. All common manip-
ulation operations, such as unification or matching tests, are performed on this
structure.

Type In a higher-order setting, types have to be managed in a well-structured way. A
data structure for types not only support the creation of various types but also
allows for efficient instantiation (of polymorphic types).

Term Indexing Term indexing data structures serve as local databases that allow effi-
cient retrieval of terms with certain properties.

Literal, Clause Special term representation that is crucial during resolution-based
proof procedures. Literals and clauses often employ various heuristics for choosing
the approximately ”most productive” ones for a certain resolution step.

Signature A central data structure that manages the logical symbols that are currently
used along with their type and possibly their definition. The signature also holds in-
formation about the source of certain terms (e.g. introduced during skolemization)
and provides mechanism for creating fresh uninterpreted symbols.

Preprocessing The task of preprocessing input problems can also be viewed as a respon-
sibility of an independent data structure. Preprocessing steps could, for instance,
include simplification, mini scoping, relevance filtering and normalization.

2



1 Introduction

In this thesis, we heavily focus on the representation of terms as efficient underlying
implementation. To that end, a brief overview of requirements is discussed and, con-
sequently, several techniques are introduced that tackle problems of classical λ-term
representations with respect to that requirements. A further data structure, the term
index, is discussed more thoroughly. The described approach allows simple indexing for
fast retrieval of terms with respect to relatively low-level queries. The remaining data
structures will be described less intensively but include a sketch of important properties
a certain data structure should have to effectively fit in the whole package.
Terms are the most general and common pieces of information that are accessed, manip-
ulated and created by a several routines inside the system. It is therefore not surprising,
that the internal representation of terms is a crucial detail and has direct consequences
on the efficiency of the whole system. For that reason, we conjecture that substantial
performance gains, and thus a more effective theorem proving system, are achieved when
intensively focusing on sophisticated term representation techniques together with suit-
able term indexing mechanism.

This thesis contributes an explicit practical description of the combination of perfect
term sharing with spine notation [CP03] and explicit substitutions [ACCL90] lifted to
the polymorphically typed case. Additionally, two normalization strategies are described
and evaluated in practical applications. Some low-level indexing techniques that were de-
ployed in the LEO-II prover [TB06] are adapted and adjusted for the spine representation
case.

The Leo-III Project This thesis is motivated in the context of the recently started Leo-
III project [WSB14]. The goal of that project is to turn the LEO-II prover into a prover
based on ordered paramodulation/superposition which benefits from massive parallelism
in the form of a multi-agent blackboard architecture. From the beginning of the project,
careful attention is payed to a robust fundament of efficient data structures and compat-
ibility with other proof systems and the TPTP architecture.
At the current state of development, a number of data structures (including further
utility components, such as parser and a shell) and a proof-of-concept of the blackboard
and related structures are already implemented, counting roughly 8000 lines of code.
The code of the project – including the code described in this thesis – can be found at
the Leo-III project repository1

Outline of this thesis As an introductory section, §2 first roughly surveys important
notions of the λ-calculus in its untyped and its simply typed variant. Then, on the
basis of the simply typed λ-calculus, classical higher-order logic (used synonymously for
Church’s Simple Theory of Types) is introduced and a short overview of its syntax and
semantics is given. Finally, the field of automated theorem proving including its history
and applications is discussed.

1The project repository fork of the author can be found at https://github.com/lex-lex/Leo-III. Access
rights might need to be granted explicitly and can be requested via E-Mail to the author.
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1 Introduction

The next section, §3, agrees on a term language for the Leo-III prover that supports
parametric polymorphism, commonly referred to as System F. Advantages as well as
problems of polymorphic types are discussed.

Subsequently, in §4, efficiency considerations concerning the internal representation of
polymorphically typed λ-terms are discussed. In particular, the representation techniques
of spine notation, explicit substitutions and perfect term sharing are addressed and finally
combined. The resulting term data structure is evaluated in terms of β-normalization
and head symbol query efficiency and memory consumption.

In the next section, §5, the concept of term indexing is discussed and the preliminary
term indexing data structure of Leo-III is presented. The term index supports fast
retrieval of terms with respect to a number of different query conditions. The concrete
query conditions are discussed and motivated by practical application examples.

A brief overview of further important data structures for automated theorem provers
is given in §6.

Finally, §7 concludes and underlines the importance of efficient data structures for
term representation and indexing.
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2 Preliminaries

2 Preliminaries

Although it is assumed that the reader is familiar with most of the basic notions of
higher-order logic and its theoretical foundations, we give a short overview of important
concepts, mainly to establish a common notation that is used throughout the remainder
of this thesis.

In the first section, the classical untyped λ-calculus is introduced along with a brief
overview of its history and origin. As a step towards higher-order logic, the next section
presents the (simply) typed λ-calculus together with the concept of types. Additionally,
some important properties of that calculus are presented. Finally, the basic notions of
higher-order logic and its automation are coarsely surveyed.

2.1 The λ-Calculus

In the late 1920’s Alonzo Church worked on a formal system to provide a foundation of
logic built on top of functions rather than sets, which was published 1932 [Chu32]. His
system is an untyped logic that uses a notion of explicit function abstraction, presenting
an early version of the system that is now commonly known as the λ-calculus.

One of the motivations for introducing explicit abstraction is to formally distinguish
functions from values. As an example, consider the conjunction (a∧T ) (where T denotes
truth) that may be used in both of these roles: As a part of a larger formula, say, of a
universal quantification ∀a. (a∧ T ) the above term embodies a function that assigns the
input Boolean to itself (Boolean identity function), whereas in (a∧T ) = T , it represents
a value equal to the value of a (which, of course, depends on the given context). Although
this distinction is often omitted in usual mathematical notation or even natural language
(e.g. ”x2 is continuous”, whereby, more precisely, the function x 7→ x2 is meant), it
emphasizes a fundamental difference of both objects. As for the above example, it would
apparently not be reasonable to test the truth-value T and the function that maps a to
(a ∧ T ) for equality – it is not clear how values and functions should be compared.

Church presented a notation that makes this difference explicit by introducing a
function abstraction denoted by the letter λ, yielding the term (λa. (a ∧ T )) for the
function role of our example. Application of a function to an argument is denoted by
juxtaposition, ((λa. a ∧ T )T ) meaning the application of the (a ∧ T )-function to the
argument T , yielding T ∧ T , hence T . Notions of explicit abstraction also appeared in
other logical systems, e.g. by Gottlob Frege [Ang84] or Giuseppe Peano [G. 89]. Unlike
the others, Church included a formal description and thorough studies of conversion rules
for the proposed abstraction mechanism.

The abstraction and application terms, together with so-called atoms (i.e. variables
or constants of the domain), form the concise syntax of the λ-calculus. As it turned out,
the revised version of the λ-calculus [Chu33] played a remarkable role in several research
fields, such as logics or computer science. The λ-calculus also presented a formal model
of computation, which was shown to capture the intuition of effectively computable
functions, hence being as expressive as Turing machines [Tur37] or µ-recursion [Kle36].
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2 Preliminaries

Whereas the λ-calculus was not well-established among mathematicians, it was grad-
ually picked up by computer scientists, logicians, philosophers and linguists and is viewed
as one of the major developments of the younger history. An exhaustive overview of the
impact of the λ-calculus can be found in, e.g., [Bar97], its history in, e.g., [CH06].

We now give a brief introduction of the pure (untyped) λ-calculus, closely following [Bar85].

Definition 2.1 (Terms of the λ calculus)
The terms of the λ-calculus are given by the following abstract syntax:

s, t ::= x ∈ Id (Atom)

| (λx. s) (Abstraction)

| (s t) (Application)

where Id denotes the set of identifiers. The set of all terms is denoted Λ. y

Intuitively, an abstraction term (λx. s) is an anonymous function with formal parameter
x and body s, where all free occurrences of x in s are bound by the λ head. A term of
the form (s t) represents an application of the function term s to the argument t. As
notational agreement, parenthesis may be dropped whenever the term’s meaning remains
unchanged, that is, application is assumed to associate to the left and abstraction to the
right. Hence we may write s t (λx. u) v instead of (((s t) (λx. u)) v). We further agree
that a λ-binder consumes as much terms as possible to the right, e.g., (λx. λy. s t) stands
for (λx. (λy. (s t))).

In order to describe the semantics of term application, a conversion of abstractions
and applications called β-conversion (or β-reduction) is introduced. Interestingly, all of
the reduction semantics of the λ-calculus can be described using this single rule. The
β-conversion is commonly defined with help of substitutions, presented in a capture-free
version by

Definition 2.2 (Substitution of λ-terms)
Let s ∈ Λ be a λ-term. Within s, capture-free substitution of variable x by term t ∈ Λ,
denoted s[x/t] is defined by

x[x/t] := t

y[x/t] := y provided x 6= y

(s s′)[x/t] := (s[x/t] s′[x/t])

(λx. s)[x/t] := (λx. s)

(λy. s)[x/t] := (λy. s[x/t]) provided x 6= y and y /∈ fv(t)

where fv(.) denotes the set of free variables of a term. y

The justification of considering capture-free substitution only, is given by another
conversion method used for renaming, called α-conversion. α-conversion embodies the

6



2 Preliminaries

intuition that functions are considered equal if they differ in naming of parameters only.
As an example, it should be apparent that the terms (λx. square x) and (λy. square y)
should be equivalent. This conversion method is formally stated by

Definition 2.3 (α-conversion for the λ-calculus)
For a term s ∈ Λ and two variables x, y ∈ Id, the α-conversion rule, denoted −→α is
given by

(λx. s) −→α (λy. s[x/y]), given y /∈ fv(s)

We say that two terms s, t ∈ Λ are α-equivalent (i.e. equivalent up to renaming),
denoted s =α t, iff there exists a series (ui)0≤i≤k ⊆ Λ with u0 = s, uk = t and
ui −→α ui+1. y

α-conversion rewriting is used to avoid variable capture when applying substitution for
evaluating terms. The rewriting rule that completely described the reduction semantics
of the λ-calculus, is given by

Definition 2.4 (β-reduction for the λ calculus)
For terms s, t ∈ Λ and variable x ∈ Id, the β-reduction rule, denoted −→β , is given
by

(λx. s) t −→β s[x/t]

Let further −→∗αβ be the smallest equivalence relation closed under −→α and −→β .
Then, we say that two terms s, t ∈ Λ are β-equivalent (i.e. equivalent up to β-
reduction), denoted s =β t, iff s −→∗αβ t. y

A term of the form (λx.s)t is called redex, and terms containing at least one redex are
called β-reducible, hence a β-conversion rewriting step can be applied.

There is a further conversion rule, called η-conversion, which captures the principle of
functional extensionality, i.e., that two functions are considered equal, iff the function
values agree for all arguments. This is formalized by

Definition 2.5 (η-conversion)
For a term s ∈ Λ and a variable x ∈ Id, the η-conversion rule, denoted −→η, is given
by

(λx. s x) −→η s, given x /∈ fv(s)

The application of the η-conversion rule is also commonly called η-contraction. When
considered in the opposite direction (i.e from right to left), we say that the left term
results from the right term by η-expansion. βη-equality of terms, denoted =βη and
−→∗βη are defined in the analogously to the β-only case. y

7



2 Preliminaries

The η-conversion rule can additionally be considered during normalization.
The notion of fully evaluated terms is given by normal forms. Intuitively, when no
application of a conversion rule is possible, the term is in normal form with respect to
the given rewrite rule. More formally,

Definition 2.6 (Normal forms)
A term s ∈ Λ is said to be in

(a) β-normal form, iff there is no subterm s′ of s where s′ is a redex.
(b) η-normal form, iff there is no subterm s′ of s that can be η-contracted

A term is in βη-normal form, if both above cases apply. y

An important result towards a deeper understanding of β-reduction and its normal forms
was published by 1936 by Alonzo Church and John Barkley Rosser, known as the Church-
Rosser Theorem [CR36].

Theorem 2.1 (Church-Rosser Theorem)
For any terms s, t ∈ Λ it holds that if s −→∗β t and s −→∗β u, then there exists a term
v ∈ Λ with t −→∗β v and u −→∗β v. This fact is illustrated by the diagram below.

y

This theorem is equivalent to the fact that, as a rewriting system, −→β is confluent.
One of the most important corollaries of the Church-Rosser Theorem is that there is at
most one normal form of a term, hence all normal forms are α-equivalent. Due to the
uniqueness of a term’s normal form, if existent, we can describe the normal form of a
term s in a well-defined way: The normal form of a term s, here denoted s

�

β is the term
t ∈ Λ such that s =β t and t is in normal form, if existent, or undefined otherwise. The
theorem also holds for βη-normalization.

As is turned out, there are indeed terms for which no β-normal form exists. In
that case, we say that Λ is not strongly normalizing (in fact, not even weakly normaliz-
ing) [Bar85]. Consider the term (λx. x x x) (λx. x x x) which yields an infinite sequence
of β-reductions

(λx. x xx) (λx. x xx) −→β (λx. x x x) (λx. x x x) (λx. x x x)

−→β (λx. x x x) (λx. x x x) (λx. x x x) (λx. x x x)

−→β ...

8



2 Preliminaries

2.1.1 A nameless representation

In practical systems, such as automated theorem provers or logic programming systems,
the explicit handling of variable capture in term processing can be error-prone and cum-
bersome. Additionally, respecting α-convertibility can lead the necessity of inefficient
comparisons. As a solution, Nicolas Govert de Bruijn proposed in 1972 a nameless rep-
resentation of λ terms, where the named variables are replaced by natural numbers, the
so-called de Bruijn indices [Bru72]. The idea is that variables don’t have names asso-
ciated with them anymore, but are instead represented by the number of λ-binders in
scope up to the one that binds that variable.
The syntax is given by (i ∈ N):

s, t := i | λ. t | s t

describing variables, abstractions and applications, respectively. Here, a variable i is
called bound if there are (at least) i λ-binders in scope. We omit a description of the
reduction semantics and postpone it to the introduction of Leo-III’s term representation.
As a example, consider the term

λx.λy.y(λz.xyz)x

that is represented by
λ.λ.1(λ.321)2

using de-Bruijn indices.
As one can see, every α-convertible term reads syntactically equal thus eliminating the
need of considering α-conversion while comparing terms for equality. Hence, the use of
de-Bruijn indices offers a unique representation for α-equivalent terms.

Note that, in this notation, the same λ-binder has, in general, different indices as-
sociated with it: In the above example the first (second) λ – that binds x (y) in the
named variant – binds indices 3 and 2 (1 and 2). Also, same indices may be bound
to different λs. This is one of the reasons why terms with de-Bruijn indices are not as
human-readable as their named counterpart and term processing systems may use name-
less term representations internally and assign names to variables on the user interface
level.

The rigid use of de-Bruijn indices is, however, not only complicated for humans but
also costly for automation when it comes to shifting : A common operation is to increment
all indices of a term that are greater than a specific bound. This includes, of course, all
free variables of a term since they are represented by a index value that is greater than
the maximal number of λ-binders in scope.

As a reasonable compromise, Barendregt mentioned a combination of natural numbers
for bound variables and names for free variables [Bru72]. This technique is now widely
known as locally nameless representation of terms (see, e.g., [Cha11]). The locally
nameless approach combines that (externally) defined terms can, again, be managed
easily and need not be renamed during β-reduction while bound variables can still be

9



2 Preliminaries

treated elegantly. Throughout this thesis, we will use a locally nameless representation
of terms.

For each λ-calculus variant mentioned in the remainder, we can define a locally name-
less version. In order to avoid boilerplate definitions, an explicit description of (locally)
nameless representations will only be provided if it is of particular interest.

There are only few other techniques that try to cope with α-conversion: A relatively
popular exception is usage of nominal representations as proposed by Pitts and others
(e.g. [GP02, Pit03]).

2.2 Typed Variants of the Classical λ-Calculus

There exist many variants of the classical λ-calculus that have been studied since the
original publication by Alonzo Church in the 1930s. Since the logic addressed in this
thesis is of higher-order (a brief introduction can be found in §2.3), we only focus on
typed variants of λ-calculi. This is due to the fact that untyped calculi suffer from
inconsistencies as, for example, first shown by Stephen Kleene and John Barkley Rosser
in 1935 for the untyped λ-calculus [KR35]. Later, Haskell Curry simplified the essence
of the inconsistency and published a simpler variant, known as Curry’s paradox [Cur41].
Also, an encoding of the well-known Russel paradox is possible in the untyped λ-calculus.

