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Abstract

Autonomous vehicles of the future need maps with much more information than provided by
the existing street maps. State of the art navigation systems already have digital maps, but
they lack in detail, accuracy and assume a �at world. Based on the existing two dimensional
map format RNDFGraph our autonomous car "Made In Germany" has been using, this
thesis shows the development process and application of a more detailed format covering
the third dimension, the Advanced Road Network De�nition Graph (ARNDGraph). Over
300 km of Berlin's road network were mapped and autonomously travelled. The experiments
include runtime and �le size comparisons between the RNDFGraph and the ARNDGraph.
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CHAPTER 1

Introduction

The �rst paved roads were built in ancient Egypt approximately 4600 years ago [1]. They
were needed to transport the massive stone slabs from the quarries to the building sites of
the pyramids. Even though technology has advanced and our roads now are now built with
much more sophistication, they still serve the same purpose of making transportation more
e�cient. It is no surprise, the �rst known road map was also drawn in ancient Egypt: The
Turin Papyrus Map dates back to 1180 BC. It depicts the location of stone quarries, a gold
mine and a settlement. Annotations about these places and the distances between them are
also included. [2]

Egyptian hand drawn maps linked art, science and craftsmanship into the practice of car-
tography. Whoever had the most accurate maps outclassed their competition by being able
to pinpoint their location and �nd the quickest and/or safest route between two locations.

Today, the most commonly used maps are road maps. But roads are not used to push stone
slabs to the tombs of a ruling class. Roads are used for everyone's bene�t. Individual and
public transportation was jump started by the invention of the �rst mass produced car in
1908.

Cars have not changed much since their invention. Yes, they became faster, bigger and
heavier, but they still need to be operated by a human being. The Vienna Convention on
Road Tra�c in 1968 states:

1. Every moving vehicle or combination of vehicles shall have a driver.
...
5. Every driver shall at all times be able to control his vehicle ...
[3]

Cars will not change from being driven by a human to being driven by a computer from one
day to the other. These changes will be subtle, however, they have already begun. In the
past, pressing the brake pedal in a car meant transferring the physical force to the brake
shoes. In today's cars, a myriad of computer systems like Antiblock Braking System (ABS),
Electronic Brakeforce Distribution (EBD) or Electronic Stability Control (ESC) manage
the physical force. The interface (brake pedal) stayed the same, but the actual movement
of the brake shoes changed to computer control. More advanced drive assistance systems
like Adaptive Cruise Control (ACC) regulate the car's speed by regulating gas and brake.
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Automatic car parking systems control the steering wheel, while the driver is only operating
gas and brake. All the car's actuators (steering wheel, throttle and brake) are already
controlled by computers. Most driving decisions are made by the driver.

It will take years before autonomous vehicles are allowed to operate on a public road without
human supervision; this is recently a topic of much discussion. A proposed amendment to
the Vienna Convention on Road Tra�c is on its way, stating that driver assistance systems
may control the vehicle as long as the driver is able to intervene at any time.

Transportation dictates the design of the modern city and autonomous vehicles will change
this design. These new cars will still need roads, but will not need parking spaces close to
where we want to go. An autonomous vehicle can drop us o� at our destination and then �nd
a parking space by itself, or use the time when we don't need it to refuel, clean or transport
somebody else. Self driving cars will have a massive impact on transportation in the future
and therefore will also change the design of the modern city. But even autonomous vehicles
will need maps.

1.1 Motivation

Maps are still used for two main purposes, localization and navigation. Localization helps to
situate ourselves by comparing the landmarks seen around us with the landmarks given on
the map. Navigation guides us from one location to another in an unfamiliar environment.

The map format I am presenting will cover both aspects. Because this map is primarily
read by autonomous robots it needs to be digital. A graphical representation is not needed
for the robot, however, to �nd errors quickly and to edit the map by humans a graphical
representation together with a graphical interface for editing will be introduced.

1.1.1 Localization

Localization is the process of comparing the landmarks or features you see with the land-
marks or features drawn on the map. The more precisely you can detect these landmarks
the more precisely you can tell where your position on the map is.

Usually landmarks used in maps are immovable objects like mountains, towers, etc.. A
compass orients us towards particular landmarks. This procedure is tedious and prone to
errors.

The Global Positions System (GPS) revolutionized the process of localization. Instead of
comparing the surrounding with the map, the GPS gives absolute coordinates in the World
Geodic System 1984 (WGS84), which can be translated into a location on the map. However
the mean error of the GPS position is more than ten meters. The position is calculated
by measuring the travelling time of the signals from satellites to the GPS receiver. The
travelling time is in�uenced mainly by atmospheric e�ects including weather. This in�uence
can be measured and minimized by using the Di�erential Global Position System (DGPS)
which works by having �xed locations and known positions. By calculating the delta of the
GPS signal and the known position, atmospheric errors can be measured and transmitted
to any other GPS receiver in the same area. Which in return use this measured error for a
more precise position estimate.
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Another challenge, especially in urban environments, is called the multipath problem. Some-
times there is no direct line of sight to a satellite and the signal is re�ected by high-rise
buildings, resulting in a signal with longer travelling time. GPS is a very easy way to get a
rough estimate of your position, but the position can vary greatly in accuracy. Sometimes,
for example in tunnels, no GPS signal can be received at all and other means of localization
are necessary.

Odometry is another way of tracking the car's position, but because of wheel slip and wheel
spin it is not very precise. Inertia Navigation Systems (INS) or Inertia Measurement Unit
(IMU) also work very well for a short time, but they su�er the same problem as odometry.
Since the current position is derived from previous positions, and the error is cumulative,
accuracy worsens signi�cantly over time. Because road markings are immovable and can
be tracked very precisely with cameras[4] or lidar sensors[5], they are almost perfect to be
used as landmarks in a map. The only issue is they are not very distinguishable from each
other and a global localization would give ambiguous results. By combining the best GPS
positions with odometry, inertia systems and the tracking of lane markings a localization in
the map within centimetres at any time can be done.

