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Zusammenfassung

Deutsche Version:

Auf der Basis von RADAR-Sensoren entwickelt Hella Aglaia unter anderem
Fahrerassistenzsysteme zur Vorhersage potentieller Auffahr– und Seitenaufpral-
lunfälle. Da in letzter Zeit vor allem durch Einparksysteme vermehrt Kameras
auch im Seitenbereich Einzug in die Serienproduktion erhalten, bietet es sich an
diese auch für andere Aufgaben zu verwenden. Besonders für die Vorhersage von
Unfällen in Kreuzungsbereichen oder Ausparkszenarios müssen Fahrzeuge im Sei-
tenbereich zuverlässig detektiert werden können. Im Rahmen dieser Masterarbeit
wird untersucht, inwieweit durch zusätzliche Kameras mit Weitwinkelobjektiven
im Seitenbereich RADAR-Trackingergebnisse von Längs- und Seitenverkehr ver-
bessert werden können. Dafür wird ein Versuchsfahrzeug mit entsprechenden Ka-
meras ausgestattet. Dies umfasst die Auswahl der Kameras sowie deren Kalibrie-
rung und die Abstimmung mit den anderen Komponenten des Versuchsträgers.
Dafür wurde ein Standard Pin-Hole Kameramodell mit mehreren Verzerrungspa-
rametern mit dem aktuelleren Scaramuzza-Kameramodell verglichen. Weiterhin
werden Algorithmen zur Verbesserung von RADAR-Objekt-Tracks auf Basis von
Deformable Model Fitting und der Vorhersage von optischem Fluss untersucht
und weiterentwickelt. Zudem wird eine Methode vorgestellt, mit der es möglich
ist künstliche Daten für das Testen einzelner Module der RADAR-Warnsysteme
von Hella Aglaia zu erzeugen um so den Test- und den Entwicklungsprozess zu
vereinfachen.



Abstract

English Version:

Hella Aglaia develops, amongst others, driving assistance systems based on
RADAR sensors for the prediction of potential rear and side crash accidents.
Within the last years, more cameras have been built into production vehicles -
especially for assisted parking systems. Certainly, these cameras could be used for
other tasks as well. Particularly in situations when backing out of parking spaces
or at crossroads, side traffic should be reliably detected. In the scope of this the-
sis, ways are explored in which additional side cameras equipped with wide angle
optics can be exploited to enhance and refine RADAR tracking results. For this
purpose a test bed vehicle is set up. This includes the choice of suitable cameras,
their calibration and the set up of the software framework. For the process of cam-
era calibration, a standard pin-hole camera model with distortion parameters and
the more recent Scaramuzza camera model are compared and evaluated. Further-
more, approaches for optimization and refinement of RADAR object tracks based
on deformable model fitting and optical flow prediction are examined, evaluated
and further developed. Additionally a method for creating artificial data for the
testing of specific modules of Hella Aglaia’s RADAR based warning systems is
demonstrated which simplifies the testing and development process.
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Chapter 1

Introduction

1.1 Motivation

Hella Aglaia is a company that develops, amongst others, driving assistance sys-
tems based on Radio Detection And Ranging (RADAR) sensors. Those RADAR
systems track surrounding vehicles and add additional safety through warning
mechanisms to warn the driver in the case of potential accidents. Currently,
the Sensor Solutions group provides several RADAR based products. Pre-Crash
Rear (PCR) is an application which provides a warning system for potential rear-
end collisions. Car producing companies can use the output of this system to send
a direct warning to the driver or to prepare the car for a potential impact, e.g. by
warning the driver or tightening the safety belts. The second product – Front/-
Side RADAR (FSR) – provides a similar system for potential side impacts which
improves safety especially at cross roads. Hella Aglaia has strong backgrounds in
camera based driving assistance systems in its history as well. However, the FSR
project at Hella Algaia allows vehicle tracking solely based on RADAR measure-
ments. Car manufactures tend to build an increasing number of sensors into their
cars, e.g. cameras, short range and long range RADAR systems or ultrasound sen-
sors. These sensors have become standards even in mid-range priced cars. With a
wider availability of different sensors, it is reasonable to explore ways of combining
these sensors and improve the performance of applications. Thus, one goal of this
thesis is to set up a test bed vehicle which allows the fusion of side RADAR and
side camera data in the FSR context. This includes the identification of require-
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1.2 Sensor Fusion

ments of the hardware and the respective evaluation of different camera sensors
and optics.

Sensor fusion in general exploits advantages of different sensors by compensat-
ing disadvantages with information from other sensors. The advantages of RADAR
sensors are good velocity and distance measurements with rather limited angular
resolution which come at the cost of imprecise lateral extent estimation. Monoc-
ular cameras, on the other side, allow good estimation of the width and height
of an object if the distance is known. Based on the test bed, fusion methods for
combining the advantages of both sensors are explored to improve the performance
of the RADAR tracker of FSR.

Additionally, the performance of the warning systems is mainly evaluated based
on scenarios of a test catalog with given specifications how the system should
react under certain circumstances. For example, a test scenario defines the ego car
driving with a specific velocity on a turn in the road. If another vehicles overtakes
the ego vehicle, the warning system should not execute. Some of the described
maneuvers require advanced driving skills and consume a lot of time to record
properly. Instead, a simpler method to generate the data which would be acquired
from test drives is preferable for development and testing. However, the data has
to be physically reasonable and consistent with the test catalog. Therefore, the
thesis explores and implements a way to intuitively generate artificial ground truth
data that can be used for development and module tests of warning systems.

1.2 Sensor Fusion

Over the last three decades there have been several architectures and methods
to fuse sensor data. The idea of sensor fusion is not very new and can be found
in nature and humans. For humans, even basic tasks, e.g. grabbing an object,
require processing input from several sensors. Information from the eyes as well as
motor sensory feedback is used to find an optimal grip on the object. The general
concept combines advantages of different sensors by compensating their respective
disadvantages. A definition of Sensor Fusion can be found in The Handbook of
Multisensor Data Fusion.

Data fusion techniques combine data from multiple sensors and related
information to achieve more specific inferences than could be achieved
by using a single, independent sensor. [HL01]

2



1.2 Sensor Fusion

Especially with new sensor types emerging in affordable price ranges and higher
processing power, fusion concepts become more important. Abstractly, one can
define three main methods of sensor fusion that are used and adopted in a wide
range of applications. In [HL01] these are referenced as Data Level Fusion, Feature
Level Fusion and Declaration Level Fusion. In this context, a few terms have to
be defined. A sensor is a device which provides information of the environment in
any form of raw data. Feature extraction is defined as the process of extracting
meaningful information from the raw data of a sensor, e.g. points that represent
corners in a camera image. State estimation describes the current state based on
the given input, e.g. the position of a tracked vehicle.

Data Level 
Fusion

Sensor 
1

Sensor 
2

Sensor 
n

Feature 
Extraction

State 
Estimation

State

...

Figure 1.1: Sensor fusion at data level (Low Level Sensor Fusion)

Data Level Fusion or Low Level Sensor Fusion (Figure 1.1) describes a method
of combining raw data from different sensors with each other, e.g. having a cali-
brated camera and a calibrated Time-of-Flight (ToF) depth-sensor which creates
a depth map of the environment, each camera pixel can be mapped to a distance
measurement of the ToF sensor and vice versa.

In Feature Level Fusion (Figure 1.2) or Mid-Level Fusion, the sensor data is
presented via feature vectors which describe meaningful data extracted from the
raw data. These feature vectors build the base for fusion. This method can be
found in 3D-reconstruction for example. In this approach image features from
different cameras are extracted to identify corresponding points in each image of
different camera views.

3



1.2 Sensor Fusion
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Figure 1.2: Sensor fusion at feature level (Mid-Level Sensor Fusion)

Sensor 
1

Sensor 
2

Sensor 
n

Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

State 
Estimation

State 1

State 
Estimation

State 
Estimation

State 2

State n

Declaration
Fusion

State

...

Figure 1.3: Sensor fusion at declaration level (High Level Sensor Fusion)
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Declaration Level Fusion or High Level Fusion (Figure 1.3) is the combination
of independent state hypotheses from different sensors. All sensors estimate the
state individually. The final state is a fusion of all state hypotheses from the
different sensors. The most famous implementation of this approach is probably
the Kalman Filter [KB61]. Each state from the individual sensors with their
respective error covariance is used for correcting the state estimate in the Kalman
Filter. The error covariance represents the trust in the state estimation, e.g. a
camera image is reliable for estimating the width of objects but distance or speed
measurements are very inaccurate. In contrast a RADAR sensor provides very
accurate distance and velocity measurements. Thus, in the final state estimate,
velocity information and distance will be closer to the RADAR measurements,
while the size would be closer to the measurements from the camera which, in
theory, should result in a better final state estimate.

1.3 Preliminaries

Working with different sensors involves different types of coordinate systems that,
at some point, have to be transformed into each other. The following pages intro-
duce mathematical notations and coordinate systems used in this thesis.

1.3.1 Mathematical Notations

Frequently used elements in this thesis are scalars, vectors and matrices. An angle
is a special kind of a scalar and annotated with Greek letters. The respective
notations can be found in Table 1.1.

Type Notation Explanation
scalar s normal font, small letters
angle ϕ normal font, Greek letters
vector v small letters, bold
matrix M big letters, bold
coordinate
transform

TB←A big bold letters, transforms points from
coordinate system A to B with xB =
TB←AxA

Table 1.1: Mathematical notations
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1.3 Preliminaries

Homogeneous Coordinates and Coordinate Transforms

Coordinate representations of n-dimensional space can be defined as homogeneous
coordinates, which represent lines in n + 1-dimensional space by adding 1 as a
constant to the vector. xy

z

 7→

x
y
z
1

 (1.1)

This allows combining rotations and translations in a more compact way. These
coordinate transforms are annotated as TB←A and can be used for arbitrary trans-
formations from n-dimensional coordinate system A to d-dimensional coordinate
system B but usually define a transformation matrix containing a rotation matrix
R and a translation vector t (eq. (1.2)) that is used to transform homogeneous
coordinates.

TB←A =
(

R t
0 0 0 1

)
=


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 (1.2)

xB = TB←AxA (1.3)

Transformations can be concatenated if the resulting dimensions match. The trans-
formation chain can be recognized by reading the indices from right to left, e.g.:

xC = TC←BTB←AxA (1.4)

A point xA in coordinate frame A is first transformed to coordinate system B
followed by a transformation from B to the final coordinate system C.

1.3.2 Coordinate Systems

Several coordinate systems are used in the thesis. A world coordinate system is
used as a general reference. The ego vehicle coordinate system defines a local
coordinate system which is carried along with the motion of the vehicle. Camera
models make use of two other coordinate frames – the 3-dimensional camera coor-
dinate frame and the image frame which references to pixel coordinates. RADAR
sensors utilize polar coordinates to reference to detected targets. These coordinate
systems are explained in detail in the following.
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1.3 Preliminaries

World Coordinate System

When referring to the world reference frame or world coordinate system (Fig-
ure 1.4), the x− y-plane is defined as the ground plane and the z axis is pointing
upwards. Thus, the coordinate system is right handed. One unit in this system is
equal to one meter.

x

y

z

Figure 1.4: World reference frame, right handed, z pointing upwards

Ego Vehicle Coordinate System

The ego coordinate system E is a reference frame which is carried along with
the motion of the car. The right handed ego vehicle coordinate system’s origin
is situated in the middle of the front axle (see Figure 1.5). The y-axis is aligned
with the front axle and x points into the driving direction. The z-axis is pointing
upwards.

x

y

Figure 1.5: Ego Vehicle coordinate system, y-axis aligned with front axle
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1.3 Preliminaries

Camera Coordinate System

The origin of the camera coordinate system C is in its viewpoint with the z-axis
pointing away from the camera in the direction of the view as seen in Figure 1.6.

x

y

z

Figure 1.6: Camera coordinate system

Due to a slightly different definition of the coordinate system as being ap-
plied by Scaramuzza [Sca07], it has become necessary to introduce the following
transformation to be compliant with the camera coordinate definition.

TC←Scara =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1

 (1.5)

The matrix itself is orthonormal, thus T−1
C←Scara = T>C←Scara. As the transpose

of the matrix is the same as the matrix itself, it can be used for converting 3-
dimensional points in both directions, thus TScara←C = TC←Scara.

Image Coordinate System

The image coordinate frame is used in images captured from camera sensors. It
can be either centered at the principal viewpoint or at the top left position of the
image and references to pixel coordinates. Coordinates are annotated as (u, v)
with u pointing to the right and v pointing downwards.
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1.3 Preliminaries

u

v

Figure 1.7: Image coordinate system, centered at image middle.

RADAR Coordinate Systems

Based on the principle of RADAR systems, polar coordinates are the utilized
coordinate system (Figure 1.8). In general, the canonical coordinate system for
RADAR consists of an angle ϕ, the distance r and the velocity vr of the object in
the direction of the sensor origin. Therefore a target can be stored in a vector xR
in coordinate system R.

xR =

ϕr
vr

 (1.6)

y

xsensor plane

r

ϕ

Figure 1.8: RADAR coordinate system of the sensor

At Hella Aglaia, the coordinate system has some historically grown properties.
To achieve coordinates independent from the sensor mounting angle, an offset
angle is added which turns the x-axis in the backwards direction of the car. Thus,
the x-axis of the RADAR coordinate system R is parallel to the ego coordinate
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1.4 State of the Art

system E’s x-axis but points in the opposite direction and still originates in the
sensor mounting position. Thus, a target xR = (0, r, 0)>, r > 0 would be located
directly behind the car aligned with the sensor origin.

1.4 State of the Art

This section is about giving a representative overview of the state of the art tech-
niques for environment perception with focus on vehicle detection. The approaches
are separated in approaches that solely rely on RADAR or camera data and, as a
last point, a section about fusion approaches combining information from several
sensors.

1.4.1 RADAR-based Tracking Approaches

RADAR sensors allow a good estimation of distance and velocities of detected ob-
jects. New research on tracking systems solely based on RADAR in the automotive
area is barely available. Most papers date back to the early 2000’s. The approach
in [MHG+06] describes a crash mitigation system which tries to minimize the im-
pact of side crashes to the passenger cabin by extending the dampers by 10 cm
within 300 ms and thereby raising the car right before the impact. This deflects
parts of the impact energy into a direction below the car and into the harder parts
of the door. The system utilizes a 24 GHz RADAR mounted at the height of the
indicators in the front fenders.

1.4.2 Camera-based Approaches

In this section, approaches that are based solely on different kinds of cameras
are presented. These approaches cover monocular cameras, wide angle cameras,
multi-camera setups which include 3D vision systems and surround view cameras
based on catadioptric systems. Catadioptric systems are optics that use a mirror
to capture viewing angles of up to 360◦ but introduce strong distortions.

A team from the University of Nevada presented a multi–camera system for
crash prediction in 2006 [SBM06]. Cameras in front direction built into the side
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1.4 State of the Art

mirrors and windshield are used to detect front and side traffic, while a camera
in the rear window is used for rear traffic. The cameras are especially optimized
for night vision. In the first step the camera image is low pass filtered using a
Gaussian filter. In the second step horizontal and vertical edges are extracted
from scaled versions of the input image and the peaks are used to generate car
hypotheses. The group evaluates several features and classifiers for the verification
step. Images representing cars are used to estimate an Eigen space to minimize the
feature space of a potential vehicle image as proposed in [TP91]. The largest Eigen
vectors of this space are used to generate feature vectors. Other sets of features
are haar wavelets and truncated haar wavelet sets (removed the wavelets with
the smallest coefficients). Furthermore, Gabor features (used for edge detection)
are extracted. Additionally, a combination of Gabor and Haar features has been
tested. The acquired feature vectors are used to train a neural network and a
Support Vector Machine (SVM) classifier. The combination of wavelet and Gabor
features classified by an SVM showed the best results.

DaimlerChrysler presented an approach for object recognition and crash avoid-
ance based on stereo camera systems in 2005 [FRBG05]. The cameras record the
front view of the vehicle. The ego motion is subtracted from the optical flow of the
video stream. Moving objects are eventually segmented using 3D information and
optical flow annotations. These moving objects are tracked with Kalman filters
[KB61]. As Kalman filters are prone to inaccurate initialization parameters, for
each object three filters are set up. The three filters are initialized with v1 = 0m/s
and v2,3 = ±10m/s. The quality of the estimations is finally compared with the
following measurement of position and speed. This quality is expressed in the
Mahalanobis distance between prediction and measurement and used for weight-
ing each filter. The three filters are then combined to a single prediction based
on their weight. According to the paper, the combined multi-hypothesis Kalman
filter converges faster than choosing a single filter.