Classical higher-order logic is traditionally based on the simply-typed λ-calculus [Chu40],
often denoted λ→, which is subsequently introduced. It has led to development of
Church’s Simple Theory of Types (STT), which is used here synonymous to higher-order
logic. The use of types imposes a rather strict restriction on the expressivity of the
system: As an example, general recursion cannot be formulated directly in λ→, hence
sacrificing Turing-completeness. On the other hand, types are a useful tool for giving
meaningful semantics and avoiding inconsistencies. Only those terms which can be as-
signed a type (called well-typed terms) need to be considered.

For numerous application, the expressibility of λ→ is too low, and various extensions
have been investigated. Some of them pursue a rather practical aspect of expressibility
and include certain common type constructions (such as sum types, product types, ...) or
other pragmatic mechanisms suited for the application to the theory of programming lan-
guages. Extensions with deep theoretic influence generally consider more general notions
of computability, e.g., the addition of different variants of recursion. A good overview of
type systems and their practical applications can be found in Benjamin Pierce’s mono-
graph [Pie02].

In the following, the simply typed λ-calculus is introduced along with its most important
properties. A brief overview of extensions to λ→ is given subsequently. Here, we focus
on a particular hierarchy of extensions representing the axes of refinement in the calculus
of constructions [CH88].
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2.2.1 The λ→-Calculus

As mentioned in the previous section, the simply-typed λ-calculus was invented as a
formal foundation of logics as part of Church’s Simple Theory of Types [Chu40]. The
discovery of the Kleene-Rosser paradox and, later, Curry’s Paradox, stressed the neces-
sity of distinguishing different ”sorts” of objects in mathematics and meta-mathematics.
To overcome the inconsistencies, Russel proposed a formal type theory, which was first
depicted in the appendix doctrine of types of [Rus03]. The strict distinction between
”sorts” of objects was already known to Frege, who distinguished predicates from ob-
jects [Mos68]. Church’s Simple Theory of Types (or simply: Simple type theory, STT),
is considered a simplification of the type theory of Russel and Whitehead [Rus08, WR26].
Subsequently, the simply typed λ-calculus, denoted λ→, is briefly introduced. A detailed
discussion of typed λ-calculi including λ→ can be found in [Hin14].

Types In λ→ the notion of types is introduced. A type τ is given by the following
abstraction syntax;

τ, ν ::= t ∈ T (Base type)

| τ → ν (Abstraction type)

where T is a (finite) set of base types. The set of all terms generated by the abstract
syntax above is denoted T . We agree that function type constructor→ associates to the
right. As an example, the term τ1 → τ2 → τ3 is equivalent to τ1 → (τ2 → τ3), describing
the type of a curried function that takes two parameters.
λ→ allows to express higher-order terms, i.e. terms that take terms of function type as
parameter. The order of a type is defined by

Definition 2.7 (Order of types)
For each type τ ∈ T let order(τ) denote the order of τ , where order is given by

order(t) = 0, for each t ∈ T order(τ → ν) = max{order(τ) + 1, order(ν)}

We say that a type τ is a higher-order type, if order(τ) > 1. y

Terms The term syntax is essentially the same as for untyped λ-terms, except that
each term is associated a type, written as subscript. In particular, term abstractions
now denote the type of the abstraction parameter variable at binder position. Another
commonly used notation for typed terms is to write a term followed by colon and a type
(curry-style, see below), e.g. sτ is equivalent to s : τ . We will use the first notation
throughout this thesis.

Let Σ be a set of typed constant symbols with each cτ ∈ Σ having type τ , and V a
set of variables with infinite many of variable symbols X1

τ , X
2
τ , . . . for each type τ . The

11
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terms of λ→ are then given by

s, t ::= Xτ ∈ V (Variable)

| cτ ∈ Σ (Constant)

| (λxτ . sν)τ→ν (Term abstraction)

| (sτ→ν tτ )ν (Term application)

We use the symbol Λτ for the set of terms each with type τ and Λ :=
⋃
τ∈T Λτ for the

set of all terms. The type of a term may be omitted if clear from the context.

The notion of conversions and normal forms are defined analogously to § 2.1. The most
important difference is that during β-reduction on an application, the left term must
have function type whereas the right term must match the parameter type of the left
one, formalized by

(λxτ . sν)τ→ν tτ −→β sν [xτ/tτ ]

There are two different type semantics in use [Rey98]: The so-called church-style (or
intrinsic interpretation) that is commonly used in the context of higher-order logic (and
in this thesis) and the curry-style (or extrinsic interpretation) that is rather used in the
context of programming languages. In the first, the type of a term is considered a part of
its name and is thus fixed and cannot change between different contexts. This also means
that there are only well-typed terms since we cannot (syntactically) construct terms that
are not well-types (i.e. a type is intrinsic to a term). The latter variant views types
as an additional information assigned to terms from some external context (extrinsic
types). Consequently, terms itself do not carry any type information: The term λx. x
can syntactically constructed and the typing λx. x : τ → τ and λx. x : ν → ν (where
τ 6= ν) can be inferred depending on the context the term occurs in. Here, typing is rather
considered a verifying process for certain properties. Both styles are equally expressive
since they can simulate each other. Curry-style can be mimicked by Church-style by
type-erasure, and the other way around by type reconstruction.

The type of a term can algorithmically be verified and inferred, known as type checking
and type reconstruction, respectively. This fact is formally by

Theorem 2.2 (Type checking is decidable in λ→)
The decision problem, whether a given term s has type τ is decidable. In particular,
there exists a polynomial-time algorithm for inferring the type of a term. y

A prominent example algorithm for type reconstruction is Algorithm W in Hindley-
Milner type inference [Hin69, Mil78], which can, in fact, perform type inference for a
much greater class of terms. The set of typing rules for λ→ [Hin14] is given in Figure 2.1.
Here, the judgement s has type τ under context Γ is denoted by Γ ` s : τ .

12
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cτ ∈ Σ
(Ty-Const)

Γ ` c : τ
X : τ ∈ Γ (Ty-Var)
Γ ` X : τ

Γ, X : τ ` s : ν
(Ty-Abstr)

Γ ` (λX. s) : τ → ν
Γ ` s : τ → ν Γ ` t : τ (Ty-App)

Γ ` (s t)ν

Figure 2.1: Typing rules for λ→ terms

The confluence result from the untyped λ-calculus can be modified, yielding

Theorem 2.3 (Church-Rosser Theorem)
For any terms s, t ∈ Λτ it holds that if s −→∗β t and s −→∗β u, then there exists a term
v ∈ Λτ with t −→∗β v and u −→∗β v. y

Unlike the untyped λ-calculus, the set of terms of λ→ has the strong normalization
property:

Theorem 2.4 (Strong normalization)
For each type τ , the set of terms Λα is strongly normalizing, that is, for typed λ-terms
every sequence of β-conversions finally terminates. In particular, the β-normal form
of a term can be calculated by a finite number of β-reduction steps. y

The original proof and a simplified version is due to Tait [Tai67, Tai75]. Strong normal-
ization implies that every calculation in λ→ terminates in finite time. Thus, λ→ cannot
be Turing-complete, we cannot, for example, express general recursion. Theorems 2.3
and 2.4 hold analogously when considering βη-normalization.

2.2.2 Extensions of Typed λ-Calculi

There exist many extensions to λ→ that address a broad variety of aspects of expressibil-
ity augmentation. Popular system enhancements add (bounded) polymorphism [CW85],
type operators, dependent types, coercion subtyping or many other language features.

Figure 2.2: Barendregt’s λ-cube
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A classification of a signification class of extensions is represented by Barendregt’s λ-
cube [Bar91], see Fig. 2.2. The cube illustrates the axes of refinement of the calculus of
constructions (CoC) [CH88] by dissecting the orthogonal language components. Hence,
self-contained individual subsystems of CoC, which are all strict extensions to λ→, are
identified in a hierarchical ordering.

The axes represent the additional ability to express functions from terms to types,
types to types and types to terms within the system located at the end of that particular
edge. Many systems described by the λ-cube have been studied intensively in the past:
The programming language Haskell [HPJWe92] was formerly based on λω, before it was
remodeled to use a even more expressive calculus, known as System Fc. The system λP
is used by one of the AUTOMATH systems and the basis of the LF logical framework
and various implementations [PS99].

2.3 Higher-Order Logic

The simply-typed λ-calculus as meta-theory basis for higher-order logic was already in-
troduced in § 2.2.1.

In the setting of higher-order logic, we choose the set of base types T to be {o, ι},
where o is denotes the type of truth values and ι the type of individuals. The set
Σ of constant symbols, contains at least the logical connectives ¬o→o and ∨o→o→o for
negation and disjunction, respectively. Additionally, we consider for each type τ ∈ T
two connectives Πτ

(τ→o)→o and =τ
τ→τ→o for universal quantification over objects of type

τ and primitive quality on type τ , respectively. We may also include the choice operator
ε(τ→o)→τ for each type τ ∈ T . The remaining logical connectives can be defined in
the usual way, e.g. by ∧o→o→o := λso.to. ¬o→o(∨o→o→o (¬s)(¬t)). We use binder
notation ∀Xτ . so as shorthand for universal quantification given by Πτ

(τ→o)→oλXτ . so.
For additional convenience, we write the binary logical connectives in infix position, e.g.
write so ∨o→o→o to instead of ∨o→o→o so to.
A formula is a λ-term s ∈ Λo, hence of type o. As usual, a sentence is a closed formula.

The semantics of higher-order logic is well-understood and thorough introductions can
be found in the literature (e.g. [And14, BBK04]).
A frame is a collection {Dτ}τ∈T with Do = {T, F} (for truth and falsehood) and Dτ→ν
a set of functions from Dτ to Dν . An interpretation ({Dτ}τ∈T , I) is a pair, where I is
a function that maps each constant cτ in Σ to an element of Dτ (the denotation of cτ ).
The function I is chosen such that the logical connectives ¬o→o, ∨o→o→o, =α→α→o and
Π(α→o)→o have their usual meaning. A variable assignment φ is a function that maps
variables Xτ to an element in Dτ . An interpretation is called standard model iff the sets
Dτ→ν are chosen to be the complete set DDτν of function from domain τ to codomain
ν. The notion of general models (or Henkin models) is, in contrast, defined by choosing
Dτ→ν ⊂ DDτν such that it contains ”sufficiently many”, but not necessarily all, functions.
More formally, M is a general model iff there exists a function V that assigns for each
variable assignment φ and each term sτ a denotation Vφ sτ ∈ Dτ , such that
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(i) Vφ Xτ = φ Xτ and Vφ cτ = I cτ
(ii) Vφ (sτ→ν tτ ) = (Vφ sτ→ν) (Vφ tτ )
(iii) Vφ (λXτ . sν) is a function f ∈ Dτ→ν s.t. for all z ∈ Dτ it holds that f(z) =

Vφ[Xτ/z] sν , where φ[Xτ/z] Xτ = z and φ[Xτ/z] Yτ = φ Yτ given Xτ 6= Yτ

The function V is called valuation and is uniquely determined for a general model. Of
course, every standard model is also a general model.

For a model M = ({Dτ}τ∈T , I) and a formula so ∈ Λo, so is called valid in M if
Vφ so = T for all variable assignments φ. A formula so ∈ Λo is called Henkin-valid,
written |=HOL so, if so is valid in every Henkin model.

As a consequence of Gödel’s incompleteness theorem [Gö31], the standard semantics of
higher-order logic is incomplete. However, it shows that in most practical applications the
weaker form of general semantics, developed by Leon Henkin, is sufficiently expressive.
Henkin investigated on weaker, but still meaningful, models with which he described a
notion of completeness for higher-order logic. This notion of completeness (with respect
to general models) is given by the following theorem [Hen50]:

Theorem 2.5 (Henkin’s Completeness and Soundness Theorem)
A formula is a theorem if and only if it is Henkin-valid. y

Note that, throughout this thesis, the term higher-order logic always refers to general
semantics.

Higher-order logic with respect to general semantics is as expressive as (many-sorted)
first order logic and inherits convenient model theoretic properties. Nevertheless, prefer-
ring higher-order logic over of its first-order counterpart comes with a rich expressiveness
in a practical sense [Far07]. Not only that mathematical concepts can be encoded more
directly and concise, the explicit use of types supports well-structured formalization, and
algebraic objects such as sets and tuples can easily be encoded on top of HOL. Also, rich
extensions such as polymorphism, dependent types or subtypes can be considered.

The above introduction of higher-order semantics follows a compact introduction by P.
Andrews [And14]. However, there exist a number of further generalizations of Henkin
models that capture notions of weaker semantic structures. A discussion of these struc-
tures is omitted here, but can be found, e.g., in [BBK04].

2.4 Automatic Theorem Proving

Automated theorem proving (ATP) denotes the automation of proof procedures that,
given a set of axioms and a mathematical conjecture as input, use a computer program to
prove or refute that the input conjecture is a logical consequence of the (possible empty)
set of assumptions without human assistance. ATP systems are applied in various fields,
such as in mathematics, software and hardware verification, or knowledge-based systems
with query answering. In the last 50 years, major progress has been made in the field
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of automated reasoning, practical relevant systems have been developed and achieved
acclaim in industrial and in academic applications. The goal that computer systems
would solve hard open mathematical problems is still a rather idealistic conception.
Figure 2.3 displays the schematic top-level structure of the automated reasoning process.

Figure 2.3: Simplistic view on automated theorem proving

For applying an ATP system to a problem, the input axioms and conjectures have to
be stated formally and self-contained (i.e. all assumptions need to be explicit). This is
rather cumbersome since most of common mathematical formalizations in practical use
are too ”colloquial” in the context of automated theorem proving, thus substantial work
has to be done for using larger problems as input.

The output of an automated theorem prover is in the simplest case a single yes or
no answer, depending on whether the problem could be proven of refuted (respectively).
More sophisticated prover might also output a proof object that describes the used infer-
ences or similar. In the negative result case, a counter-example (or counter model) might
be returned in order to provide additional information about the cause of the conjecture’s
falsehood. It is of course preferable that some of these supplemental output information
are returned. In practice, however, the generated proof object is widely unreadable and
often does not contribute to the understanding of the proof itself.

The efficiency of automated theorem proving is severely restricted by the computational
complexity of the underlying logic, or more formally, the underlying decision procedure
for that particular logic. These procedures often have, even for relatively weak logics,
a high computational complexity – or, even worse, are undecidable for logics that are
at least as expressive as first-order logic [Chu36, Tur36]. The identification of decidable
fragments of first-order logic was intensively researched. As an example, there exist
decision procedures for propositional logic (NP-complete) and propositional modal logic
(PSPACE-complete).

Origin and History This historical overview loosely follows [Mac95], in which a more
detailed review of the history of automated theorem proving can be found.

Formalizations of validity of deductions originate from the ancient Greeks, notably Aris-
totle, who used so-called syllogisms to represent reasoning with inferences. In more recent
history, the idea of formal deduction based on a set of inference rules goes back to Leibniz,
who stated the vision of creating a universal logical language (characteristica universalis)
and a calculus for reasoning within this language (calculus ratiocinator), yielding a ana-
lytical method for determining the truth or falsehood of propositions [Lei51]. A notable
step towards Leibniz’ vision, and thereby modern logics, is due to Gottlob Frege, who
described a formal proof calculus for a system similar to second-order logic [Fre79].
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The field of automated theorem proving, hence the automation of logical calculi
as described above, can be dated back to the late 1950s and early 1960s, where the
Logic Theory Machine was built as an automated decision program for propositional
logic [McC04]. This program found proofs for 38 of 52 selected theorems from the Prin-
cipia, in particular a simpler proof to a specific theorem, compared to the one given by
Whitehead and Russel [Dru08].
Some time later, one of the most popular machine-oriented proof procedures, the resolu-
tion calculus in its modern form, was presented in 1965 [Rob65], and achieved substan-
tial success in automation. In resolution-based theorem proving, the initial conjecture is
negated, transformed into sets of clauses, and successively saturated using a set of infer-
ence rules. If, after a number of inferences, the empty clause is inferred, a contradiction
is found hence the initial conjecture is confirmed. Today, there exist a number of dif-
ferent calculi well-suited for automation of propositional and first-order logic, including
Tableau and Connection calculi (and several variations thereof).