1.1.2 Navigation

Navigating a vehicle through today's tra�c is a very complicated task and starts before the
car even begins to move. It starts by planning a path from point A to point B through a
network of streets. This must also be done without breaking tra�c laws such as, travel on
one way streets, making turns where allowed and not crossing unbroken lane markings.

To plan an optimal path, whether it be the shortest or the quickest path, a map of the street
network is needed.

Usually the task of navigation starts when we decide which route to take to get from our
starting point to our destination. A route consists of a sequence of roads, including left,
right and maybe even u-turns. Planning a route more precisely, it includes which lane to
take, and whether it is unusual to make a right turn from the left most lane on a multi
lane road. Human drivers plan ahead. If we know a right turn needs to be made we make
sure we are already in the right most lane way before we reach the intersection. For bigger
and more complicated intersections we might have multiple lanes for left or right turns. An
anticipating driver will choose the lane depending on which lane he has to be in after the
turn. The task of navigation includes not only the choice of which road to take, but also
which lane to drive in.

Another reason a map is needed a priori is that we normally drive faster than our breaking
distance permits. The way streets are built we are already driving so fast where we have to
assume the road is going to continue behind the corner because we will not be able to stop
otherwise. Also in dense urban tra�c other vehicles may block your line of sight to the lane
markings. This part of the map is not needed before we start to drive, but it is needed once
we start moving and following the road.

The information about how the street is shaped is used for multiple purposes. It is used
to improve the localization of a vehicle and is also needed to drive high speed. As the car
increases speed it needs to look ahead further and needs to know the curvature of the road
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before it is in the corner. For comfortable driving the preferred speed in a curve is calculated
by estimating the centrifugal acceleration. For safety the car should enter the curve with the
maximum speed the car should have inside the curve. So the curvature of the road should
be known to the car before it enters the curve. Sensors often can not detect the road ahead
far enough. Therefore an accurate map is needed.

1.1.3 Project Requirements

For testing purposes, especially the behaviour module or the controller, we needed to be
able to drive in a controlled environment. Luckily Berlin has an abandoned airport in the
city center, the Tempelhof Airport. Pre World War II it was one of Europe's iconic airports.
During the Berlin Blockade in 1948/1949 it was part of the Berlin Airlift which fed two
million Berliners for almost a year. In 2008 the airport was closed and most of the area is
now a public park. It hosts trade shows, music festivals or in our case proved to be a perfect
testing ground for our autonomous vehicles. Virtual maps of arti�cial road networks were
created for Tempelhof airport test manoeuvres or scenarios in early stages of development.
Though these maps were very small, they still allowed us to test multiple crossings, right
of way behaviour, tra�c lights and blocked roads. In preparation to drive on the German
autobahn these maps included long straights, long curves and several adjacent lanes for
driving up to 120 km/h, doing lane changes and overtaking slower vehicles.

Some requirements resulted not only from the technical needs but also from the perspective of
software development. With more than 20 active developers and only one car, not everyone
could test his part of the software in the car. Also testing with the actual car was very
time consuming. Having a simulator sped up software development immensely. One of the
general requirements of the project was to have a simulator and a simulator would not have
been of much use without a map.

As any other map the digital map should represent the real world only as detailed as needed.
If it is too detailed, the creation of these maps would consume more time than they should.
Also the application programming interface should not be overly complicated which will
not only waste time in developing itself but also everyone's time who will have to use the
module. Especially if the module is used by many other developers. With these decisions
in mind, we decided on a two dimensional map.

Our car detected obstacles using fusioned lidar and radar sensors[6] and a stereo camera
system. To avoid collisions with obstacles on the road the robot either matched the speed
accordingly or even stopped in front the obstacle.

While driving autonomously in Berlin on a two dimensional map situations were encountered
which could not be handled by the �at road representation. The �rst one we encountered
on the autobahn. The highway has a small slope upwards a hill. Behind the hill was a sign
mounted above the autobahn and spanning across its whole width. As the car drove up the
slope at a certain point it aligned itself with the sign. From the point of view of the car the
sign was recognized as static obstacle in the middle of the autobahn and the car started to
slow down. Continuing on the slope a couple of meters later, as the car pitched down the
sign above the autobahn and was no longer classi�ed as an obstacle.

This was only one part of the problem. The other one was the car could not "see" what was
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behind the hill. Having a three dimensional map will not help the car to see through hills,
but at least the car would know it cannot see that part of the road and drive appropriately,
for example by not doing overtaking manoeuvres.

With the help of three dimensional maps these problems could be solved.

Looking at 2.6 closely an autobahn underpass was modelled. Because the map has no height
information it is impossible for the car at the crossing to tell if it positioned on top of the
autobahn or if it is inside the underpass. With the RNDFGraph this was handled by also
taking the cars orientation into account. This solution is far from elegant and only works if
roads don't have the same orientation. In other cases like a multilevel highway or a parking
garage it is still ambiguous on which level the car actually is.

1.2 Contribution

Based on the existing two dimensional map format for the autonomous vehicles Spirit of
Berlin (SpoB), Made in Germany (MiG) and e-Instein I will present a new three dimensional
map format. It can be used to model urban street networks and highways speci�cally for
autonomous vehicles. By using splines to interpolate the road, the map will have a small
�le size while still being more accurate than commercial navigation systems for cars.

The three dimensional map will aid:

• the robot in deciding which sensor can "see" which parts of the road more precisely

• estimating the cars stopping distance, this can be done more accurately since going
uphill or downhill is a very big factor

• the vehicles driving on multistory highways or in multistory parking structures

• in a more energy e�cient driving

Additionally already existing two dimensional maps will be converted to the new format
and the graphical editor will be changed so not only the lateral and longitudinal positioning
can be modi�ed but also vertical positioning.





