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Abstract

Due to its computational interpretation, there has been a lot of interest in intuitionistic
logic in computer science. Adding combinations of the intuitionistic modal axioms to
intuitionistic modal logic IK results in different systems. Together they consitute the
intuitionistic modal logic cube. We use an embedding of intuitionistic modal logic in
higher order logic to verify this cube. Automatic reasoning tools, such as Sledgehammer
and Nitpick, were used to prove the inclusion relations between the cube’s logics and the
equality of some logics.
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1 Introduction

On Intuitionistic Modal Logic Intuitionistic modal logics (IML) have been studied by
various researchers [10, 19]. Mostly, they apply in theoretical computer science. In his
dissertation Alex Simpson [19] names several application fields, for example staged compu-
tation, computational effects, security, distributed computation, and typed lambda calculi.
Furthermore, he states that IML is considered to be a better language for describing secu-
rity policies than classical logic by some researchers.

In classical logic a formula is always associated to one of the values ⊥ or >. In contrast to
that in intuitionistic logic a formula is only true iff a proof exists for it. This does not mean
that there is a third value but that the truth value is unknown until a proof or counterproof
has been found. As one may have noticed this sounds very philosophical.

And in fact, the founder of intuitionism Luitzen Brouwer was convinced that mathematics
is a creation of the mind. He reasoned that the law of the excluded middle (A ∨ ¬A)
should no longer be valid. Based on Brouwers idea, Arend Heyting developed the first
model theory for intuitionistic logic. Later, Saul Kripke followed with the so called Kripke
semantics. This is the semantics used in this paper and explained more thoroughly in
section 3.

Basically, intuitionistic modal logics are intuitionistic propositional logics but they are
extended with the ♦ and � operators. Moreover, the following axioms which are called
k-axioms are added:

k1: �(A → B) → (�A → �B)

k2: �(A → B) → (♦A → ♦B)

k3: ♦(A ∨ B) → (♦A ∨ ♦B)

k4: (♦A → � B) → �(A → B)

k5: ¬♦⊥

The resulting logic is called intuitionistic IK. However, there is another proposal to define
intuitionistic modal logic. That variant is called constructive IK and does only include k1
and k2. Furthermore, its semantics is different from those of intuitionistic IK. In this thesis
we will assume intuitionistic IK when we talk about intuitionistic modal logic.

Aims of this thesis By adding combinations of the intuitionistic modal axioms T,D,B,4,
and 5 to IK 15 different logics are generated, see Figure 1. The scope of this paper is to
analyse the relations between these logics. All logics were proved complete and sound in
[19].

In the following, proofs are given to show the equivalences of different axiomatisations
and the inclusion relations shown in the cube. We chose to use an embedding of IML in
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higher-order logic for this purpose. Embeddings of other logics in higher-order logic have
already been realised by Christoph Benzmüller in [2], Christoph Benzmüller, Maximilian
Claus and Nik Sultana in [4], and Christoph Benzmüller and Bruno Woltzenlogel Paleo in
[6].

We were able to show that the axioms T,D,B,4, and 5 are equal to some frame correspon-
dences. However, using these correspondences we will verify that some combinations of
the intuitionistic modal axioms are indeed equivalent. Furthermore, proofs are given to
demonstrate that some logics are stronger than others. In summary, we will verify the
whole intuitionistic modal logic cube, except from some trivial statements.

Another goal of this thesis is to show advantages and limits of automatic theorem proving.
In [2] Benzmüller published the time the provers needed for verifying the modal logic cube.
It only took 40 seconds to verify all relations. As one can see in the following, in this case
it was a bit more complicated, as some proofs could not be reconstructed in Isabelle.

The biggest influence of this thesis is given by two noticeable papers [2, 4] in which the au-
thors elegantly verified the modal logic cube. This work is strongly oriented towards them
and their methodology has been adapted. Furthermore, we make use of the definition of
intuitionistic modal logic as given by Gordon Plotkin and Colin Stirling in [18].

The PDF presentation of this paper is automatically generated from the Isabelle/HOL
[16] source code by using the Isabelle’s document preparation tool. We also made use of
the reasoning tools provided by Isabelle. Especially Sledgehammer [17] turned out to be
very useful. This tool applies automatic theorem provers and satisfiability-modulo theories
solvers on a given goal. Of particular note are the external higher-order theorem provers
LEO-II [5] and Satallax [8] and the build-in prover Metis [12]. We also used Nitpick [7], a
counterexample generator for Isabelle, especially to prove the inclusion relationships.

Outline The thesis is structured as follows: Section 2 gives an introduction in higher-order
logic. Section 3 defines syntax and semantics of IML, section 4 presents the IML cube and
gives information about frame correspondences in IML. Then section 5 defines an encoding
of IML in higher-order logic. The premises assumed in previous sections are proven in
section 6. After that, section 7 gives evidence for the correspondences named in section
4. Section 8 shows that some different axiomatisations are equivalent whereas in section 9
cases are shown in which one logic is stronger than the other. Finally, section 10 compares
LEO-II and Satallax, and section 11 concludes this thesis.

2 Higher-order Logic

Higher-order logic (HOL) was formalised by Bertrand Russel and Alfred Whitehead. The
Alonzo Church’s formulation, based on his simple type theory, was published in 1940 and is
the canonical choice [9]. HOL was disregarded for many years. But because it can be used
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for mechanised reasoning and linguistics it was invoked again. It was in the late 1960’s
when HOL was combined with modal operators [15]. A description of higher-order modal
logic can be found in [3, 6].

To understand HOL, it is necessary to understand the simply typed λ calculus. Let T be a
set of types. In T there are the basic types o, which stands for booleans and µ, which de-
notes individuals. Whenever α, β ∈ T then (α→ β) ∈ T. T is freely generated from the set
of basic types {o, µ}. This means that (α1→ β1) ≡ (α2→ β2) implies α1 ≡ α2 and β1 ≡ β2.

All in all, a type T is generated according to the following grammar:

T ::= µ | o | (T → T)

In the following, parentheses are avoided, function types associate to the right.

A formula in HOL is given by:

A,B ::= pα | Xα | (λXα. Aβ)α → β | (Aα → β Bα)β |(¬o → oAo)o | ((∨o → o → oAo)Bo)o

|(∀(α → o) → o(λXα. Ao))o | (�o → oAo)o.

,where α, β ∈ T. pα is a typed constant, Xα denotes typed variables. Terms of type o are
called formulas.