For the higher-order case, however, machine-oriented proof calculi were scarce for
a long time. Andrews presented a resolution-based calculus in 1971 [And83], but with
strong limitations for effective automation. Further calculi better suited for automation
of higher-order logic, were developed subsequently, including Huet’s constrained resolu-
tion [Hue72] and extensional higher-order resolution [BK98].

Early sophisticated theorem provers include the Boyer-Moore theorem prover (1971) [BKM95],
Coq (1989) [Pau11] and Isabelle (1989) [NWP02]. A thorough survey of automated the-
orem proving in the higher-order setting can be found in, e.g., [BM14].

The TPTP Infrastructure The Thousands of Problems for Theorem Provers (TPTP)
problem library [Sut09] provides a coherent environment for testing automated theorem
provers for their correctness and performance. To that end, it postulates a standardized
and stable formula representation syntax for every supported logic language (e.g. FOF
for first-order formulas or THF for typed higher-order formulas [SB10]) Currently, the
TPTP problem set contains over 19000 problems for ATP, including 7971 first-order and
3036 higher-order problems, grouped in problem domains. Furthermore, the TPTP web
site offers several services that become handy when testing ATPs in a more specialized
way: Problems can be found by their domain, type, occurrence of equality, size, and
many more attributes. Sample problems, and even user contributed problems, can be
tested interactively on multiple ATPs through a web interface.

A relatively young language proposal, known as TFF1, offers built-in language sup-
port for rank-1 polymorphism for typed first-order formulas.

Some provers Today, a large variety of automated theorem provers for first-order
logic, and a still manageable amount of higher-order logic theorem provers exist. The
following list contains some prominent examples but claims by no means to be complete.
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First-order provers include, for example,

• Vampire [KV13]
• E [Sch02]
• OTTER [McC90]
• Prover9 [McC10]

Prominent higher-order provers are, for example,

• TPS [AB06]
• Isabelle/HOL [NWP02]
• LEO-II [BPTF08]
• Satallax [Bro12]
• agsyHOL

Recent Development In more recent history, automated theorem provers could suc-
cessfully be applied to relevant mathematical problems. The first serious computer as-
sisted proof was conducted 1976 where the four-color problem (colorings of maps with
four colors) was proven by an exhaustive case distinction analysis [AH76]. Another ex-
ample is the Robbins conjecture about certain identities in a special algebra which was
proven with the help of the theorem prover EQP in the late 1990s [Mcc97] or Kepler’s
conjecture about optimal sphere packing which was proved with extensive use of com-
puters [Lag11].

In the higher-order setting, comparably young efforts were made to semantically
embed various expressive non-classical logics into classical higher-order logic [BR13,
BGGR12]. Those embeddings could then be employed to encode and automate proofs
from theoretical philosophy, such as Gödel’s ontological proof of God’s existence [BP14].
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3 The Term Language for Leo-III

As for the term language of the Leo-III prover, we do not base it on the simply typed
λ-calculus, but on a more expressive extension that admits built-in support for poly-
morphism. This section’s introduction addresses the presentation of the formal system
as is it used on a theoretical level. The next section, §4, then focuses on alternative
representations that are due to efficiency considerations for automation.

The motivation for native support of polymorphism is, among others, the restricted
expressiveness of simple types. The reuse of similar terms (e.g. extensional equality
on different types of functions) is one the major benefits. As an example, consider
the universal quantification symbol Π. If we plan to use multiple types τ1, τ2, . . . in
reasoning and to quantify over them, we would have to include appropriate symbols Πτ

of type (τ → o) → o for each type τi, even if their definition all might be alike. Similar
considerations apply, e.g., for primitive equality =τ . With the use of polymorphic types,
we could provide a single instance of, say, equality that applies to objects of all types.

The need for polymorphism is underlined by the increasing support of such mech-
anisms, for instance, by the TFF1-language extension [BP13] for typed first-order for-
mulas. In the context of TFF1, so-called rank-1 polymorphism and type constructors
are employed on top of typed first-order formulae, embodying a, in a sense, even more
expressive extension2. Another example is Isabelle/HOL [NWP02] where polymorphic
types can be stated in a ML-like syntax.

We restrict ourselves to parametric polymorphism and do not consider the addition of,
say, type operators (i.e. function from types to types). The reason for that is a simple
trade-off between expressibility and complexity. More sophisticated type systems require
a more careful analysis of the complexity of the system to be implemented. It is planned
to include further extensions to Leo-III’s term language in the future, but focus on
parametric polymorphism within this thesis.

The language. The term calculus that is used as the basis of the Leo-III prover is
one that extends the simply typed λ-calculus with parametric polymorphism, yielding
the second-order polymorphically typed λ-calculus (corresponding to λ2 in Barendregt’s
λ-cube [Bar91]). In particular, the system under consideration was independently devel-
oped by John C. Reynolds [Rey74] and Jean-Yves Girard [Gir72] and is commonly called
System F today.

The main extension compared to the simply typed λ-calculus is that System F offers
variables ranging over types, additionally to variables ranging over terms of a specific
type. Together with a new binding mechanism via the Λ-binder, terms can now be
abstracted to take a type as formal parameter. The syntax is described in the following:

2The term language proposed by TFF1 is not directly comparable to the one considered here, since it
adds type operators (thus, being more expressive) but only allows rank-1 polymorphism (and is thereby
less expressive in the context of parametric polymorphism).
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Types. As usual, let T be a non-empty set of distinct base types; The set of types T
is then constructed by the following abstract syntax definition:

τ, ν ::= t ∈ T (Base type)

| α (Type variable)

| τ → ν (Abstraction type)

| ∀α. τ (Polymorphic type)

Two cases, the second case and the fourth case, are added in this setting. Whereas the
first offers a mechanism to use type variables insides types, the latter is an all-quantified
type, which is the type of a polymorphic function with type variable α, ranging over
all types from T (including the above type itself). Similar to the binding of variables
on term level, the type variable α is bound by the ∀-quantifier, which abstracts all free
occurrences of α inside τ .

Example 3.1 (Polymorphic types)
All the types

(i) ι→ ι→ o (Type of a binary relation over individuals)

(ii) o→ o (Type of an unary logical connective)

(iii) (ι→ o)→ o (Type of some higher-order function, e.g. quantification over individuals)

are simple (monomorphic) types that can also be expressed in λ→. In contrast, the
types

(iv) ∀α.α→ α→ o (Type of a binary relation over every type, e.g. equality)

(v) ∀α.α→ α (Type of a generic identity function)

(vi) ∀α. (α→ o)→ o (Type of a polymorphic higher-order func., e.g. quantif. over objects)

(vii) (∀α. (α→ α)→ α→ α)→ ∀α. (α→ α)→ α→ α (Type of a more complex function)

are due to the extension to System F.
Note that one can construct types that are not inhabited by any term, regardless of
the choice of base types. As an example, there is no term of type ∀α.α since any term t
with that type would need to have all types, which contradicts the uniqueness of term
typing. At the end of this section, we will give meaningful examples of terms that have
complex types such as (vi) or (v). y

Terms. As for the types, two new cases are added on term level: The type abstraction
Λα. s yields a new function that takes a type as formal parameter and abstracts from all
(free) occurrences of type variables α inside term s. That includes the occurrences of α
in type annotations, e.g., of term abstractions, as well as in type abstractions: A term
(s τ) is called type application and denotes the application of the (type-abstracted) term
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s with argument τ . Again, let Σ be some set of fixed symbols and V the set of variables
(cf. § 2.2.1). The abstract syntax of terms is then given by:

s, t ::= Xτ ∈ V (Variable)

| cτ ∈ Σ | dτ , where dτ := sτ ∈ Σδ (Constant / defined atom)

| (λxτ . sν)τ→ν | (sτ→ν tτ )ν (Term abstraction / application)

| (Λα. sτ )∀α. τ | (s∀α. τ ν)τ [α/ν] (Type abstraction / application)

We additionally consider defined atoms, that can be used as a shorthand for some (com-
plex) terms. Those atoms are collected in a set Σδ together with its definition, yielding
objects of the form dτ := sτ where s is the definition of the definiendum c. A term
consisting of one or more defined atoms can be δ-expanded, yielding a term where all
occurrences of dτ are substituted by sτ , for dτ := sτ ∈ Σδ. This is formally stated by

Definition 3.1 (δ-expansion)
For dτ := sτ ∈ Σδ, the δ-expansion rule, written −→δ, is given by

dτ −→δ sτ

Note that this rule is not considered during β-normalization. y

Typing In 1998, Joe Wells showed that the problem of type reconstruction in System
F is undecidable [Wel98]. Since the Leo-III project does not aim to provide a full
programming language, but rather an expressive language for the automation of logic,
the above undecidability result does not impose a major problem in our case. The input
problems are expected to be explicitly typed by the user, as it is common practice for
typed input languages of the TPTP platform [Sut09]. The problem of type checking (here
in the sense that given a term s and a type τ , the question of whether sτ a well-typed
term, i.e. is τ a valid type for s?) for System F terms can still be easily solved by a
simple top-down algorithm. The typing rules of System F are shown in Figure 3.1.

cτ ∈ Σ
(Ty-Const)

Γ ` c : τ
Xτ ∈ Γ

(Ty-Atom)
Γ ` X : τ

Γ, X : τ ` s : ν
(Ty-Abstr)

Γ ` (λX. s) : τ → ν
Γ ` s : τ → ν Γ ` t : τ (Ty-App)

Γ ` (s t) : ν

Γ, α : ? ` s : τ
(Ty-TyAbstr)

Γ ` (Λα. s) : ∀α. τ
Γ ` s : ∀α. τ ν ∈ T (Ty-TyApp)

Γ ` (s ν) : τ [α/ν]

Figure 3.1: Typing rules for System F terms
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The expression τ [α/ν] denotes the substitution of all free occurrences of α by ν in τ .
The judgment α : ? means that α is a type.

Like the simply typed λ-calculus, λ→, System F is confluent and strongly normalizing.
Proofs can be found, e.g., in [Mat99].
In contrast to the untyped case, where normalization using η-expansion cannot be applied
in a meaningful way, we consider terms that are maximally η-expanded as η-normalized,
hence we agree on η-long normal form. In order to avoid reductions loops with β-
reduction and η-expansion interplay, e.g.,

sτ→ν tτ −→η (λXτ . sτ→ν Xτ ) tτ −→β sτ→ν tτ −→η ...

we consider conditional η-expansion: A (sub-)term (sτ→ν) is expanded to (λXτ . sτ→ν X)
if and only if (1) it is not applied to an argument and (2) if it is not a abstraction.

Expressibility. The full (unrestricted) System F is a very powerful and expressive
term language. Here, expressiveness is intended to capture two quite complementary
intuitions: First, the term language has a sophisticated practical expressiveness as it
allows to structure input theories (or programs) in terms of reusability [Tho97]. This
is due to the fact that one can formulate terms (e.g. functions) that are generically
applicable to terms of all types, as, for instance, the identity function Λα.λxα. x. In
contrast, in the simply typed λ-calculus, for each type a identity function has to be
provided. Another practical benefit is the ability to define various data types (algebraic
data types), including recursive types (such as lists).

Example 3.2 (Encoding of Booleans in System F)
In System F, we now can define polymorphic versions of the Church encoding of
Booleans [Chu40]. Using polymorphic variants comes with several benefits, such as
uniqueness of data type instances: In the simply typed λ-calculus, for instance, the
Boolean value true can be represented by the term λxτ .λyτ . x for each type τ . This
implies that for each type τ there is an instance of true (of that respective type) and
it’s not intuitively clear how different instances of that value can be compared or are
interchangeable.
The Boolean values true and false can be defined as follows in a polymorphic λ-
calculus:

true := Λα.λxα.λyα. x false := Λα.λxα.λyα. y

each of type ∀a.a→ a→ a. Thus we can use the abbreviation Bool := ∀a.a→ a→ a
for the type of Boolean terms and define the following Boolean connectives of type
Bool→ Bool and Bool→ Bool→ Bool respectively:

not := λxBool. x Bool false true
and := λxBool.λyBool. x Bool y false

The remaining connectives can be defined in the usual way. y
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Secondly, the theoretical expressiveness of System F terms is amazingly rich: Every
computable function that can be proved total using second-order Peano arithmetic is
representable (typable) in System F [GTL89]. This is, for instance, a strict superset
of typable terms compared to Hindley-Milner types. One of the strengths of System F
(in terms of typability) is that it offer impredicative polymorphism, i.e. impredicative
quantification over type variables.

From a programming language implementer’s point of view, type reconstruction is a
crucial part for the convenience and the usability of the language. That is why often only
a predicative fragment of System F is used, e.g. by Haskell [HPJWe92] or ML [MTM97].
Here, some further restrictions are imposed to achieve decidability of type reconstruction.
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4 Internal Term Representation

In the previous section we have agreed on a term language for Leo-III on a theoretical
level. In this section, practical realization aspects of such a language’s underlying imple-
mentation are examined and evaluated.

Terms, considered as internal objects of data, are the most general and common pieces
of information that are accessed, manipulated and created by a several routines inside
the system. It is therefore not surprising, that the internal representation of terms is a
crucial detail and has direct consequences on the efficiency of the whole system.

As an example, consider the common notion of term application of the λ-calculus:
The true structural nature of the term (fτ→τ→τ→ν sτ tτ uτ ), which is the application
of some function term f to three arguments s, t and u, is hidden by simplified notation.
Whereas by common intuition this term could simply be traversed from left to right
(yielding the head symbol f first and, subsequently, the three arguments), this is not
possible in the classical λ-term representation. This is due to the involved currying
of function application what, of course, is elegant from theoretical point of view, but
hampers the term traversal in a meaningful order.

With term traversal being one of the most performed operations during the proof
procedure (i.e. unification, matching, head symbol query, cf. §5) and with hundreds
of such operations per second, it is apparent that the term data structure is thus a
sensitive bottleneck of the whole proving system. In particular, due to the high number
of term manipulation operations, even minor improvements of the term data structure
may significantly increase the provers performance.

The problem mainly addressed in this section is, consequently, how terms can effec-
tively be represented as data structures such that common operations on them can be
performed efficiently. In order to provide such a term data structure, is it indispensable
to identify which (possibly low-level) operations dominate during the proof procedure.

From a low-level point of view, one of the most dominant operation is term traversal
as it is used for routines such as (syntactic) equivalence checks, (pre-) unification and
matching between terms. Of course, all routines that compare terms in some sense also
involve β-normalizing, and hence the normalization process itself has be to efficient. Yet,
there is a fundamental difference between term traversal and normalization operations:
Whereas terms are commonly kept in their normal form anyway, β-normalization needs
only to be done once for each term (and, of course, for each manipulated term). In
contrast, one and the same term may need to be traversed multiple times in the context
of different routines. It follows that the term representation should support classical
left-to-right traversal for operations such as unification and matching tests if an efficient
manner.

Hence, the key aspects for efficient term representations focused in this thesis are
fast β-reduction, quick α-equivalence checks, fast access to head symbols and, in general,
efficient left-to-right traversal of terms for unification and matching.

24



4 Internal Term Representation

In particular, the following three aspects of common λ-terms representations are dealt
with in this section:

• A representation with explicit names complicates the identification of α-equivalent
terms: (λXo. po→o X) is semantically equivalent to (λYo. po→o Y ), but a rather in-
volved routine including term traversal and variable renaming is needed to compute
this.

• The term application and type application are left-associative, yielding deeply
buried arguments within the term’s graph structure. As a consequence, term traver-
sal does not reflect intuitive left-to-right reading of the term.

• The notion of bound variable substitution in β-reduction is a meta-level operation
which, in naive implementations, does not allow fine-grained control over the carried
out substitution walks.

In this section, the above issues are tackled by the following techniques: Constant time
term comparison of syntactic equality can be achieved by using de-Bruijn indices (see
below) together with sharing of syntactically equal subterms. We further employ an
alternative term graph construction known as spine notation [CP03]. Additionally, the
spine representation of polymorphically typed λ-terms is enriched with explicit substitu-
tions [ACCL90] yielding more efficient normalization routines. The latter two techniques
are thoroughly described in the following sections.

Nameless representation The use of de-Bruijn indices as introduced in §2.1.1 elim-
inates the use of bound variable names and thus simplifies the comparison of terms for
equality. In a (locally) nameless term representation, two terms are α-equivalent if and
only if they are structurally identical (i.e. α-equivalent terms have a unique term rep-
resentation). Nevertheless, without any employment of further techniques, syntactical
equivalence checks require linear time with respect to the term’s size. In the following,
the use of de-Bruijn indices is enhanced to (bound) type variables [KRTU99] for elimi-
nating type variable names in polymorphic types. The definition of de-Bruijn indices for
type variables is analogous to the one for term variables.