CHAPTER 2

Preliminaries and Related Work

The following chapter will explain the context that the three dimensional map format was
developed and tested in.

2.1 The Autonomos Project

At the Freie Universität Berlin Raul Rojas has been building autonmous robots since 1998.
After many successful participations in the RoboCup, winning the World Championship
twice and the European Championship �ve times, it was decided to expand. In 2006 the
decision was made to participate in the Grand Urban Challenge. A retro�tted drive-by-wire
dodge caravan was bought, already modi�ed so a disabled person could operate it using
only a joystick and a touch pad. With only a small budget and 6 months of development
time, the car named "Spirit of Berlin" (or short SpoB) made it into the semi �nals of a
competition held by the Defense Advanced Research Agency (DARPA).

After returning to Germany, additional funding was granted by the Federal Ministry of
Education and Research (BMBF) and the Autonomos Labs were born.

So far the project has worked on three di�erent cars:

Spirit Of Berlin (SpoB)

The �rst car in which the autonomous team participated at Grand Urban Challenge in 2007.
Even though the car still exists it has been stripped of most of its sensors.

Made in Germany (MiG)

The most expensive car was called "Made in Germany" or MiG. It was a Volkswagen Passat
Variant 1,8l TSI 2010 Model , a 6th Generation Passat, modi�ed by the Volkswagen AG to
our speci�cations. The sensor setup was very extensive and included 7 radars on various
frequencies (26-77 GHz) and pointed every direction. 6 Ibeo Lux laser scanners were incor-
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Figure 2.1: The Autonomos Labs Car Family; from left to right: Spirit of Berlin, e-Instein and Made
in Germany

porated into the body of the car. A Velodyne 64 HDL-E was mounted on the roof. Two
guppy color cameras were used for tra�c light detection and a black and white high dynamic
range stereo camera system was used for lane and obstacle detection. A �fth camera was
used for a secondary lane detection system. An Applanix POS LV consisting of an IMU,
Distance Measurement Unit / Odometry (DMU) and a DGPS was also used.

e-Instein

The latest member of the autonomous car family was not only fully electric, but it also
featured fewer, less expensive sensors to reduce costs. The e-Instein was a Mitsubishi iMiev
and due to its zero emissions and small size it can be driven indoors. The sensor setup was
much slimmer compared to MiG. It only had one Ibeo Lux lidar, one radar facing forward,
a stereo camera system facing forward and a Velodyne HDL 32 on top. An Applanix POS
LV is used for GPS localization and as an inertial measurement unit. The main focus of this
vehicle was to reduce the number of sensors needed for safe autonomous driving in di�erent
situations including indoor.

2.2 Software Framework

Most of the software was written in C and C++. The open source software frame work
Open Robot Control System (OROCOS) was used throughout the project. Components
were developed in conjunction with the Real-time Toolkit (RTT). Multiple components
to receive data, process data and manipulate data including data fusion between di�erent
sensors, were chained together. In this chain of data handling, display modules were also
added to show the raw or processed data and to debug the process at di�erent stages.
These display modules used the Open Scene Graph (OSG) to show various data in the same
three dimensional environment. For the map almost no data needed to be processed; a
simple singleton gave other modules access to the map and no complex processing chain
was needed. The map only used OSG to display the road and additional map data in the
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same environment the sensor data was displayed. The map modules itself used the BOOST
Library, especially the BOOST Graph Library (BGL) and the Boost Serialization.

2.3 Other Map Formats

Simple occupancy grids and landmark maps as used in Simultaneous Localization and Map-
ping (SLAM) approaches[7] only contain geometric information. While geometric informa-
tion was needed, topological information was also needed. Information like which lanes are
connected to each other, special purpose lanes, if lane changes are allowed, relations between
tra�c lights and lanes, speed limits, tra�c signs and so on are required to obey tra�c rules.

Open Street Map (OSM), on the other hand, provides mostly topological information with
too limited geometric information and accuracy.

Proprietary formats used by TomTom, Navigon and other car navigation devices are not
openly documented and therefore could not be used.

The only open and freely available format was OpenDrive [8]. OpenDrive is developed by
the VIRES Simulationstechnologie GmbH in cooperation with Daimler Driving Simulator.
Their scope is to describe road-network for the use in a simulator. Which was one of our
requirements, but even more important was the ability to model real road networks. Lanes
can be marked as being in a tunnel or on a bridge. The format also supports tilting and
even cross fall of roads, but no real up and down. Thus over- and underpasses cannot be
built.

Recently Bender et al. presented lanelets[9] as a map format for autonomous vehicles, which
looks very promising. Their approach shows some similarities to our two dimensional map
format, as in separating geometrical and topological information.

2.4 RNDF

The Route Network De�nition File (RNDF) format was developed for the Grand Urban
Challenge held in 2007. RNDF is a successor to the Route De�nition Data File (RDDF)
which was used in both of the earlier Grand Challenges 2005 and 2006. Both formats
share the same concept: use latitude and longitude to describe way points. A sequence
of those way points, with the addition of a width, marks a travel corridor in RDDF or a
road in RNDF. The exact shape of the corridor or the road is not de�ned. The RNDF
Documentation explicitly states:

"For some road segments, the RNDF will specify sparsely placed way points.
Within these segments, the implied vehicle behavior requirement is to use road-
following techniques to stay in the appropriate travel lane, �nding the drivable
path to the next checkpoint." [10]

It is notable that every participating team in the Grand Urban Challenge 2007 was given
the RNDF �le and a satellite picture before challenge, and every team had the opportunity
the make changes to the �le.

"The editing required 3 h of a person's time. In an initial phase, way points
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were shifted manually, and roughly 400 new way points were added manually to
the 629 lane way points in the RNDF." [11]

Therefore every team was able to modify the given RNDF to their interpretation of the
RNDF format.