(λXα. Aβ)α → β is a term of type α → β. This yields to be a lambda abstraction. When
applying a variable X of type α to the term of type α→ β a term of type β is formed. To
emphasise this type concept the grammar above was given in prefix notation, but in the
following we will switch to infix notation. Additionally to the connectives above, ⊥, >, ∧,
→, ≡, and ∃ can be defined canonically.

β-reduction is realised as follows. [A/X]B is defined as the substitution of a term Aα in a
term Bβ with a variable Xα. When a variable A is applied to a lambda abstraction (λX.
B) it β-reduces to [A/X]B. Implicitly, this substitution rule also defines α reduction, but
of course it is a bit more complicated if B contains bound variables which are replaced by
other bound variables. η-reduction on the other hand is simple, a term (λX. B X) where
X is not free in B reduces to B.

A model for HOL is a tuple M = <D,I> where D is a frame and I a set of interpretation
functions. A frame is a collection {Dα}α ∈ β of nonempty sets Dα and Do is the set of basic
types {T,F}. Dα → β contains functions mapping Dα to Dβ.

In the following we use Henkin semantics, which have been proven to be complete [11].
This is important because standard semantics does not allow a complete mechanisation [3].
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An interpretation function maps constant symbols qα to elements of Dα. For example, a
constant symbol po is mapped to True or False. The valuation function ||Aβ|| determines
the value d ∈ Dα of a HOL term A of type β on a model M = <D,I>. g denotes the used
assignment.

||qα||M,g = I(qα)
||Xα||M,g = g(Xα)
||(Aα → β Bα)β||M,g = ||Aα → β||M,g||Bα||M,g

||(λXα. Aβ)α → β||M,g = the function f from Dα to Dβ such that

f(d) = ||Aβ||M,g[d/Xα] for all d ∈ Dα

||(¬o → o) Ao)o||M,g = T iff ||Ao||M,g = F
||((∨o → o → o Ao) Bo)o||M,g = T iff ||Ao||M,g = T or ||Bo||M, g = T

||(∀(α → o) → o(λXα. Ao))o|| M,g = T iff for all d ∈ Dα we have ||Ao||M,g[d/Xα] = T

3 Intuitionistic Modal Logic

In this section an introduction to intuitionistic modal logic (IML) is presented. As men-
tioned before there is no canonical choice which axioms should be considered.

There are two different proposals that prevail in literature: intuitionistic modal logic and
constructive modal logic [1]. This thesis focuses on intuitionistic logic as proposed by
Plotkin et al. in [18]. Minimal changes are made in accordance with Lutz Straßburger [20]
towards a simplified notation. As there are a lot of different proposals for syntax and se-
mantics regarding intuitionistic modal logic, it is most important to define every construct
with highest precision.

The sentential modal language L consists of a set of formulas. A formula A is generated by:

A ::= A ∧ A | A ∨ A | A → A | ♦A | �A | ⊥ | q

where q ∈ Q and Q = {a,b,c,...} is a set of atomic sentences. ¬A is defined as A → ⊥

The � operator may be verbalised with the expression “it is necessary that”, while the
♦ symbol means “it is possible that”. In natural language we often use the signal word
“must” for the � and “may” for the ♦ operator. Both connectives are strongly connected
with the concept of possible worlds explained in the next paragraph.

In propositional logic, an atomic sentence valuates to True or False. The truth value can
be computed easily by using a truth table. By adding the concept of modality the truth
value is dependent on a set W of worlds. For example, the statement “Batman exists” may
be false in the real world but it is true in the DC Universe. However, two worlds could also
be different temporal states of a system (e.g. a computer before a program was executed
and after that). To show a connection between two worlds, we use an accessibility relation
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R. If w R v applies for two worlds w and v, it means that from w’s point of view it is
possible that w is true [19].

In classical logic a model for a formula is a variable assignment whose interpretation func-
tion evaluates the formula to true. In IML a model has more components. We will use the
semantics proposed by Plotkin et al. which are based on Kripke semantics [14, 18].

An intuitionistic modal model for the language L is tuple <W, ≤, R, V>. The valuation
V is a function W → P(Q) which maps a world to the set of atomic sentences which are
true in this world. P(Q) is the power set of Q. The other three components are called a
modal frame.

The most minimal version of a Kripkean intuitionistic modal frame is <W, ≤, R>, W is
a set of worlds and R the modal accessibility relation. The other relation ≤ is called the
intuitionistic information relation and is partially ordered. That means that it is reflexive,
transitive, and antisymmetric. This third property of antisymmetry was left out in [20],
where ≤ just has to be pre-ordered. In the following the notation ≥ is used as it is more
convenient in some cases: w ≤ v iff v ≥ w.

The valuation V function is connected with the ≤ relation in the following manner:

if w ≤ w’ then V(w) ⊂ V(w’) (VMon)

In [18] four different ways are proposed in which the ≤ relation and the R relation may be
connected:

1. if w ≤ w’ and w R v then ∃v’. w’ R v’ and v ≤ v’

2. if w ≤ w’ and w’ R v’ then ∃v. w R v and v ≤ v’

3. if v ≤ v’ and w R v then ∃w’. w’ R v’ and w ≤ w’

4. if v ≤ v’ and w’ R v’ then ∃w. w R v and w ≤ w’

For a better understanding of these conditions, one may visualise them as diagrams:

w v

w′ v′

R

R

≤ ≤

condition 1

w v

w′ v′

R

R

≤ ≤

condition 2

w v

w′ v′

R

R

≤ ≤

condition 3

w v

w′ v′

R

R

≤ ≤

condition 4

We will use frame conditions 1 and 3 as suggested in [18] and adopted in [20]. Plotkin et
al. emphasise, that the choice of frame conditions is connected strongly with the semantic
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clauses for the modal operators.

Moreover, they suggest these two statements:

1. ♦A → ¬�¬A

2. ¬♦A → �¬A

Number 1 follows from frame condition 1, number 2 from frame condition 3. See section
6.1 for an automated proof of these statements.

To evaluate a formula A in the context of a world w we define the evaluation relation |=.

w |= q iff q ∈ V(w)
w |= A ∧ B iff w |= A and w |= B
w |= A ∨ B iff w |= A or w |= B
w |= A → B iff ∀w’ ≥ w if w’ |= A then w’ |= B
w |= ♦A iff ∃u. w R u and u |= A
w |= �A iff ∀w’ ≥ w ∀u. if w’ R u then u |= A

Furthermore, there are different understandings of validity. A formel A is:

1. valid in a model M = <W, ≤, R, V> iff ∀w ∈ W: w |= A.

2. valid in a frame <W, ≤, R> iff ∀V: <W, ≤, R, V> |= A.

3. valid iff ∀ <W, ≤, R>: <W, ≤, R> |= A.