The approach of fitting deformable 3-dimensional object models by projecting
them into 2-dimensional images is not new, however, a recent attempt has been
presented by [LM09]. The method estimates a model parameter set which de-
scribes the shape, orientation and position of the model in 3-dimensional space
by fitting the projected model edges to edges in the camera image. The authors
argument that the approach of fitting a simple car model is about 20 years old.
The original approach itself can be found in [Low91]. With increased comput-
ing power and increased image resolution, it is possible to fit complexer models.
Thus, they use several car type specific CAD models with different polygon counts
with 12 to 80.000 faces. A vehicle model consists of a 3D mesh describing the
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general appearance, 2D polygons which describe the appearance of parts of the
model and a mapping which maps these onto said 3D model. To reduce the pa-
rameter space of a general deformable model based on their model database, they
use Principle Component Analysis (PCA) and reduce the parameter space to m
model parameters represented by the largest Eigen values. On the assumption of
a known ground plane, the parameter space is represented by a (x, y)-translation
and a yaw angle rotation θ as well as m shape parameters deduced by PCA. The
corresponding 2D-projection of the model’s initial pose is fit to edges found in the
Canny filtered input image [Can86]. Within multiple iterations the distance to the
detected edges is minimized. The group was able to fit 6 different vehicle types
but fitting required good initial poses which are acquired by manually placing the
model on the vehicle in the image.

In [LTH+05], the same model fitting approach is used. There is no assumption
of camera motion. Thus, object hypotheses are obtained by motion changes in
the camera image. Additionally, the detected models are tracked through several
frames by an Extended Kalman filter with an underlying bicycle model.

DaimlerChrysler also showed a bird view system which allows a driver to have
a top view of his surroundings on a monitor on his dashboard [ETG07]. Two om-
nidirectional cameras on the top rear corners of a truck capture the surroundings
of the vehicle. These catadioptric systems based on a camera pointing on a con-
vex mirror achieve an opening angle of 360◦. As a result, two of these cameras
render sufficient to capture the rear environment. The image is back projected
on the ground plane around the car which eventually renders a bird view of the
environment as seen from the top of the car.

1.4.3 Sensor Fusion Approaches

Sensor fusion approaches are the most recent developments in the area of environ-
ment perception. The fusion of several sensors allows to combine advantages of
different sensors, e.g. distance and velocity measurements of RADAR and classi-
fication abilities of cameras, and reduce disadvantages at the same time. Current
research mostly focuses on sensors which provide 3-dimensional information of the
environment. Thus, papers that focus on camera-RADAR fusion are rather rare.

One of the recent approaches which utilize sensor fusion is [ZXY12]. The ap-
proach combines a Light Detection And Ranging (LIDAR) sensor with camera
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data. LIDAR sensors measure the time light travels to a certain object point to
measure its distance. This allows high resolution distance maps. These maps
provide good information for obstacle detection but less for classification. The
distance map is used to classify parts of the image to ground plane or obstacles
using RANSAC and 3D adjacency. At the same time the image patches are clas-
sified to different classes by evaluating color histograms, texture descriptors from
Gaussian and Garbor filtered images as well as local binary patterns. Resulting
in 107 features, each patch is classified by a Multi-Layer-Perceptron to different
categories. The size of the object determined by the LIDAR obstacle estimation
as well as labels from the image analysis are passed into a fuzzy logic framework
which returns three labels – environment, middle high or obstacle. The fusion
approach reaches better classification results than the individual sensors.

In [VBA08] a framework for self-location and mapping is presented. This ap-
proach is based on an occupancy grid that is used to fuse information from RADAR
and LIDAR. An occupancy grid discretizes the environment space into small two
dimensional grid tiles. The LIDAR sensor is used to estimate a probability of a
grid cell to be occupied. A high probability means there is an obstacle in the re-
spective grid cell. Moving objects are detected through changes in the occupancy
of grid cells. Basically, if a cell is occupied at a time point, and in the next time
step, the adjacent cell is detected to be occupied, this is assumed as a motion. As
RADAR data is relatively sparse compared to LIDAR measurements, it is used to
verify or reject motion estimations based on LIDAR data.

A similar method of fusing short range RADAR and laser measurements is
proposed in [PVB+09]. The system covers more performance optimizations than
[VBA08]. Instead of estimating a probability representation, the grid cells are
either occupied or empty based on the number of measurements of the laser scanner
for the respective cell. Adjacent cells that are occupied are merged to an object.
A Kalman filter [KB61] is used to track the detected objects. Unfortunately the
fusion process of RADAR and laser data is not described in detail.

The approach proposed in [ABC07] shows a fusion of RADAR and camera
in which the camera is used to verify and optimize RADAR object tracks. The
camera is oriented to the front. The center points of RADAR objects are pro-
jected into the image based on the camera calibration. The symmetry of image
sections around the projected point is estimated. Ideally, the symmetry is large
around the RADAR hypothesis as front views and rear views of vehicles are sym-
metric. Searching for higher symmetry values in a predefined environment around
the RADAR hypothesis is used to correct the position estimate. However, this
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1.4 State of the Art

approach does only work for scenarios in which vehicles are viewed from the rear
or front.
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Chapter 2

Test Bed Setup

This chapter describes the general hard- and software setup of the test bed vehicle.
The test bed is an Audi A8 equipped with an industry computer and several sen-
sors. These include a front camera and two RADAR sensors mounted at the front
bumper observing front and side traffic. Furthermore, side short range ultrasound
sensors are mounted to observe the sides near the doors.

Cassandra, the used software framework for prototyping of algorithms, record-
ing and replaying of test drive data, is presented in section 2.2. The process
of choosing appropriate cameras for the project is demonstrated in section 2.3.
Section 2.4 introduces the calibration process of camera systems and compares a
pin-hole model with distortion parameters with the more recent Scaramuzza cam-
era model [SMS06a]. Finally, the hardware interconnections and the recording and
replaying of test drive data in the Cassandra Framework is explained.

2.1 Hella RADAR Sensors and Applications

Hella is one of the biggest global suppliers of automotive electronics and lighting
solutions. One of their products is a low-cost 24 GHz RADAR sensor [HEL12]. The
sensor allows the detection of targets in a distance of up to 100 m with velocities of
±70 m/s in cycles of 50 ms. The maximum field of view is 165◦. Not only does Hella
provide the sensor itself, but also several driver safety system applications. These
systems are in use at several OEMs. Blind Spot Detection (BSD) warns drivers of
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2.2 Video & Signal Processing Framework Cassandra

unsafe conditions when trying to change lanes. Traveling on the highway is made
safer by the Lane Change Assistant (LCA), which allows warning distances of 70
m when changing lanes. A similar application - Rear Pre-Crash (RPC) - observes
rear traffic and detects potential collisions. This information can be used by OEMs
to prepare for impacts. Safety measures that could be executed are for example
the fastening of seat belts or further preparations of air bags. Rear Cross Traffic
Alert (RCTA) secures situations in which the driver backs out of parking spaces
and warns the driver about oncoming rear traffic.

2.2 Video & Signal Processing Framework Cas-
sandra

Cassandra is a C++ development environment developed at Hella Aglaia [Hel13].
It supports both rapid prototyping and product development. It has been released
for external use in 2013. The framework will be used throughout the whole thesis
to implement most of the concepts explained. Its main focus is computer vision in
the automotive area. It supports a variety of cameras and video input, as well as
Controller Area Network (CAN) hardware for capturing and sending CAN mes-
sages. Furthermore a lot of OpenCV’s [Its13b] functionality is already available.
OpenCV is an open source computer vision library written in C and C++ that
provides optimized algorithms in the area of computer vision and machine learning.

Instead of implementing the whole processing chain of computer vision algo-
rithms at once, Cassandra allows to break up the processing chain into replaceable
and reusable blocks called stations. A station can contain input ports for input
data, e.g. CAN messages or single images from a video, and output ports for
the processed data. Cassandra also provides several predefined stations for cam-
era calibration and image processing based on OpenCV. Each station has several
adjustable parameters for the algorithm it represents.

A simple example of such a processing chain is an edge detection algorithm.
The input is a RGB video stream from a Logitech Webcam Pro 9000, thus, it has
to be converted to uint8 gray scale and then fed into the Canny edge detection
algorithm [Can86]. The simplest approach to achieve this is to use a player station
which sends out the video one frame at a time to the Canny filter station. The
final output is a binary image that highlights edges.
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2.3 Choice of Cameras

Figure 2.1: Cassandra processing chain design for a simple Canny filter

This setup has been created as a Cassandra processing chain in which the
stations are linked together (Figure 2.1). At first, the camera station grabs an
RGB image from the web-cam and sends it to the Canny filter station and to a
viewer which shows the image in a new window. The uint8 gray scale conversion
is done implicitly by the Canny station when connecting an RGB image port to
a port which requires uint8 input. In the Canny station, the filter processes the
received image and creates a new image which contains the detected edges. This
is sent to the output port which connects to another viewer that finally shows the
edge image (Figure 2.2).

2.3 Choice of Cameras

Choosing the right camera for computer vision tasks is a sophisticated process.
Requirements strongly depend on the application. The cameras should be used
to support RADAR tracking. This requires the cameras to have a similar field
of view as the RADAR sensors which have a wide opening angle of 120◦ for the
FSR application. The side cameras should both capture most of the radar’s view
but also provide enough image quality to detect cars in a distance of up to 30 m.
Compared to front or rear cameras, videos captured from a side position feature
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2.3 Choice of Cameras

(a) Original image (b) Canny filtered edge im-
age

Figure 2.2: Original and processed image from a Canny filter processing chain
in Cassandra

a higher amount of movements as they are perpendicular to the driving direction.
Fast movements often result in blurred images which render them less suitable for
image processing. Therefore, the cameras should contain relatively big pixels on
the sensor plane which renders the camera able to capture more incoming light
and reduces noise and blurring in the output image.

Unfortunately, the most practical available mounting positions are under the
side mirrors, which requires the cameras to be positioned outside of the vehicle.
This adds further points to the requirements list – the camera has to be weather-
proof and small enough to be mounted below the mirrors in appropriate housings.

The Cassandra Framework, which acquires data from both RADAR and cam-
era, supports different types of cameras (USB, FireWire). Currently Cassandra is
limited to the Windows platform.

Another point, though often underestimated, is the synchronization of data
from different sensors. The RADAR tracker sends new data every 50 ms which
results in a rate of 20 Hz. This is taken as a reference for the camera. The test bed
features a CAN/LIN Input/Output - Module (CLIO) that sends the RADAR data
collected from the CAN over FireWire and tags it with a FireWire time stamp. If
the camera is connected to the same FireWire bus, images from the camera can be
tagged by the same clock and assigned to the collected RADAR data. The use of
FireWire adds a throughput limitation (800 Mbit/s) to the system. Both camera
data and the RADAR data have to be passed over the same bus and should not
exceed its transfer speed limit. This has to be taken into account when considering
image resolution and frame rate.
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2.3 Choice of Cameras

Final Requirements:

• Two color cameras, one for each side

• Operating system support: Windows XP 32bit and Windows 7 64Bit

• Optics viewing angle: ≈ 120◦ horizontal, central focal point

• Horizontal resolution: at least 700 px (1 px ≥ 10 cm in 30 m distance in the
image center)

• weather-proof housing which is small enough for side mirror mounting

• sensitive chip with low noise

• Connection: FireWire 1394b (800 Mbit/s)

• ≥ 20 fps

• Budget: max 1000 e per side

To match both technical and financial requirements, the AVT F-046C from
Allied Vision Technologies [All12] combined with a wide angle lens from GOYO
OPTICAL Inc. [GOY03] have been chosen. The optics feature a 103.6◦ opening
angle (132◦ diagonal) with a focal length of 3.5 mm. The camera itself provides a
resolution of 780 px × 580 px with up to 62 fps. The 1/2 inch CCD sensor captures
enough light to produce sharp images even with high dynamics. The transfer rate
of two uint8 gray image streams from the cameras result in in a transmission rate
of

780 px× 580 px · 20 Hz · 8 Bit · 10−6 · 2 = 144.7 Mbit/s

plus protocol overhead which leaves enough bandwidth for other applications on
the FireWire bus.

The final size of the setup is 31 mm × 31 mm × 78.5 mm but has to be sealed
in a custom built housing. Costs for camera and optics are 747 e for each side
resulting in 1494 e in total.

The setup of the FireWire cameras created a few problems as the utilized
version of the Cassandra Framework only supports cameras through the Unibrain
interface [Uni13]. Unibrain is a FireWire stack for Windows with the goal to
unify FireWire interfaces of cameras and other devices. Those devices usually ship
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Product Price
Allied Vision Technologies AVT F-046C 620 e
Resolution: 780 x 580
Sensor Diagonal: 1/2 inch Sony ICX415
Connector: FireWire 1394b
Size: 44.8 mm × 29 mm × 29 mm incl.

connectors
Mass: 80g
Optics Connector: C-Mount
GOYO OPTICAL INC. GM23514MCN 127 e
Angle of View (H×V×D): 103.6◦ × 76.00◦ × 132.1◦
Focal Length: 3.5 mm
Aperture: f/1.4 to close
Size: ∅31 mm ×30.5 mm

747 e

Table 2.1: Camera and optics for the test bed

their own drivers for the Windows platform which renders concurrent operation of
different devices complicated. However, the cameras and Unibrain, despite being
officially supported, rendered prone to timing issues due to the lengths of the cables
placed in the test vehicle. These problems were partly overcome by increasing the
allowed time for a device to register at the Unibrain stack.

2.4 Camera Calibration and Evaluation of Cam-
era Models

This section gives an overview about two geometric camera models and their re-
spective calibration and why these are needed for object detection and tracking.
In general, there exists a wide range of different camera hardware – different kinds
of sensors and, more important, different kinds of optics. Beside standard lenses,
there is a variety of wide angle and fish-eye lenses that capture a wider area of
the environment but introduce stronger distortions to the final image. Lately in
computer vision, catadioptric systems have been introduced, that have an even
wider opening angle of up to 360◦ compared to wide angle lenses which can reach
up to around 220◦.
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2.4 Camera Calibration and Evaluation of Camera Models

Especially when trying to identify objects in such images, distortions intro-
duced by the optics can interfere with the actual detection process, e.g. straight
lines in the real environment become bent in the images captured by the camera.
Additionally, the form of an object in the might look different through the distor-
tions. Distortions are geometric projection errors that are generated by the optics
of the system. Hence, for object detection, knowing the geometries that cause
such distortions to undistort images and remove the influence of the distortions
can greatly improve detection performance. This process is also called rectification.
Most camera lenses introduce two kinds of distortions, radial distortions emitting
from the center of the image and tangential distortions. Radial distortions are

Figure 2.3: Radial barrel distortion around the image center

radially symmetric around the image center as most lenses are manufactured ra-
dially symmetric. Especially for wide angle lenses the zoom level in the middle of
the image is usually higher than at the borders which is called barrel distortion
(Figure 2.3). Tangential distortions, for example, can be seen in images taken
from a camera which is positioned behind the windshield of a car. The bottom
part of the image might exhibit a higher zoom level than the upper part because
of the different distances to the windshield and the different ways the light rays
take through the glass.

2.4.1 Intrinsic Calibration

A camera model defines a geometric system that describes how a ray of light hits
the camera sensor. Most of the models require a single viewpoint which means,
that all incoming light rays, restricted by the geometries of the optics, intersect in
a defined point, the view point or focal point. In the following pages two models
will be explained in detail. The standard pinhole model with radial distortion
parameters available in OpenCV [Its13b] can be used for most cameras. With wide

21



2.4 Camera Calibration and Evaluation of Camera Models

angle optics however, a more sophisticated model may be needed. The Scaramuzza
model [SMS06a, Sca07] can both model wide angle lenses and catadioptric systems.

The term calibration refers to defining parameters for a camera model. One
differentiates between extrinsic and intrinsic parameters. Intrinsic parameters are
parameters of the camera model, e.g. the focal point distance or the center of
the image. Extrinsic parameters define the position (translation) and orientation
(rotation) of the camera with respect to a reference coordinate frame. Altogether
there are three coordinate systems – the world coordinate frame, which defines
a general reference system, the camera coordinate system which originates in the
viewpoint of the camera and the image coordinate system which is a two dimen-
sional system describing the position of a pixel in the actual image. Details about
these reference systems can be found in section 1.3.