As an example, consider the polymorphically typed term

Λα.λPα→o. Π∀β. (β→o)→o α (λYα. P Y )

that can be represented with de-Bruijn indices for term variables and type variables as

Λ.λ1→o. Π∀.(1→o)→o 1 (λ1. 2 1)

where i denotes the de-Bruijn index i for type variables. Since types can be used as terms
(i.e. as argument to type abstractions), the syntactical distinction is necessary to retain
unambiguous syntax.
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Plans of this section Firstly, the core ingredients of Leo-III’s internal term represen-
tation of λ2 are introduced in §4.1 (spine notation) and §4.2 (explicit substitutions). We
omit detailed descriptions of typing and reduction rules of each intermediate system, but
instead focus on the motivation and benefits of each particular representation. Conse-
quently, the individual ingredients are combined in §4.3. Here, we discuss normalization
properties, typing aspects and further details. Also, an explicit formulation of a normal-
ization strategy is given. The technical aspect of perfect term sharing is introduced in
§4.4.
Finally, in §4.5 a preliminary evaluation of the term representation is given; §4.6 discusses
the native support for term orderings.

4.1 Terms in Spine Notation

While currying is – from a theoretical point of view – an elegant technique for uniform
treatment of functions of all arities, it comes with a major drawback for automation.
Consider the term (f a b c d), where types are omitted for the moment. Here, f is
some term denoting a function and a, b, c and d are some argument terms which the
function f is applied to. Due to its applicative position, f is also referred to as the head
symbol of the term. There are many applications where the head symbol of a term needs
to be accessed, and, more generally, the individual argument terms of an application
need to be examined in the left-to-right reading order. This is the case, for instance,
during unification or matching tests. Hence, the access to the head symbol of terms,
and, more generally, left-to-right traversal, needs to be performed efficiently. If we recall
the above example under this aspect more formally, it can be observed that the head
symbol is buried under several application layers as it properly reads ((((f a) b) c) d).
The term’s actual structure is unwarily hidden when omitting exhaustive bracketing. As
a consequence, during term analysis, four traversal steps are required to access its head
symbol. In general, the number of traversal steps is linear in the number of applied terms.
Even worse, in operations which first analyze a term’s head symbol and subsequently
all its arguments, the whole terms is possibly traversed again and again, or a stack of
unprocessed terms of size O(n) needs to be maintained.

Cervesato and Pfenning proposed a λ-term representation called spine calculus, or,
more commonly, spine notation, that copes with the above problems [CP03]. Terms in
spine notation adopt the usual mathematical function notation as in f(x, y). Here, the
head symbol is located at top level and followed by a linear list of function arguments.
In spine notation, the above example reads

f · (a ·Nil; b ·Nil; c ·Nil; d ·Nil; Nil)

where Nil denotes the empty argument list (called spine) and cons of arguments (prepend-
ing) to spines is denoted with ; (semicolon). The argument cons operation (;) is hereby
right-associative.

When considering β-normal terms in spine notation, access to the head symbol re-
quires always exactly one traversal step, no matter how many arguments are applied.
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Figure 4.1 gives the syntax of terms in spine notation. As usual, term abstraction is
denoted by λ. The application term of the usual λ-calculus is represented by a root H ·S,
where H is a head and S is a spine. Intuitively, heads correspond the bound variables
and constants3 and whole terms in the unnormalized case, whereas spines compare to
lists of arguments and collect destructors that are applied to the head. The atom Nil
denotes the empty spine.

Terms The terms s in spine notation are defined by (τ ∈ T )

s ::= (λXτ . sν)τ→ν | (H · S)τ

S ::= Nil | sτ ;S

H ::= cτ | Xτ | sτ

where S denote spines and H denote heads. As usual, cτ is a constant of the context.

Figure 4.1: Terms of λ→ in spine notation

Since every β-normal λ-term is of the form (λX1
τ1 . · · ·λX

n
τn . hν s

1
ν1 · · · s

m
νm), where h

is either a bound variable or a constant (and type ν is chosen properly) and the si are
terms, the head of a β-normal term in spine notation indeed corresponds to either a
bound variable or a constant symbol.

The graph structure of the term (λX. a b c ((λX. X) d) e) in both classical rep-
resentation and spine notation is given in Figure 4.2. Note that spine concatenation
(denoted by ”;”) is right-associative, yielding an apparent different graph as opposed to
classical left-associative term application (denoted ”@” in the example). All Nil atom
occurrences are explicitly shown. In this representation, left-to-right traversal of terms
can be performed more efficiently as the subterms occur in intuitive reading order inside
the term graph.

Examples In order to get familiar to the somehow unusual notation for λ-terms, some
examples are shown in both spine notation and classical representation. For reasons
of readability, we omit the nameless representation and use variable names instead of
de-Bruijn indices.

λXτ .λYν .fτ→ν→ν · (X ·Nil;Y ·Nil; Nil)! λXτ .λYν .(fτ→ν→νX)Y

(λXτ . X ·Nil) · (λXτ .cτ→τ · (X ·Nil) ; Nil)! (λXτ .X)(λXτ .cτ→τX)

hτ ·Nil! hτ

where the left side of the examples are terms in spine notation and the right side is its
equivalent in classical representation. Due to the numerous occurrences of the Nil atom,
the terms tend to be slightly longer and possibly not as clearly intuitive to understand.
For reasons of readability, in the following Nil atoms are omitted whenever possible.

3The name head possibly derives from the fact that β-normalized λ-terms are of the form
(λX1. · · ·λXn. h s1 · · · sm) where h is either a bound variable or a constant, and the si are terms.
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(a) in classical λ-notation (b) in spine notation

Figure 4.2: Graph structure of the term (λX. a b c ((λX. X) d) e)

Reductions As a consequence of the explicit linear enumeration of application argu-
ments, a reduction rule corresponding to β-normalization needs to apply the possibly
remaining spine (with one argument less) to the whole term again. This reflects the
implicit nesting of function arguments inside reducible terms. Hence, the β-reduction
rule is given by

(λXτ .sν) · (tτ ;S) −→β (sν [X/t] · S)

As Cervesato and Pfenning point out, the above β-reduction rule does not suffice to
model the common notion of β-normal forms. Since spines are modeled with an explicit
termination atom, Nil, possibly empty spines that remain after exhaustive β-reduction
need to be eliminated too. Consider the example

(λXτ→τ . X) · ((λYτ . Y ·Nil); Nil) −→β (λYτ . Y ·Nil) ·Nil

! !

?

(λXτ→τ . X) (λYτ . Y ) −→β λYτ . Y

Here, after normalization, a redundant Nil atom remains that cannot be eliminated with
any of the currently available rules. Hence, we need to introduce a new kind of reduction,
the so-called Nil-reduction, given by

Definition 4.1 (Nil Reduction)
The Nil reduction rule, written −→Nil is given by

(sτ ·Nil) ·Nil −→Nil sτ ·Nil

for any term sτ ∈ Λτ . y
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Considering −→β and −→Nil during β-reduction preserves the usual confluence and
normalization properties of the simply typed λ-calculus in spine representation [CP03].
However, both of the above reduction rules are only sufficient when all terms are in η-long
normal form. To illustrate the problem, consider the following term and normalization:

(λXτ . fτ→τ→ν X) cτ dτ

!

(λXτ . fτ→τ→ν · (X; Nil)) · (cτ ; dτ ; Nil)

−→β (fτ→τ→ν · (cτ ; Nil)) · (dτ ; Nil)

−→? fτ→τ→ν · (cτ ; dτ ; Nil)

!

fτ→τ→ν cτ dτ

Note that, after one step of β-reducing, no rules for further normalizing apply (here
marked with a ”?”). Whenever β-reducing a term and the head of its redex (i.e. the
head of the term itself) is not a abstraction, its spine needs to be Nil – then, because of
Nil-reductions, normal form will eventually be achieved. This restriction is only true for
η-long normalized terms though, since due to η-expansion, there are as many abstractions
as expected (and not yet applied) parameters to each symbol.

The spine calculus was originally developed as a framework for η-long terms. However,
also terms that are not η-long can be normalized if we include the rule

(H · S) · S′ −→Mrg H · (S ++ S′)

Here, S ++ S′ denotes the meta-level operation of spine merging, given by
(t1; t2; · · · ; tn; Nil) ++ S′ = (t1; t2; · · · ; tn;S′). The spine merging operations is also de-
noted @ in the original publication.

The ingredient of Leo-III’s internal term data structure surveyed in this section, is the
representation of λ-terms as (essentially) pairs of heads and spines that allow efficient
left-to-right term traversal.

4.2 Explicit Substitutions

The notion of β-reduction is one of the most central operational aspects of the λ-calculus.
It is most commonly defined by a form of substitution of free variables for arbitrary terms.
This substitution operation can, however, not be expressed as a native construct of the
term language itself, but rather denotes a meta level operation. Thereby, certain imple-
mentation details of substitution routines remain unspecified and might be, depending
on the concrete implementation, impractical and a source of subtle errors. When consid-
ering de-Bruijn indices in a nameless calculus, the substitution procedure is even more
involved and careful attention needs to be payed to its implementation. Also, from a
theoretical point of view, the meta level character of substitution does not allow any
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reasoning about the reduction process itself, e.g. time and space consumption of λ-terms
when considered as programs.

From the perspective of efficient β-reduction, it is generally not a reasonable idea
to implement a single monolithic substitution operation that is then gradually applied
during normalization. A more efficient β-normalization routine would rather collect
variables that are to be substituted and postpone the actual substitutions until they can
be applied on the term during a single traversal.
As an example, consider the term ((λX.λY.X Y c) a b) (types omitted). Here, naive
reduction routines would first traverse the whole term replacing all occurrences of variable
X by term a, and then, on a second run, replace all variables Y by b.

In the context of functional programming and logic programming, weaker notions of
normal forms, so called (weak) head normal forms, are considered. Here, β-reductions are
not exhaustively applied, but only until a certain structural term property is achieved.
In the context of theorem proving, however, those weaker normalization notions are often
not adequate since the structure of terms under abstractions needs to be examined as well.

One approach to eliminate chaotic handling of substitutions in concrete term languages
is to promote the meta-operation of substitution to be a first-class citizen of the term
language itself. The idea to make reduction an explicit part of the language was picked
up with the development of combinatory logic [Cur58] in which reduction is modeled as
a syntactic primitive. As a downside, the number of atomic steps in this model can grow
very large as opposed to regular β-reduction steps in the classical λ-calculus. A first
serious competitive model was the notion of an calculus of explicit substitutions, denoted
λσ, which allows fine-grained syntactic control of reduction semantics [ACCL90].

Today, currently available systems of explicit substitutions can roughly be categorized
into those systems, who allows substitution fusion (i.e. the combination of individual
substitutions s.t. multiple substitutions can be carried out during one term traversal) and
those, which does not. Famous example of the first kind are the λσ calculus [ACCL90],
ΛCCL [Fie90] and the suspension calculus [Nad96]. Systems of the latter kind are, e.g.,
the λv calculus [BBLRD96], the λs calculus [KR95] or the λse calculus [KR97].

Merging of substitutions have shown to be a substantial efficiency advantage to prac-
tical applications [LNQ04]. That is why we chose a explicit substitution calculus with
merging capabilities as the basis of the internal representation of λ2. More precisely, the
λσ-calculus is used in the following, since it is also well-established in different sophisti-
cated systems (e.g. TWELF [PS99]) and has a fair complexity.

Explicit Substitutions of λσ Figure 4.3 displays the terms and reduction rules of
λσ. We here examine explicit substitutions of λσ for the untyped case. Although Adabi
et al. discuss second-order theories (i.e. typed terms with parametric polymorphism)
as well, they mainly focus on constructions well-suited for type-checking rather than on
evaluation semantics. This is why, in the remainder, we investigate the principles of
explicit substitution for untyped terms and get familiar with its most basic notions.
The terms are built on top of a nameless representation using de-Bruijn indices. A term
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Terms The terms of λσ are defined by

s, t ::= 1 | λs | s t | s[σ]

σ, ρ ::= id | ↑ | s · σ | σ ◦ ρ

Reductions The rule −→
Beta

is given by

(λs)t −→ s[t · id]

The ruleset −→
σ

is given by

1[id] −→ 1

1[s · σ] −→ s

(s t)[σ] −→ s[σ] t[σ]

(λs)[σ] −→ λ(s[1 · (σ◦ ↑)])
(s[σ])[ρ] −→ s[σ ◦ ρ]

id ◦ σ −→ σ

↑ ◦id −→↑
↑ ◦(s · σ) −→ σ

(s · σ) ◦ ρ −→ s[ρ] · (σ ◦ ρ)

(σ1 ◦ σ2) ◦ σ3 −→ σ1 ◦ (σ2 ◦ σ3)

Figure 4.3: Explicit substitutions of λσ

s[σ] is called closure and denotes the (postponed) application of substitution σ on term
s. A substitution σ is basically an infinite sequence of de-Bruijn index replacements
σ = {1/t1, 2/t2, 3/t3, . . .} where, during application, de-Bruijn index i is replaced by ti.
We may also write σ(i) = ti to underline this mapping.

id denotes the identity substitution, i.e. the substitution σ that assigns σ(i) = i
to each de-Bruijn index i. The shifting operator ↑ denotes the substitution σ with
σ(i) = i + 1. The original syntax only includes the de-Bruijn index 1, since the index
n + 1 can be represented as 1[↑n], where ↑n denotes the n-fold composition ↑ ◦ · · · ◦ ↑
(see below). The cons of a term s to a substitution σ is given by s · σ and corresponds
to the substitution σ′ with σ′(1) = a and σ′(i) = σ(i) for all i > 1. Finally, the compo-
sition of two substitutions σ and ρ, written σ ◦ ρ, produces a substitution that assigns
(σ ◦ ρ)(i) = σ(i)[ρ] for each index i.

The first reduction rule of λσ, denoted Beta, introduces new substitutions (by means of
closures) to the term. The remaining ten reduction rules push closures further inwards
and deal with reading the value of a de-Bruijn index with respect to a given substitution.

Consider the following example, in which the mechanism of producing and merging
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closures is depicted. We omit types to address the original syntax of λσ as given above
and combine multiple steps per shown inference.

(λ.λ. 2 1 (λ. 2)) s t

−→ (λ. 2 1 (λ. 2))[s · id] t

−→ (λ. (2 1 (λ. 2))[1 · ((s · id)◦ ↑)]) t
−→ ((2 1 (λ. 2))[1 · ((s · id)◦ ↑)])[t · id]

−→ (2 1 (λ. 2))[(1 · ((s · id)◦ ↑)) ◦ (t · id)]

−→ (2 1 (λ. 2))[t · ((s · id)◦ ↑) ◦ (t · id)]

−→ (2 1 (λ. 2))[t · (s[↑]· ↑) ◦ (t · id)]

−→ (2 1 (λ. 2))[t · s[↑ ◦ t]· ↑ ◦(t · id)]

−→ (2 1 (λ. 2))[t · s[↑ ◦ t] · id]

−→ s[↑ ◦ t] t (λ. 2[1 · (t · s[↑ ◦ t] · id)◦ ↑])
−→ s[↑ ◦ t] t (λ. t[↑])

which eventually reduces to (s t (λ. t)) given that s and t are closed terms (i.e. contain
no free variables). Note that only a single substitution application run is employed to
replace all de-Bruijn indices. Besides that traversal, a calculation involving substitution
compositions needs to be done. For efficiency considerations, it shows that the latter
calculations can be implemented in such a way that their costs are not bigger than those
of the saved traversal runs [LNQ04].

The λσ-calculus is confluent on ground terms (i.e. terms without meta variables), but
not confluent in general. While this is for our context sufficient, it does imply that special
treatment needs to be employed when dealing with existential variables. Confluent calculi
of explicit substitutions exist [CHL96], but they are far more complex and do not greatly
contribute to our problem.

4.3 Combining Spines and Explicit Substitutions

In this section, we combine the previously introduced concepts of spine notation and
explicit substitutions (of the λσ-calculus) and adjust them for a polymorphically typed
λ-calculus.