The following lemma is important as it is impossible to use the relationship between ≤ and
V (VMon) directly in the encoding.

if w ≤ w’ and w |= A then w’ |= A (Monotonicity)

This property is used a lot in the verification process discussed in the rest of this thesis.

However, it is not necessary to declare the k-axioms mentioned in section 1. As shown in
section 6.2 they can be proven just by using that the relation ≤ is partially ordered. Any
theorem that is derivable from these k-axioms or from the axioms of intuitionistic proposi-
tional logic by using the modus ponens or necessitation rule is a theorem of intuitionistic
modal logic IK. In fact, if a theorem is derivable under those circumstances, it is exactly
one of the theorems of IK.

In the following we want to explain the relationship between classical modal logic and in-
tuitionistic modal logic. It is obvious that all theorems of IML are valid in classical logic
but not all classically valid formulae are valid in IML.
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One example is the double negation. In IML p → ¬¬p is a theorem, but ¬¬p → p is not,
whereas in classical logic both statements are tautologies. To achieve classical logic one of
these axioms is added:

A ∨ ¬A (Law of excluded middle)
¬¬A → A (Double negation)
(¬A → ¬B) → (B → A) (Law of contraposition)
((A → B) → A) → A (Peirce’s law)

For further information on intuitionistic modal logic there can be found a lot of literature
[15, 19].

4 Intuitionistic Modal Logic Cube and Frame Correspon-
dences

The IML cube resembles the one of classical modal logic [4]. There are 15 different logics
generated by adding the intuitionistic modal axioms D, T, B, 4, and 5 to the logic IK. One
may argue that by combining these five axioms

(
5
0

)
+

(
5
1

)
+

(
5
2

)
+

(
5
3

)
+

(
5
4

)
+

(
5
5

)
= 32

logics are obtained but as we will prove exemplary in section 8 some of these logic are in
fact equivalent. The whole cube is presented in Figure 1.

The intuitionistic modal axioms are not the same as the modal axioms in classical modal
logic, because there is no duality between � and ♦ anymore. For example axiom T consists
of A → ♦A and �A → A. In classical logic these statements are equivalent, in IML they
are not. Thus the T axiom in IML is expressed by the conjunction of both axioms.

The only exception is axiom D: �A → ♦A, here the second part is the same as the first.
To distinguish between the two parts of an intuitionistic modal axiom, we will denote one
part with adding a ♦ and one with adding a � to their name.

At this point, we want to extend the definition of validity. We say that for X ⊆ {D,T,B,4,5}
a frame is called an X-frame if the relations R and ≤ obey the frame conditions given in
Table 1. A formula A is derivable from IK+X iff A is valid in all X-frames. A formula is
X-valid iff it is valid in all X-frames.

Now we can define different logics more clearly. For example IK+{D,5} is the logic which
evolves from IK by adding the axioms D and 5. The logic is called ID5, the K in the
name is left out. Hereafter, this article will make use of names like ID5 instead of writing
IK+{D,5}. But it is important to bear in mind how a logic is generated from IK.
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IK

IK4

IK5

IKB

IK45 IKB5

ID

ID4

ID5

IDB

ID45

IT

IS4

ITB

IS5 ≡ IT5 ≡ ITB5 ≡ IT4B5
≡ IT45 ≡ IT4B ≡ ID4B
≡ ID4B5 ≡ IDB5

≡ IK4B5 ≡ IK4B

Figure 1: IML Cube

At this point, we could use the intuitionistic modal axioms for the verification of the IML
cube. But it is more efficient to use conditions regarding the frame, as done by Benzmüller
et al. in [4] for classical modal logic.

The first challenge was to find correspondences which are valid in the same semantical
setting as the one we used. In [13] the author uses different semantics but in one chapter
he discussed the semantics used here. His assumption was that all intuitionistic modal
axioms except from D do not correspond to the classical conditions.

The second challenge was that nobody seems to have given a proof for the inequality of the
intuitionistic modal axioms to the classical frame correspondences. Most authors referred
to Plotkin et al. [18], who give two reasons why it would be unlikely that they are equal.

Their first reason is that because of the breakdown, mentioned above, it would be unlikely
if both parts of an intuitionistic modal axiom correspond to the same frame condition.

Their second reason is that a correspondence theorem should not only make restraints on
R but also on the relationship between R and ≤. In their argumentation Plotkin et al. do
not include thoughts about the influence of the properties the ≤ relation has, nor about
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the interconnection defined with frame condition 1 and 3.

When we tried to find a counterexample for equality of axiom T and reflexivity we were
surprised. Instead of refuting the equality we actually were able to prove it. The same
happened for all other intuitionistic modal axioms.

Even after examining all our assumptions most thoroughly, we could not find any divergence
to the axiomatisation of Plotkin et al. To fully understand the reasons for this behaviour
further work is needed. Possibly we need to reexamine the long-established position that
the classical correspondences are not valid in the setting of Plotkin et al.

Nevertheless we will work with slightly different frame conditions, which make statements
about the connection of the ≤ and R relations. It is helpful, that each correspondence
axiom is a instance of the intuitionistic version of the Gk,l,m,n schema [18], also called
Lemmon-Scott schema [13].

Gk,l,m,n is the schema:

♦k�lA → �m♦nA, for k,l,m,n ≥ 0.

Where Rn for n ≥ 0 is defined as:

w R0 v iff w = v

w Rn+1 v iff ∃u. w R u and u Rn v

The following theorem specifies a very useful connection:

A modal frame <W, ≤, R> validates Gk,l,m,n iff:

if w Rk u and w Rm v then ∃u’ ≥ u ∃x. (u’ Rl x ∧ v Rn x)

Take for example the T axiom mentioned above. It consists of two parts: A → ♦A and
�A → A. As one can see both are instances of the Gk,l,m,n schema. For example the first
part resolves like this:

Gk,l,m,n with k=l=m=0 and n = 1

≡ ♦0�0A → �1♦0A

≡ ∀w u v. (w R0 u ∧ w R0 v) → ∃u’ ≥ u. ∃x. (u’ R0 x ∧ v Rl x)

≡ ∀w u v. (w = u ∧ w = v) → ∃u’ ≥ u. ∃x. (u’ = x ∧ (∃a. v R a ∧ a R0 x))

≡ ∀w. ∃u’ ≥ w. (∃a. w R a ∧ a = u’)

≡ ∀w. ∃u’ ≥ w. w R u’

By applying the schema to all IML axioms we achieved the results indicated in Table 1.
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The correspondences have been proven in section 7. The classical correspondences are
illustrated in the same table and also have been proven in section 7.