OpenCV Camera Model

The camera model used in the famous computer vision library OpenCV [Its13b]
dates back to a paper from Microsoft Research presented in 2000 [Zha00]. It has
been extended several times to model different kinds of distortions. The model is
defined through a simple pinhole-model and a distortion function that maps the
ideal pinhole projection image points to distorted image points based on distortion
parameters.

The camera matrix A ∈ R3×3 contains the following parameters for trans-
forming a point (X, Y, Z)> ∈ R3 from the cameras reference 3-dimensional pinhole
coordinate system to the final image (u, v) ∈ R2 with fx, fy being the focal lengths
in pixel units and (cx, cy) being the principal point. The scaling factor s is equal
to z in this case.

s

uv
1

 =

xy
z

 =

fx 0 cx
0 fy cy
0 0 1


︸ ︷︷ ︸

A

XY
Z

 (2.1)

Cameras in general are not distortion free, thus, the OpenCV model introduces up
to 3 radial distortion parameters ki and two parameters pj to account for tangential
distortions. The distortion function repositions the ideal pinhole pixel position to
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the distorted pixel position. Distortion modeling is introduced in the following
way.

x′ = x/z (2.2)
y′ = x/z (2.3)
r2 = x′2 + y′2 (2.4)
x′′ = x′(1 + k1r

2 + k2r
4 + k3r

6) + 2p1x
′y′ + p2(r2 + 2x′2) (2.5)

y′′ = y′(1 + k1r
2 + k2r

4 + k3r
6) + p1(r2 + 2y′2) + 2p2x

′y′ (2.6)
u = fx · x′′ + cx (2.7)
v = fy · y′′ + cy (2.8)

The coordinates x′ and y′ are the ideal pinhole coordinates and x′′ and y′′ their
respective repositioning based on the distortion parameters. Unfortunately, the
reverse operation (u, v) 7→ λ(X, Y, Z) is not as trivial as the distortion polynomial
has to be solved for x′ and y′.

If the world reference frame (Xw, Yw, Zw) is different from the camera coordi-
nate frame, another transformation has to be added. Homogeneous coordinates
are used for this transformation as this allows including rotations and translation
in a single matrix. The parameters rij combine rotations along the three main
axes and an additional offset is presented by (t1, t2, t3)>.

TC←W =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 (2.9)


X
Y
Z
1

 = TC←W


Xw

Yw
Zw
1

 (2.10)

The acquired camera coordinates (X, Y, Z) in the camera reference frame are then
further processed as described in eq. (2.1).

Scaramuzza Camera Model

The simple pin-hole model, even incorporating distortions, is mathematically not
able to model fields of view with angles greater than 180◦. In practice, problems
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occur with much smaller angles already. In 2006/2007 Davide Scaramuzza pre-
sented a new camera model in a paper and his PhD thesis [SMS06a, Sca07] which
allows higher viewing angles. The proposed approach describes a general camera
model for mirror lens optics (catadioptric, fig. 2.4c) and wide angle lenses (fish–eye,
figs. 2.4a and 2.4b). Those systems exhibit strong radial distortions. In fish–eye
lenses, this can be recognized when the middle of the image has a higher zoom
factor than the edges. Resulting from these distortions, straight lines become bent
and relative sizes change.

(a) Wide angle optics (b) Fish-eye optics (c) Catadioptric system

Figure 2.4: Images taken with different optics

Instead of simply repositioning the pixels on the image plane with a distortion
function, Scaramuzza’s model computes a vector (x, y, z)> ∈ R3 emanating from
the single viewpoint to an image sphere pointing in the direction of the incoming
light ray for each pixel position (u, v) ∈ R2 . The reference frame (u, v) originates
in the center of the image. The difference of the central projection used in the
pin-hole model and Scaramuzza’s approach can be seen in Figure 2.5.

Scaramuzza utilizes the properties of the spherical projection to estimate a
function g(ρ) so that a point (X, Y, Z) ∈ R3 in camera coordinates can always
be represented as a point on the ray λ(u, v, g(ρ))> with λ ∈ R being an arbitrary
scaling factor. The function g(ρ) is defined as a Taylor polynomial with coefficients
ai that define the intrinsic parameters with ρ =

√
u2 + v2 being the Euclidean

distance of the pixel position (u, v) from the image center. This function g(ρ)
models the radial distortion at the same time.

g(ρ) = a0 + a1ρ+ a2ρ
2 + a3ρ

3 . . . anρ
n (2.11)XY

Z

 = λ

 u
v
g(ρ)

 (2.12)
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(a) Central projection limited to
points that lie in front of the pro-
jection plane

(b) The spherical model distin-
guishing two scene points lying on
opposite half-lines

Figure 2.5: Perspective projection limited to view angles covered by the projec-
tion plane and spherical projection which covers the whole camera reference frame
space [SMS06a]

Figure 2.6: Scaramuzza model for a fish–eye lens [Sca07]
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Certainly, to project a point (X, Y, Z) in camera coordinates onto the image,
eq. (2.12) has to be solved for u and v which requires solving the polynomial of
g(ρ). As this is computational inefficient, Scaramuzza estimates an inverse Taylor
polynomial f(θ) which describes the radial positioning on the image plane based
on the angle θ of a light ray to the z axis.

f(θ) = b0 + b1θ + b2θ
2 + b3θ

3...bnθ
n (2.13)

r =
√
X2 + Y 2 (2.14)

θ = atan(Z/r) (2.15)

u = X

r
f(θ) (2.16)

v = Y

r
f(θ) (2.17)

The model applied on a fish-eye lens can be seen in Figure 2.6. Further details
of the model can be found in [SMS06a, Sca07, SMS06b]. During the calibration
process, several parameters are estimated (Table 2.2).

Description Parameters

Scaling of sensor to im-
age plane

c, d, e with
(
u′

v′

)
=
(
c d
e 0

)(
u
v

)

Taylor polynomial g ai
Image projection Taylor
polynomial

bi

Image center (xc, yc)

Table 2.2: Parameters of an intrinsic Scaramuzza calibration

Calibration with OpenCV

The calibration process of OpenCV is fairly automated and requires only XML files
that describe which model parameters to be used and images or a video stream
of the chosen pattern in different poses. Both circle patterns and checkerboard
patterns are supported by OpenCV. The process is described in detail in [Its13a].
The pattern which is used to calibrate the camera is a checkerboard pattern with
5 cm × 5 cm squares. The calibration was done on 30 static images showing the
checkerboard pattern in different poses (Examples in Figure 2.7).
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Figure 2.7: Calibration images

For calibration, three radial parameters are estimated and tangential distortion
is neglected. The number of radial parameters has been chosen as it still allows
to solve (u, v) 7→ λ(X, Y, Z) using Newton’s method. This is necessary for the
calculation of light ray directions. To compute the incoming ray for a given image
point is necessary for optical flow estimation methods which are introduced in
chapter 3. OpenCV allows more distortion parameters which might result in a
better calibration but come with higher computing costs.

Calibration with Scaramuzza

Scaramuzza provides a Matlab toolbox [SMS06b] which allows the calibration from
static images showing a checkerboard pattern. The same images that were used for
the OpenCV calibration are used for the Scaramuzza calibration. The calibration
process is described in [Sca13]. In the first step the checkerboard corners are semi-
automatically extracted from the input images. After this, a first estimate of the
Taylor polynomial is computed. The use of 4 coefficients for the polynomial showed
the best results in the error evaluation. From this first calibration the principal
point is optimized. This step is required to compensate for optics that are not
exactly placed over the sensor center. In a further refinement step the calibration
is optimized for the new principal point. Figure 2.8 shows the evaluated Taylor
polynomial ai of the left side camera calibration and the corresponding angle of
the ray to the z-axis of the camera system. Additionally, Figure 2.9 shows the
re-projection of the pattern coordinates into the image. The red circle represents
the estimated principal point projected into the image.
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Figure 2.8: Scaramuzza calibration results of the left camera calibration: g(ρ)
and the angle of the rays from the z-axis in relation to the distance ρ from the
image center
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Figure 2.9: Re-projection of the extracted 3–dimensional corner world coordi-
nates back into the image. Red crosses represent the detected corner points and
green circles their respective re-projection

2.4.2 Extrinsic Calibration

The translation of the camera can be roughly measured with standard measure-
ment tools. The rotation of the camera, however, is computed by estimating the
transformation to a reference coordinate system. Both the OpenCV and Scara-
muzza model provide functions to estimate a transformation from given world
coordinates in reference system P and corresponding image coordinates I to the
camera coordinate system C based on the camera model. The reference frame P is
represented by a checkerboard aligned with the ground plane. Its axes are parallel
to the vehicle’s ego coordinate system (Figure 2.10).

The algorithms for estimating extrinsic parameters from a pattern have been
implemented in Cassandra. In the first step the image coordinates and correspond-
ing checkerboard coordinates are extracted. The method findChessBoardCorners
for automatic checkerboard detection provided by OpenCV is robust but fails in
some cases. However, to detect the checkerboard patterns in the distorted images
of the cameras, the algorithm for automatic detection of checkerboards on blurred
and distorted images from [RSS08] has been used. This approach performs better
in areas of stronger distortions. After extracting the corner points of the pattern,
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the corners are refined using OpenCV’s cornerSubPix method with a window size
of 4× 4 pixels to acquire sub–pixel accurate corner positions.

Pairs of image coordinates (ui, vi) and their respective points on the checker-
board (xi, yi, 0) are used to estimate a transformation matrix TC←P which trans-
forms pattern coordinates into camera coordinates of the respective camera model.
Both OpenCV and Scaramuzza provide methods to estimate this transformation.
Scaramuzza’s extrinsic calibration method has been implemented based on the
Matlab code of the Scaramuzza Calibration Toolbox [SMS06b] and the descrip-
tion in [SMS06a, Estimation of the extrinsic parameters, p. 31] in Cassandra.
OpenCV provides this functionality with the solvePnP function which computes
the transformation from the 3D-2D point correspondences given an intrinsic cal-
ibration. Assuming that the world coordinates lie in the same plane as the ego
coordinate system E and that coordinate system P ’s axis are parallel to the car
reference frame E the rotation angels can be computed. In this method, the angles
are defined as concatenated rotations Rz(θz)Ry(θy)Rx(θx).

(a) Camera view of the pattern aligned with
the car.

(b) Zoomed pattern with annotated pattern
coordinate system.

Figure 2.10: Extrinsic calibration using a checkerboard pattern – Crosses rep-
resent the extracted corners from the image and circles the reprojected pattern
coordinates

Assuming that all points of the chessboard pattern reference frame lie in a
plane, the z–coordinate is set to 0. The size of each square is 0.05 m × 0.05 m
– the top row is used as x-axis and the right column as y-axis. For each pattern
point (x, y, 0) the corresponding image point (u, v) is detected and used to estimate
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the extrinsic transformation matrix for homogeneous coordinates in the following
form:

TP←C =


t1

Rz(θz)Ry(θy)Rx(θx) t2
t3

0 0 0 1

 (2.18)

The matrices in eqs. (2.19) and (2.20) represent the transformation from the
pattern reference system to the camera coordinate system.

TCscara←P =


−0.9548 0.2894 −0.0672 0.4460
0.1242 0.1832 −0.9751 0.5533
−0.2699 −0.9394 −0.2109 1.4497

0 0 0 1

 (2.19)

TCocv←P =


−0.9559 0.2847 −0.0708 0.4579
0.1314 0.1997 −0.9709 0.5315
−0.2623 −0.9375 −0.2284 1.4591

0 0 0 1

 (2.20)

The inverse matrices correspond to the inverse transformations.

T−1
Cscara←P = TP←Cscara =


−0.9548 0.1242 −0.2700 0.7486
0.2895 0.1833 −0.9395 1.1314
−0.0672 −0.9752 −0.2110 0.8754

0 0 0 1

 (2.21)

T−1
Cocv←P = TP←Cocv =


−0.9560 0.1315 −0.2623 0.7507
0.2847 0.1998 −0.9376 1.1314
−0.0708 −0.9710 −0.2284 0.8819

0 0 0 1

 (2.22)

Using the method presented in [Sla99], the angles θx, θy and θz are extracted from
the transformation matrices (Table 2.3). Furthermore, the pattern represents the
ground plane. Therefore the translation in TP←Cocv and TP←Cscara represents
the camera position in pattern coordinates. Accordingly, the z-coordinate of the
translation corresponds to the height of the camera. The computed angles can be
used as a good starting point for the extrinsic calibration.

Using this extrinsic calibration and projecting the RADAR targets back into
the image returns reasonable results which can be seen in Figure 2.11.
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OpenCV Scaramuzza
θz 76.76◦ 77.79◦
θy 16.34◦ 16.31◦
θx 4.06◦ 3.85◦
Z 0.8819 0.8754 m
Z measured 0.905 m
Y measured 0.97 m
X measured −0.79 m

Table 2.3: Extrinsic parameters computed from a single image with OpenCV
and Scaramuzza Camera models

Figure 2.11: A bicycle tracked by radar visualized in the camera image, thin
lines represent the car’s ego coordinate system projected into the image
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The Cassandra graph that computes transformations based on detected pat-
terns for both Scaramuzza and OpenCV can be found in Figure C.1 in the appendix
on page 104.

2.4.3 Results

To evaluate both models on accuracy, transformations TC←P are computed for
several different images as described in section 2.4.2. The pattern reference points
are transformed into 3-dimensional camera coordinates and are reprojected back
into the image. Finally, these reprojected points (u′i, v′i) are compared to the
detected image coordinates (ui, vi) extracted by the pattern detector. To measure
the performance, error criteria are defined. The Euclidean distance ei is used to
define the error from the detected image coordinate of the pattern (ui, vi) in the
original image to the reprojected point (u′i, v′i) using the respective camera model.
From those, average error, variance and the accumulated square error over all n
pattern points in one image are computed.

ei =
√

(ui − u′i)2 + (vi − v′i)2 (2.23)

e = 1
n

n∑
i=1

ei (2.24)

σ2 = 1
n

n∑
i=1

(e− ei)2 (2.25)

E =
n∑
i=1

e2
i (2.26)

The results are shown in Tables B.1 and B.2 on pages 102 and 103 in the
appendix for both left and right camera. At first it looks like OpenCV performs
slightly better than the Scaramuzza model. Both models perform with good ac-
curacy. Even though it looks like the OpenCV model is the better choice, the
Scaramuzza model has an unelectable advantage – its performance in approximat-
ing the geometries close to the image borders. The image from Figure 2.12a was
undistorted with both models in Figures 2.12b and 2.12c. When undistorting the
camera image based on the intrinsic model, OpenCV introduces strong distortions
close to the image borders as the radial correction does not generalize well in
these sections. This effect might be introduced by the higher order polynomial
which OpenCV approximates for the distortion model. Both models remove the
distortions in the middle of the image very well. Lines become straight and the
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2.4 Camera Calibration and Evaluation of Camera Models

(a) Original distorted image from cam-
era

(b) Undistorted image from OpenCV
which introduces new distortions near
the image borders

(c) Undistorted image from Scara-
muzza which is distortion free.

Figure 2.12: Comparison of undistorted images from Scaramuzza and OpenCV
model
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fish-eye effect is removed. When looking at the buildings in the top right corner,
it is notable that the Scaramuzza approach fixes the outer parts significantly bet-
ter while OpenCV introduces mirroring and strong distortions in the outer parts.
This can be overcome by using more radial distortion parameters (k4 − k6). This
is supported by OpenCV but makes the calculation of the direction of a light ray
even more computational inefficient. The Scaramuzza approach, however, allows
efficient transformations from image space to camera space and from camera space
to image space. Furthermore it is already used internally in other projects at Hella
Aglaia and supports the potential switch to optics with an even wider angle as well
as catadioptric systems. Therefore, this model is used for all further work.

Overall both models have their advantages and disadvantages which are sum-
marized in the following.

OpenCV Advantages

• Automatic calibration process on both video and static images with a variety
of supported pattern types, e.g. checkerboards or circle boards

• C/C++ implementations available

• Models tangential distortion parameters

OpenCV Disadvantages

• Does not generalize well in border regions for wide angle lenses if only used
with 3 radial distortion parameters

• No computing-efficient way to estimate the direction of the light ray which
hits the image plane

• Generally restricted to opening angles less than 180◦

Scaramuzza Advantages

• Both transformations image to camera coordinates and camera to image are
efficiently computable

• Good generalization near image borders on wide angle lenses
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• C implementation for basic transforms available

Scaramuzza Disadvantages

• Only semi-automatic calibration process on static images in Matlab available
which requires a license of the Matlab Optimization Toolbox

• No tangential distortion modeling

2.5 Hardware Setup

This section describes the general setup of the hardware as well as the intercon-
nections between processing units and sensors. Furthermore, the sensor mountings
are explained.