The first step, starting from the term syntax of the spine calculus of §4.1, is to
re-introduce the Λ-binder for type abstractions (cf. §3) to the term language. As a
consequence, spines not only contain terms as elements (as in (sτ ;S), for some spine S)
but also contain types that are arguments for type-abstracted terms. Thus, (τ ; sτ ; Nil)
denotes a valid spine which could, for example, be applied to a polymorphic identity
function (Λ.λ1. 11). Since we are considering explicit substitutions, we also allow types
to be prepended to substitutions σ, as in σ′ = (τ · σ). The reduction semantics of this
augmented term language is further below.
In summary, the syntax of the resulting term language is given by
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Definition 4.2 (Internal Term syntax)
The terms, denoted s, are given by the following abstract syntax declaration

s ::= (hτ · Sτ>ν)ν | (sτ · Sτ>ν)ν | (λτ . sν)τ→ν | (Λ. sτ )∀.τ | s[σ]

h ::= iτ | cτ | h[σ]

S ::= Nil | sτ ;S | τ ;S | S[σ]

σ, ρ ::= ↑i | sτ .σ | τ.σ | σ ◦ ρ

where i ∈ N and c ∈ Σ or (c := d) ∈ Σδ and τ, ν ∈ T . y

Again, the language includes three further primitives: Heads, Spines and substitutions
denoted h, S and σ respectively.

The original notion of heads h, where h could be a symbol or again a complex term,
is modified such that there are two distinct top-level cases h · S and s · S which we call
root and redex respectively. Hence, in this context, a head h is an atom which is either
a de-Bruijn index i or a constant symbol c from the signature (or, of course, a closure of
those). The notion of reducible terms, e.g. (λτ . sν) · S, is now explicitly covered by the
redex term case. This distinction is motivated by practical reasons of implementation
details: Internally, the data type of heads is distinct from the data type of terms and
some operations are meaningful for heads only. A internal conversion between head data
types and term data types seems to be out of place. Additionally, by distinguishing roots
and redexes, we have a rather simple criterion for checking if a term is already in weak
head normal form.

Due to the introduction of spines to the term construction, the typing rules of those
terms look a bit different. The typing of spines S is denoted by S : τ > ν, which
intuitively means that S is a spine from heads of type τ to type ν, i.e. h ·S has type ν if
h has type τ . A discussion of the typing rules can be found in [CP03], we now focus on
term reduction.

Implementation considerations. In a polymorphically typed language, substitu-
tions also need to be applied to types rather than only to terms themselves. In the
original publication of the λσ-calculus, a substitution σ is simply augmented to con-
tain terms as well as types [ACCL90]. While this may be practical for type checking
applications, it is not suited for efficient reduction. This is because a substitution σ is
constructed such that the replacement for a de-Bruijn index i is stored at the i-th posi-
tion in σ. If types and terms are both contained in the same substitution, this is not true
anymore. In order to retrieve the substitute for a term-de-Bruijn index i, σ would have
to be traversed from left to right until the i-th term is encountered, skipping type entries.
For efficiency considerations this is not convenient, since we could otherwise employ a
random-access data structure that allows constant time access to the i-th component.

To this end, we split a substitution σ in two substitution components, the first being a
substitution in which all terms substitutes are listed, the second for the type substitutes.
Hence, in the following, a substitution σ denotes a pair σ = (σterm, σtype). Composition
is component-wise, i.e. σ ◦ ρ = (σterm ◦ ρterm, σtype ◦ ρtype)
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Data structure 1 (Term) The term data structure T describes the terms of Defini-
tion 4.2 and is given by the above description. y

Computing the β-normal form The initial idea for using explicit substitutions is
to avoid redundant term traversal during β-normalization. The here presented approach
tries to achieve this by consuming abstractions and their associated arguments on top-
level as far as possible (i.e. until the top-level term is not an abstraction anymore) and
storing the latter in a substitution σ. The so obtained term structure has form (h ·S) ·S′
or simply (h · S) ·Nil if the original term was η-expanded. In the first case, the spines
S and S′ are merged into a single spine S ++ S′. This term’s structure can be seen as
a weak head pre-normal form of the original term, since it has the same structure as a
weak head normal form but with no substitutions applied so far.

At this point, it is not clear whether the application of σ to the term’s head h
results in introducing new λ-binders, as in σ(h) = (λτ . s), or if h will be replaced by a
constant symbol or a de-Bruijn index. In the first case, further arguments could possibly
be consumed from the spine (denoted above by S′), while in the latter case, the term
normalization traversal can be continued inside the subterm, since constants or de-Bruijn
indices cannot be further β-reduced. As consequence of that, the substitution σ is only
applied to the term’s head h and a case distinction is done for the above described cases.

After this step, the term reached its actual weak head normal form, i.e. the top-level
symbol is fully normalized with respect to σ and the arguments are possibly reducible
since σ was not yet applied to the spine. This is done in the last step, where the ar-
gument spine is normalized component-wise using the whole described routine recursively.

In summary, the above routine for normalizing (s · S) is divided into the following steps:

(i) Consume λ-binders, gather arguments in σ (weak head pre-normal form)
(a) Reduce s until it is of form h · S′

(b) Fuse spines S′ and S, if necessary
(ii) Apply substitution to h

(a) Proceed with step (i) if new λ-binders are introduced
(b) Otherwise proceed with step (iii)

(iii) Recursively normalize spine with respect to current substitution

This β-normalization routine is formally described by Figure 4.4. Here, for a term s,
the β-normal form of s, denoted s

�

β , is given by s

� id
β . For redex terms (s · S), the

application of this normalization routine with respect to a substitution σ is defined by
(s · S)

� σ
β := (s · S)

� σ,σ
β . The benefit of using two substitutions as a parameter for redex-

terms, is that we can elegantly manage substitutions that only apply for the redex’ head
and its spine, respectively.

We write τ [σtype] for the application of type-substitution σtype on type τ , given by
a straight-forward meta-level operation, that instantiates each type-de-Bruijn index by
a type or type variable according to σtype. This operation is similar to the original
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notion of substitution but for nameless types. Type closures (i.e. closures appearing in
types) could of course also be allowed, enabling explicit treatment of substitutions as we
did for terms. But since we have fairly simple types (without any means of abstractions
within types), calculating type substitutions does not involve extensive type traversal and
thus does not contribute to efficient normalization in this case. This could change if we
employ more expressive type systems, as for instance types of System Fω [Gir72]. Here,
λ-abstractions can also appear in types as well – an explicit treatment of substitutions
for type normalization might be beneficial in this case.

For two spines S, S′ and two substitutions σ, σ′, the meta operation of spine closure
merging S′[σ] ++ S[σ′], i.e. merging of spines with respect to postponed substitutions, is
given by

S′[σ] ++ S[σ′] =


s[σ]; (Stail[σ] ++ S[σ′]) , if S′ = s;Stail

τ [σtype]; (Stail[σ] ++ S[σ′]) , if S′ = τ ;Stail

S′′[ρ ◦ σ] ++ S[σ′] , if S′ = S′′[ρ]

S[σ′] , if S′ = Nil

The normalization of closures is done by rules (Clos), (RxClos) and (SpClos) for top-
level closures and closures occurring inside of redexes and spines, respectively. Since only
one substitution parameter is used for the normalization routine of roots h · S, head clo-
sures are explicitly introduced during normalization. This is because head substitutions
(introduced by (RxRMrg)) must not get in scope of its spine S. However, all remaining
kinds of substitutions for roots affect both its head and its spine. Head closures h[σ] are
handled explicitly by rules (RAtomClos), (RBndClos), (RTermClos) and (RClosClos).

Note that the only rules that produce roots from redexes are the rules (RxSpNil) and
(RxRMrg) which correspond the Nil-reduction and spine merging (++) (cf. §4.1), respec-
tively. A root can be transformed into a redex by rules (RTermSub) and (RTermClos).
Rules (Abs) and (TyAbs) correspond to the inwards-shifting of substitutions as described
by λσ (cf. §4.2).

The β-normalization routine of Fig. 4.4 is currently implemented as part of the term data
structure.

β-normalization variants Based on the previously described β-normalization rou-
tine, a number of variants can be examined. Simple enhancements include:

(A) Strict composition of substitutions
Instead of using closures during substitution composition, i.e. (s·σ′)◦ρ −→ s[ρ]·σ′◦ρ,
the composition could be calculated more strictly. More precisely, if we calculate
(s · σ′) ◦ ρ = s[ρ]

�

β ·σ′ ◦ ρ the closure s[ρ] is evaluated strictly.

Pro: A lot of term closure introductions can be avoided
Con: The normalization of the closure causes more term traversals, even if the term
itself is never used.
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(c · S)

� σ
β c ∈ Σ or c := d ∈ Σδ

(RAtom)
c · S

� σ
β

(iτ · S)

� σ
β σterm(i) = j

(RBndSub)
jτ [σtype] · S

� σ
β

(i · S)

� σ
β σterm(i) = s

(RTermSub)

(s · S)

� (id,σtype),σ

β

(c[ρ] · S)

� σ
β c ∈ Σ or c := d ∈ Σδ

(RAtomClos)
c · S

� σ
β

(iτ [ρ] · S)

� σ
β (ρterm ◦ σterm)(i) = j

(RBndClos)
jτ [ρtype◦σtype] · S

� σ
β

(i[ρ] · S)

� σ
β (ρterm ◦ σterm)(i) = s

(RTermClos)

(s · S)

� (id,ρtype◦σtype),σ

β

(h[ρ′][ρ] · S)

� σ
β

(RClosClos)
(h[ρ′ ◦ ρ] · S)

� σ
β

Root rules

(λτ . s)

� σ
β

(Abs)

λτ [σtype]. s

� (1.σterm◦↑,σtype)

β

(Λ. s)

� σ
β

(TyAbs)

Λ. s

� (σterm,1.σtype◦↑)
β

(s[σ′])

� σ
β

(Clos)

s

� σ′◦σ
β

Abstraction/Closure rule

(s ·Nil)
� σ,σ′

β
(RxSpNil)

s
� σ

β

(s · S[ρ])

� σ,σ′

β
(RxSpClos)

(s · S)

� σ,ρ◦σ′

β

(s · t;Stail)

� σ,σ′

β s = λτ . s
′

(RxApp)

(s′ · Stail)

� (t[σ].σterm,σtype),σ
′

β

(s · τ ;Stail)

� σ,σ′

β s = Λ. t
(RxTyApp)

(t · Stail)

� (σterm,τ [σ′
type].σtype),σ

′

β

(s · S)

� σ,σ′

β s = h · S′
(RxRMrg)

(h[σ] · S′[σ] ++ S[σ′])

� (id,id)
β

(s · S)

� σ,σ′

β s = t · S′
(RxRxMrg)

(t · S′[σ] ++ S[σ′])

� σ,(id,id)
β

(s · S)

� σ,σ′

β s = t[ρ]
(RxClos)

(t · S)

� ρ◦σ,σ′

β

Redex rules

Nil

� σ
β

(SpNil)
Nil

(S[ρ])

� σ
β

(SpClos)
S

� ρ◦σ
β

(s0;Stail)

� σ
β

(SpApp)
(s0

� σ
β);Stail

� σ
β

(τ ;Stail)

� σ
β

(SpTyApp)
(τ [σtype]);Stail

� ρ◦σ
β

Spine rules

Figure 4.4: β-normalization strategy SpClos
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(B) Strict (RxApp) rule
Instead of using a closure in (RxApp), calculate t[σ′] directly by t[σ′] = t

� σ′
β .

Pro: The strict calculation avoids the introduction of term closure constructions
which might cause overhead
Con: As for (A), the number of term traversals increase. Also, the normalized term
might not be used.

(C) Partial η-contraction inside of (RxApp)
Replace the cons of t[σ′] to σterm in (RxApp) by an η-expanded cons, i.e. by
η(t[σ′]) · σterm, where η(.) is a meta-level function that applies η-reduction on the
term’s top level structure.

Pro: Reduce λ-abstractions that would cause more applications of (RxApp) after
instantiation by (RTermSub).
Con: An extra term traversal of t is needed in order to identify if certain bound
variables qualify for η-reduction.

(D) Normalize substitutions before application in Root rules
Before application of (RTermSub) or (RTermClos), normalize the current substitu-
tion σ such that all terms contained in σ are β-normalized.

Pro: When β-normalizing inside of σ, possibly multiple normalization runs for dif-
ferent instances of the same term are avoided.
Con: Exhaustive normalizing of all terms in σ might not be needed since some of
the terms are possibly never substituted.

(E) Normalize substitutions on-demand
Same as (D), but do not normalize all terms of σ, but just those which are being
instantiated by rule (RTermSub), and update σ accordingly.

Pro: Same as (D)
Con: The update of the substitution might be costly

A thorough evaluation of these normalization variants is needed to estimate their impact
on the efficiency of the β-normalization routine. As a first step, the normalization strategy
of Figure 4.4, denoted SpClos, is compared to the variant (A) (denoted SpStrict in the
following) in §4.5.

Weak head normal form (WHNF) For some applications it might be sufficient
to only calculate the WHNF of a term, instead of its full β-normal form. This might
be the case for the application of inference rules to literals during the proof procedure,
where it is often only necessary to inspect a literal’s head symbol. When applying a
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substitution to a literal, one could calculate the WHNF of that new literal and postpone
the application of the substitution to the remaining subterms.

This notion of normalization can easily be supported by the presented term data
structure: A term is normalized until it is of the form h · S and a substitution σ still
needs to be applied to S. Then, σ can elegantly be stored as closure, yielding h · S[σ].

η-normalization For a β-normalized term s, given by

λτ1 . · · · .λτk . h · (E
1
ν1 ; . . . ;Emνm)

with head h of type ν1 → . . . → νm → . . . → νn → a (where a ∈ T is a base type), the
η-long normal form of s is given by

λτ1 . · · · .λτk .λνm+1 . · · · .λνn . h′ · (E′1ν1 ; . . . ;E′mνm ; (m+ 1νm+1) ·Nil; . . . ; 1νn ·Nil)

where h′ = h[↑n−m], and all E′i = Ei[↑n−m] are η-expanded. Hence, a certain number of
abstractions needs to be introduced, and the spine is appropriately lifted and augmented
with the de-Bruijn indices.

4.4 Shared Representation of Terms

Another key aspect of term managing appears when handling a big number of formulae at
once. Regardless of whether a complex input problem file is read or several intermediate
terms are generated throughout the proving process – an automated theorem prover
often has to store and manage 105 - 106 terms during a single run [NHRV01]. This high
number of terms might be critical concerning the performance of several heavy-weighted
operations on terms, as, for instance, when sophisticated term indexing techniques are
employed. Also, memory limitations may quickly be reached, depending on the term’s
internal representation.

In order to tackle the above problems, we employ a perfectly shared representation
of terms which offers not only a reduced memory consumption, but more importantly
the advantage of sharing knowledge about term properties (thus eliminating redundant
recomputations). A perfectly shared term representation denotes a technique in which
syntactical equal terms are represented by the (physically) same term structure instance
in memory. This technique is used in several ATPs, such as E [Sch02] or LEO-II [TB06,
BTPF08].

A data structure that manages terms in the above manner is commonly called Term
Bank. The Term Bank collects all terms that have been created so far and offers opera-
tions to create new ones. Here, terms are only created and stored once and then reused
as subterm occurrences among possibly many different terms. Terms can be created by
composition operations, such as mkTermApp(s,t) or mkTypeAbs(t) (for creating (st) from
s and t, and Λ. t from t, respectively), or converted directly from a local representation
(see below) by deep traversal (essentially a folding of the appropriate constructors).
Since terms are represented as tree-like structures, a set of terms can be represented
by a forest. When sharing of subterms is considered, the forest is then condensed into
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a directed acyclic graph (DAG) whose vertices are terms nodes and whose edges are
subterm pointers. As an example, consider the shared representation of the five Peano
axioms:

Example 4.1 (Shared Representation of Peano’s axioms)
Let the terms p1, . . . , p5 be given by

p1 = nat zeroι

p2 = ∀nι. nat n ⊃ nat (s n)

p3 = ∀nι. ¬(s n = zero)

p4 = ∀nι∀mι. s n = sm ⊃ n = m

p5 = ∀pι→o.(p zero ∧ ∀nι. p n ⊃ p (s n)) ⊃ subset nat p

where we identify sets by its characteristic function, in particular natι→o representing
the natural numbers and sι→ι represents the successor function, and subset(ι→o)→(ι→o)→o
is chosen appropriately. The graph representation of the five terms p1, . . . , p5 can be
seen in the following picture:

As one can see, all constant symbols (such as zero and nat), logical connectives (=
and ⊃), bound indices and other term parts are shared between all terms. y

We allow local terms, that is, terms which are not in a shared representation. This is
due to performance considerations: Consider term manipulation tasks (i.e. tasks that
create new (different) terms), which might turn out to be needless in some sense (e.g.
represent intermediate results). Here, the insertion of the term to the Term Bank in-
creases the search space for other operations and, additionally, takes at least linear time
on the size of the term. Hence, Leo-III ’s agents can create local terms whenever reason-
able and later publish them into the Term Bank to make them globally visible and shared.