Table 1: Intuitionistic modal axioms D,T,B,4, and 5 with corresponding frame conditions

name axiom intuitionistic frame correspondence classical correspondence

T�: �A → A ∀w. ∃u’. w ≤ u’ ∧ u’ R w ∀w. w R w
T♦: A → ♦A ∀w. ∃u’. w ≤ u’ ∧ w R u’ (reflexivity)

B�: A → �♦A ∀w u. w R u → ∃u’. w ≤ u’ ∧ u R u’ ∀w u. w R u → u R w
B♦: ♦�A → A ∀w u. w R u → ∃u’. u ≤ u’ ∧ u’ R w (symmetry)

D: �A → ♦A ∀w. ∃u’. w ≤ u’ ∧ (∃x. u’ R x ∧ w R x) ∀w. ∃u. w R u
(seriality)

4♦: ♦♦A → ♦A ∀w v. (∃u. w R u ∧ u R v) → (∃u’. v ≤ u’ ∧ w R u’) ∀w u v. w R u ∧ u R v → w R v
4�: �A → ��A ∀w v. (∃u. w R u ∧ u R v) → (∃u’. w ≤ u’ ∧ u’ R v) (transitivity)

5♦: ♦A → �♦A ∀w v u. (w R u ∧ w R v) → (∃u’. u ≤ u’ ∧ u’ R v) ∀w u v. w R u ∧ w R v → u R v
5�: ♦�A → �A ∀w v u. (w R u ∧ w R v) → (∃u’. u ≤ u’ ∧ v R u’) (euclideaness)

5 An Embedding of Intuitionistic Modal Logics in HOL

As described in section 1 an embedding of IML in higher-order logic is used to verify the
IML cube. This has already been done by Benzmüller et al. [4] in the scope of the modal
logic cube and is further described in [6].

The latter emphasised that many problems can be encoded more elegantly in higher-order
logics than in less expressive logics. This issue may be beyond efficiency, the problem could
be impossible to solve. The authors of [6] give a noticeable example: In first-order logic
the proof for George Boolos’ curious inference is very long whereas in higher-order logic it
is a one page proof.

In contrast to HOL the truth of a formula in IML is dependent from its context, called its
possible world. To embed IML in HOL without losing this information, we need to store
it somewhere. This is realised by introducing a special type for worlds ι. There is also a
type for individuals, denoted by µ.

In section 3 we did not extend the concept of types to IML but it is easy to transfer. There
are IML formulas of type µ, o, and combinations of these. An IML type α associates to
HOL type dαe as follows:

dµe = µ
doe = σ = ι→ σ
dα→ βe = dαe → dβe
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All types can be modelled in Isabelle in a straightforward fashion:

typedecl ι
typedecl µ
type-synonym σ = (ι ⇒ bool)

The two relations are modelled as constants.

consts R :: ι ⇒ ι ⇒ bool — accessibility relation
consts le :: ι ⇒ ι ⇒ bool — ordering relation

A new evaluation function is defined. For example, in both IML and HOL the or connective
has the type o → o → o. It takes two booleans as input and gives one as output. The
embedding function resolves dAo ∨ Boe (∨ connective of IML) to λwι. dAe w ∨ dBe w (∨
connective of HOL). The type of this term is σ → σ → σ.

To distinguish between HOL and lifted operators we use of bold lettering. For example
∨∨σ → σ → σ = λφσ. λψσ. λwµ. φ w ∨ ψ w. Additionally to the bold lettering it is helpful
to recall the type concept. The bold operators are used with terms of type σ, the HOL
operators with those of type bool.

To retrieve all operators, we need to extend the d.e function. In 3 we did not distinguish
between constants and variables, but it is easy to do so. An IML term A is associated with
a HOL term dAe in the following way:

dqαe = qdαe
dAo ∨o → o → o Boe = λwι. dAe w ∨ dBe w
d�o → o Aoe = λw. ∀w’ v’. w le w’ → (w’ R v’ → dAe)

This definition is not complete. All other formula liftings are given in the following code.
To evaluate a term φ in a certain world w we only have to evaluate φ w. Whether the term
contains or does not contain connectives it is possible to do exactly the same.

Unlike previously, in the Isabelle code, the terms φ and ψ are given as parameters but this
is just for better readability. They are converted in lambda notation by Isabelle. For the
same reason we switch to infix notation.

abbreviation mand :: σ⇒σ⇒σ where A ∧ B ≡ λw . A w ∧ B w
abbreviation mor :: σ⇒σ⇒σ where A ∨ B ≡ λw . A w ∨ B w
abbreviation mimp :: σ⇒σ⇒σ where A → B ≡ λw . ∀w ′. w le w ′ −→ (A w ′ −→ B w ′)
abbreviation mbox :: σ⇒σ where �A ≡ λw . ∀w ′ v ′. w le w ′ −→ (w ′ R v ′ −→ A v ′)
abbreviation mdia :: σ⇒σ where ♦A ≡ λw . ∃ v . (w R v ∧ A v)
abbreviation mfalse :: σ where ⊥ ≡ λw . False
abbreviation mnot :: σ⇒σ where ¬A ≡ λw . (A → ⊥) w
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Quantifiers can be embedded additionally.

abbreviation mexists :: ( ′a ⇒ σ) ⇒ σ where ∃ Φ ≡ (λw . ∃ x . Φ x w)
abbreviation mforall :: ( ′a ⇒ σ) ⇒ σ where ∀ Φ ≡ (λw . ∀ x . Φ x w)

A formula is valid if it is true for all worlds. In section 2 three different notations of validity
were introduced. It seems that valid here just means valid in a model but R and ≤ and
the valuation function are arbitrary, so it means validity of a formula.

abbreviation valid :: σ⇒bool where bpc ≡ ∀w . p w

The ≤ relation is partially ordered. Additionally, we define the conditions named in
section 3.

axiomatization where FR: ∀w . w le w
axiomatization where FT : ∀w u v . (w le u ∧ u le v) −→ w le v
axiomatization where FA: ∀w u. (w le u ∧ u le w) −→ (w=u)
axiomatization where F1 : ∀w w ′ v . ((w le w ′ ∧ w R v)−→(∃ v ′. (w ′ R v ′ ∧ v le v ′)))
axiomatization where F3 : ∀ v v ′ w . ((v le v ′ ∧ w R v) −→ (∃w ′. (w ′ R v ′ ∧ w le w ′)))

The property VMon can not be translated directly into HOL because the valuation func-
tion is included in the embedding. We can use the lemma of Monotonicity instead. VMon
is included in it.

axiomatization where Mon: ∀w w ′. ∀ A. (w le w ′ ∧ A w) −→ A w ′

Two last issues about this embedding shall be mentioned here. They are explained more
in detail in [6].