2.5.1 Sensor Mounting

(a) Camera with housing
mounted to mirror

(b) Camera with housing
mounted to mirror

(c) Side radar sensor
mounted to bumper

Figure 2.13: Sensor mountings

Protecting the cameras from bad weather conditions is crucial. This fact made
it necessary to build custom housings which have been attached to metal plates
mounted to the bottom of the side mirrors. The housings were made from PVC
and sealed with silicone which can be seen in figs. 2.13a and 2.13b. The RADAR
sensors are attached to the front bumper 75◦ to the left and right as shown in
fig. 2.13c. They cover an area of 120◦. The exact mounting parameters of the
RADAR sensors are shown in Table 2.4.
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xs: 680 mm
ys: ±725 mm
zs: 348 mm (related to street level)
angle: ±75◦ (0◦ conforms to straight front direction)
opening angle: ±60◦
pitch angle to top: 3− 5◦

Table 2.4: Mounting positions of RADAR sensors

The cameras have been mounted so that they cover as much of the radar view
as possible. Hence, the camera’s yaw angle is rotated about 10◦ to the front.
Furthermore, areas that usually do not contain objects should not be captured,
thus, the pitch angle is about 10◦ to the ground floor direction to capture less sky
area. A top view with the sensor overlap and a side view of the mounting positions
can be found in Figures A.1 and A.2 in the appendix on pages 99 and 100.

2.5.2 Telematics and Data Flow

Instead of a spare wheel, most of the processing hardware and the main connections
are situated in the trunk. Figure 2.14 shows the setup. The main processing unit
(1) is an industry PC featuring an Intel Core i7 running Windows XP andWindows
7 in dual boot mode. It includes a CAN XXL Board and FireWire interconnections.
CAN data can be directly recorded through the CAN XXL Board or synchronized
to the FireWire clock by the CLIO device (4). The latter is directly connected
to the CAN Hub (5). In the current setup it captures both data from the vehicle
CAN and the private CAN of the RADAR sensors.

The complete data flow is presented in Figure 2.15. The RADAR sensors are
separated into master and slave sensor. The master sensor includes a Commu-
nication Processor (KP) which is provided with raw targets by the slave sensor.
The KP merges the raw target lists for each 50ms interval from the left and right
sensor and processes the object tracking. Both raw targets and object tracks are
sent through the private CAN. The CLIO device captures both data from the pri-
vate CAN and the vehicle CAN and forwards it, packed into a FireWire stream,
to the FireWire connection of the industry computer. All available cameras are
connected to the FireWire board as well.
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2.5 Hardware Setup

Figure 2.14: Hardware situated in the trunk of the test bed. 1: Industry Com-
puter, 2: Power Switch, 3: S-ATA hard disk case, 4: CLIO, 5: CAN Interlink
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Figure 2.15: Dataflow of the test bed
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2.6 Recording and Replaying of Data

Offline processing of data is a necessary need for development as the test bed
vehicle is not always available and repeated testing of algorithms on the same
data is crucial. Cassandra allows to continuously record sensor data and save it to
video streams and CAN data files. Cassandra offers a DriveRecorder module for
this purpose. The DriveRecorder provides an internal buffer to avoid frame drops
and writes the video streams from the left and right camera to uncompressed
Audio Video Interleave (AVI) files. The CAN data is continuously stored in *.rec
files which also synchronize the camera frames to the internal clock. This results in
two video streams for the two side cameras and two *.rec files for private CAN and
vehicle CAN. This process requires high throughput, therefore the data streams
are stored on an SSD to avoid data loss.

The Cassandra Graph for storing the data can be found in the appendix on
page 105. At first the CAN data is collected from the CLIO and captured by
the clio station which forwards it to the ClioDemuxer station that demuxes the
private and the vehicle CAN messages to two different message streams which
are connected to the two message ports of the DriveRecorder station. The two
camera stations (avt_left and avt_right) capture uint8 gray scale images from
the cameras at 20 Hz and forward it to the respective ports of the DriveRecorder
station. There is no further processing of the input data. The DriveRecorder
station stores the data streams in a memory buffer to avoid frame drops due to
hard disk latency and subsequently writes the data to the SSD.

A minimal graph for replaying the data within the Cassandra framework can
be found in Figure C.3 on page 106. The player station has to be instructed which
stream to play at which port. Therefore, for each record a *.scene file is created
that contains the names of files which are associated to the recording (listing 2.1).
As previously mentioned, there are two files for the captured video data and two
CAN message files.

1 img1=RADAR_20130604_125156_1 . av i
msg1=RADAR_20130604_125156_1 . r ec

3 img2=RADAR_20130604_125156_2 . av i
msg2=RADAR_20130604_125156_2 . r ec

Listing 2.1: *.scene file

After loading such a file in the player, the left video stream is sent through port
img1 and the right through img2. CAN messages captured from the private CAN
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2.6 Recording and Replaying of Data

are forwarded at the msg1 port and the vehicle messages can be found at port msg2
of the Player station.

The data captured from the CAN bus has to be decoded for further processing
which is done in the FSR sub graph. This sub graph also fetches information from
the SensorSystem station which allows to enter extrinsic parameters of the master
and slave RADAR sensors. This information is needed to transform coordinates
from the RADAR sensor’s local coordinate frame to the ego vehicle reference frame.
The mounting position in the ego coordinate frame and the respective alignment
are summarized in Table 2.4 on page 37.

The FSR sub macro (Figure C.4 on page 107 in the appendix) decodes the
CAN messages from the private CAN and translates it to a list of tracked ob-
jects and a list of respective RADAR raw targets for a given measurement cycle.
In detail, the raw CAN messages are sent to the msg port of the msg2data sta-
tion which decodes the data based on a database file and transforms it into a
generic data message format of the Cassandra Framework which is then passed to
the P-CAN-Interface station. This station collects messages containing raw tar-
gets of the master (targetList_0) and slave sensor (targetList_1) and the final
object tracks (objList). In the last step the corresponding raw target lists are
synchronized and merged into a combined list and forwarded with the respective
object list for further processing.
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Chapter 3

Sensor Fusion of Radar and
Camera for Object Tracking

This chapter introduces a sensor fusion concept for side RADAR and side camera
sensors. Features and methods usually utilized for classification and detection
of vehicles in front or rear cameras are not sufficient for the processing of images
from wide angle side cameras. Vehicles appear in different angles which renders the
symmetry assumptions of front views and rear views inapplicable. Therefore other
methods are explored in this chapter. Pre-processing methods and the definition
of Regions of Interest (ROIs) are introduced in the first part. Following from
this, a method to predict optical flow in an image sequence based on RADAR
measurements is explained. Section 3.4 describes an optimization process to fit 3-
dimensional vehicle models to position hypotheses acquired from RADAR sensors.
This process is refined by exploiting the prediction of optical flow based on RADAR
velocity and position information of moving objects in the last part.

3.1 Image Correction

The side camera images exhibit strong radial distortions which can influence per-
formance of classification algorithms. These distortions can be removed by geo-
metric transforms based on the camera model. This process is called rectification
or undistortion. Mappings between the pixels of the undistorted and distorted im-
age and vice versa are needed to identify ROIs in both images. OpenCV already
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3.1 Image Correction

provides methods for realizing geometric transforms by remapping pixel coordi-
nates and interpolating between them from a source image (src) to a destination
image (dst) in the form

dst(x, y) = src(fx(x, y), fy(x, y)) (3.1)

Thus, the two mappings fx(x, y) and fy(x, y) which map the pixel coordinates of
the undistorted image (xu, yu) to pixel coordinates in the distorted source image
(xd, yd) have to be created.

Undistortion can be realized by imitating a pin-hole camera and projecting the
camera image to a plane parallel to the sensor plane in the camera coordinate
system with an arbitrary but fixed focal length f . The images have width w
and height h. The roll angle α, resulting from the mounting of the camera, is also
partly corrected with the help of a rotation of the plane around the z-axis in the 3D
camera coordinate system. The resulting 3D points are then projected back from
camera coordinates to the image plane by the camera model’s cam2img function
which is a transformation R3 7→ R2 (see section 2.4.1 for details). Rz ∈ R3x3 is
the rotation matrix around the z-axis.

f(xu, yu) −→ (xd, yd) : (3.2)

p =

xu − w/2yu − h/2
w/f

 (3.3)

p′ = Rz(α)p (3.4)
(xd, yd) = cam2img(p′) (3.5)

The resulting image does not show the barrel distortions. Lines that are straight
in the real world are straight in the captured image as well (Figure 3.1).

The reverse mapping g(xd, yd) 7→ (xu, yu) which maps pixels of the distorted
image (xd, yd) to pixels in the undistorted image (xu, yu) is achieved by calculating
the intersection of the light ray falling into pixel (xd, yd) with the virtual pin-hole
plane previously constructed.
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3.1 Image Correction

(a) Distorted (b) Undistorted and roll angle cor-
rection

Figure 3.1: Distortion and roll angle corrected camera image

At first, the plane with plane point p = (0, 0, w/f) and plane normal n =
(0, 0, 1)> (along the z-axis) has to be constructed.

g(xd, yd) −→ (xu, yu) : (3.6)

n =

0
0
1

 (3.7)

p =

 0
0

w/f

 (3.8)

q = img2cam(xd, yd) (3.9)

The function img2cam returns a vector describing the direction of the correspond-
ing light ray falling into that pixel. The intersection with this ray q and the plane
is the point on the virtual pin-hole plane.

For the intersection (λq− p) · n = 0 holds true, thus λ can be calculated as it
follows.

λ =
px · nx + py · ny + pz · nz
qx · nx + qy · ny + qz · nz

(3.10)

Finally, the point is rotated back into the virtual plane to take account of the roll
angle correction. From the resulting point the x and y coordinates represent the
pixel position in the undistorted image.

q′ = R−1(α)zλq (3.11)
(xu, yu) = (qx, qy) (3.12)
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3.2 Extracting Regions of Interest

The RADAR tracker provides position information in coordinates (x, y, 0)> ∈
R3 in the ego coordinate system. With extrinsic and intrinsic calibration, these
coordinates can be transformed into image coordinates. The region in the image
that is occupied by a vehicle largely depends on the distance to the camera. ROIs
should include the vehicle and avoid capturing too much unnecessary environment.
The following heuristics rendered useful for achieving reasonable ROIs.

Figure 3.2: Extraction of regions of interest – C defines the tracked object center
provided by the radar tracker

Figure 3.2 shows how the camera position A and the tracked object’s center
C = (xc, yc, 0) are aligned. The distance from the camera to the car can be simply
defined as r = |C−A|. The length of a car is approximately between 3 (total front
view) and 6 meters (total side view). It is assumed that projecting C into the
image results in image coordinates close to the center of the vehicle in the image.
Thus, the area d = 3 meters left and right of the center C should capture both
ends B and B′ of the vehicle. The approximation of those two points is achieved

44



3.3 Image Segmentation Based on Predicted Optical Flow

by a rotation around the z-axis in reference point A with the rotation angle β in
ego coordinates.

tan β = d

r
(3.13)

B = Rz(β) · C (3.14)
B′ = Rz(β) · C (3.15)

(3.16)

Finally we set the z-coordinate of B to −0.5 (half a meter below the ground plane)
and z of B′ to 2.5 (2.5 meters above the ground plane).

Bz = −0.5 (3.17)
B′z = 2.5 (3.18)

Projecting the points B and B′ back into the camera image results in the top
left corner and bottom right corner of a rectangle that includes the vehicle if the
tracked object’s center was assumed correctly. Some extractions with different
distances r can be seen in Figure 3.3. As the scaling of cars in the image is mainly
dependent on the distance to the camera, the extracted ROIs are size invariant
when scaled to the same image size.

The camera image still contains distortions and influence of the roll angle of the
camera. Extracting the ROIs from the undistorted image might give better results
for further processing. The function cam2img(x, y, z) 7→ (xd, yd) ∈ R2 defines the
camera coordinate to image pixel mapping of the used camera model. Instead of
directly extracting the rectangle defined by cam2img(B) and cam2img(B′), the
transformation g(xd, yd) −→ (xu, yu) presented in section 3.1 is applied to the
rectangles corner points. The new rectangle corner points C = g(cam2img(B))
and C ′ = g(cam2img(B′)) describe a similar rectangle in the undistorted image.
Figure 3.3 shows extracted rectangles from one of the recordings both from the
distorted original camera image and the undistorted image.

3.3 Image Segmentation Based on Predicted Op-
tical Flow

Optical flow in general is defined as the offset of pixels through movement in
two consecutive images. A pixel at position ut = (ut, vt) in the image at time
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(a) distorted (b) undistorted (c) distorted (d) undistorted

(e) distorted (f) undistorted (g) distorted (h) undistorted

(i) distorted (j) undistorted (k) distorted (l) undistorted

Figure 3.3: Extracted ROIs from the distorted image and the undistorted image
with slight roll correction

point t can be found in the consecutive image at time point t + 1 at position
ut+1 = (ut+1, vt+1). In conclusion, the optical flow is defined as f = (∆u,∆v)>.
The RADAR tracker provides relatively accurate velocity information. However,
the position estimate, and following from this, the size of the object might be
imprecise. The motion of an object in 3D-space indirectly defines the flow in the
2D image. If the motion in 3D space is known, the motion in the image can be
predicted by the help of a camera model which translates 3D points into image
space.

This section presents a way to fuse velocity and position information acquired
from the RADAR sensors with optical flow from the camera images to segment
ROIs that move with similar velocity to the RADAR target. These regions are
more likely to contain the actual moving object and cover its full dimensions. In
this approach a few assumptions are made:

1. Optical flow is highly dependent on the distance to the camera, e.g. close
vehicles have higher optical flow response than vehicles further away from
the camera, despite having the same velocity.
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2. Knowing position xC = (x, y, z)> and velocity vC = (vx, vy, vz)> in cam-
era coordinates, the optical flow of the corresponding image point can be
predicted for the next frame.

3. Moving vehicles have a good response to optical flow based on Kanade-Lucas-
Tomasi Tracker (KLT Tracker) feature tracking method [TK91] because they
contain a high amount of structure compared to most environments.

3.3.1 Prediction of Optical Flow

The RADAR tracker returns a radar object state as a vector containing the position
(xe, ye, 0) ∈ R3 and its velocity (ve,x, ve,y, 0) ∈ R3 in the ego vehicle coordinate
system E. These are transformed into the camera reference frame C by the help
of the extrinsic calibration of the camera. The velocity vector vE is only rotated
and not translated. To skip the translation in homogeneous coordinates the last
entry of the vector is set to 0.

xC = TC←ExE = TC←E


xe
ye
0
1

 (3.19)

vC = RC←EvE = TC←E


ve,x
ve,y
0
0

 (3.20)

The prediction of the optical flow of a point xt = (xc,x, yc,y, zc,z)> in cam-
era coordinates moving with vt = (vc,x, vc,y, vc,z)> can be achieved by linear for-
ward motion with the estimated velocity for the time difference of two consecutive
frames. Both RADAR and camera generate data with a frequency f = 20Hz
in the current setup. Therefore, the time difference of two consecutive frames is
1
f = 0.05s. Thus, the new position xt+1 of an object in the consecutive frame is
estimated as it follows.

f = 20Hz (3.21)

xt+1 = xt + 1
f

vt =


xt + 1

f vt,x
yt + 1

f vt,y
zt + 1

f vt,z

 (3.22)
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Using the chosen camera model, both xt and xt+1 in camera coordinates are
transformed into image coordinates ut = (ut, vt) and ut+1 = (ut+1, vt+1). Thus,
the predicted optical flow ft = (∆u,∆v)> is the difference of both image coordi-
nates.

ut = cam2img(xt) (3.23)
ut+1 = cam2img(xt+1) (3.24)

ft =
(

∆u
∆v

)
= ut+1 − ut =

(
ut+1 − ut
vt+1 − vt

)
(3.25)

The prediction of optical flow for arbitrary points of the image based on a single
RADAR object is achieved by placing a 3-dimensional plane d parallel to the
projection plane of the camera in the camera reference frame. This plane is fixed
in the RADAR object’s position x = (x, y, z)> with a plane normal n = (0, 0, 1)>.
The whole plane is moved with velocity vC for one time cycle. For each image
pixel u = (u, v) in the image at time point t a ray originating in the camera’s
viewpoint is pointed to the plane d and the intersection point ht is computed.
This 3-dimensional intersection point ht is then forward predicted to time point
t+1 through a motion for one time step with velocity vC as described in eq. (3.22).
Figure 3.4 visualizes this approach.

xc

yc

zc

Fc

x

y

v

d

x

Figure 3.4: Prediction of optical flow through a plane d originating in the
RADAR object’s position x in camera coordinates and moving this plane with
velocity v for one time frame

To find the points on the virtual plane d for time frame t, the light rays of
the camera model have to be intersected with the plane. The Scaramuzza camera
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model defines the direction of a light ray λq, λ ∈ R,q ∈ R3 falling into the camera’s
viewpoint for each image coordinate u = (u, v) by the function img2cam(u, v)
which maps the image coordinate to a 3-dimensional vector that represents the
direction of the light ray u = (u, v) ∈ R2 7→ q = (x, y, z) ∈ R3. The intersection
of this light ray λq with the virtual plane d is a potential object position for which
the predicted flow is calculated. The following equations show the algorithm for
an arbitrary image point u and RADAR object position x.

n =

0
0
1

 (3.26)

x =

xy
z

 RADAR target in camera coordinates (3.27)

q = img2cam(u) light ray for pixel position u (3.28)

The intersection point can be calculated by solving the plane’s normal form (λq−
x) · n = 0 for λ. Thus, the corresponding potential object point ht on the plane d
is λq.