The characterization of the Term Bank data structure is given by
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Data structure 2 (Term Bank) A Term Bank T = {Term} is a set of terms to-
gether with the following operations

• insertT : Term→ Term
Converts the input term into a shared representation and stores it, yielding the
reference of the (syntactically) equal term in shared representation.

• getT : {Term}
Returns a set of all stored terms.

• mkAtomT : Atom→ Term
Returns a term t = c ·Nil that represents the input atom c as a term.

• mkBoundT : Type→ N→ Term
Returns a term t = iτ ·Nil with input type τ and de-Bruijn index i.

• mkTermAppT : Term→ Term∗ → Term
Returns a term t = f ·(t1; t2; . . . ; tn; Nil) with function term f and argument terms
(ti)1≤i≤n.

• mkTypeAppT : Term→ Type∗ → Term
Returns a term t = f ·(τ1; τ2; . . . ; τn; Nil) with (polymorphic) term f and argument
types (τi)1≤i≤n.

• mkAppT : Term→ (Term+ Type)∗ → Term
Same as mkTermApp and mkTypeApp but with mixed arguments (terms and types).

• mkTermAbsT : Type→ Term→ Term
Returns a term t = λτ . s with body s and abstracted variable of type τ .

• mkTypeAbsT : Term→ Term
Returns a term t = Λ. s with body s.

All operations except insert expect that its term arguments are already in shared rep-
resentation. y

Implementation The term sharing graph is implemented using hash tables: For each
sort of primitive symbols, i.e., bound indices and atoms, and for each composite node
structure, i.e., abstractions, roots, spines, ..., a (possibly nested) hash table is employed.
This allows for a fine-grained control of node sharing and, together with a set of pointers
to already created terms, constant time check of (syntactic) term equivalence by pointer
comparison. The following hash tables are employed:

• boundAtoms : T → N → Head — for input parameters τ and n, store bound
variable nτ
• symblAtoms : N → Head — for input parameter n, store appropriate constant

symbol c (cf. §6.1)
• roots : Head→ Spine→ Λ — for input parameters h and S, store root (h · S)

• redexes : Λ→ Spine→ Λ — for input parameters rx and S store redex (rx · S)

• termAbstractions : Λ→ T → Λ — for input parameters s and τ , store (λτ . s)

• typeAbstractions : Λ→ Λ — for input paramter s, store (Λ. s)
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• spines : (Λ + T ) → Spine → Spine — for input parameter s or τ and S, store
(s;S) or (τ ;S)

where (Λ + T ) denotes the sum type of terms and types.
The hash maps used for implementation are taken from Scala’s collection library and
guarantee effectively constant time access for term lookup and insertion of new terms.
This is important since every call to a constructor (factory) method for shared terms
invokes a constant number of queries to some hash tables; hence all mkX operations run
effectively in constant time and insert takes time linear in the number of nodes in the
argument term (since it can be implemented as a folding of the mkX operations).

Further remarks Additionally to perfect sharing of terms using a term bank, types
could be treated in a similar way, yielding perfect shared types with the use of a type
bank. In the higher-order setting, where types are excessively used in problem modelling,
employment of shared terms could further reduce memory consumption. In particular,
every term is associated a type and the representation of abstractions and bound vari-
ables also includes explicit type annotations. Implementation of perfectly shared types is
a straight-forward extension and can, as for terms, represented by directed acyclic graphs.

The term bank data structure can also be used for global unfolding of definitions, where
in every term a given defined constant symbol is replaced by its definiendum. This can be
implemented by traversing the term bank and replacing each occurrence of that symbol.
Due to the term sharing, that symbol is consequently replaced in all terms.

In literature, usage of term banks is often used synonymously with the concept of term
indexing (cf. §5). More accurately, term banks address reduction of memory consumption
and simple term comparison, whereas term indexing addresses the efficient retrieval of
terms with respect to a certain condition. Nevertheless, both terms are closely related
since the implementation of term banks offers several data structures that can be used
within the term index. This observation is discussed in §5.2.1.

4.5 Evaluation of Term Representation

A first (preliminary) evaluation of the currently implemented term representation of λ2
is presented and discussed. The benchmark measurements of this evaluation experiment
focus primarily on giving evidence to the key benefits that are expected due to the
combination of spine notation, explicit substitutions and perfect sharing (as described
in previous parts of this section). A substantial overall improvement of the efficiency
of common operations on terms is expected, compared to a naive term representation
(standard curried λ-calculus representation without sharing) with simple β-reduction
techniques (normalization by gradual substitution of bound variables). Here, the meaning
of efficiency of course depends on the operation we are examining.

41



4 Internal Term Representation

Since the Leo-III project is still at its very beginning and Leo-III’s proof calculus
is not set up yet, the evaluation examines the data structures and its operations isolated
from the rest of the prover. Although these type of benchmarks might be somewhat
biased given that operations are benchmarked out of context, the measurements are nev-
ertheless meaningful and give rise to high potential for more realistic applications. This
is due to the fact that common bottlenecks of theorem prover performance appear on
term data structure level [Ria03]. We omit theoretical performance analysis as it tends to
not reflect the observed efficiency results when applied to practical problems and, more
importantly, the different behaviours of different problem domains [NHRV01].

The benchmarks considered here are (1) reduction count and time measurement of β-
normalization, (2) reduction count measurement of head symbol queries and (3) space
consumption of shared term representation in contrast to non-shared terms. For each
time measurement, five independent benchmark runs have been carried out and the me-
dian of those results is presented. The choice for presenting the median value, referred
to as mean value, instead of other parameters (i.e. arithmetic average) is that it is more
robust against statistical outliers that might occur due to different CPU load during mea-
surement. The remaining benchmarks have been run once, since reductions counts and
space consumption are measurable in a deterministic fashion without any measurement
error.

The input problems that are used to study the performance of the operations are cho-
sen from a relatively broad field of diversity: Two sets of input problems, denoted Church
I and Church II, contain arithmetic terms in polymorphic Church numerals encoding; the
set S4 contains all problems (that are, roughly, 3500 files) of the QMLTP library [RO12]
as semantically embedded HOL formulas [BR13] (with respect to S4 semantics)4; the
remaining sets are chosen from the TPTP problem library [Sut09]. Using these input
problems, a variety of term characteristics is covered. In particular, rank-2 polymorphic
terms (arithmetic operations on polymorphic Church Numerals), higher-order formulae
with numerous occurrences of λ-term applications (S4), and ”ordinary” small and large
first-order and higher-order formulas are considered. The precise sets of terms are

Church I The set of numeral terms of the form mult · (i; i), for i = 5, . . . , 100

Church II The set of numeral terms of the form power · (i; 3), for i = 10, . . . , 30

S4 The complete set of S4-embedded QMLTP formulae in THF format
SET, GRA, QUA The FOF, TFF and THF subset of the corresponding domain

The time measurements were taken on a 64-bit machine with Core i3-2120M, 4x2.5 Ghz.

In the remainder of the section the experiments and the results are described more
thoroughly.

4The S4-encoding of the QMLTP problem library can be found at
http://page.mi.fu-berlin.de/cbenzmueller/papers/THF-S4-ALL.zip
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Normalization The normalization benchmark examines the reduction counts and the
time that is required to calculate the β-normal form of each δ-expanded formula of
each input problem of the corresponding domain. For that purpose, each problem file
is parsed, transformed into the internal term representation and, finally, δ-expanded.
Subsequently, the reduction count and time measurement for normalization is taken.
Each domain is benchmarked with three different normalization strategies, one of them
being the naive strategy on standard λ-terms, denoted Naive. The other two strategies
are SpClos and SpStrict as described in Sect. 4.3. The reduction count results and the
time measurement results can be found in Table 1 and Table 2 respectively.

Naive SpClos SpStrict
Mean Min/Max Sum Mean Min/Max Sum Mean Min/Max Sum

Church I 83456 313/546848 14368968 13736 153/50408 1712528 9514 255/32650 1150800
Church II 4884 824/15244 126819 2110 560/4660 48160 1650 550/3350 36960

S4 10886 334/1672702 357470394 3997 157/315048 81319105 –5 –5 –5

GRA 96413 595/922889 22703578 6419 511/21379 864294 23351 511/350941 7964587
QUA 262 42/884 7300 139 37/424 3620 438 54/2349 13237
SET 571 1/222750 1317336 358 1/65084 788386 749 1/5345479 17782389

Table 1: Reduction count measurement of β-reductions
Naive SpClos SpStrict

Mean Min/Max Sum Mean Min/Max Sum Mean Min/Max Sum
Church I 36854 1084/247132 6167083 11383 2433/46099 1321107 2536 942/11887 330718
Church II 2712 1439/7614 71696 11144 2589/17493 219424 2560 1690/3824 55012

S4 14738 307/4724178 732305877 2359 106/403043 44276842 –5 –5 –5

GRA 336145 600/7081224 119590722 2893 263/82841 598646 7739 211/197813 2544876
QUA 5281 347/29068 142064 1748 325/5642 40199 3901 290/20185 112355
SET 693 1/465028 2125999 355 1/93775 849116 390 1/2142305 6504471

Table 2: Time measurement of β-reductions in µs

It shows that the normalization routine using explicit substitutions is dramatically
superior to naive beta normalizing in all benchmark classes. When inspecting reduction
counts, it can be seen that the mean ”performance gain” (i.e. fraction of reductions
saved) is up to 15.01 at peak (GRA) whereas the overall performance gain (the sum
of all reduction steps over the whole problem domain) is with 26.27 even higher (also
GRA). Interestingly, the reduction step performance in the benchmark ranges from rel-
atively low (SET: 1.59 mean speed-up, 1.67 overall) up to outstanding results (GRA:
15.01 mean speed-up, 26.27 overall). Another observation is that, even though the term
representation presented in this thesis performs better than the naive approach in all
reduction benchmarks, the normalization strategy SpClos (derived from the normaliza-
tion strategy stated in [ACCL90]) gives not best result in all benchmark domains: In
Church I and Church II, the strategy SpStrict performed significantly better the SpC-
los. While comparing results of both strategies in the Church problem domains, we can
observe a performance difference roughly of factor 1.3 - 1.5 (mean and overall) in favor
of SpStrict.

The time measurements confirm the theoretical reduction count analysis: We can
observe a speed-up ranging from 2.5 (SET) to 116.2 (GRA) on mean time and 1.3
(Church II) to 199.77 (GRA) at overall time measurement (cf. Table 2). The results

5The normalization strategy SpStrict performs quite poorly in the context of problem set S4, being
widely out of range to be efficient.
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of problem domains Church I and Church II clearly favor normalization strategy Sp-
Clos, although there seem to be formulas in domain Church II that require even less
normalization time in naive representation. Hence, the time measurements confirm that
the most efficient normalization strategy depends on the problem structure. A careful
analysis needs to be performed in order to identify which parameters affect the effective-
ness of a particular normalization strategy or representation.

The tables of measurement data present somehow "flattened" results, in a sense that
per-term differences in both term representation and normalization strategy cannot be
overlooked in a fine-grained manner. Figure 4.6 and Figure 4.5 show the measurement
data for each input problem of the problem domains Church I and S4 respectively.

(a) Reduction step measurement

(b) Time measurement

Figure 4.5: Normalization benchmark of domain S4
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(a) Reduction step measurement

(b) Time measurement

Figure 4.6: Normalization benchmark of domain Church I

Head symbol queries With this benchmark, the proposed improvement of head sym-
bol access due to spine representation is tested. From a theoretical point of view, this
operation should only require one step per formula – in order to estimate the impact in
realistic application scenarios, the measurements are once more employed on the prob-
lem domains stated above. To that end, the reduction counts (i.e. traversal steps) of
head symbol extraction are compared, see Table 3. As before, ”Naive” denotes a simple,
curried λ-term representation, whereas ”Spine” denotes the term representation depicted
in § 4.3.

Indeed head symbol queries require only one step. It can be seen that the overall number
of reductions is significantly lower when using spine notation (reduction factor between 2
and 3). Note that the columns of the table refer to the mean (min/max) reduction count
over all problem files, not formulas. Consequently, the mean reduction count reflects the
mean number of formulae per problem file (excluding imported files, such as axioms).
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Naive Spine
Mean Min/Max Sum Mean Min/Max Sum

Church I 3 3/3 228 1 1/1 96
Church II 3 3/3 63 1 1/1 21

S4 21 3/422 232948 8 1/191 110618
GRA 3 3/21 878 1 1/7 302
QUA 3 3/3 60 1 1/1 20
SET 3 1/246 12821 1 1/110 4434

Table 3: Reduction count measurement of head-symbol query

Term sharing The final benchmark inspects the space consumption of terms in un-
shared and shared representation. Both space consumptions are approximated by (the
sum of) the number of nodes within the graph structure of each problem term and the
directed acyclic graph containing all terms of the benchmark problem (respectively). We
claim that the number of term nodes is indeed a meaningful measure: The actual physical
space consumption is of course dependent on the runtime environment the program runs
on, but should behave linear to the number of term nodes. The notion of term sizes,
as given by Definition 4.3, mimics the node count of the term’s corresponding graph
representation are is used throughout this benchmark to measure term sizes.

Definition 4.3 (Term size)
Let t be an arbitrary term. Then, the size of t, denoted #t, is given by:

#(h · S) = 2 + #S

#(r · S) = 1 + #r + #S

#(λτ . t) = 1 + #t

#(Λ. t) = 1 + #t

Extended to spines by

#(Nil) = 1

#(t;S′) = 1 + #t+ #tail

#(τ ;S′) = 1 + #tail

where s, t, rΛτ , τ ∈ T , h and S, S′ are terms, types, heads and spines respectively. y

Subsequently, both node counts are compared for all problem files of problem sets S4,
GRA, QUA, SET. Additionally, we inspect the term DAG’s density. Density of a graph
is in general defined to be the ratio of edges in that graph compared to the maximal
number of edges. In the context of directed acyclic graphs G = (V,E), the density of G,
denoted dG, is given by dG = |E|

(|V |2 )
= 2|E|
|V |·(|V |−1) . For unshared term graphs, each node

is commonly connected to 1− 2 other term nodes with outgoing edges (e.g. abstraction
node with one outgoing edge vs. head nodes with two outgoing edges), yielding density
values less or equal than 4

|V |−1 . We compare the mean density of the term DAG to the
maximal density of an unshared term graph forest of size n, where n is the mean number
of nodes per problem. The quotient of the former and the latter value is denoted Packing
ratio and describes the factor of density increasing.
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S4 GRA QUA SET
Mean/Min/Max number of terms 52/44/236 10/10/28 24/24/25 21/10/155
Mean Avg/Max size of terms 34.89/95.5 279.6/2597 28.68/69.5 39/100
Mean/Min/Max problem size 1900/1245/39142 2796/524/6140 689/645/819 886/226/10404
Mean/Min/Max number of DAG nodes 241/147/6572 458/59/1190 96.5/86/116 123/5/1502
Mean/Best/Worst space ratio .127/.0803/.219 .174/.113/.194 .139/.133/.142 .136/.031/.166
Mean density of term DAG 0.035 0.017 0.087 0.059
Mean density of term forest [in 10−3] 2.20595 1.431127 5.81971 4.88997
Packing ratio 15.866 11.879 14.949 12.066

Table 4: Results of term sharing measurements

Table 4 displays the results of the above described measurements. It can be observed that
in all problem sets the memory consumption, even in worst case, is reduced by at least
(roughly) 80%. In problem set S4 and SET the mean memory consumption is reduced
by approximately 87% and 86%. There are also cases in which over 90% of the original
space can be saved (S4: 92%, SET: 97%). From the perspective of graph density, the
mean term DAG density exceeds the corresponding unshared term graph density roughly
by a factor of 11 to 16. A crucial consequence of higher density is that more subterm
properties can be shared between terms, such as normal form of indexing information.
Also, due to the reduced memory consumption, a number of additional pre-computed
values (e.g. heuristic weights) can be saved along with the terms.