Figure 2.2: Interpretation of an intersection in the RNDF format. Letters mark vertices, gray arrows
mark edges in a sequence of way points and black arrows mark connecting edges. The
vertex labelled D has a stop sign. Picture taken from the RNDF documentation.

2.5 RNDFGraph

The RNDFGraph is an object graph model based on the RNDF format. It has been im-
plemented using the BGL. While it's origins are the RNDF format minor parts have been
changed and additional information was added.

Like with RNDF, a sequence of way points mark a road lane. We start o� with a simple,
directed, weighted graph. Each vertex of that graph corresponds to a way point in the
sequence. Each vertex is connected to its successor by a directed edge. The edge weight is
set to the distance between the way points.

Intersections are modelled with exit and entry way points. Any way point can be marked as
an exit way point with another way point being an entry way point. These two way points
are also connected with an edge in the graph. The edge is called a connecting edge and will
be discussed later.
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2.5.1 Improvements to RNDF

RNDF was created speci�cally for the Grand Urban Challenge as a route format which
represents an arti�cial urban route network. In this arti�cial urban route network, the
robots had to navigate from one checkpoint to the next. While the RNDF was never
intended to be used to model real world road networks it was decided to use the already
implemented format and to extend the format where needed. This was primarily done in
my already published work in 2011 [12]. The major improvements were:

1. Only stop signs were de�ned, missing any other signs and tra�c lights.

2. Roads were modelled as a sequence of way points with no interpolation of points in
between.

3. Segments had no real use except for holding lanes together and de�ning speed limits.

4. Lanes could only be connected by connecting edges which did not have any properties.

5. Lanes always had a constant width.

6. Lanes were not further categorized, e.g. turning lane, parking lane, highway entry and
exit.

7. Lanes had no association with their neighbouring lanes; every lane had its own se-
quence of way points.

8. Left and right lane boundaries could only be double yellow, solid yellow, solid white
or broken white.

9. It was very di�cult to model tra�c islands or roundabouts.

10. The RNDF is two-dimensional and did not support bridges, tunnels or overpasses.

[12]

All of these points have been covered in "Optimized Route Network Graph as Map Reference
for Autonomous Cars Operating on German Autobahn" except 9. and 10. This thesis will
especially cover 10.

2.5.2 Splines

The most simple solution would be to sample the road every 10 centimetres and save these
points. This would lead to accurate maps, but also a lot of data would have to be stored. In
RNDFGraph the course of the road is mimicked with spline interpolation. By using splines,
only the support points for the spline need to be stored, and every point between the support
points can be interpolated. The challenge, however, is to place the support points in such a
way, so the resulting spline interpolation matches the course of the road. Support points are
also the link to the graph. Every vertex in the graph is also a support point for the spline.
For further reference a spline in the RNDFGraph context is called the laneSpline.

Splines were originally thin wooden strips held in place by lead weights at support points.
That way the wooden strips provided an interpolation for the points in between. They where
mostly used in construction of boat hulls and air planes. With the invention of computers,
splines became known as piecewise polynomial functions. While linear spline interpolations
change their gradient at support points, quadratic and cubic spline interpolations o�er
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smoother changes in curvature. Bezier splines need a high degree polynomial to �t a complex
curve. To �nd a �tting high degree polynomial linear equation systems need to be solved
which leads to a higher computational e�ort.

Akima Spline Interpolation

Though a number of spline interpolations were available, for RNDFGraph, the Akima Spline
Interpolation[13] was chosen due to some unique features.

The Akima Spline Interpolation produces curves which are close to manually drawn, con-
tinuously derivable curves. The �rst derivative can be interpreted as the direction of the
road.

The Akima Spline Interpolation de�nes a cubic polynomial between every support point.

Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3, x ∈ [xi, xi+1] (2.1)

Further the slope t is de�ned for a support point with the slope between the previous two
and next two support points.

ti =
|mi+1 −mi|mi−1 + |mi−1 −mi−2|mi

|mi+1 −mi|+ |mi−1 −mi−2|
(2.2)

Therefore the slope at any support point can be calculated. To interpolate the polynomial
for every x ∈ [xi, xi+1] the coe�cients ai, bi, ci, di need to be determined.

ai is straight forward by evaluating Si for xi:

Si(xi) = ai + bi(xi − xi) + ci(xi − xi)
2 + di(xi − xi)

3 = ai = yi (2.3)

bi can be found by evaluating the derivative of Si for xi and 2.2 .

S′i(xi) = bi + 2ci(xi − xi) + 3di(xi − xi)
2 = bi = ti (2.4)

ci and di are a bit more complicated. Two more equations are needed. Si for xi+1

Si(xi+1) = ai + bi(xi+1 − xi) + ci(xi+1 − xi)
2 + di(xi+1 − xi)

3 = yi+1 (2.5)

and the de�nition of a slope

mi =
yi+1 − yi
xi+1 − xi

(2.6)

combining them results in

mi =
ai + bi(xi+1 − xi) + ci(xi+1 − xi)

2 + di(xi+1 − xi)
3 − yi

xi+1 − xi
(2.7)

since ai = yi and bi = ti

mi =
ti(xi+1 − xi) + ci(xi+1 − xi)

2 + di(xi+1 − xi)
3

xi+1 − xi
(2.8)

mi = ti + ci(xi+1 − xi) + di(xi+1 − xi)
2 (2.9)
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so
ci(xi+1 − xi) = mi − ti − di(xi+1 − xi)

2 (2.10)

and
di(xi+1 − xi)

2 = mi − ti − ci(xi+1 − xi) (2.11)

Taking a closer look at the derivative of Si(xi+1):

S′i(xi+1) = bi + 2ci(xi+1 − xi) + 3di(xi+1 − xi)
2 = ti+1 (2.12)

again bi = ti
2ci(xi+1 − xi) + 3di(xi+1 − xi)