λ =
xx · nx + xy · ny + xz · nz
qx · nx + qy · ny + qz · nz

(3.29)

ht = λq (3.30)

The optical flow for the camera coordinate point ht can be predicted as described
in eq. (3.22). Figure 3.5 shows a dense field of the predicted optical flow for a given

(a) Camera image which contains a
moving object tracked by RADAR

(b) Predicted optical flow field for
the whole image

Figure 3.5: Predicted flow based on RADAR tracked object

RADAR object. The following section shows how such a field can be exploited to
narrow a ROI of a moving object in the camera image.
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3.3.2 Comparison of Predicted and Lucas Kanade Optical
Flow

The previous section explained how to predict the optical flow for a single RADAR
object at arbitrary positions (u, v) in the camera image. In the next step image
parts have to be located in which the optical flow is similar to the predicted
optical flow. A standard method to extract optical flow information from two
consecutive images is a method presented by Bruce D. Lucas and Takeo Kanade
[Kan81]. This method finds nearby motions of pixels in a close neighborhood. The
approach has been improved several times. Tomasi, Lucas and Kanade presented
a method to track corners over several frames which is known as KLT Tracker
[TK91]. In another paper called "Good Features to Track" [ST94], Jianbo Shi
and Carlo Tomasi added another step in which good initial features suitable for
tracking are chosen. The optical flow from two consecutive camera images is
acquired by applying the Lucas Kanade method [TK91] implemented in OpenCV
[Bou01, Its13b].

Figure 3.6: Oncoming vehicle with v = 40.95 km/h

Figure 3.6 shows a scenario in which the ego vehicle is standing in a parking
spot. The other vehicle moves with a velocity of 40.95 km/h towards the ego
vehicle. The Lucas Kanade flow vectors in the area of the moving vehicle are
similar to those predicted while those outside of the vehicle area are not.

Figure 3.7 shows the predicted flow and the actual Lucas Kanade flow at the
feature positions detected by the KLT Tracker. The predicted flow presented in
section 3.3.1 is annotated as fp while the flow based on the Lucas Kanade method
is annotated as fl in the following paragraphs. The base for comparison are the
corner features detected by the KLT Tracker. The tracker returns a set F of m
corner feature points ui = (ui, vi) with i ∈ N and 0 < i ≤ m that could be
tracked from one image to the other and their respective flow fl(ui) ∈ R2. For the
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(a) Optical flow computed with Lucas
Kanade method

(b) Predicted Optical flow at KLT fea-
ture points

Figure 3.7: Comparison of optical flow and predicted optical flow for a specific
RADAR target

comparison of the flow at image position ui = (ui, vi) ∈ F , the following equation
defines a similarity measure ui 7→ wi ∈ [0, 1] based on the Euclidean distance of
the normalized flow vectors in eq. (3.32).

ni = max(‖fp(ui)‖, ‖fl(ui)‖) (3.31)

wi = 1−
‖fp(ui)− fl(ui)‖

2ni
(3.32)

A similarity of 1 is a perfect match, while a similarity of 0 means, that the flow
vectors are showing in opposite directions. To save computation time, weights that
do not exceed a certain threshold fmin are removed. It shows useful to normalize
and rescale weights within defined thresholds [fmin, fmax] to the interval [0, 1]
to be used in the model fitting approach presented in section 3.4. For each wi
a corresponding refined weight w′i is computed. Weights that do not reach the
minimum thresholds are discarded from the set.

si = wi − fmin
fmax − fmin

(3.33)

w′i =


discard if si ≤ 0
1 if si > 1
si else

(3.34)

This method allows weighting of the detected feature points in the image. Cer-
tainly, weighting a wider area around the detected feature point is preferred as
the moving object very likely spreads around the feature point in a certain envi-
ronment. The distribution around the feature point however, is dependent on the
distance of the object to the camera, e.g. a vehicle 50 m away from the camera
may only consist of 3 feature points and is about 10 pixels wide. Therefore, a
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Gaussian function with a standard deviation depending on the distance to the
camera is introduced.

fi(u, v) = w′i · e
(ui−u)2+(vi−v)2

2σ2 (3.35)

The standard deviation estimation in eq. (3.38) has shown to return reasonable
estimates supported by several experiments. The vector xe = (x, y, 0, 1)> defines
the object’s position in homogeneous ego coordinates taken from the RADAR
measurement. It is transformed into the camera coordinate system to calculate its
distance d to the camera center.

xc = TC←Exe (3.36)
d = ‖xc‖ (3.37)

σ = 15 · 1
1 + 0.1d (3.38)

To define weights for every pixel of the image. two weighting methods have been
explored that showed reasonable results during experiments. The example images
show the weight maps for the scenario introduced previously (Figure 3.6). The
ego vehicle stands still and another vehicle is coming from the left with a velocity
of 40.95 km/h.

Weight Distribution Method 1:

(a) Weight distribution with annotated
ROI of the detected vehicle

(b) Weight distribution multiplied with
the input image

Figure 3.8: Optical flow based weight method 1

As aforementioned, the distribution of w′i around the detected corner feature
point (ui, vi) is approximated by a Gaussian-like function fi(u, v). At intersections
of two or more distributions, the highest weight is chosen.

w(u, v) = max
i

(fi(u, v)) (3.39)
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The result is a weight map of the whole camera input image for each RADAR
object. Higher weights define areas which move with a velocity similar to the
moving object detected by the RADAR (Figure 3.8).

Weight Distribution Method 2:

(a) Weight distribution with annotated
ROI of the detected vehicle

(b) Weight distribution multiplied with
the input image

Figure 3.9: Optical flow based weight method 2

This weighting method is based on the total probability P (A) of an arbitrary
image point A belonging to the moving object. If two or more detected feature
points are next to each other and have similar optical flow, the probability of the
points lying between them to belong to the moving object increases. Let A be an
arbitrary image point (u, v) and Bi n detected feature points with P (Bi) being
the probability of belonging to the moving object. Therefore, the total probability
of A being a point of a moving vehicle under the given distributions of Bi, is
defined as the sum over the conditional probabilities P (Bi)P (A|Bi). P (A|Bi) is
the probability of A belonging to the moving object at point Bi.

P (A) =
n∑
i=1

P (Bi) · P (A|Bi) (3.40)

Assuming that the estimated weight w′i of a corner feature point (ui, vi) de-
tected by the KLT Tracker is similar to the likelihood of the feature point contain-
ing the moving object which is looked for, this translates to

w(u, v) ∝ s(u, v) =
m∑
i

w′i · e
(ui−u)2+(vi−v)2

2σ2 (3.41)
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3.4 3D Model Fitting

Certainly, this process is neither continuous nor normalized anymore. This could
be normalized such that the integral over the entire image area equals one, though
this is of no use for the further processing. The weight map presents a good
heuristic for the likelihood if an area of the image belongs to the moving object.
The summed up Gaussian values might exceed the desired weight interval [0, 1].
Therefore a rescaling is needed. This can be achieved by a division by the final
maximum value of the weight map. This scales the weight map w(u, v) to [0, 1] in
eq. (3.42).

w(u, v) = s(u, v)
max(s) (3.42)

An example map is presented in Figure 3.9. The weights are distributed smoother
over the image compared to the first weighting method. The comparison of optical
flow and the derived weight maps allows to find regions in the image that move
with similar velocity as the vehicle tracked by the RADAR tracker.

3.4 3D Model Fitting

A relatively old approach for object detection and tracking is deformable model
fitting. First papers date back in the early 90’s [Low91], but the idea has been
revived in several new papers as well, e.g. [LM09, LTH+05]. A model in this
case is a three dimensional model of the object which is looked for. In general
the approach tries to fit the projected edges of the model to edges found in the
camera image. In the first step, hypotheses are generated which estimate a ROI
and initial parameter sets. In the second step an error measurement is evaluated,
e.g. distance of reprojected points to edges in the image. This error is used for
an optimization step that incrementally optimizes the parameters of the model to
fit to the extracted edges in the image. Both papers assume a very simple camera
model which does not model distortions. Furthermore, the camera is assumed to be
static. In the following sections, the approach will be tested on strongly distorted
images utilizing the Scaramuzza camera model [SMS06a] on the test bed’s wide
angle camera optics. Additionally, approaches to compensate for camera motion
and inaccurate starting hypotheses based on RADAR are presented.
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3.4 3D Model Fitting

3.4.1 The 3D Vehicle Model

Both [Low91, LM09] fit detailed and complex 3-dimensional models to the camera
images. Unfortunately, this renders the processing costs very high and is far from
being able to perform in real-time. Instead, a simple model is used in this thesis
to achieve better processing speed.

The coordinates of the model points in the reference model coordinate system
are annotated as xm = (xm, ym, zm)> ∈ R3 . The ego vehicle coordinates are
labeled with sub index e and camera coordinates with sub index c.

The model parameters are scaling factors along the models axes (sx, sy, sz)
with x referring to length, y to width and z to height of the vehicle (Figure 3.10).
Furthermore, the vehicle is rotated by a yaw angle ψ and positioned by an offset
on the ground plane (tx, ty, 0) relative to the ego vehicle reference frame.

x

y

sx

sy

sz
z

Figure 3.10: 3D model wire frame
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3.4 3D Model Fitting

The transformation from model coordinates to ego vehicle coordinates can be
achieved by a transformation matrix TE←M for homogeneous coordinates.

TE←M =


cosψ − sinψ 0 tx
sinψ cosψ 0 ty

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Rotation + Offset

·


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


︸ ︷︷ ︸

Scaling

(3.43)

=


sx cosψ −sy sinψ 0 tx
sx sinψ sy cosψ 0 ty

0 0 sz 0
0 0 0 1

 (3.44)

These ego coordinates are transformed into the camera’s reference frame. The

Figure 3.11: 3D model initialized on a RADAR hypothesis projected into the
image

final model wire frame can be projected into the image as seen in Figure 3.11.

3.4.2 Edge Distance Error Measurement

The fitting of a model can be formulated as the minimization of a cost function
[Low91, LM09, LTH+05]. A good error measurement is needed to apply the opti-
mization. [Low91] proposes the closest distance from projected lines to lines in a
Canny filtered edge image. Assume (u, v) are image coordinates and (x, y, z) cam-
era coordinates. The vector β = (ψ, sx, sy, sz, tx, ty) contains all parameters of the
vehicle model. In the first step the camera image is Canny filtered [Can86]. The
result is a binary image in which each non-zero pixel is an edge candidate. Points
from the model’s projected lines should match lines in the Canny image. Hence, a
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3.4 3D Model Fitting

distance from a point on a projected model line to the closest line detected in the
Canny image is defined in the next paragraphs. The underlying idea can be seen
in Figure 3.12.

u

v

Projected Line

p

d′

Canny linep′

Figure 3.12: Distance measurement d′ of the projected model edge to the closest
image edge candidate

A line in image coordinates (u, v) can be defined by its closed form.

u cos θ − v sin θ − d = 0 (3.45)

When evaluating the left side of the equation with arbitrary points (u, v) the
orthogonal distance from the closest point on this line to the evaluated point is
calculated. Points which lie directly on this line have a distance of 0. Thus, the
error function is

d′(u, v) = u cos θ − v sin θ − d (3.46)

The line parameters θ and d are computed by the help of two points xm,1 and xm,2
of the model edge that are projected into the image as (u1, v1) and (u2, v2). From
these points, the parameters are computed as proposed in [Low91].

l =
√

(u2 − u1)2 + (v2 − v1)2 (3.47)

cos θ = u2 − u1
l

(3.48)

sin θ = v2 − v1
l

(3.49)

d = u1 cos θ − v1 sin θ (3.50)

To find the closest edge from a projected point p = (u, v), a perpendicular
search line has to be defined in a window size w around the projected model point.
Both cos θ and sin θ which were used for the definition of the line distance are
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3.4 3D Model Fitting

also utilized to define a perpendicular line segment to the projected model line
intersecting at p.

p1 =
(
px − sin θ · w
py + cos θ · w

)
p2 =

(
px + sin θ · w
py − cos θ · w

)
(3.51)

The image points p1 and p2 define a line segment through image points which are
perpendicular to the projected model edge. The distance algorithm checks for the
closest non-zero point in the Canny filtered image and returns the distance to p
as the error. A very accurate and fast way to sample pixels on the line segment
between p1 and p2 is the Bresenham algorithm [Bre65], which returns a set B
with all pixels (u, v) on the search line. These pixels are checked for the closest
pixel to p which contains an edge in the Canny filtered image. A simple pseudo
code version of the algorithm is presented in algorithm 1. Points with errors equal

Algorithm 1 Finding the closest edge point to a projected model point
1: Input: px, py
2: Output: e

3: p1 =
(
px − sin θ · w
py + cos θ · w

)

4: p2 =
(
px + sin θ · w
py − cos θ · w

)
5: e :=∞
6: B ← bresenham(p1,p2)
7: for all b = (u, v) ∈ B do
8: edge← canny(u, v)
9: if egde > 0 then
10: Calculate distance to edge point:
11: dist← u sin θ − v cos θ − db
12: if ||dist|| < ||e|| then
13: e← dist
14: end if
15: end if
16: end for
17: return e

to ∞ should be discarded and not taken into account for the final solution.
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3.4 3D Model Fitting

3.4.3 Iterative Cost Minimization Based on Edge Distance

According to [Low91, LM09] it is sufficient to locally optimize and use an iterative
approach to find an optimal solution. However, hypotheses for fitting should be
relatively accurate already for the optimization to converge to a final solution. The
initial parameters which are acquired from the Radar sensor are distance r, angle
θ and velocity in the direction of the sensor vr in the sensor’s coordinate system.
From these the position in the ego coordinate system (tx, ty) is computed. Over
time the tracker also collects information about the velocity (vx, vy) in the ego
coordinate system. From the latter, a good value of the yaw angle ψ of the object
can be estimated by utilizing atan2(y, x) with respect to ego motion in eq. (3.53).

atan2(y, x) =



arctan
(
y
x

)
x > 0

arctan
(
y
x

)
+ π y ≥ 0, x < 0

arctan
(
y
x

)
− π y < 0, x < 0

+π
2 y > 0, x = 0
−π2 y < 0, x = 0
undefined y = 0, x = 0

(3.52)

ψ = atan2(vy + vego,y, vx + vego,x) (3.53)

For the optimization process, a Jacobi matrix is utilized to locally linearize
the effect of parameter changes to the distance error measurement defined in
section 3.4.2. The model parameters are collected in d-dimensional vector β =
(ψ, sx, sy, sz, tx, ty)>. The initial position and yaw angle are acquired from RADAR
measurements. The initial scaling parameters are set to 1.