4.6 Term Orderings

Term orderings (also called simplification orderings) provide an important technique
for proving termination properties of rewriting systems and are of particular interest
in certain proof calculi, as for instance in ordered paramodulation [NR99], for gaining
completeness. Another aspect of term orderings is that they are used to restrict the
search space and thus the number of inferences performed during refutation. In general,
this is done by performing inferences in which terms of a certain weight are rewritten to
”smaller’ terms (i.e. terms of lower weight) with respect to a term-ordering ≺.

Figure 4.7: Leo-III’s class architecture for native support of term orderings
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The current implementation of Leo-III offers native support for employment of mul-
tiple term orderings. It is important that, inside the system, access to and use of various
different orderings is offered in a well-structured way, since it might be necessary to
choose the currently used term orderings depending on the input problem. The most
popular orderings used in practice are the Knuth-Bendix Ordering (KBO), the Recursive
Path Ordering (RPO) and the Lexicographic Path Ordering (LPO).

Figure 4.7 presents a class diagram of the generic term ordering architecture.
Here, we use a modular approach and encapsulate orderings in individual objects, here

as realizations of the TermOrdering interface. Terms are marked as ordered, delegating
ordering calls to a TermOrdering object that is defined to be ”default” at a central position,
e.g. in the TermOrdering companion object.
At the current state of development, specific term orderings are not yet implemented.
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5 Term Indexing

In a large number of information processing systems pieces of information are (syntacti-
cally) manipulated, compared and created anew on the basis of a set of processing rules.
In the context of automated theorem provers, those information chunks are usually rep-
resented by some collections of first-order or higher-order terms that are created, stored
and looked up during the proof procedure. Similar information representations are used
in term rewriting, functional programming and symbolic computation systems. Whereas
the creation and plain storing of terms is, in general, not a challenging problem, the
retrieval of already stored terms that are helpful in some sense poses a crucial efficiency
requirement on the implementation of such systems [SRV01]. The judgment whether a
stored term is helpful towards a given processing goal can be formalized by a retrieval
relation called the query condition. This condition is formally defined by a relation R be-
tween each potential query result term in the term storage set I and some input element
s. It can then be used to construct the result set of terms we are interested in, i.e. the
set {t ∈ I | R(s, t)}. As the number of (intermediate) terms that are considered during
proof search can easily reach magnitudes of 105 − 106 terms, sophisticated techniques
are needed to compute the above set in reasonable time [NHRV01]. It is apparent that
a simple linear search through all terms does not scale for such large numbers. This
is underlined by the observation of a phenomenon called degradation, as described by
Larry Wos [Wos92]. Here the number of inferences in a proof procedure falls quickly as
the time progresses. This is due to the fact that in certain automated theorem proving
systems, the set of stored terms grows very quickly and thus the search for useful terms
for the given goal taken more and more time. In numbers, L. Wos observed that after
a few minutes of proving, the number of inferences drops to merely 1% of the inference
rate of the beginning of the procedure.

To overcome this degradation and generally speeding up term look-ups, a common
approach is employing an indexing data structure that stores terms in a way that certain
queries can efficiently be served. This technique is known as term indexing and closely
related to indexing from data base systems. Here, data base entries are indexed using
B-trees or hash tables in order to support fast result retrieval for queries such as ”retrieve
all data, where attribute attr equals v”.

In general, indexing a set of data (here terms) is used to allow quick access to sets
for which a certain criterion, the query condition, holds. Let I denote the indexed set
of terms, and Q the query set. The query condition can the be stated as a relation
R ⊆ I × Q. The general goal is then to find all data I ′ ⊆ I s.t. R(i, q) holds for all
i ∈ I ′ and q ∈ Q. This is also referred to perfect indexing since the result set is exact
in the sense that it contains only those terms which match the query condition, but not
more. Another common technique is considering imperfect indexing, in which a candidate
set is returned which is a under-approximation, i.e. contains terms for which the query
condition does not hold. The fact that the imperfect variant also returns false positives
is evened out by simpler retrieval and storing algorithms.

The query set Q is often considered a singleton set containing the only query term,
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for instance a term s for which all terms t are retrieved that are unifiable with s. This
can easily be generalized to a query set containing more than one element, e.g. retrieval
of all terms t in which all symbols s ∈ Q occur. The former indexing is called n : 1, the
latter n : m (cf. Figure 5.1).

Figure 5.1: n : 1 indexing (left) and n : m indexing (right)

A thorough discussion of different indexing techniques can be found in [Gra96] and [SRV01].

5.1 Indexing in Automated Theorem Proving

Although the efficiency of an automated theorem prover primarily depends on the effec-
tiveness of the implemented proof calculus together with its search heuristics, employment
of term indexing produces a reliable speed-up [Gra96].

As mentioned before, the term base that is stored during the proof procedure com-
monly contains a huge number of terms. This is not necessarily because the problem
input is that complex, but rather due to the nature of the proof process. In the context
of saturation-based theorem proving, the initial set of formulas constantly grows as the
proof procedure essentially calculates the closure of those formulas with respect to a
given set of inference rules. Also there exist simplification and redundancy elimination
rules that replace or even delete terms from the term set.

In order to identify candidate terms for which certain inference and simplification
rules are applicable, appropriate retrieval operations can be performed on the term index.
Common retrieval queries are based on unifiablity, instance and generalization check, and
subsumption. Those query conditions can be formalized by relations unif, inst, gen and
sub, respectively, given by

unif(s, t) :⇔ ∃σ : sσ = tσ

inst(s, t) :⇔ ∃σ : s = tσ

gen(s, t) :⇔ ∃σ : sσ = t

sub(c, d) :⇔ ∃σ : cσ ⊆ d, ‖c‖ ≤ ‖d‖

where σ is a substitution, s, t are terms and c, d are clauses.

Additionally to the above given relations, there exists a broad variety of advanced query
conditions for more specialized purposes. As an example, priorities can be included when
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terms that are simpler are to be preferred during retrieval, e.g. retrieval of all terms s
with

R(s, t) ∧ ∀s′.priority(s′) > priority(s)⇒ ¬R(s′, t)

where priority is defined appropriately.
Term indexing is used in all major theorem provers, such as Vampire [KV13], E [Sch02],

OTTER [McC90], LEO-II [BPTF08], and Satallax [Bro12]. As an example, Larry Wos
observed that with its use of term indexing, program degradation in OTTER could be
improved in such a way that after 19 hours of reasoning, it still runs inferences at a rate
of 460 per second (while it started with 550 inferences per second) [Wos92].

First-order ATP In first-order theorem proving, robust indexing techniques exist and
are thoroughly researched. Popular techniques include path indexing, substitution tree
indexing, context tree indexing and many others. A survey can be found in, e.g., [SRV01].

Higher-order ATP In higher-order theorem proving, there exist only a few indexing
approaches. This is due to the fact that most operations for building a term index are
undecidable, e.g., computing the most specific generalization, or higher-order unification.
For the latter case, however, there exists a decidable unification fragment, so called
higher-order pattern unification [Mil91a], but algorithms for those fragment are highly
complex and seem not to be efficient in practice [PP03].

A popular exception for indexing in the higher-order case is substitution tree indexing
based on linear higher-order patterns [Pie09]. Another approach is taken by the LEO-II
prover, where term indexing is based on rather low-level retrieval operations [TB06].

5.2 Term Indexing of Leo-III

The term index of Leo-III supports fast retrieval of terms with respect to a number of
different query conditions. All the term retrieval techniques surveyed in this section rely
on rather low-level indexing data structures, primarily on (cascaded) hash tables and
sets.

In contrast to the functional programming language setting of LEO-II, we can exploit
the object-oriented paradigm of the Scala language for assigning certain local indexing
structures to each individual term itself. Hence, data structures for indexing can be
employed as an attribute (field) of a given term object, as long as the corresponding
queries can be answered based on the sole knowledge of that particular term. Retrieval
from such an indexing structure can then be done by simple field or method access
instead of making a detour using hash tables, including the calculation of hash values.
More complex (non-local) retrieval operations are, however, implemented by dedicated
data structures (e.g. hash tables) gathered within the term index structure.

An invariant of the term index is that all stored terms are kept in βη-normal form
(here: β-normal and η-long). The reason for preferring η-long form over the correspond-
ing short variant is that it simplifies internal term handling: While in higher-order logic
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it is allowed (and often perfectly reasonable) that a function symbol is only applied to
some arguments, exhaustive η-expansion guarantees that all function symbol occurrences
are applied to their maximal number of arguments. Consequently, we don’t have to cope
with partial argument application in pattern matches and other case distinctions. An-
other benefit of considering η-expanded terms only is that, during β-renormalization, the
normalization rules (RxRMrg) and (RxRxMrg) (cf. Figure 4.4) can be omitted [CP03].
As a further example, Huet’s (pre-)unification algorithm can be greatly simplified in the
presence of η-long normal forms [Hue75].

Figure 5.2: Outline of the term insertion process into Leo-III’s term index

Figure 5.2 outlines the insertion of new (potentially non-normalized) terms to the index.
If the term to be inserted is in local representation (i.e. not included in the shared term
bank), it is first converted to shared representation. Subsequently, the input term is
βη-normalized and, finally stored in the index data structures.

As an example, insertion of the term t := ((λRτ→τ→ν . R xτ ) rτ→τ→ν) into the term
index involves calculating its βη-normal form, given by t

�

βη = (λYτ . r x Y )6; it is as-
sumed that t is already in shared representation.

As for the current state of development, indexing based on term structure and function
symbols, subterm indexing to a certain extent, and a first draft of bound variable indexing
is employed. In the remainder of this section, the term indexing techniques of Leo-III are
discussed more thoroughly.

5.2.1 Term structure indexing

Term retrieval based on structural properties of terms are strongly linked to query con-
ditions used in a relational database setting. We can, for instance, select all term ab-
stractions which introduce a function that takes a parameter of given type τ , or retrieve
all terms that are applications of a particular function fτ on some arguments.

This kind of indexing requires no introduction of further data structures, since the
implementation of the Term Bank already offers that kind of functionality. While the
term index abstracts the access to those query operations, it uses, under the hood, the
hash tables of the Term Bank.

6For reasons of legibility, the term is presented in common curried form
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Recall the following hash tables of the Term Bank (cf. §4.4)

• roots : Head→ Spine→ Λ
• termAbstractions : T → Λ→ Λ
• spines : (Λ + T )→ Spine→ Spine

Retrieving of terms by their structure is then done by simple table look-ups and intersec-
tion/union of results tables, depending on the query condition. One possible application
may be arise while (pre-)unification constraint solving, when searching for solutions of a
flex-rigid-pair [Ben99]: Here one may search, in addition to the use of general bindings,
for all known appropriate terms in the term set with a head symbol given by the top-level
symbol of the rigid side. Those terms can be found by queries to the hash table roots.

5.2.2 Symbol based indexing

A rather traditional approach to indexing is symbol based indexing [Gra96] in which the
function symbols occurring in a given term are stored in such a way that all symbols of
a given term and all terms containing a given symbol can be retrieved efficiently.

In the context of Leo-III, the fast retrieval of all function symbols of a given term is
implemented as a attribute of the term itself. This set is build inductively during term
construction and uses hash tables (for recording the number of occurrences per function
symbol). Additionally, the head symbol of a given term is stored, again, as an attribute
of the term itself; yielding

• funcsymbolst : N → N — Hash table that stores to each function symbol (first
parameter) the number of occurrences of that symbol

• headsymbolt : Head — Attribute value containing the head symbol of t

Note that symbols contained in the signature are encoded as natural numbers (cf. §6.1).
Both function symbol and head symbol indexing are actually independent of the term

index structure. For terms not contained in the index, this attributes are computed lazily,
i.e. on first access. During indexing, the calculation of both values is enforced to ensure
constant time access.

The index further supports retrieval of all terms in which a given symbol occurs. To
that end, a further hash table is introduced (where we write A∗ for collections of elements
of type A):

symbol_of : N → Λ∗ — Hash table that stores for each constant symbol all terms
in which that symbols occurs (at any position)

Hence we can effectively find all term with a given symbol using a table look-up. If we
are interested in the set of terms in which all symbols {c1, c2, . . .} occur, we can easily
retrieve the candidate sets using symbol_of and then intersect all results.

Symbol based indexing can, e.g., be used to implement an efficient term matching
pretest: A term s can only be an instance of t, if the number of function symbols of s is
greater or equal to the number of function symbols of t.
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5.2.3 Subterm indexing

Since Leo-III is outlined as a theorem prover based on (ordered) paramodulation/su-
perposition [WSB14], we also consider explicit indexing of subterms. This is due to the
fact that in paramodulation based theorem proving, we are interested in all subterms of
a given term with a certain property (e.g. being unifiable with, an instance of, or equal
to a specific term) [NR99]. Subterm positions are given in Dewey decimal notation (see,
e.g., [DJ90]), formally given by:

Definition 5.1 (Subterm Positions)
For a term s ∈ Λ the subterm of s at position p, denoted s|p, is the term t that is
achieved by traversing the term tree of s, starting from the root, as given by the position
string p. A position string p is a finite concatenation of natural numbers, indicating
which subtree is traversed at each step, where ε denotes the empty sequence. Formally,

t|ε = t

(s · S)|i.p =

{
s|p , if i = 1

S|p , if i = 2

(Λ. s)|1,p = s|p
(λτ . s)|1,p = s|p

(S1;S2; . . . ;Sn)|i,p = Si|p

y

We employ subterm indexing by means similar to coordinate indexing [Sti89] and store
for each term t, the subterm t|p occurring at position p and, for each subterm t′, in which
superterms (and positions) it occurs. Due to the perfectly shared term representation
(cf. §4.4), the indexing of subterms can be realized in a straight-forward manner. The
key observation here is, that indexing of subterms of a particular term (and its subterms)
need only to be done once, because further occurrences of a particular term are already
indexed (due to its shared representation).

The implementation is similar to that one of LEO-II’s subterm index [TB06]. One
difference is that the storage of subterm occurrences of a given term t is implemented as
property (here: as hash table) of the term itself, hence as the field

occurrencest : Λ→ Pos∗

Therefore, only a single hash table per term and only one look-up per subterm query is
required. In contrast, LEO-II uses cascaded hash tables.

Additionally, the term index contains the following hash tables for storing all terms
in which a given subterm occurs:

• occurs_in : Λ → (Λ, Pos)∗ — Hash table that stores for each argument term in
which terms (and at which position) the former term occurs as a subterm
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• occurs_at : Λ→ Pos→ Λ∗ — Hash table that stores for each argument term and
path, in which terms the former term occurs at the given position

Although the information stored by the former hash table can be reconstructed using the
latter, that information is additionally stored. This is due to performance considerations:
In order to retrieve all positions and terms in which a given term t occurs as subterm, the
result of occurs_at applied to t, a hash table itself, needs to be traversed for computing
the union of each individual result set. This takes linear time in the number of terms
in which t occurs as a subterm, whereas direct retrieval from occurs_in can be done in
effectively constant time.

5.2.4 Bound variable indexing

In order to further speed-up β-reduction, a simple indexing technique that keeps track
of bound variables within a term is employed. Each term node in the index is assigned a
scope number that represents the maximal de-Bruijn index occurring in the term, which
bind to a λ-binder outside of it (so-called loose bound variables). Hence, the scope num-
ber of a bound variable index i (i.e. the term i ·Nil) equals to −i, since its λ-binder is
located in a superterm i abstractions above it. The scope number of a constant symbol
(c ·Nil) is 0 as there exists no corresponding λ-binder to that term. The scope numbers
of the remaining term nodes are determined inductively: If terms s and ti have scope
number n and mi (respectively), then the

• term abstraction (λτ . s) has scope number n− 1,
• term application s · (t1; t2; . . . ; tn; Nil) has scope number min{n,m1, . . . ,mn},
• type abstraction (Λ. s) has scope number n, and
• type application s · (τ ; Nil) has scope number n.

Intuitively, if the scope number of a term is zero or positive then the term is closed, i.e.
contains no loose bound variables referring to a binder outside, thus does not need to
be considered during re-normalization. If the scope number is negative, then this term
needs to be traversed during re-normalization since it may contain De-Bruijn indices.