In the embedding in [6] it was assumed that all constants are rigid. A constant qα is rigid
if ∃d. ∀w. Iw(qα) = d. This means that the interpretation of a constant is the same in
all worlds. Constants of type o are an exception and still dependent on a world. This
behaviour is called flexible.

To broaden the embedding to flexible constants, type-raising may be applied. An IML
constant symbol of the type µ would be mapped to a HOL constant with the type ι→ µ.
Because the information about the current world is not available anymore, it needs to be
passed over.

In the embedding above this issue does not occur because there are no constants in IML.
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The second issue deals with domains. Imagine that an individual in Dµ does not exist in
all worlds. For example, Batman does not exist in the real world. Previously, we assumed
that all domains are constant. In [6] the authors mention modifications to face varying
domains.

6 Premise Check

This section is meant to validate premises introduced in the previous sections. Also, it is
not necessary for the verification process of the IML cube to check them, their validity is
so important that they are shown here nevertheless.

6.1 Negation Statements

Both statements are proposed by Plotkin et al. in [18]:

lemma b(∀ (λA. ((♦A) → ¬�¬A)))c by (meson FR Mon)
lemma b(∀ (λA. ((¬(♦A)) → �¬A)))cby (meson Mon)

6.2 K-Axioms

In this thesis the K-Axioms proposed in [18] are used. In classical modal logic all other
K-Axioms would follow from k1 and the De Morgans laws. In an intuitionistic setting
properties of the ≤ and R relation are necessary.

abbreviation k1 where k1 ≡ b(∀ (λA. (∀ (λB . ((� (A → B)) → ((� A) → (� B)))))))c
abbreviation k2 where k2 ≡ b(∀ (λA. (∀ (λB . ((� (A → B)) → ((♦ A) → (♦ B)))))))c
abbreviation k3 where k3 ≡ b(∀ (λA. (∀ (λB . ((♦ (A ∨ B)) → ((♦ A) ∨ (♦ B)))))))c
abbreviation k4 where k4 ≡ b(∀ (λA. (∀ (λB .(((♦ A) → (� B)) → (�(A → B)))))))c
abbreviation k5 where k5 ≡ b¬ (♦⊥)c

theorem k1 using FR FT by blast
theorem k2 using FR by blast
theorem k3 by blast
theorem k4 by (meson F3 FR FT )
theorem k5 by simp

7 Proofs of the Frame Correspondences for IML

In this section proofs regarding the frame conditions explained in section 4 are given. They
make aware of the challenges automatic theorem proving still has to face. All proofs were
suggested by Sledgehammer. However, nine of them could not by reconstructed. Unfortu-
nately, one statement (lemma A4-b-2) could not be verified at all. On the one hand this is
a serious concern, on the other hand it may be enough to know that some proof exists.

16



Another interesting point connected to this matter is that, while we were working on this
thesis, it was very difficult to prove some theorems on one of the computers. It was a
1.7GHz dual-core computer with 8GB memory. On an other computer a 2,5GHz quad-
core with 16 GB memory it worked much better, showing how much influence the used
infrastructure still has.

It must be mentioned that authors often do not distinguish between meta level argumen-
tation and object level. To demonstrate the importance of this difference we give the
following example.

When intuitionistic implication (→→ operator) is used Nitpick quickly finds counterexamples
for both of these two lemmata.

lemma b(∀ (λA. ((A → (♦ A)) → ((� A) → A))))c nitpick[user-axioms] sorry
lemma b(∀ (λA. (((� A) → A) → (A → (♦ A)))))c nitpick[user-axioms] sorry

On the opposite when using classical implication (→ operator) it is possible to prove both
statements.

lemma b(∀ (λA. (A → (♦ A))))c −→ b(∀ (λA. ((� A) → A)))c — by (metis Mon) sorry
lemma b(∀ (λA. ((� A) → A)))c −→ b(∀ (λA. (A → (♦ A))))c — by (metis FR Mon ext) sorry

Another option is to use intuitionistic implication (→→ operator) and to quantify over each
part individually. All statements can be proven.

lemma b((∀ (λA. ((A → (♦ A))))) → (∀ (λA.((� A) → A))))c — by (metis Mon) sorry
lemma b((∀ (λA. (((� A) → A)))) → (∀ (λA.(A → (♦ A)))))c — by (metis FR Mon ext) sorry

7.1 Intuitionistic modal axioms

abbreviation T-dia where T-dia ≡ b(∀ (λA. (A → (♦ A))))c
abbreviation T-box where T-box ≡ b(∀ (λA. ((� A) → A)))c
abbreviation T where T ≡ b(∀ (λA. (((� A) → A) ∧ (A → (♦ A)))))c

abbreviation B-dia where B-dia ≡ b(∀ (λA.( (♦(� A)) → A)))c
abbreviation B-box where B-box ≡ b(∀ (λA.( A → (� (♦ A)))))c
abbreviation B where B ≡b(∀ (λA.( (♦(� A)) → A) ∧ (A → (� (♦ A)))))c

abbreviation D where D ≡ b(∀ (λA.((� A) → (♦ A))))c

abbreviation IV-box where IV-box ≡ b(∀ (λA.((� A) → (�(� A)))))c
abbreviation IV-dia where IV-dia ≡ b(∀ (λA.((♦(♦ A)) → (♦ A))))c
abbreviation IV where IV ≡ b(∀ (λA.((� A) → (�(� A)))∧((♦(♦ A)) → (♦ A))))c

abbreviation V-dia where V-dia ≡ b(∀ (λA.((♦(� A)) → (� A))))c
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abbreviation V-box where V-box ≡ b(∀ (λA.((♦ A) → (� (♦ A)))))c
abbreviation V where V ≡ b(∀ (λA.((♦(� A)) → (� A)) ∧ ((♦ A) → (� (♦ A)))))c