Through linear interpolating between edge points of the model in coordinate
system M , n model points xm,i, 0 < i ≤ n are sampled. The vector e holds
the edge distance errors for each model point projected to the image with initial
parameters βs. These distance terms are defined by searching for edge candidates
perpendicular to the projected model line in the image (see algorithm 1 for further
details).
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3.4 3D Model Fitting

The line i of this Jacobi matrix with respect to model point xm,i and its
respective projection in the image (ui, vi) is defined by the partial derivatives of
the error function with respect to the model parameters.

d′i(ui, vi) = ui cos θi − vi sin θi − di (3.54)

Ji =
(
δd
′
i

δψ
δd
′
i

δsx

δd
′
i

δsy

δd
′
i

δsz

δd
′
i

δtx

δd
′
i

δty

)
(3.55)

Instead of deriving the error function for each parameter, values in a small ε
environment [−ε,+ε] around the current value of the parameter is used to linearize.
Values in the environment [-0.2, 0.2] have shown good results. This is done for
each model parameter of β while all others remain constant. Let u(xm,i,β) and
v(xm,i,β) project a sampled model point xm,i to image coordinates (u, v) according
to model parameter set β.

For yaw angle ψ this can be achieved in the following way:

β1 = β with ψ → ψ − ε (3.56)
β2 = β with ψ → ψ + ε (3.57)
δd′i
δψ

=
d′i(u(xm,i,β2), v(xm,i,β2))− d′i(u(xm,i,β1), v(xm,i,β1))

2ε (3.58)

Each partial derivative describes how the error measurement would change if the
respective parameter was changed. In general, this comes down to solving eq. (3.60)
for δβ for all visible projected model points by applying the least-squares method
and iteratively refining β by the estimated change δβ.

J δβ = e (3.59)
δβ = (J>J)−1J>e (3.60)

This technique is prone to over-fitting, especially, if only a few points could be
sampled for error measurement. The model refinement might jump through the
image or estimate very unusual model parameters, e.g. a very small height scaling
sz which flattens the model to unrealistic extents. Regularization is a common
technique to avoid over-fitting. [Low91] uses Tikhonov regularization [TA77]. This
technique is also common in ridge regression and introduces a parameter λ which
defines a trade-off between fitting and the distance of the refined parameters to
the initial parameters. Furthermore a weight matrix W ∈ Rd×d that includes
weights of model parameters according to their error distribution is introduced.
This matrix serves for weighting the importance of each parameter to the final
solution, e.g. the initial yaw angle ψ might be very accurate but the position

60



3.4 3D Model Fitting

estimate (tx, ty) might not, hence, the solution should prefer changes in position
instead of changes of the yaw angle. The weight matrix W is defined by [Low91]
as a diagonal matrix containing the standard error deviations of the parameters.
d is a d-dimensional vector containing the default values from which the solution
should not differ too much. As the solution of the Jacobian optimization is a delta
to the initial parameter set, this vector is a zero-vector, thus d = 0.

Wii = 1
σi

(3.61)

The cost function that should be minimized is

||Jδβ − e||2 + λ||W(δβ − d)||2 (3.62)

The minimum of the cost function can be found by setting the first derivative
with respect to δβ to zero and solve for δβ.

0 = 2J>(Jδβ − e) + 2λW>(Wδβ −Wd) (3.63)
(J>J + λW>W)δβ = J>e + λW>Wd (3.64)

δβ = (J>J + λW>W)−1(J>e + λW>Wd) (3.65)

A first iteration already gives good results in many cases. Figure 3.13 shows the
distances measured in the first iteration and the corresponding refinement.

(a) Distance (green) to next edge point
from the projected model points in the
Canny filtered image

(b) Initialization (green) and refined
model (blue) projected into the image

Figure 3.13: Model parameter refinement after one iteration
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3.4.4 Motion Similarity-based Edge Weighting

The presented approach already provides good results with good starting hypothe-
ses. Unfortunately, the starting hypothesis acquired from the RADAR are not al-
ways a good estimate and are too far away from the actual position in the image.
This often results in model edges fitting to environment edges like parked cars on
the side of the road. Section 3.3 described how the prediction of optical flow in two
consecutive camera images is compared to the actual optical flow to find regions in
an image that move with a given velocity in a given distance to the camera. This
section is about using the computed weight map to optimize the position estimate
of a RADAR tracker object.

It is a reasonable assumption that areas in the camera image that move with
the same velocity as the RADAR tracker object contain edges that belong to
said object. Therefore, fitting to these edges should return better results. Let
gi = (gi, hi) ∈ R2 be the image coordinate of the edge point which was detected
when evaluating the distance measure function d’i(u, v) at image position (ui, vi)
for the Jacobian row Ji. Furthermore let w(u, v) be the flow weight map presented
in section 3.3. Higher weights relate to a higher probability of the image point
being part of the moving object detected by RADAR.

The importance of this row to the final solution should factor in the weight
of the edge point. The row of the Jacobian and the corresponding error should
therefore be changed to include the weight of the edge point in the following way.

w = 1 + w(gi, hi) (3.66)

J′i =
(
w
δd
′
i

δψ w
δd
′
i

δsx
w
δd
′
i

δsy
w
δd
′
i

δsz
w
δd
′
i

δtx
w
δd
′
i

δty

)
(3.67)

e′i = w · ei (3.68)

This method reduces edge fitting to parked vehicles or shadows of trees.

3.4.5 Motion Similarity Centroid-based Position Correc-
tion

The cameras are aligned perpendicular to the street. Distances of objects are not
trivial to measure with mono cameras. However, lateral measurements can be
done precisely. This section shows how the optical flow prediction and similarity
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measurement presented in Section 3.3 is exploited to refine the position of a vehicle
initialized from a RADAR track. Section 3.2 presented a method to extract regions
of interest from starting hypotheses. Furthermore section 3.4.4 showed how a
weight map based on optical flow similarity between predicted flow and actual
flow in the image can be created.

In this section a method is proposed that refines the position of the tracked
vehicle (x, y, 0) in the ego vehicle coordinate system based on the centroid of the
detected optical flow motion. Within the defined ROI the centroid of the flow sim-
ilarity distribution is estimated (see section 3.2 for the method of ROI estimation).
The left upper point of the ROI is given as (ru, rv) in image coordinates as well
as the height rh and width rw. The centroid is estimated based on the weights in
the flow similarity image in the ROI.

n =
ru+rw∑
u=ru

rv+rh∑
v=rv

w(u, v) (3.69)

cu = 1
n

ru+rw∑
u=ru

rv+rh∑
v=rv

w(u, v) · u (3.70)

cv = 1
n

ru+rw∑
u=ru

rv+rh∑
v=rv

w(u, v) · v (3.71)

cf =
(
cu
cv

)
(3.72)

This centroid defines the centroid of the optical flow weights in the given ROI. In
conclusion, it defines the middle point of the moving object in image coordinates.
In section 3.4.1 a 3D wire frame model is presented which is used for the optimiza-
tion based on edge fitting. The centroid of this model in model coordinates M is
cm = (0, 0, hm2 )> with hm being the height of the model. With the transformations
described in section 3.4.1, this model centroid is transformed into image coordi-
nates ch = (ch,u, ch,v)> based on an initial parameter set β = (ψ, sx, sy, sz, tx, ty)>.

ch = cam2img(TC←Mcm) (3.73)

Based on the assumption that the optical flow centroid cf defines the centroid of
the moving vehicle in the image, a new error term is introduced to the Jacobian.
The error term defines the distance from the hypothesis centroid ch to the flow
centroid cf . The distance in the v (height) axis of the image is neglected as it
varies strongly based on the height of the vehicle. Thus, the error measurement
becomes d(cf , ch).

d(cf , ch) = cf,u − ch,u (3.74)

63



3.4 3D Model Fitting

The scaling parameters sx, sy, sz and yaw angle ψ are not suitable for optimization
using this error measurement as these are independent from the position of the
centroid. The centroid is mainly dependent on the two parameters tx and ty. A
new row is added to the Jacobian matrix to include the optimization based on the
centroid distance. This row only contains two entries for tx and ty and the others
are set to zero.

Ji =
(
0 0 0 0 δd

δtx

δd
δty

)
(3.75)

The partial derivatives are calculated similarly to the partial derivatives for
edge distances. β = (ψ, sx, sy, sz, tx, ty)> contains the initial hypothesis parame-
ters. An ε environment of [-0.2, 0.2] showed reasonable results.

Partial derivative for parameter tx:

β1 = β with tx → tx − ε (3.76)
β2 = β with tx → tx + ε (3.77)
δd

δtx
=
d(cf , ch(β1))− d(cf , ch(β2))

2ε (3.78)

Partial derivative for parameter ty:

β1 = β with ty → ty − ε (3.79)
β2 = β with ty → ty + ε (3.80)
δd

δty
=
d(cf , ch(β1))− d(cf , ch(β2))

2ε (3.81)

The scenario in Figure 3.14 shows a driveway onto a bigger street. The Mer-
cedes on the left is turning into the street. The ego vehicle is moving with relatively
low velocity into the driveway. The optical flow centroid of the Mercedes is marked
with a big X. The green RADAR hypothesis is relatively far off the actual vehicle.
Fitting solely based on edge distance fits the front but fails in the back of the van
as there is no structure near the model edges. The blue model uses both weighting
of edges based on flow as well as flow centroid fitting. The flow centroid is very
far from the RADAR hypothesis (green cross). Accordingly, the model is moved
in the direction of the flow centroid and fits to the edges of the vehicle nearly
perfect.
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(a) Green: initial hypothesis, red: Model fitting without flow information, blue: Model
fitting with flow centroid and flow weights, yellow: estimated flow centroid

(b) Canny edge image with annotated fitting distances of the red model

(c) Flow weight image (d) Input image multiplied with flow
weights

Figure 3.14: Model refinement using optical flow information

65



3.5 Results and Conclusion

3.5 Results and Conclusion

Figure 3.15: Recovered track with optical flow and edge fitting, green: starting
hypothesis, red: edge fitting, blue: flow + edge fitting

The presented method works well for good starting hypotheses. The approach
is able to recover positions which are less than 1 m off of the true position. Further-
more, fitting quality increases if there is less image structure around the vehicle so
that the Canny image mostly contains edges of the vehicle. Especially the position
correction presented in section 3.4.5 was able to recover tracks that are further off
the initial hypothesis. An example is shown in Figure 3.15. Fitting based solely
on edge information fails to fit the vehicle. The integration of flow information -
flow centroid and flow weighting - could recover the true position (blue).

(a) Van-like vehicle (b) Different vehicle type

Figure 3.16: Model fitting of different vehicle types, green: starting hypothesis,
red: edge fitting, blue: flow + edge fitting

The wire frame model which was used for edge fitting is very general and works
best for van-like vehicles as seen in Figure 3.16a. Nonetheless, good fitting results
are achieved with non-van type vehicles as well (Figure 3.16b).
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However, even with optimizations based on optical flow, the convergence of
the algorithm to a good solution which contains the vehicle is very dependent
on the initial hypothesis. If the hypothesis does not cover most of the vehicle,
the algorithm is very likely to converge to a solution which fits to edges that do
not belong to the actual vehicle. The optimization tends to fit to parked cars at
the side of the roads or to structures containing straight edges. Figure 3.17 shows

(a) Incorrect initial yaw angle (b) Incorrect yaw angle and position es-
timation

(c) Distance (green) to next edge point from the
projected model points in the Canny filtered im-
age

Figure 3.17: Incorrect fitting due to incorrect initial parameters

examples of insufficient initial hypotheses. The position estimation in Figure 3.17a
is relatively accurate but the yaw angle has been estimated incorrectly. The model
fitting is not able to recover as other edges are closer to the projected model lines.
Figure 3.17 shows an example in which the algorithm fits to the edges of the
signpost and the rear end of the vehicle which actually belongs to the tracked
object. In Figure 3.17c the optimization which takes optical flow into account
converges further into the direction of the vehicle which should be tracked but is
still too far away from the desired fit.
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Another reason for inaccurate fitting is the generality of the chosen vehicle
model. Even though the actual fit covers the vehicle, it does not correctly fit to
it as seen in Figure 3.18. The truck does not fit to the model, and the variance
allowed in height and length for the scaling factors is not large enough. However,
the flow weighting allows the algorithm to fit to edges which are outside of the
initial parameter set, so that the length scaling factor is increased. The model
fitted to the vehicle in Figure 3.18b does not cover the hood part. Thus, it fits
partly to the hood and partly to the A-pillar.

(a) Vehicle type does not match the ab-
stract vehicle model

(b) The abstract vehicle model does not
cover the hood of the vehicle

Figure 3.18: Incorrect fitting due to abstraction in the chosen vehicle model

In conclusion, advantages of the approach are the computing performance com-
pared to pattern based approaches and the lack of a training phase. With accurate
starting hypotheses, the algorithm is able to converge to an accurate refinement
of the initial parameters. The optical flow based weighting has shown to improve
the fitting process and the flow centroid estimation increases the probability to
fit to the actual vehicles if starting hypotheses are further away from the optimal
solution. Even though the technique showed good results in many cases, it requires
good edge extractions and accurate initial hypotheses.

3.6 Future Work

Vehicle detection and tracking in side cameras is an area less explored than the
detection in front and rear cameras. Therefore there are a lot of opportunities and
research questions.
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The presented approach relies on an accurate extrinsic camera calibration.
The current calibration stand at Hella Aglaia however, focuses on front and rear
camera calibration. A thought experiment for a simple and inexpensive solution
to extend the calibration stand with a side camera calibration has been presented
in the appendix on page 108. Additionally, approaches to dynamically adapt the
extrinsic calibration while driving may be another area of research.

Certainly, a goal is to include the refined positions of the camera in the RADAR
tracker. This should lead to better initial hypotheses as the camera information is
fused back into the tracker. The fitting approach converges to inaccurate solutions
sometimes, therefore a reasonable outlier detection has to be implemented.

Another area of research which might increase the accuracy of fitting is the
choice of features, e.g. a separate wheel detection might return a set of potential
wheel positions to fit the model to. Furthermore [LM09] uses complexer 3D-models
which generalize better to different vehicle types. As more computing power will
be available in up-coming production vehicles, this approach should be taken into
consideration as well.

69



Chapter 4

Synthetic Ground Truth Data
Generation for Radar Object
Tracking

This chapter describes an intuitive method to generate artificial test data for
RADAR-based crash warning algorithms developed at Hella Aglaia. At the mo-
ment, two warning algorithms are in development – FSR and PCR. Each of these
systems has special requirements that have to be fulfilled. Driving scenarios with
defined behavior of the warning algorithms are compiled into a test catalog (ex-
ample: Figure 4.1). Some of the described maneuvers require advanced driving
skills and consume a lot of time to record properly. Instead, a simpler method
to generate the data which would be acquired from test drives is preferable for
development. However, the data has to be physically reasonable and consistent
with the test catalog.

The data flow of the warning systems consists of three main processing steps.
At first raw targets from the RADAR sensors are collected and classified. In
the second step these RADAR targets are grouped together, filtered and tracked
as moving objects. The moving objects from the tracker are used to estimate
crash probabilities in the warning algorithm by forward prediction of movements
(Figure 4.2).

There are several possibilities for the generation of test data in the whole pro-
cess. One could either generate raw targets for the tracking algorithm or generate
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Figure 4.1: Example of a test catalog scenario for PCR

Radar
Raw

targets
Tracking

Tracked
objects

Warning
Crash

Probability

Simulator

Raw targets

Tracked 
objects

RDS Tool

Tracked objects

Figure 4.2: Data flow of warning algorithm (white) and supply of artificial test
data through pyLaneSim and RDS Tool (gray)
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tracking objects for the actual warning algorithm. Having test data at either
step, it is possible to create independent module tests. This chapter will focus
on generating ground truth data for the tracker, i.e. positions and velocities of
moving vehicles in the environment as well as other physical properties which are
usually generated by the RADAR tracker. Additionally, Hella also develops the
RawDataSynthesis (RDS) Tool which is able to simulate radar sensor data given
information about objects in the environment. It models the physical process of
electromagnetic waves traveling and reflecting in the environment to generate raw
data for the sensor itself. In the last section an interface between the simulator and
the RDS Tool is presented. Thus, it is possible to create test data for the tracker
module based on the scenarios designed in the simulator (Figure 4.2). This ren-
ders a form of development possible in which development of one module, e.g. the
warning algorithm is not dependent on the availability of the preceding modules.
Thus, tracker and warning algorithm development could be started at the same
time without necessity of the output of the tracking algorithm as artificial test
data could be supplied through the simulator.