2 = ti+1 − ti (2.13)

in combination with 2.11 gives:

2ci(xi+1 − xi) + 3(mi − ti − ci(xi+1 − xi)) = ti+1 − ti (2.14)

⇔ ci =
3mi − 2ti − ti+1

(xi+1 − xi)
(2.15)

combining 2.13 and 2.10

2(mi − ti − di(xi+1 − xi)
2) + 3di(xi+1 − xi)

2 = ti+1 − ti (2.16)

⇔ di =
−2mi + ti + ti+1

(xi+1 − xi)2
(2.17)

In conclusion ai, bi, ci and di can be calculated by knowing the gradients ti, ti+1 and xi,
xi+1,mi. Replacing ti and ti+1 with 2.2 and mi with 2.6 all the coe�cients of Si can be
calculated with the values of xi−2, .., xi+3 and yi−2, .., yi+3.

The Param

Usually a spline S(x) = y is de�ned with x ∈ X being along the x-axis and y ∈ Y being
along the y-axis in a coordinate system. With the RNDFGraph, this is not to be confused
with the coordinate system the map is using.

To avoid confusion the x component it called param. The param is used to address any
point on the spline. It is de�ned as the sum of all euclidean distances along the sequence
of support points. The param at the �rst support point x0 is 0. The param at the second
support point x1 is the euclidean distance to the �rst. The param of the third support point
x2 is the euclidean distance from the �rst to the second plus the distance from the second
to the third.

The param can be described recursively:

param(x0) = 0

param(xn) = param(xn − 1) + ||S(xn), S(xn−1)||

Y is the maps coordinate system and every y ∈ Y can be transformed to a WGS84 coordinate
used by the GPS and vice versa. So every y is actually a tupel (a, b) marking a point in the
graphs coordinate system.
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2.5.3 Meta Information

To follow the tra�c rules additional information is needed. This meta information is added
to the VertexData and EdgeData objects. Each vertex and each edge has a corresponding
data object.

Information added to edges is street type, such as highway, acceleration lane, deceleration
lane, round about or street. Speed limits were added to edges. Type of the lane boundary
is also noted (e.g. double yellow, broken yellow, broken white, solid white, solid yellow).

A vertex can be marked as a tra�c light, stop sign or right of way sign. The lane width can
also be set for every vertex. With the RNDF format it was only possible to set the road
width for the whole lane, by moving this information from the lane context into the vertex
context it is now possible to change the lane width at every vertex.

The most common use case for the autonomous car is to �nd the closest lane to the cars
current position. Just searching for the closest support point does not give accurate results.
The problem is two fold; �rst the closest spline needs to be found and then the closest point
on the spline needs to be determined. To �nd the closest spline e�ciently, a bounding box for
each polynomial is calculated and stored in a spatial k-d tree. This data structure allows us
to �nd the closest polynomial in logarithmic time depending on the number of support points
in our map. Using Brent's Method the closest point on the spline is found. Brent's Method
combines inverse quadratic interpolation, the secant method and the bisection method to
�nd zero of a function [14]. In our case it is used to �nd the closest point on a spline
with a given minimum accuracy and since the autonomous car subsequently searches for a
point close to the last point the earlier found index is stored. The next search on the same
polynomial will start from the stored index.

In the RNDFGraph a voting system is implemented. Each edge votes their likelihood of
being the neighbour edge of every other edge.

So far there is no connection between neighbouring lanes in the graph. If two edges are
adjacent to each other and lane boundaries stored in the EdgeData indicate lane changes
are allowed, so called lane changing edges are inserted at the beginning and at the end of
these edges, connecting each other. The weight of lane changing edges is considerably higher
than the weight of normal edges to avoid unnecessary lane changes.

2.5.4 Creation of RNDFGraph Maps

The RNDFGraphEditor is a graphical interface to create RNDFGraphs from scratch or to
edit existing maps.

Like other display modules in the autonomous project the, RNDFGraphEditor is imple-
mented using the OSG Library. All the sensor data can be displayed while editing the map.
Also the same display module used to display the RNDFGraph while driving is used in the
RNDFGraphEditor.

The process to create a new map from scratch is as follows:

1. Drive the to be mapped road manually while logging with at least one camera, the
applanix, the velodyne, and at least one lane detection system.
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2. With the RNDFGraphEditor it is possible to play and seek in the log �le and visualize
all acquired sensor data.

3. It is also possible to add Google Maps or OSM as an underlying texture.

4. By combining Google Maps, the lane detection system and the velodyne data, it is
very simple to draw lanes.

5. The images from the cameras make is possible to watch for tra�c signs and set speed
limits.

2.6 Existing RNDFGraph Maps

In the past over 60 maps have been created using the RNDFGraph. In the following text a
few examples are given. The maps can be divided into ones used for testing certain modules
or features on private areas or in the simulator and therefore are arti�cial and those ones
which model real road networks.