7.2 Frame Correspondences

abbreviation FC-T-dia where FC-T-dia ≡ ∀w . ∃ u ′. w le u ′ ∧ w R u ′

abbreviation FC-T-box where FC-T-box ≡ ∀w . ∃ u ′. w le u ′ ∧ u ′ R w
abbreviation FC-T where FC-T ≡ FC-T-dia ∧ FC-T-box

abbreviation FC-B-dia where FC-B-dia ≡ ∀w u. w R u −→ (∃ u ′. u le u ′ ∧ u ′ R w)
abbreviation FC-B-box where FC-B-box ≡ ∀w u. w R u −→ (∃ u ′. w le u ′ ∧ u R u ′)
abbreviation FC-B where FC-B ≡ FC-B-dia ∧ FC-B-box

abbreviation FC-D where FC-D ≡ ∀w . ∃ u ′. w le u ′ ∧ (∃ x . u ′ R x ∧ w R x )

abbreviation FC-IV-dia
where FC-IV-dia ≡ ∀w u. (∃ v . w R v ∧ v R u) −→ (∃ u ′. u le u ′ ∧ w R u ′)

abbreviation FC-IV-box
where FC-IV-box ≡ ∀w u. (∃ v . w R v ∧ v R u) −→ (∃ u ′. w le u ′ ∧ u ′ R u)

abbreviation FC-IV where FC-IV ≡ FC-IV-dia ∧ FC-IV-box

abbreviation FC-V-dia
where FC-V-dia ≡ ∀w v u. (w R u ∧ w R v) −→ (∃ u ′. u le u ′ ∧ u ′ R v)

abbreviation FC-V-box
where FC-V-box ≡ ∀w v u. (w R u ∧ w R v) −→ (∃ u ′. u le u ′ ∧ v R u ′)

abbreviation FC-V where FC-V ≡ FC-V-dia ∧ FC-V-box

7.3 Classical Frame Correspondences

abbreviation ref where ref ≡ ∀w . w R w
abbreviation ser where ser ≡ ∀w . ∃ v . w R v
abbreviation sym where sym ≡ ∀w u . w R u −→ u R w
abbreviation trans where trans ≡ ∀w u v . w R u ∧ u R v −→ w R v
abbreviation eucl where eucl ≡ ∀w u v . w R u ∧ w R v −→ u R v

7.4 Proof of Frame Correspondences

7.4.1 Axiom T♦ corresponds to FC-T♦

lemma A1-a-1 : FC-T-dia −→ T-dia using Mon by blast
lemma A1-a-2 : T-dia −→ FC-T-dia by (meson FR)
theorem A1-a: T-dia ←→ FC-T-dia using A1-a-1 A1-a-2 by auto

7.4.2 Axiom T� corresponds to FC-T�

lemma A1-b-1 : T-box −→ FC-T-box — by (metis FR Mon ext) sorry
lemma A1-b-2 : FC-T-box −→ T-box by fastforce
theorem A1-b: FC-T-box ←→ T-box using A1-b-1 by blast

7.4.3 T corresponds to reflexivity

lemma A1-c-1 : ref −→ T using FR by blast

18



lemma A1-c-2 : T −→ ref — by (meson FR) sorry
theorem A1-c: T ←→ ref by (smt A1-c-1 A1-c-2 )

7.4.4 Axiom B♦ corresponds to FC-B♦

lemma A2-a-1 : FC-B-dia −→ B-dia by blast
lemma A2-a-2 : B-dia −→ FC-B-dia — by (metis FR Mon ext) sorry
theorem A2-a: B-dia ←→ FC-B-dia using A2-a-2 by blast

7.4.5 Axiom B � corresponds to FC-B�

theorem A2-b: B-box ←→ FC-B-box by (meson FR Mon)

7.4.6 Axiom B corresponds to symmetry

theorem A2-c-1 : B −→ sym — by (meson FR) sorry
lemma A2-c-2 : sym −→ B using FR Mon by blast
theorem A2-c: sym ←→ B by (smt A2-c-1 A2-c-2 )

7.4.7 Axiom D corresponds to FC-D

theorem A3-a: D ←→ FC-D using FR by blast

7.4.8 Axiom D corrsponds to seriality

theorem A3-b: D ←→ ser using FR by fastforce

7.4.9 Axiom IV♦ corresponds to FC-IV♦

theorem A4-a: IV-dia ←→ FC-IV-dia by (meson FR Mon)

7.4.10 Axiom IV� corresponds to FC-IV�

lemma A4-b-1 : FC-IV-box −→ IV-box by (smt Mon)
lemma A4-b-2 : IV-box −→ FC-IV-box sorry
theorem A4-b: FC-IV-box ←→ IV-box by (smt A4-b-1 A4-b-2 )

7.4.11 Axiom IV corresponds to transitivity

lemma A4-c-1 : trans −→ IV by (meson Mon)
lemma A4-c-2 : IV −→ trans — by (metis FR) sorry
theorem A4-c: IV ←→ trans using A4-c-1 A4-c-2 by satx

7.4.12 Axiom V♦ corresponds to FC-V♦

lemma A5-a-1 : FC-V-dia −→ V-dia by (meson Mon)
lemma A5-a-2 : V-dia −→ FC-V-dia sorry
lemma A5 : V-dia ←→ FC-V-dia using A5-a-1 A5-a-2 by blast
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7.4.13 Axiom V� corresponds to FC-V�

lemma A5-b-1 : FC-V-box −→ V-box by (meson Mon)
lemma A5-b-2 : V-box −→ FC-V-box by (meson FR)
theorem A5-b: FC-V-box ←→ V-box using A5-b-1 A5-b-2 by blast

7.4.14 Axiom V corresponds to euclideaness

lemma A6-c-1 : V-box −→ eucl — by (metis FR) sorry
lemma A6-c-2 : eucl −→ V-box by (meson Mon)
lemma A6-c-3 : V-dia −→ eucl — by (metis FR Mon) sorry
lemma A6-c-4 : eucl −→ V-dia by (meson FR Mon)
theorem A6-c-5 : eucl ←→ V by (smt A6-c-1 A6-c-2 A6-c-4 )

8 Alternative Axiomatisations

As shown in Figure 4, in some cases the same logic can be obtained by adding different
combinations of axioms. This is the case for the two logics IS5 and D4B. For example,
the axioms used to obtain IS5, namely V and T, are equivalent to the ones to obtain D4B,
which are D, IV, and B.

In this section, proofs are given to show the equality of these logics. Therefore, the corre-
spondence axioms from section 4 are used. It simplifies the proofs because there is no need
to deal with formulae anymore. This means that instead of showing V ∧ T ≡ D ∧ V ∧ B,
it is sufficient to show FC-V ∧ FC-T ≡ FC-D ∧ FC-IV ∧ FC-B.

To avoid redundancy, the helper lemmata defined in the next subsection are used. For
H3 and H4 Sledgehammer found a proof but metis could not reconstruct it. This means
that each proof in the sections 8.0.2 to 8.0.10 which is based on H3 or H4 can not be
reconstructed either.

It is interesting that the axioms Mon and FR were used a lot, whereas the other properties
of the ≤ relation were not used at all.