4.1 User Interface

(a) Old interface of the simulator (b) Current interface

Figure 4.3: Interface development of the simulator

A first prototype features a 2–dimensional top view interface with mouse sup-
port in which the trajectories of cars can be created by simple clicks on the
ground plane. Additionally these paths can be annotated with acceleration in-
formation (Figure 4.3a). The resulting trajectories might be physically unreason-
able, e.g. a hairpin turn with 40 km/h. Such being the case, a car dynamics
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Figure 4.4: Set up of the driving simulator

model (see section 4.3) is introduced and a Proportional-Integral-Derivative con-
troller (PID-controller) connected to the steering angle which keeps the vehicle on
the trajectory. The PID-controller returned a steering angle based on the normal
distance of the car to the trajectory. The parameters for the controller were chosen
by intelligently searching the parameter space using the Twiddle algorithm pre-
sented in Sebastian Thrun’s Stanford online lecture "How To Build A Robotic car"
[Thr13]. The annotated acceleration information at the trajectory points are fed
into said model which tries to follow the predefined trajectory. Unfortunately, this
approach renders inconvenient for more complex scenarios that involve multiple
cars. Many repetitions and refinements are needed to achieve precise timing.

The second prototype features a 3-dimensional interface and lets the user con-
trol cars from a cockpit or world view (Figure 4.3b). The most intuitive way to
acquire data from driving scenarios is to actually drive. Thus, the new interface
features steering wheel and pedal or keyboard input if no driving wheel is present
(Figure 4.4). Cars and street parts can be freely positioned in the environment on
the ground plane. Cars and their properties can be defined freely and controlled
one after another by rerunning the simulation for each car.

The test cases usually define the environment as well, e.g. a crossroad or a four
lane high way. The information about the environment does not influence the test
data itself but is used for visualization. Therefore the simulator supports basic
environment mapping with predefined map tiles aligned on a virtual grid. These
map tiles can be positioned on the ground plane by mouse and connected to each
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other to form a road scenario. Figure 4.5 shows a rather complex scenario created
using the mapping capability of the simulator.

Figure 4.5: Complex road scenario created in the simulator

4.2 Implementation and Utilized Libraries

The simulator has been implemented in Python [Pyt13] which is an interpreted
object oriented language. During the development of the simulator, it should be
possible to implement new features very fast to try different ways of input and
processing. Python allows very fast prototyping, offers a lot of functionality and
can be easily extended by other libraries, e.g. for math or 3D visualization. The
underlying physical models include several matrix operations for which NumPy
[Num13] is used. NumPy includes, but is not limited to, a linear algebra library
for scientific computing. The user interface was created using wxPython [wxP13]
which also allows to embedded an Ogre instance. Python-Ogre are bindings for the
famous open source 3D engine Ogre3D [Tor13]. The libraries have been carefully
chosen to have low restrictions in their licenses as well as an active development
and cross platform support.

Table 4.1 shows the licenses under which the used libraries are available. All
licenses allow distribution in binary form and for commercial use.

In general, the simulator is divided into two parts. The user interface with the
3-dimensional Ogre visualization and the simulator core which manages simulated
objects and their underlying physical models in a 2 dimensional x, y-plane. Ogre
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Software License
Python PSF License
NumPy BSD License
wxPython wxWindows License (similar to LGPL)
Python-Ogre LGPL

Table 4.1: Licenses of used libraries in the simulator

itself manages its 3-dimensional objects in a tree structure. The root node is the
world reference frame. Each sub node is positioned in the parent’s reference frame
and has its own reference frame which can be rotated, scaled or moved. An easy
example is the implementation of a cockpit view for one of the simulated cars. At
first a CarNode is created for the car which contains the 3-dimensional model in
an Ogre compatible format. The node is freely positioned as a sub node of the
world node (root node) in the x, y-plane and updates itself in each render cycle by
fetching the (x, y) position and yaw angle ψ from the respective simulator object.
Instead of recalculating the cockpit camera position each time, a CameraNode is
added as a sub node of the CarNode and positioned in its reference frame. The
Ogre tree automatically updates the positions of the sub nodes if the higher nodes
are changed.

Each CarNode holds a reference to a SimulatorObject which represents the
underlying physical model. A Simulator instance holds references to all available
SimulatorObjects and manages them with respect to the current simulation time.
Each SimulatorObject has to implement a few general methods to be manageable
by the Simulator. These methods return information about current position and
orientation as well as speed. Currently, there is one concrete implementation – the
DriveCar – which represents the dynamics of the underlying vehicle model.

This design is visualized as an UML class diagram in Figure 4.6. The diagram
is simplified to the most important methods and classes for the sake of clarity.

4.3 Car Dynamics Models

To achieve physically-reasonable results for the dynamics of vehicles in the sim-
ulator, a dynamics model is introduced which models the behavior of cars based
on steering information from the steering wheel or keyboard input. The simulator
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Figure 4.6: Simplified UML representation of the simulator structure

runs in a loop calculating the state x of each dynamic object every 25ms taking
the current state and new steering information into account.

In the following, the dynamics models implemented in the simulator are ex-
plained. A single track model which models tire slip, as well as over- and understeer
can be seen in Figure 4.7. Each of these models assumes the world to be flat, thus,
the position of a car is limited to a position within the x − y-plane and its yaw
angle. Roll and pitch information are discarded. The coordinate systems used
are explained in section 1.3 Preliminaries. The world coordinate system is a right
handed reference system in which the ground plane is represented by the x − y-
plane and the z-axis points upwards. The dynamics models define their own right
handed ego reference frame with the x-axis aligned with the vehicle’s length axis
pointing into the driving direction and the y-axis positioned on the front axle. The
z-axis points upwards.

The model contains several parameters and physical properties. These contain
the current position (xw, yw) of the object in world coordinates. ψ defines the yaw
angle (orientation) while ψ̇ defines the respective change rate. ψ + β is the angle
in which the actual motion is directed to. This angle differs to the yaw angle ψ
if under- or oversteer are present which is represented by the slip angle β. The
vehicle’s mass is annotated as m.
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Figure 4.7: Single track model with all parameters aligned with world reference
frame [Kau12, Slide 29]

lv and lh define the distance of the gravity center to the front and back. Mod-
eling tire slip can be parametrized through cornering stiffness cv and ch for wheels
on the front axle and rear axle. The reaction to steering can be influenced by
the yaw moment of inertia parameter θ. A dynamic object can be controlled by a
steering angle δ and an acceleration ax in the object’s ego reference frame in the
direction of the x–axis which is aligned along the length axis of the car. A short
summary of these car specific parameters required for the following models can be
found in Table 4.2.

Symbol Description Unit
m car mass kg
lv, lh distance to front (v), distance to back (h) from mass cen-

ter
m

cv, ch Cornering stiffness N
Rad

θ Yaw moment of inertia kg

m
2

δ Steering angle Rad
vx Speed m/s

Table 4.2: Car specific parameters for car dynamics models
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Based on these models, the state of a dynamic object in the simulator consists
of the following state vector x = (xw, yw, ψ, ψ̇, β, vx)>.

The two control variables – steering angle δ and acceleration ax – are combined
in the control vector u = (δ, ax)>.

4.3.1 Bicycle Model

The simplest vehicle dynamics model is possibly the bicycle model. It holds rea-
sonable for velocities and steering angles that would not introduce tire slip and
thus, over- or understeer. The only car property that is taken into account is the
length l = lv + lh of the car.

The system can be modeled by a function f which takes the current state xt,
the new controls ut and the time to simulate ∆t as arguments.

xt+1 = f(xt,ut,∆t) (4.1)

For very small steering angles, a straight line motion can be assumed. The new
state variables for the next step ∆t are calculated through f as it follows.

xw,t+1 = xw,t + cosψt · vx,t ·∆t (4.2)
yw,t+1 = yw,t + sinψt · vx,t ·∆t (4.3)
ψt+1 = ψt + ψ̇t ·∆t (4.4)

ψ̇t+1 = tan δt ·
vx,t
l

(4.5)

βt+1 = 0 (4.6)
vx,t+1 = vx,t + ax,t ·∆t (4.7)
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For larger steering angles, the motion is estimated by the actual bicycle model.
In the first step, the radius of the curve which would be driven with the given
steering angle δ is computed. From this, the new position can be calculated.

r = l

tan δt
(4.8)

xw,t+1 = xw,t + r(− sinψt + sin(ψt + ψ̇t ·∆t)) (4.9)
yw,t+1 = yw,t + r(cos(psit − cos(ψt + ψ̇t ·∆t)) (4.10)
ψt+1 = ψt + ψ̇t ·∆t (4.11)

ψ̇t+1 = tan δt ·
vx,t
l

(4.12)

βt+1 = 0 (4.13)
vx,t+1 = vx,t + ax,t ·∆t (4.14)

4.3.2 Single Track Model with Tire Slip

The bicycle model does not contain more properties of the vehicle’s physics than
the length. However, the behavior of the car dynamics, especially in situations
with higher velocities and strong cornering, depends on the distribution of mass.
Thus, two new parameters lv which is the distance of the center of gravity to the
front of the car and lh which is the distance to the back of the car are introduced.
The model assumes the car to be a rigid body and shifts the center of gravity to
an arbitrary position along the length axis of the car.

Instead of analytically solving the state from one time point to the next, a
linearized model for a given time point t is utilized assuming that the state change
ẋ can be approximated linearly for a small time frame ∆t. Hence, the derivative
ẋ of the state is linearized as it follows.

xt+1 = xt + ẋt ·∆t (4.15)
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A simple linearized form of the Single track model was taken from the Daimler Au-
tonomous Systems lecture [Bre12, Slide 43]. ELG is defined as the steer gradient
and depends on the geometry of the car.

ELG = m · ch · lh − cv · lv
cv · ch · l

(4.16)

ẋ =



ẋw
ẏw
ψ̇

ψ̈

β̇
ax


=



vx · cosψ
vx · sinψ

δ·v
l+ELG·v2

x

0
0
ax


(4.17)

4.3.3 Single Track Model with Over and Understeer

The previous model already gave a good idea of the behavior of a car depending on
its physical properties. A more refined model which includes under- or oversteer
can be found in [SHB10]. Even though the system models the behavior of a car in
more detail than the other models, it also comes with more restrictions. In general
the model is valid for constant velocities and small steering angle changes. The
system is modeled through a linearized system matrix A ∈ R6×6, which defines the
system itself, and a control matrix B ∈ R6×2 which takes the influence of steering
information into account. The state change can be expressed in the following way.

ẋt = Axt + But (4.18)
xt+1 = xt + ẋt ·∆t (4.19)

[SHB10] describes the state only as (β, ψ̇), thus the matrices A and B have to be
extended for the other state variables which can be expressed as it follows.

A =



0 0 0 0 0 cos(ψ + β)
0 0 0 0 0 sin(ψ + β)
0 0 0 1 0 0
0 0 0 −1

v ·
cv ·l

2
v+ch·l

2
h

θ −cv ·lv−ch·lhθ 0
0 0 0 −1− 1

v
2 ·

cv ·lv−ch·lh
m −1

v ·
cv+ch
m 0

0 0 0 0 0 0


(4.20)
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The influence of the control input vector u to the whole system can be expressed
in the new matrix B.

B =



0 0
0 0
0 0

cv ·lv
θ 0

1
v ·

cv
m 0

0 1


(4.21)

The restrictions of the model are violated in the simulator in some cases when
an acceleration ax and larger steering angle changes are introduced. During ex-
perimentation it showed that, with the given set of vehicle parameters, especially
with low velocities (vx < 30 km/h) and large steering angle changes, as well as
with quickly alternating steering angles around 0◦, the system tends to oscillate
and turn into chaotic unrealistic states. This is caused by violating the assump-
tions made by the model, i.e. sin δ is approximated by δ and the constant velocity
assumption. This can be seen as the car rotating chaotically around its axis in
the simulator. Experiments have shown that for higher velocities and lower sam-
ple rates (switched from 50 ms to 25 ms) the chaotic state changes do not occur.
The model can only be applied if the violations do not have a strong influence
on the state, therefore, the simulator changes from the simpler single track model
explained in section 4.3.2 to this extended model only if the velocity reaches a
certain threshold vx > 30 km/h.

4.4 Ground Truth Data Output Formats

The following sections will explain the two main export formats that are sup-
ported currently. External applications that should use the ground truth data
from the simulator usually support their own specific input format. Thus, the
simulator supports adding formats by an exporter base class which has full access
to the simulator core and has to implement three methods – startRecording(),
recordStep() and stopRecording(). The first should set up basic data struc-
tures and store static information while the last should store all the collected
information in the respective export data files. recordStep() is called repeat-
edly for each simulation cycle during a simulation and should handle conversion
of coordinates and vehicle attributes for each time step.
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4.4.1 Internal Data Format

All attributes of cars are stored internally in world coordinates, i.e. an x-y-plane
with 1 unit equal to 1 meter. A scenario is defined as a constellation of cars
and their respective motions and can be stored in an eXtended Markup Language
(XML) data file (listing 4.1). For each car in the simulator a new car node is
created which defines its initial attributes. The steering information (steering
angle, gear, throttle and brake values) are stored as a new sub node under the
controlRecords node for each time step.
<scena r i o>

2 <car s>
<car d i s tanceFront=" 0 .0 " d i s tanceRear=" 22.9999995232 " i s e g o="

1 " l=" 4 .0 " mRatio=" 0 .3 " name=" tan ja " o r i e n t a t i o n=" −3.14159297943 "
type=" DriveCar " v=" 0 .0 " x=" −52.5424861908 " y=" −1.9460067749 ">

4 <contro lRecords />
</ car>

6 <car d i s tanceFront=" 0 .0 " d i s tanceRear=" 0 .0 " l=" 4 .0 " mRatio="
0 .3 " name=" nora " o r i e n t a t i o n=" −3.14159297943 " type=" DriveCar " v="
27.7777767181 " x=" 14.9835205078 " y=" −1.79802703857 ">

<contro lRecords>
8 <con t r o l alpha=" −0.00254073047638 " brake="−0.0 " gear=

" 1 " t h r o t t l e="−0.0 " timeStep=" 0 " />
[ . . . ]

10 </ contro lRecords>
</ car>

12 </ car s>
</ s c ena r i o>

Listing 4.1: Scenario description file (*.scn) of the simulator

Users might want to have different scenarios in the same specific environment,
e.g. a crossing. Thus, the street maps are stored separately in another file (list-
ing 4.2). As the map consists of square parts positioned on a virtual grid, the state
can be described by the center position and type of each map tile. Each map tile
type can be identified by an unique id, thus, only id, position and orientation have
to be saved.

1 1 45.000000 15.000000 0.000000
4 60.000000 15.000000 0.000000

3 1 75.000000 15.000000 4.712389
4 75.000000 0.000000 4.712389

Listing 4.2: Map description file (*.map) of the simulator. Format: unique id,
center position (x, y) and orientation in rad
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In general, map files and scenario files can be loaded independently into the
simulator.

4.4.2 PCR and FSR Formats

To use the generated scenarios in Hella Aglaia’s warning algorithms, they have
to be converted into respective data formats. Both PCR and FSR use similar
formats based on Comma Separated Values (CSV) files. A meta file ([name].pcr,
listing 4.3) describes the format version and which ego data file and object data file
belong to the simulation. Additionally, it contains the number of frames available
for the simulation. A frame is a snapshot of the simulator objects every 50 ms.
{

2 PCR_Version = 1U;
StartFrame = 0 ;

4 EndFrame = 330 ;
EgoFi le = "11−6−1−1−1dynamic−sheerPCR50kmh−ego80kmh . pcrEgoCsv " ;

6 Objec tF i l e = "11−6−1−1−1dynamic−sheerPCR50kmh−ego80kmh . pcrObjCsv " ;
}

Listing 4.3: Meta description file for PCR and FSR simulation files

The ego file ([name].pcrEgoCsv, listing 4.4) contains information about the ego
vehicle’s attributes in each frame. These include velocity, acceleration, yaw rate,
vx, vy and the lateral acceleration in ego coordinates. Furthermore, the left and
right turn signal are encoded in the last field with 0: no signal, 1: left signal, 2:
right signal and 3: both turn signals. The signal indicator is used to determine
potential turning or lane changing of the ego vehicle driver in the FSR warning
algorithm.