As an example, Figure 5.3 displays selected scope numbers of the term (λ.λ. f · ((1 ·
Nil); (λ. 1 ·2); (2 ·Nil); Nil)) (where types and some Nils are omitted). The idea is that
certain subtrees of the term’s syntax tree can be skipped during normalization traversing,
thereby reducing traversing and, therefore, normalization time.
The concept of scope numbers is extended to types as well. In a polymorphically typed
λ-calculus, bound variables also occur in types and might need to be substituted during
normalization. This type scope number is defined analogously to the scope number above,
yielding the term property

scopeNumbert : (N,N)

The scope number of a term t is determined inductively during term construction.
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Figure 5.3: Simplified example of scope numbers for bound variable indexing

Considering scope numbers as described above during re-normalization is an under-
approximation, as subterms may be traversed although no meaningful substitution of
bound variables occurs within it. This is due to the fact that potentially many different
bound variables can be substituted during the same term traversal, and, without inspec-
tion of the current substitution, it cannot be decided if a particular subterm traversal
can safely be skipped. This situation is also shown in Figure 5.3, where the first subtree
of the spine needs to be traversed although no meaningful substitution is carried out.

In contrast to LEO-II’s bound variable indexing, where for each λ-binder a partial
syntax tree of the original term is stored [TB06], this method seems unpractical in this
situation. This is because possibly a lot of different bound variables are substituted
during one term traversal and it is not clear how to navigate through a set of partial
syntax trees at the same time. This could, however, be addressed by investigating how
efficient partial syntax trees can be merged.

A first draft of the above surveyed bound variable indexing is currently implemented.
In order to achieve a substantial speed-up, this method has to be improved. One possible
improvement involves replacing scope numbers by a collection of all de-Bruijn indices
occurring within it. This can then be used during β-normalization for checking against
the current substitution whether traversing that term tree actually makes sense.

5.3 Summary and Preliminary Evaluation

A provisional implementation of the term index (as described in the previous section)
is currently implemented in the Leo-III project. A summary of the retrieval methods
of Leo-III’s term index is given by

Data structure 3 (Term Index) The term index data structure I has the following
operations:

• byHeadsymbolI : Head → Λ∗ — return all terms that have a given symbol (first
argument) as head symbol

• abstractionsOfTypeI : T → Λ∗ — return all terms that are abstractions with a
given abstracted type (first argument)
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• bySymbolI : Head → Λ∗ — return all terms that contain a given symbol (first
argument)

• bySubtermI : Λ → (Λ, Pos)∗ — return all terms (and positions) in which the first
argument occurs as subterm

• bySubtermAtPosI : Λ→ Pos→ Λ∗ — return all terms in which the first argument
occurs as subterm at a given position (second argument)

The remaining retrieval operations

• headsymbolT : Head — the head symbol of the term
• occurencesT : Λ→ Pos∗ — all subterm occurences inside the term
• symbolsT : Λ→ Head∗ — all symbols occuring inside the term
• scopeNumberT : N — the scope number of the term

are performed on the term data structure itself. y

At the current state of development, the term indexing of Leo-III cannot be evaluated in
a meaningful way. Firstly, the implementation of the term index needs to be thoroughly
tested for robustness. Secondly, no currently available proof procedure makes use of the
term index at this time. There are, however, certain operations for which we predict a
performance gain:

The paramodulation-based proof procedure can strongly benefit from the subterm index-
ing, since occurs checks and replacements in given terms are more efficient: An occurs
check can easily be performed on a given term t, simply by a look-up operation of the
corresponding occurrencest table, which takes constant time. The result information
contains all positions of subterm occurrences and can thus be used for replacement op-
erations. Here, branches in which the given term does not occur are skipped during
traversal.
Also, general occurs checks can efficiently be performed on non-primitive terms.

A particular interesting question is to what extent the here presented bound variable
indexing contributes for the speed-up of β-reductions. Here, intensive tests and bench-
marks need to be performed.

Another question is whether the collection data structures taken from the Scala
library are well-suited for our purposes. Depending on the kind of queries, different
advanced data structures might, in practice, perform better. This could even be the
case, if that structure’s theoretical performance is worse (i.e. worst case time complexity
for certain operations). A thorough empirical analysis is required to justify certain data
structure choices.

57



6 Further Data Structures

6 Further Data Structures

The data structures mainly focused in this thesis have been discussed in the previous sec-
tions. Nevertheless, further data structures are needed to operate an automated theorem
prover such as Leo-III. To this end, an overview of these data structures is presented in
this section, closing the survey of necessary structures.

6.1 The Signature

The management of a signature is an important component of a theorem prover. The
signature data structure stores all logical symbols (such as connectives, constant symbols
and definitions) given by the underlying logic as well as those used by the current problem.
Typically, the signature contains the fixed and defined symbols of the logic by default
and stores all processed problem-specific symbols on-demand.

Formally, a signature for a many-sorted logic is given by

Definition 6.1 (Signature)
Let L be a language, S ⊆ Σ∗ the set of symbols of L, and τ : S → T a function
assigning every language symbol to its corresponding type.
Then, the structure SL = (S, T , τ) is called Signature of L. SL may be abbreviated
by S if L is clear from the context. y

Note that a signature is also often called Σ in literature.
For a practical implementation of the signature, several additional information needs to
be stores along with the symbols. Those information data contains not only the name
(in terms of a string representation) and the type of the symbol, but also the following:

• The ”nature” of the symbol: Is it a primitive (logical) symbol that is fixed by the
logic, such as, say, ∼ (negation) or | (disjunction), or is it a defined symbol that
can be expanded to its appropriate definition, like & (conjunction) with definition
λoλo. ∼ ·(| · (∼ ·2;∼ ·1)). Further sorts include uninterpreted symbols and base
type symbols.

• The kind of the symbol, if applicable (can be used for general type constructors in
a later phase of the Leo-III project).

• Symbol properties such as commutativity or similar

• Symbol source: On which occasion was the symbol added to the signature? During
problem processing, for skolemization and by user interaction?

There are many more types of information that can be thought of as helpful for employ-
ment at different tasks apart from the actual reasoning process. That is why we assign
each symbol a generic information annotation, called Meta.
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Additionally, each symbol will be replaced by a certain key that is used to identify
that specific symbol. This is to encode it as a shorter and efficiently comparable repre-
sentation. Firstly, operations on strings are costly, so simple (syntactic) equality-checks
may slow down access to the signature. Secondly, user-defined names of constants and
functions may be very long. In order to circumvent this aspects, the signature data
structure essentially consists of two dictionaries: One for mapping the original name to
a unique, internally used key; and one for mapping those keys to their assigned Meta –
yielding the signature data structure S:

Data structure 4 (Signature) The signature data structure S is given by the pair
S = (Id→ Key,Key →M) with some key set Key, a Meta structure M, and the
following operations:

• addFixedS : Id → T → Key — adds a fixed logical symbol with given name and
type (first and second argument, respectively)

• addS : Id → T → T ∪ {⊥} → Key — adds a symbol with a given name (first
argument) and a given type (second argument) and possibly a given definition

• existsS : Id → Bool — returns whether a constant symbol with the given name
(first argument) exists

• metaS : Key ∪ Id→Meta — return according meta data structure

The structure M has at least the following operations:

• nameOfM : Id — name of the symbol
• symbolSortM : {Fixed, Uninterpreted,Defined, Type} — ”nature” of the symbol
• typeOfM : T ∪ {⊥} — the term of the symbol, if it is a constant symbol
• kindOfM : T ∪ {⊥} — the kind of the symbol, if it is a type symbol
• defOfM : Term ∪ {⊥} — return the definition of the symbol, if it exists

where ⊥ denotes an undefined value in this context. There may be more operations on
M depending on which information are saved along with a symbol. y

The signature data structure is implemented using a hash table and a integer map for
storing the name-to-key-dictionary and the key-to-meta-dictionary, respectively.

6.2 Literals and Clauses

Further important data structures include the effective representation of literals and
clauses which are intensively used and manipulated during the proof procedure. An
important aspect for both data structures is the retrieval of the ”best” literal with respect
to a given heuristic. These heuristics are in general given by a function that assigns each
clause (and literal) a weight based on certain characteristics.

Data structure 5 (Literal) The literal data structure L offers at least the following
operations:

• weightL : N — heuristic priority measure
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• polarityL : {+,−} — the literal’s polarity
• termL : Term — the underlying term
• isUnifConstraintL : Bool— returns whether the literal is a unification constraint
• isFlexFlexL : Bool — returns whether the literal is a flex-flex unif. constaint
• ... and further y

As usual, literals are assigned a polarity and an underlying term that represents the literal
itself. Structural query operations may also be included to the literal data structure, such
as operations determining whether the literal is a (flex-flex) unification constraint.

Clauses are disjunctive concatenation of literals and can be represented by sets of
literals and, consequently, also offers a weight heuristic function.

Data structure 6 (Clause) The clause data structure C offers at least the following
operations:

• weightC : N — heuristic priority measure
• idC : N — monotonously increasing identifier for clauses
• sourceC : Source — additional information about the clause’s source
• literalsC : L∗ — the set of underlying literals y

The choice of weight functions for clauses is one of the most crucial points in heuristic
search for efficient proof procedures [Sch02] and many different approaches are known. A
simple but rather effective approach counts all symbols depending on their arity, or prefers
older clauses over newer ones. The first weight function can directly be implemented
using the function symbol index of each literal’s underlying term structure, the latter is
supported by the unique clause counter idC.

During the proof procedure, not only clauses but rather sets of clauses are maintained
to store intermediate results. In order to provide quick access to ”best clauses” (with
respect to the weight function) within that set, an appropriate data structure needs to
by employed for representing those sets. Depending on the performed queries, ordered
sets can be represented using heaps or (balanced) search trees. A rather popular example
for the latter approach are splay trees [ST85].

6.3 Input preprocessing

Another important component in automated theorem proving is careful preprocesssing of
input problems. Certain transformations reduce the complexity of subsequent steps and
make the problem more probable to be solved, although the original semantics is main-
tained. Common transformations range from rather simple techniques such as simplifi-
cation and normalization (e.g. to negation normal form) to more involved ones include
miniscoping, relevance checks, redundancy detection, and equality substitution. Exten-
sive use of the preprocessing techniques need to be employed, possibly with dedicated
control mechanism that allow to enable or disable certain transformation steps.
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7 Conclusion

7 Conclusion

In this thesis, an internal term representation for polymorphically typed λ-terms based
on spine notation and explicit substitutions is given. In contrast to first-order term rep-
resentations, a naive adoption of λ-term structures for higher-order terms is problematic
and lacks support for efficient term traversal and fast β-reduction. The development of
sophisticated data structures for term representations are, together with intensive use
of indexing techniques and search heuristics, key aspects of an efficient state-of-the-art
theorem prover.

Costs for term normalization are one important aspect that are tackled in this thesis
with the employment of explicit substitutions. The fine-grained control over normaliza-
tion routines and the combination of substitution runs are a major benefit of introducing
substitutions as part of the term language, rather than on a meta-level.

On the other hand, term traversal is the most crucial bottleneck of nearly all terms
operations that are performed during the proof procedure (such as unification steps,
equality checks, head symbol queries) and must therefore be carried out efficiently. An
adaption of the spine notation to a polymorphically typed language is used to allow
efficient left-to-right traversal of term graph structures. In particular, this representation
guarantees constant time access to a term’s head symbol.

Both of the above techniques are merged with perfect sharing, yielding the prelim-
inary term data structure for the Leo-III prover. The evaluation measurements are
promising, as a substantial number of reduction steps are saved during common oper-
ations such as β-normalization, and head symbol queries. Simultaneously, the memory
consumption of terms is reduced by roughly 90%. Additionally, properties of subterms
are shared between all occurrences and, hence, only need to be computed once. The
use of de-Bruijn indices further simplifies internal term operations and allows, in combi-
nation with perfect sharing, constant time equality checks of terms by a simple pointer
comparison.

Subsequently, another important data structure, the term index, was discussed and pre-
sented. The term index of Leo-III supports fast retrieval of terms with respect to a
number of different query conditions. All the term retrieval techniques rely on rather
low-level indexing data structures, primarily on (cascaded) hash tables and sets. Impor-
tant features are indexing of function symbols and subterm occurrences. The indexing
of bound variables within a term can be used to speed up β-normalization, but intensive
improvements need to be done at this point in order to achieve substantial advantages.

Further important data structures for automated theorem proving are briefly discussed
in the last part of this thesis. It is pointed out that effective search heuristics, e.g. for
clause selection, are crucial.

At the current state of development, preliminary implementations of the described data
structures (except for clauses and literals) are given in the Scala language.
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7.1 Related Work

There are only a few systems with built-in support for polymorphism as presented in
this thesis. Popular exceptions are Coq [Pau11] and the TWELF system [PS99] (based
on Conquand’s calculus of constructions) and Isabelle [NWP02] which offers a rich type
system including polymorphism and type classes.

Term representations are intensively studied for the first-order case: Flatterms [Chr93]
are linear term representations similar to singly linked lists that allow efficient left-to-right
(preorder) traversal. They include pointer to next subterms for fast subterm skipping.
However, this representation does not allow sharing of identical subterms.

Prolog terms [DEDC96] follow a similar approach as in spine notation. They are an
optimized version of conventional term graphs, where function nodes are of variable size
and store all pointers to child terms (arguments). A particular interesting choice is the
notion of variable nodes, which are essentially a pointer to themselves. This construction
allows constant time variable instantiation by resetting the pointer to the intended term
node. This is, however, a destructive term manipulation.

Early systems that employed a higher-order term representation were Elf [Pfe94] and
λProlog [Mil91b]. In contrast to the data structures discussed in this thesis, they chose a
term representation that reflects the theoretical term definition, including the discussed
disadvantages.

Spine representation is used in major systems, such as the reimplementation of Elf,
the TWELF system, or LLF [CP02]. Also, the teyjus implementation of λProlog uses a
spine calculus [Nad01]. TWELF also employs explicit substitutions based on λσ, but
for the case of dependent types.

Since the original publication of explicit substitutions of λσ, a large number of alter-
native systems have emerged, with rather different theoretical properties (e.g. confluence
and strong normalization). A notable system for explicit substitutions is the Suspension
Calculus [Nad96], which also supports fusion of substitutions. It is used as a basis for
an implementation of λProlog and evaluated in the context of different normalization
strategies in [LNQ04].

Perfect shared terms are a commonly used representation technique. They are em-
ployed in, e.g., LEO-II [TB06, BPTF08] or E [Sch02]. The latter system also allows
sharing of rewritings.

Higher-order term indexing techniques are scarce, only a few approaches exist. A popular
exception the indexing of terms using substitution trees with respect to linear higher-
order patterns [Pie09]. In this thesis, we follow the indexing approach of LEO-II [TB06],
where rather low-level techniques are employed. First-order term indexing techniques
are well-researched and can be found in various survey papers [SRV01, Gra96].
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7 Conclusion

7.2 Further Work

Efficient term indexing data structures for higher-order terms need to be researched
intensively. The bound variable indexing is of particular interest for speeding up β-
normalization routines. The current implementation of bound variable indexing only
indicates whether some de-Bruijn index exists in a term that binds to a λ outside. As
a consequence, term traversal during normalization will consider subterms that are not
relevant for the current substitution run. As a optimization, bound variable indexing
might exploit the explicit substitution’s structure to decide whether a subterm needs to
be traversed. One possible step is storing a list of all loose de-Bruijn indices with the
term node and check if any meaningful substitutions will be carried out for each de-Bruijn
index (i.e. a replacement different from σ(i) = i).

The memory consumption and maintenance costs of the subterm index need to be
evaluated compared to its actual advantages for the proof procedure. A possible param-
eter might be the size of the subterms to be indexed.

The evaluation of normalization strategies showed that there exists no most efficient
strategy for all problems. The efficiency of a strategy rather depends on some charac-
teristics of the input problem. This observation has to be thoroughly investigated, since
there might be heuristics that can approximate which normalization strategy is the most
efficient one in the current context.

As a next step, further data structures, e.g. for clauses and literals, have to be imple-
mented. Together with a (maybe simplistic) proof calculus, first significant benchmark
results could be achieved. Additionally, the currently implemented data structures need
to be analyzed: Most data structures are implemented using high-level algebraic data
types (case classes of Scala). However, some underlying data structures could be ex-
changed by more involved implementations that give better worst-time complexity for
certain operations, e.g. random access on substitutions rather than linear traversal.
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