8.0.1 Helper lemmata

lemma H1 : FC-V ∧ FC-T −→ FC-B by (meson FR Mon)
lemma H2 : FC-V ∧ FC-T −→ FC-D using FR by blast
lemma H3 : FC-B ∧ FC-V −→ FC-IV — by (metis Mon) sorry
lemma H4 : FC-B ∧ FC-IV −→ FC-V — by (metis FR Mon) sorry
lemma H5 : FC-B ∧ FC-IV ∧ FC-D −→ FC-T using H4 by meson

8.0.2 IT5 ⇐⇒ ITB5

theorem B1 : (FC-B ∧ FC-T ∧ FC-V ) ←→ (FC-T ∧ FC-V ) using H1 by fastforce
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8.0.3 IT5 ⇐⇒ IT45

theorem B2 : (FC-T ∧ FC-V ∧ FC-IV ) ←→ (FC-T ∧ FC-V ) using H3 H1 by fastforce

8.0.4 IT5 ⇐⇒ IT4B5

theorem B3 : (FC-T ∧ FC-V ) ←→ (FC-T ∧ FC-IV ∧ FC-B ∧ FC-V ) using B1 B2 by satx

8.0.5 IT5 ⇐⇒ IT4B

theorem B4 : (FC-T ∧ FC-IV ∧ FC-B) ←→ (FC-T ∧ FC-V ) using H4 B1 B2 by satx

8.0.6 IT5 ⇐⇒ ID4B

theorem B5 : (FC-B ∧ FC-IV ∧ FC-D) ←→ (FC-T ∧ FC-V ) using H1 H2 H3 H4 H5 by satx

8.0.7 IT5 ⇐⇒ ID4B5

theorem B6 : (FC-T ∧ FC-V ) ←→ (FC-B ∧ FC-IV ∧ FC-D ∧ FC-V ) using B5 H2 by satx

8.0.8 IT5 ⇐⇒ IDB5

theorem B7 : (FC-B ∧ FC-D ∧ FC-V ) ←→ (FC-T ∧ FC-V ) using H3 H5 B6 by satx

8.0.9 IKB5 ⇐⇒ IK4B5

theorem B8 : (FC-IV ∧ FC-B ∧ FC-V ) ←→ (FC-B ∧ FC-V ) using H3 by satx

8.0.10 IKB5 ⇐⇒ IK4B

theorem B9-a: (FC-IV ∧ FC-B) ←→ (FC-B ∧ FC-V ) using H3 H4 by satx

9 Inclusion Relations

In the previous section we proved that some logics are actually the same. Now we want to
show which logics differ. Analogous to [4] this thesis concentrates on the backward direc-
tion of an edge within the IML cube. The forward direction is always trivial. For example,
to show that each theorem of ID45 is a theorem of logic ID5 it is enough to omit axiom 4.
Thus, we want to examine whether there are theorems of ID5 that can not be proved in
ID45. The notation A > B is used to indicate that in logic A strictly more theorems are
provable than in logic B.

The following methodology is mostly adopted from [4]. That paper names several steps
which are applied to all edges in the cube. Only one step was omitted because it was rarely
possible to prove it.
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9.1 Preparation

These three abbreviations are taken over from [4] directly:

abbreviation one-world-model :: ι⇒bool where #1 w1 ≡ ∀ x . x=w1
abbreviation two-world-model :: ι⇒ι⇒bool where #2 w1 w2 ≡ (∀ x . x=w1 ∨ x=w2 ) ∧ w1 6=w2
abbreviation three-world-model :: ι⇒ι⇒ι⇒bool where #3 w1 w2 w3 ≡ (∀ x . x=w1 ∨ x=w2 ∨
x=w3 ) ∧ w1 6=w2 ∧ w1 6=w3 ∧ w2 6=w3

They are needed because some logics are only equivalent if the model considered has enough
worlds. For example, two world model forces that there are at least two worlds and that
they are not equal. The idea behind Benzmüllers et al. methodology is to determine the
minimum number of worlds which fulfil an inclusion relation.

consts i1 ::ι i2 ::ι i3 ::ι

i1, i2 and i3 are worlds. We will use them as arguments for the world-model operators
and we also have to activate the Nitpick show constants option, otherwise no information
about relations is shown.

nitpick-params [user-axioms=true,format=2 ,max-threads=1 ,show-consts=true]

To improve the readability the following abbreviations are defined:

abbreviation IT5 where IT5 ≡ FC-V ∧ FC-T
abbreviation IKB5 where IKB5 ≡ FC-B ∧ FC-V
abbreviation IK4 where IK4 ≡ FC-IV
abbreviation IKB where IKB ≡ FC-B
abbreviation IK5 where IK5 ≡ FC-V
abbreviation IK45 where IK45 ≡ FC-IV ∧ FC-V
abbreviation ID where ID ≡ FC-D
abbreviation IDB where IDB ≡ FC-D ∧ FC-B
abbreviation ID4 where ID4 ≡ FC-D ∧ FC-IV
abbreviation IT where IT ≡ FC-T
abbreviation IT4 where IT4 ≡ FC-T ∧ FC-IV
abbreviation ID5 where ID5 ≡ FC-D ∧ FC-V
abbreviation ID45 where ID45 ≡ FC-D ∧ FC-IV ∧ FC-V
abbreviation ITB where ITB ≡ FC-T ∧ FC-B

9.2 Step A

Usually we would just try to prove the following statement:

lemma: ¬IKB
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But as mentioned before, this lemma is only true if a model contains enough worlds. A
counterexample for it is:

i1

≤

We need to obtain the information how many worlds a model has to have to make the
inclusion true. Therefore, we assume that a false inclusion is valid and apply Nitpick on
it. Nitpick will first try to test models with one world, then with two etc.

In the IKB > IK example nitpick can not find a counterexample with one world: For all
models, containing only one world, the statement IKB is true. To retrieve the exact arity
information, we assumed that each theorem in IKB is also a theorem in IK:

lemma C1-a: IKB

All lemmata produced by applying step A are named C∗-a.

Nitpick generates a countermodel for each of it, 16 are countermodels with two worlds, 7
with one world and 1 with three worlds. For the IKB > IK example the countermodel
found by Nitpick is:

R = (λx . -) ((ι1, ι1) := False, (ι1, ι2) := True, (ι2, ι1) := False, (ι2, ι2) := False)

le = (λx . -) ((ι1, ι1) := True, (ι1, ι2) := False, (ι2, ι1) := False,(ι2, ι2) := True)

This can be represented as a diagram:

i1 i2
R

≤ ≤

IKB > IK may be valid only for models with two or more worlds because nitpick found a
counterexample for the statement IKB � IK with two wolds. . In Step C we will see how
to prove that two is the minimal number of worlds for which the inclusion relation is valid.