1 Frame ; Speed ; Acce l e r a t i on ; YawRate ; vx ; vy ; accLat ; s i g n a l s
1 ; 13 . 85139 ; −1.50002; 0 . 00007 ; 13 . 85139 ; 0 . 00002 ; 0 . 00000 ; 0

3 2 ; 13 . 77639 ; −1.50002; 0 . 00004 ; 13 . 77639 ; 0 . 00004 ; 0 . 00000 ; 0
3 ; 13 . 70139 ; −1.50002; 0 . 00003 ; 13 . 70139 ; 0 . 00004 ; 0 . 00000 ; 0

5 [ . . . ]

Listing 4.4: Ego motion description file for PCR and FSR simulation files

The object motion file ([name].pcrObjCsv, listing 4.5) is similar. For each
frame, the attributes of the non-ego cars are listed identified by their respective
object id. All information are again in the ego vehicle’s coordinate frame.
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1 Frame ; ObjectId ; x ; y ; vx ; vy ; ax ; ay ;
1 ; 1 ; −24.00269; 3 . 75115 ; 5 . 55556 ; 0 . 00000 ; 0 . 00000 ; 0 . 00000 ;

3 1 ; 2 ; −10.36594; 20 . 52808 ; 2 . 77778 ; 0 . 00000 ; 0 . 00000 ; 0 . 00000 ;
2 ; 1 ; −23.72491; 3 . 75115 ; 5 . 55556 ; 0 . 00000 ; 0 . 00000 ; 0 . 00000 ;

5 2 ; 2 ; −10.22705; 20 . 52808 ; 2 . 77778 ; 0 . 00000 ; 0 . 00000 ; 0 . 00000 ;
. . .

Listing 4.5: Object motion description file for PCR and FSR simulation files

4.4.3 RawDataSynthesis Format for synthetic Radar Raw
Target Generation

Based on the scenario data generated by the simulator, corresponding RADAR
raw targets can be computed by the RDS Tool. It was developed by another
student at Hella and used for the generation of raw targets from object motions.
Similar to the first prototype of the simulator the trajectories of vehicles are based
on given way points and speed markers. These are then combined to splines. The
orientation of a car is implicitly calculated based on the direction of the trajectory.
Thus, each support point of the spline contains the (x, y) position and a velocity
v. Between two support points the system will interpolate the velocity linearly.
Nevertheless, the trajectories do not include any physical constraints.

The simulator itself allows more degrees of freedom through the higher phase
space and simulates vehicles within certain physical constraints. However, a close
approximation can be achieved by creating many support points, i.e. sampling
velocity and position from the simulator every 50 ms for each object. Sampling
support points with this approach results in splines that are approximately the
same as the trajectories created in the simulator. Albeit, there is one shortcoming
to this approach. When the velocity reaches zero, no new way points can be
sampled at the same point and there is no possibility to decide in these splines
how long the velocity should stay at zero, e.g. when modeling stopping and starting
at a crossing. This is in general not possible to design in the RDS tool.

The format (listing 4.6) is based on XML. It contains definitions of the track,
which is currently only used for visualization in the RDS tool itself, thus, no
information is taken from the simulator to model it as it is more restrictive than
the simulator map design. Additionally, the vehicles node contains sub nodes for
each vehicle that contain the described way points (spline support points). The
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ego vehicle is stored explicitly with more information about sensor mountings and
calibration.
<?xml ve r s i on=" 1 .0 " encoding=" utf−8" ?>

2 <Scenar io simulateADCValues="True " simulateRawTargets="True ">
<Track>

4 <TrackPart guardRailType=" S ing l e " guardRai l s=" " laneWidth="
3 .8 " l ane s=" 4 " l ength=" 1000 " rad iu s=" 0 " />
</Track>

6 <Veh i c l e s>
<Vehic l e>

8 <Waypoints>
<Waypoint speed=" 16.6666660309 " x=" 1.27323913574 " y="

−20.3797801494 " />
10 <Waypoint speed=" 16.6666660309 " x=" 1.27326160847 " y="

−19.5464468482 " />
[ . . . ]

12 </Waypoints>
<VehicleData name=" nora ">

14 <Vehic leDimensions l ength=" 4 .0 " width=" 1 .8 ">
<Axis x=" 0 .8 " />

16 <Axis x=" 3 .6 " />
</Vehic leDimensions>

18 </VehicleData>
</Vehic l e>

20 </Veh i c l e s>
<EgoVehicle>

22 <Waypoints>
<Waypoint speed=" 0 .0 " x=" 1.84082021713 " y=" 43.444070816 "

/>
24 </Waypoints>

<VehicleData name=" tan ja ">
26 <Vehic leDimensions l ength=" 4 .0 " width=" 1 .8 ">

<Axis x=" 0 .8 " />
28 <Axis x=" 3 .6 " />

</Vehic leDimensions>
30 <Sensors>

[ De f i n i t i o n o f Sensor c a l i b r a t i o n and mounting
p o s i t i o n s ]

32 </Sensors>
</VehicleData>

34 </EgoVehicle>
</ Scenar io>

Listing 4.6: Export format of RDS Tool (*.rds)
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4.5 Results and Conclusion

The PCR test catalog consists of 155 test cases for the PCR warning algorithm
(example: Figure 4.1). This catalog is used as a basis to evaluate the usability of
the simulator. Altogether it took 3 days for a single person to recreate the test
catalog in the simulator and save a scenario file for each test case.

Every scenario of the test catalog has been exported to FSR and PCR warning
algorithm formats as well as to the RDS tool. With the latter it is even possible to
test the system at the raw target level. Both PCR and FSR delivered reasonable
results when running the synthetic scenarios from the test catalog. Albeit, RDS
showed problems in situations that include a full stop of a vehicle followed by
an acceleration which cannot be modeled in the tool as already mentioned and
explained in section 4.4.3. This special case appeared only in one test case, and
therefore can be neglected.

The simulator is a valuable tool to cut down both time and costs for the
generation of reasonable test data. It can be extended to support further export
formats by adding or adjusting exporter classes. Additionally, the simulation of
other objects, e.g. motor bikes or pedestrians, can be achieved by implementing
more simulatorObject classes with other underlying physical models.

As an outlook into the future, the raw data synthesis from the RDS tool could
be merged directly into the simulator to skip the export and import step. This
would eliminate the restrictions of RDS induced by velocities of 0 km/h as well.
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Chapter 5

Conclusion

The results and conclusions for each topic are placed in detail at the end of each
respective chapter. Altogether, three main topics have been processed.

In Chapter 2, the choice of a reasonable camera system and the setup of a
working framework to collect data from test drives with the test bed have been
presented. Cameras from AVT have been chosen and successfully calibrated using
the Scaramuzza camera model [SMS06a]. This model proved practical in all cases
and for all further applications.

In Chapter 3, a sensor fusion approach utilizing camera and RADAR informa-
tion has been presented. This approach showed an improvement of the accuracy of
the RADAR object tracks if the initial RADAR hypotheses are relatively accurate
estimates of the true position. The approach has been successfully extended to
integrate optical flow information.

The last part of this thesis discusses a method for intuitive generation of test
data for RADAR warning systems. Instead of collecting information from test
drives equipped with the warning system, data can be acquired from a driving
simulator. Next to the development of an intuitive interface, the data had to
be physically reasonable. Therefore, vehicle dynamics have been modeled in the
simulator which ensure this level of data quality. Combined with another project
at Hella, the output of the simulator can be used to test warning system modules
both at pre-processing as well as warn algorithm level.
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Appendix A

Sensor Mounting Positions

Figure A.1: Overlap of camera (mounted on side mirror) and radar (mounted
on front bumper)
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Figure A.2: Back view of the camera position
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Appendix B

Calibration Errors of OpenCV
and Scaramuzza Camera Models
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Scaramuzza OpenCV
File e σ2 E e σ2 E

002.bmp 0.370435 0.0231854 12.8326 0.275795 0.0217404 7.82427
003.bmp 0.185568 0.0112573 3.65543 0.247968 0.0184889 6.39818
004.bmp 0.365633 0.0306408 13.1463 0.221599 0.0118968 4.88025
005.bmp 0.165362 0.00743389 2.78228 0.186114 0.0133489 3.83899
006.bmp 0.394953 0.0232965 14.3427 0.333362 0.02819 11.1456
007.bmp 0.261203 0.0151738 6.67208 0.227663 0.0316865 5.34436
008.bmp 0.279649 0.0186588 7.74898 0.281389 0.110866 8.86929
009.bmp 0.300676 0.0152974 8.45626 0.250963 0.0161416 6.32993
010.bmp 0.259342 0.0126064 6.38917 0.257811 0.0156026 6.56552
011.bmp 0.483464 0.0522302 22.8774 0.32991 0.0283378 10.9743
012.bmp 0.497691 0.0483012 23.6798 0.188713 0.0170201 4.21061
013.bmp 0.301386 0.0146236 8.43658 0.215351 0.0101641 4.52322
014.bmp 0.387718 0.0244953 13.9856 0.309064 0.0227157 9.45891
015.bmp 0.300167 0.0185536 8.6923 0.162572 0.00817829 2.76863
016.bmp 0.487956 0.0624943 24.0476 0.321132 0.0270494 10.414
017.bmp 0.239249 0.0101859 5.39406 0.184098 0.00587861 3.18165
018.bmp 0.115092 0.00284178 1.28703 0.112031 0.00426226 1.34506
019.bmp 0.211512 0.00992366 4.37286 0.103195 0.0037201 1.14954
020.bmp 0.271937 0.0101612 6.72889 0.241402 0.0241196 6.59156
021.bmp 0.2419 0.0262558 6.78173 0.213922 0.0109082 4.53366
022.bmp 0.372876 0.0403377 14.3499 0.336342 0.0213889 10.7612

Table B.1: Calibration errors for Scaramuzza and OpenCV camera models cali-
brated for the left side camera
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Scaramuzza OpenCV
File e σ2 E e σ2 E

001.bmp 0.284246 0.0338398 9.17084 0.595858 0.146288 40.1068
002.bmp 0.271896 0.0175099 7.31501 0.280599 0.0324063 8.89137
004.bmp 0.486398 0.0662387 24.2258 0.516561 0.094324 28.8927
005.bmp 0.55324 0.0529232 28.7198 0.687035 0.109714 46.5386
006.bmp 0.186948 0.0133088 3.86066 0.157153 0.00907199 2.70152
007.bmp 0.286031 0.0215893 8.27223 0.158952 0.00617741 2.51546
008.bmp 0.307392 0.01705 8.92321 0.326994 0.026876 10.7041
009.bmp 0.350017 0.0249989 11.8009 0.300778 0.0358878 10.1084
010.bmp 0.309961 0.0353365 10.513 0.611178 0.117948 39.3189
011.bmp 0.210369 0.0113743 4.45034 0.257688 0.0243119 7.25722
012.bmp 0.418896 0.038353 17.1061 0.308436 0.0347724 10.3924
013.bmp 0.606872 0.0433953 32.9351 0.433804 0.0856371 21.9058
014.bmp 0.421563 0.028635 16.508 0.379008 0.050028 15.494
015.bmp 0.353267 0.0193904 11.5351 0.287304 0.0254661 8.64078
016.bmp 0.445758 0.0384478 18.9719 0.57627 0.115505 35.8074
017.bmp 0.600672 0.160608 41.7132 0.243548 0.107525 13.3472
018.bmp 0.398316 0.042942 16.1278 0.576793 0.128176 36.8693
019.bmp 0.324004 0.037779 11.4206 0.514831 0.0899744 28.402
020.bmp 0.349709 0.023557 11.6682 0.459687 0.0877708 23.9267
021.bmp 0.220668 0.00816057 4.5484 0.333378 0.0503491 12.9192
022.bmp 0.196176 0.00997511 3.70659 0.249798 0.0205774 6.73778

Table B.2: Calibration errors for Scaramuzza and OpenCV camera models cali-
brated for the right side camera
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Appendix C

Cassandra Graphs

Figure C.1: Extrinsic calibration graph in Cassandra
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Figure C.2: DriveRecorder Graph for capturing CAN and Cameras in Cassandra
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Figure C.3: Basic Graph for replaying recorded data
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Figure C.4: FSR sub graph for decoding CAN messages
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Appendix D

A lazy Approach for Extrinsic
Wide Angle Camera Calibration

This is a thought experiment for the calibration of side cameras if a complete front
camera calibration is available. The setup at Hella Aglaia for camera calibration
supports front or back cameras with narrow opening angles. The following sections
propose a method for the calibration of the side cameras used in the test bed. The
proposal utilizes the already calibrated front camera. The standard setup for
calibration is shown in Figure D.1.

Figure D.1: Calibration stand
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D.1 Finding a Link between two Pattern Reference Systems

The calibration pattern consists of white dots on a black background. The
pattern is not in the view of the side cameras. The goal is a repeatable setup that
does not need a lot modification of the current setup. The front camera of the test
setup car is already calibrated using Hella Aglaia’s own setup. Hence, the world
coordinates of the pattern points are known. It is assumed that the cameras have
an intrinsic calibration based on the Scaramuzza model [SMS06a, Sca07]. With
this model extrinsic parameters to a chessboard pattern positioned in the view
area of the side cameras can be computed as shown in section 2.4.2.

The information missing are the relative position of the circle pattern PF view-
able from the front camera to the chessboard pattern PS of the side cameras. This
could either be constructed by precise measurement or estimated using a intrinsi-
cally calibrated camera seeing both patterns. This approach focuses on the latter.
A list and description of all utilized reference frames can be found in Table D.1.

Reference Frame Description
PF coordinate frame of the front chessboard pattern

(corners, 3 dimensions with z = 0)
PS coordinate frame of the side chessboard pattern

(corners, 3 dimensions with z = 0)
CF , CS intrinsic 3–dimensional reference frames of the

cameras (Front and Side)
E car coordinate system aligned with the front axis.

The x–axis points to the front and y to the left
K Camera system of an arbitrary camera which is

able to view both patterns PF and PS

Table D.1: Reference frames used for calibration

D.1 Finding a Link between two Pattern Refer-
ence Systems

As previously mentioned, we cannot use a single pattern to calibrate both cameras
at the same time. Though, we need to find a transform that connects the two
patterns.
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D.2 Putting it all together

For this, another internally calibrated camera K is needed which is able to see
both patterns in a single image. Using a method to extract extrinsic parameters for
each pattern from an image with both patterns visible, the transforms from each
pattern coordinate system (PS and PF ) to the camera coordinate system K can be
estimated. The transforms will be noted as TK←PS and TK←PF which transform
a point on the pattern (x, y, 0) into the internal camera coordinate system K.
The transform from one pattern coordinate system into the other then becomes a
simple linear algebra exercise with the help of the coordinate system K.

To calculate the coordinates of pattern points from PS in reference frame PF ,
the points from pattern PS are transformed into K. From K the inverse trans-
form to PF can be used. Hence, we get the following new transforms (eqs. (D.1)
and (D.2))

TPF←PS = TPF←K︸ ︷︷ ︸
T−1
K←PF

TK←PS (D.1)

TPS←PF = TPS←K︸ ︷︷ ︸
T−1
K←PS

TK←PF (D.2)

With our new transforms we can switch between the two reference frames of the
patterns.

xPF = TPF←PSxPS (D.3)
xPS = TPS←PF xPF (D.4)

D.2 Putting it all together

Based on our previous calculations, we can estimate the positions of both patterns,
even though only one pattern is visible at a time. We fix the car in the calibration
stand and calibrate the front camera with the help of the front pattern and the
usual setup of the calibration stand. In the next step, we estimate the transforms
between the two camera coordinate systems of the front and side cameras. At this
point, in each camera only one of the patterns is visible. Pattern PS is visible in
the side camera CS while pattern PF is only visible in the front camera.

With both cameras we estimate the extrinsic parameters of the patterns and
obtain the transforms TCS←PS and TCF←PF , i.e. the transforms to transform
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D.2 Putting it all together

points from the pattern coordinate system into the camera coordinate system. In
the previous section we estimated the transforms TPF←PS and TPS←PF , which we
will now use as a bridge between the two camera coordinate frames in eqs. (D.5)
and (D.6).

TCS←CF = TCS←PSTPS←PF TPF←CF︸ ︷︷ ︸
T−1
CF←PF

(D.5)

TCF←CS = TCF←PFTPF←PS TPS←CS︸ ︷︷ ︸
T−1
CS←PS

(D.6)

As the front camera calibration setup already provides us with a transform that
allows us to convert between the front camera coordinate system and the car coor-
dinate system E, we can derive the side camera transforms into the car coordinate
system eq. (D.7) and vice versa eq. (D.8).

TE←CS = TE←CFTCF←CS (D.7)
TCS←E = TCS←CFTCF←E (D.8)
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