Figure 2.3: THF Presentation ; this map is used to test the car in di�erent urban tra�c scenarios.
Tra�c lights, other cars and cyclists, pedestrians, handling of construction sites and "left
before right" was tested with this map before taking the car into real tra�c.
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Figure 2.4: THF Slalom ; this was speci�cally designed to test the lateral and longitudinal controller
at high speed ( 70 - 120 km/h). While we were not allowed to drive above 100 km/h
in public tra�c we wanted to make sure the controllers have enough leeway. Its main
features were a long left curve, a long right curve and a tight bend at the end where the
vehicle had to slow down to make the corner.
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Figure 2.5: THF Speedway ; is used to test the behavior module in more complex highway situations.
It features two parallel lanes, an acceleration lane and a deceleration lane. The two
parallel lanes are used to test lane changes at high speeds (70 km/h - 120 km/h). In the
acceleration lane, the car has to match the speed of the moving tra�c on the autobahn
before merging.
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Figure 2.6: AVUS ; The AVUS in the south western part of Berlin is the oldest highway in Europe.
While being a public highway, until 1998 it was also used as a racetrack. It connects
the ICC and the Messe Berlin fairgrounds to the German autobahn network. Needless
to say it is one of the busiest highways in Germany. It's close proximity the the Freie
Universität Berlin makes it the perfect testing grounds for our autonomous cars.
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Figure 2.7: Dahlem ; The Dahlem map represents the area close to the Computing Studies Faculty
featuring mostly small streets with and without tra�c lights and sometimes cobble stone
roads with no lane markings.
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Figure 2.8: Kaiserdamm ; This map shows the road network from the ICC to the Brandenburg Gate
and back. It includes two big roundabouts "Ernst Reuter Platz" and "Siegesäule" and
more than 50 tra�c lights. The challenge on this road is detecting all tra�c lights, even
the ones inside the roundabouts which are located at unusual angles and making two
lane changes in very busy inner city tra�c. This challenge was handled and successfully
demonstrated at the Autonomous Press Conference in 2011[15].



CHAPTER 3

Advanced Road Network De�nition

While a lot of problems were solved with the RNDFGraph, some still remain. Not all of the
earlier described problems can be solved by simply making a three dimensional map.

The scope of this work is the three dimensional map itself, which is the starting point to the
solution of the posed problems. The map format developed in this thesis is called Advanced
Road Network De�nition, or short ARNDGraph.

Many other modules need to be changed in order to bene�t from the new map format. This
work will focus on developing the map format itself and creating a graphical editor. Also
the other modules will be modi�ed to work with the new format. However utilizing the new
features in the various modules will be part of future work.

The challenge here lies with not rewriting every module, but keeping the adjustments to
other modules reasonable.

3.1 RNDFGraph3D

As a �rst proof of concept step, the RNDFGraph was converted to a RNDFGraph3D, by
simply adding a third component to the earlier described way points. The way points of the
RNDFGraph way points are de�ned by x and y coordinates and in the RNDFGraph3D way
points are described in x,y and z coordinates. As shown in 2.5.2, the same equations can
be used regardless of the number of dimensions the coordinate system uses. Through use of
templating, only minor changes in the spline interpolation library were implemented.

While this easy approach solves the "sign on top of the hill problem" and the "multilayer
road problem", it creates other problems. For example curves on a autobahn: In a curve,
the highway also banks in the same direction the curve is turning to, e.g. on a left curve the
left most lane is lower then the right most lane. If this was modelled using RNDFGraph3D

it would look like a pair of steps because the lanes do not tilt sideways. This could be solved
by tilting the lane, somewhat like OpenDrive[8] does, but it would complicate the process of
modifying lanes. Changing one lane results in changing width and tilting of adjacent lanes.

For my approach I have chosen a di�erent way.
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3.2 ARNDGraph

With the RNDFGraph, the middle of the road was modelled. The road surface was described
by going perpendicular to the road direction to the left and to the right. While this is very
easy when constructing a road map using a recorded trajectory of the vehicle, on downside
the resulting map does not really describe the road surface but the path the vehicle took.

To describe the road surface more exactly, the format I am introducing does not model the
middle of the road. Instead, the left and right road boundaries are described. Usually these
boundaries are lane markings, but they can also be a curb or no boundary which simply
marks the end of the road surface.

This change will also make re�ning the map easier; for example, if the left lane marking
needs to be moved, while the right lane marking stays in the same position. With the
RNDFGraph the only way to do this was to move the laneSpline, and thus also moving
the right lane marking. The only way to counter that movement was to change the lane
width. By describing the lane through left and right lane boundaries re�ning the map is
much easier.

As mentioned earlier, when the road ascends and descends, tilting the road becomes neces-
sary. While other approaches describe lane surface tilting with an angle, if the lane surface
is described as the area between two lane boundaries, the lane surface implicitly tilts when
one boundary is higher then the other one.

An optimized RNDFGraph could not be edited. In the RNDFGraphEditor it was only
possible to move vertices. But during the optimization process vertices are removed which
only purpose was to keep a support point.

3.2.1 Improvements to RNDFGraph

Changing the two dimensional spline to three dimensional turned out to be quite simple.
Since the Akima Spline Interpolation only takes into account a weighted gradient of the two
points before and the two points after, only the calculation of the gradient had to be changed
from two dimensional to three dimensional. Fortunately the BOOST Lbrary already has
optimized functions to calculate the gradient in three dimensions.

With the RNDFGraph, graph and splines are tied closely together. Every support point for
a spline is also a vertex in the graph and vice versa. But they serve di�erent purposes. For
instance, if the speed limit changes, a new edge must be added to the graph. To add a new
edge, a new vertex and support point must also be added. However, by adding a support
point the curvature of the spline is changed. So in a worst case scenario other support points
need to be adjusted to re�t the spline to the curvature of the road. So we end up changing
support points because the speed limit changed.

Also the other way around is "not needed". For example, if the road curvature changes,
we need to add additional support points to make the spline �t the curvature. However,
by adding another support point we add another vertex and enother edge, even though the
EdgeData does not need to be changed. So we end up adding support points and edges
where they are not required.
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The RNDFGraph optimization technique minimizes the problem of unneeded edges. By
separating support points and vertices the optimization becomes obsolete.

But if we would not tie these two di�erent purposes together we would not need to optimize
the graph at a later stage. By being able to choose more carefully where edges start and
end we could end up with a graph that has even less edges and vertices than an optimized
RNDFGraph.

With the RNDFGraph a vertex is described by the x and y coordinate of its corresponding
support point, and spline. We change the de�nition of a vertex to a parameter on the spline.
The parameter describes the distance from the start of the spline, where the parameter is 0,
to a given point on the spline. A spline given a parameter returns the x,y and z coordinate
of that point on the spline.

Having the car follow a given spline is done by a "low level" controller. This controller
handles the delay between giving commands to the car's steering motor and the car actually
turning. Since we have a driveSpline for every lane, following the road is done by the
low-level controller. The decision on which driveSpline to drive is done by a higher-level
"authority", in part of the software we call the behaviour. It uses the graph to navigate
from the car's current position to a given destination. To calculate the quickest path, well
known path �nding algorithms can be used. In our case we use the Johnson's All Pairs
Shortest Path Algorithm[16] once the map is loaded, saving the results in a V xV matrix.
The weights of the edges are estimations on how quickly the car can travel each edge. This
step is called the macro plan generation. Once that is done we have a list of edges the car
needs to travel on to get to the destination. As mentioned earlier each edge has a driveSpline
which is given to a the low level controller which then makes sure the car travels on these
splines.

However, while driving along the planned path, the plan can change: for example in a
highway scenario another vehicle is driving slower than our car wants to travel it will initiate
a lane change. Before a lane change is done the car checks if its destination is also reachable
from the lane it wants to change to and that the time-to-destination is not signi�cantly
greater than before.

Also while driving along a spline, a micro plan is generated. The micro plan �rst consists
only of the cars trajectory generated with the driveSpline of the edge. If there are obstacles
close to the driveSpline, the trajectory can be smoothly altered while still keeping within
the lane boundaries.

The driveSpline

The drive Spline is the suggested trajectory a vehicle should take while driving on a lane.
While technically the spline has no constraints, theARNDGraph makes sure the driveSpline's
support points are always between the left and the right boundary of an edge. Also the sup-
port point's z-axis component has to be on the plane between the two boundaries.

Using the intercept theorem, the drive spline support points are moved onto the plane
between the left and the right boundary spline.

Since the driveSpline can be di�erent for di�erent vehicles, i.e. a motorbike will have di�erent
constraints than a 40 ton truck, it's inclusion into the map is questionable. In our case it is
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included because the behaviour relies on it. A rework of the behaviour module could remove
that dependency.

The Graph

With the RNDFGraph splines and graph are closely connected. Every spline support point
is also a vertex in the graph and vice versa.

The Graph is implemented using the BGL[17]. This way all the graph algorithms in the
Boost Library can be used. The BGL itself uses a weighted directed adjacency list to store
the graph.

Like any graph, the ARNDGraph consists of edges and vertices. In our case the edges
represent a lane or a stretch of a lane. While the splines are used to interpolate the exact
curvature of lane markings, the edge represents a connection between two locations.

Edges are used to assign logical information about the lane. Every edge has an EdgeData

object stored in a boost::property_map. The EdgeData object holds type of road (street,
highways, roundabout, e.t.c. ), speed limits, pointers to the left and right boundary spline
and the driveSpline. The edge weight must be be stored in a separate map, however, so the
BOOST graph algorithms such as Johnson's All Pairs Shortest Path Algorithm[16] can be
used to calculate the shortest path between all vertices.

In the ARNDGraph two new boundary types were added: curb and no boundary.

A vertex represents a speci�c point on a lane. Since every edge needs to be connected to
two vertices, they are also start and endpoints of edges.

As for edges, for every vertex a VertexData object is stored in a boost::property_map. The
VertexData stores meta information about that location. Such items are road signs, tra�c
lights, checkpoints, give way signs or decision points for the braindriver project[18].

Neighbour Lanes

With the ARNDGraph, a lane is neighbour of another lane if they share a boundary spline.
It is possible to de�ne neighboured edges in the ARNDGraphEditor.

For the car to change lanes, it needs to know if a lane has a neighbour lane. For that purpose
we de�ne: A lane is neighbour of another lane if they share a boundary. In our terms that
means a lane is the neighbour of another lane if the left boundary spline of one lane is the
right boundary spline of another.

With that information we can navigate from one lane to another, but standard graph al-
gorithms like Djikstra[19], Bellman Ford[20], etc. will fail because they can not "relate" to
the above neighbourhood relationship. For that purpose, lane changing edges are added to
the graph. These edges connect the vertices at the beginning and the end of neighbouring
edges. If a lane change is allowed in both directions, two lane changing edges are added.
If it is only possible to change from one edge to the other, but not back, only one edge is
added in the direction where the lane change is allowed. A penalty is added to the weight
of these edges to ensure a lane change is only done when needed.
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3.2.2 Converting RNDFGraph to ARNDGraph

Over 60 maps using the RNDFGraph have been created, reusing these maps is a require-
ment. Therefore, a conversion from RNDFGraph to ARNDGraph was implemented. The
conversion was done as follows:

1. the laneSpline was copied to the driveSpline

2. left lane boundary spline was calculated by going half the lane width orthogonal to
the laneSpline to the left, the same was done for the right lane boundary spline

3. VertexData was copied

4. EdgeData was copied

3.2.3 ARNDGraphEditor

To change the ARNDGraph simply and quickly, a graphical interface called the ARND-

GraphEditor was developed. It was implemented using the Open Scene Graph Library and
therefore should be easily portable to Windows or Mac OS X.

In continuation of separating geometrical and topological data, the ARNDGraphEditor fea-
tures two di�erent edit modes: Spline Edit to change geometrical data, and Edge Edit to
change topological data.

Figure 3.1: ARNDGraphEditor, Spline Edit Mode ; In Spline Edit mode each support point is
highlighted with Cursor3D. They can be moved by dragging the Cursor3D to a new
position.

In the Spline Edit mode the support points of every spline, can be moved. These support
points can not only be moved on the x and y axis but also on the z axis. To be able to
conveniently do this, a Cursor3D is added to the Open Scene Graph. It consists of a sphere
with three cylinders, one cylinder for every axis x, y and z aligned in the corresponding
direction and a sphere in the middle. If the mouse cursor is pointed at the sphere or the x,
y cylinder, the Cursor3D can only be moved in the xy plane. If the mouse cursor is pointed
at the cylinder representing the z axis the cursor can only be moved along the z axis. That
way support points can easily be moved in three dimensional space.

Edge Edit mode is used to change the topological information. In this mode edges on the
same spline can be merged into one edge or one edge can be split into two edges. Vertices
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Figure 3.2: ARNDGraphEditor, Edge Edit Mode ; In Edit Edge Mode the start and end param
value for left, right boundary and driveSpline can be modi�ed by dragging the green
Cursor3D.

can be marked as being a tra�c light, a stop sign or a right of way sign. Connecting edges
can be added between vertices. The left, right and drive spline param can be moved along
the corresponding spline.

While this edit mode should only change topological information this is not entirely the case.
Usually when moving a vertex along a spline, the spline itself and the geometrical informa-
tion does not change. However, if the vertex has incoming or outgoing connecting edges,
the splines of the connecting edge have to be changed. For this reason some geometrical
information has to be changed in Edge Edit Mode.



CHAPTER 4

Experimental Results

4.1 Experiments and Evaluation

For the experiments the RNDFGraph of Berlin is converted to an ARNDGraph and manually
optimized by merging unneeded edges.

This map covers parts of the city's highways and urban streets in close proximity to the
Free University of Berlin, as well as the heavy tra�c street Kaiserdamm from the ICC to
the Brandenburg Gate. This was done by combining the RNDFGraphs shown in Figure 2.6,
2.7 and 2.8 into a single graph. The total length of all edges is about 331 km. Roughly two
thirds of the map (229 km of all edges) are highways. The remaining third is classi�ed as
streets and roundabouts. The graph is weakly connected. Interesting is the number of edges
after the automatic optimization techniques described in [12] compared to the number of
edges in the ARNDGraph. The overall size of the �le was also noted, however, since the
ARNDGraph will need about two to three times as many splines than the RNDFGraph.
An increased �le size in that magnitude should be expected. The �le size containing the
RNDFGraph was 1 301 011 bytes, while the �le size with the ARNDGraph was 3 623 891
bytes. The di�erence is within the expected magnitude.

To compare the two graphs, the length of all edges was divided by the number of edges.
This metric estimates how many meters of road were covered per edge on average. Because
edges used as urban streets are much shorter than edges for highways, the same metric is
used again but only for edges used as highways and only for edges used as streets.

The average length of any edge using ARNDGraph was higher than the average length of
any edge in an optimized RNDFGraph. As a result the ARNDGraph needed less edges to
cover the same road network.

For localization the most important functionality is to �nd the closest point on a spline for
a given point. Since this function is used very frequently it is imperative to be very fast. To
measure the time, this function was called 1 million times with random points. The fastest,
the slowest and the average time were recorded and compared between RNDFGraph and
ARNDGraph. As execution time always depends on the processor and memory used these
experiments were conducted on a MacBook Pro 6,2 with a Intel(R) Core(TM) i7 CPU M
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Figure 4.1: Meters of Road Covered per Edge; Overall average edge length, average length for edges
classi�ed as street and average length of edges classi�ed as a highway were compared.

620 running at 2.67GHz with synchronous DDR3 memory at 1067 Mhz. A native installed
Linux was used with a 3.16.0 kernel.

Figure 4.2 shows the runtime to �nd the closest point on a spline for a given random point.
While the ARNDGraph is a bit slower it fully supports three dimensional coordinates.

Of course the autonomous car "Made in Germany" also successfully navigated and continu-
ously localized itself through Berlin using the ARNDGraph. The car planned its route from
the outskirts of Berlin to the Brandenburg Gate in the center of the city, recognizing tra�c
lights, planning lane changes and switching from the highway to inner city streets.

All the arti�cial maps explained earlier were also successfully converted to ARNDGraphs

and can be used.

4.2 Conclusion

Every RNDFGraph map can be converted to an ARNDGraph map. Using the ARND-

GraphEditor, the map can be further re�ned and three dimensional information can be
added.

Localization can now be accurately done on multilevel highways or parking garages.
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Figure 4.2: Runtime to �nd closest point on spline; minimum, maximum and average time.

Many other methods of map building use three dimensional point clouds for mapping. This
however generates massive amounts of data since every point needs to be stored. With our
method only a few points need to be saved. We only need to save the support points, the
rest of the points can be interpolated to a given accuracy or maximum error.

With the ARNDGraphEditor it is now possible to manually optimize the graph. I have
shown the manual graph optimization is superior to the automatic optimization used with
the RNDFGraph.

4.3 Future Work

The now three dimensional map format o�ers a multitude of future work.

While the map is now three dimensional and the road can ascend and descend the currently
implemented obstacle detection and tracking still only features two dimensional obstacles
with two dimensional positions. To successfully perceive an obstacle as being above the
road, the obstacle detection and tracking also needs to work in three dimensional space. An
iteration on obstacle perception can now be done.

To plan a route, more energy e�cient road ascending and descending slopes can now be
taken into account.

Optimal and comfortable driveSpline calculation can now consider slope, tilting, left and
right lane boundaries and curvature. The driveSpline can also depend on the vehicles fea-
tures. A truck might have a di�erent optimal driveSpline than a car, which in turn would
also be di�erent from the one of a motorcycle.
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Automatic re�nement of an existing map can also be researched. How many support points
are needed for a maximum error? It depends on what kind of a road is to be mapped.
After mapping the AVUS it became apparent that highways need much less support points
than streets. To work out a good balance between the number of support points and the
necessary accuracy would be another research topic.

Because the ARNDGraph has a very small memory footprint the map can be transmit-
ted very quickly. Synchronizing the same map across multiple cars, maybe a cloud based
approach, would also be a very interesting future work.

For now the map only covers parts of Berlin. If the maps should cover the whole city or
even long distance drives to other cities the graph needs to be optimized even further.
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