9.3 Step B

Knowing how many worlds are needed we can use the abbreviations defined in 9.1 to en-
force this number of worlds. In [4] it was possible to use the arity information directly.
But when we tried to prove:
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#2 i1 i2 → ¬ IKB

Nitpick found a counterexample. It seems that inclusion is dependent on properties of the
R and the ≤ relation. It is sufficient that at least one R and one ≤ relation are existing in
those respective frame A > B is valid. That is because a formula is only valid if it is valid
in all frames.

Anyway, in [4] the Metis-based integration into Isabelle failed in a few cases. For these cases
the authors took another method and used all information Nitpick gave them in its coun-
termodel. In this thesis we will always use all information about the acessibility relation.
In the IKB > IK example, we know for example that i1 ≤ i1 is true, whereas i1 ≤ i2 is false.

lemma C1-b: #2 i1 i2 ∧ ¬i1 R i1 ∧ i1 R i2 ∧ ¬i2 R i1 ∧ ¬i2 R i2 ∧ i1 le i1

∧ ¬i1 le i2 ∧ ¬i2 le i1 ∧ i2 le i2 → ¬ IKB

We named the resulting theorems uniformly C*-C.

In nearly all cases the Metis-based integration into Isabelle failed. However, every theorem
except one (lemma C5-e) could be proven by CVC4 instead. With this step we show that
the links in the intuitionistic modal cube are indeed correct.

9.4 Step C

Although the inclusions are already shown at this point, we want to determine whether
the countermodels Nitpick produced have the minimal number of worlds. In the IKB > IK
example we know that a minimum of two worlds is needed. Now we would prove:

lemma C1-c: #1 i1 → IKB

to show that having only one world is not enough. Indeed, in that case the statement
IKB > IK is false for all relations R and ≤.

The resulting theorems are uniformly named C*-c. If a counterexample consists of one
possible world only, it is not necessary to apply this step.

It is important to not get confused because by the omitted negation. Step B shows a
method to prove that there are theorems valid in one logic that are not valid in the other
when a certain number of worlds exists. Now we want to show that such theorems do not
exist when we decrement the number of worlds by one. Thus, we prove the contrary. That
means that there can not be any combination on R and ≤ that gives us a statement like
that in Step B (with one world lesser).
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9.5 Proofs of Inclusion Relations

i1 i2

R

R

≤ ≤9.5.1 IK4 > IK

lemma C1-a: IK4 nitpick oops
theorem C1-b: (#2 i1 i2 ∧ i1 le i1 ∧ i2 le i2 ∧ ¬i1 le i2 ∧ ¬i2 le i1
∧ ¬ i1 R i1 ∧ i1 R i2 ∧ i2 R i1 ∧ ¬i2 R i2 ) −→ ¬IK4 by smt
lemma C1-c: #1 i1 −→ IK4 by (smt FR)

i1 i2
R

≤ ≤
9.5.2 IK5 > IK

lemma C2-a: IK5 nitpick oops
theorem C2-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ ¬ i1 R i2 ∧ i2 R i1 ∧ ¬ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 ) −→ ¬IK5 by smt
lemma C2-c: #1 i1 −→ IK5 by (smt FR)

i1 i2
R

≤ ≤
9.5.3 IKB > IK

lemma C3-a: IKB nitpick oops
theorem C3-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ ¬ i2 R i1 ∧ ¬ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 ) −→ ¬IKB by smt
lemma C3-c: #1 i1 −→ IKB by (smt FR)

i1 i2
R

≤ ≤
9.5.4 IK45 > IK4

lemma C4-a: IK4 −→ IK45 nitpick oops
theorem C4-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ ¬ i1 R i2 ∧ i2 R i1 ∧ ¬ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 ) −→ ¬(IK4 −→ IK45 ) by smt
lemma C4-c: #1 i1 −→ (IK4−→IK45 ) by smt

i1 i2i3

R
≤

R

≤

R

R

R

≤

9.5.5 IK45 > IK5

lemma C5-a: IK5 −→ IK45 nitpick oops
lemma C5-d : (#3 i1 i2 i3 ∧ i1 R i1 ∧ i2 R i2 ∧ ¬ i3 R i3 ∧ i1 R i2
∧ i2 R i1 ∧ ¬ i2 R i3 ∧ ¬ i3 R i2 ∧ ¬i1 R i3 ∧ i3 R i1 ∧ i1 le i1
∧ i2 le i2 ∧ i3 le i3 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ ¬ i2 le i3 ∧ ¬ i3 le i2
∧ ¬ i1 le i3 ∧ ¬ i3 le i1 ) −→ ¬(IK5 −→ IK45 ) by smt
lemma C5-e: (#2 i1 i2 ) −→ (IK5 −→ IK45 ) sorry

i1 i2

R

R

≤ ≤9.5.6 IKB5 > IKB

lemma C6-a: IKB −→ IKB5 nitpick oops
theorem C6-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ i2 R i1 ∧ ¬ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 ) −→ ¬(IKB −→ IKB5 ) by smt
lemma C6-c: #1 i1 −→ (IKB −→ IKB5 ) by (smt FR)
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i1 i2
R

≤ ≤

R

9.5.7 IKB5 > IK45

lemma C7-a: IK45 −→ IKB5 nitpick oops
theorem C7-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ ¬ i2 R i1 ∧ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (IK45 −→ IKB5 ) by smt
lemma C7-c: #1 i1 −→ (IK45 −→ IKB5 ) by (smt FR)

i1

≤
9.5.8 ID > IK

lemma C8-a: ID nitpick oops
theorem C8-c: (#1 i1 ∧ ¬ i1 R i1 ∧ i1 le i1 ) −→ ¬ ID by smt

i1

≤
9.5.9 ID4 > IK4

lemma C9-a: IK4 −→ ID4 nitpick oops
theorem C9-b: (#1 i1 ∧ ¬ i1 R i1 ∧ i1 le i1 ) −→ ¬ (IK4 −→ ID4 ) by smt

i1

≤
9.5.10 ID5 > IK5

lemma C10-a: IK5 −→ ID5 nitpick oops
theorem C10-b: (#1 i1 ∧ ¬ i1 R i1 ∧ i1 le i1 ) −→ ¬ (IK5 −→ ID5 ) by smt

i1

≤
9.5.11 ID45 > IK45

lemma C11-a: IK45 −→ ID45 nitpick oops
theorem C11-b: (#1 i1 ∧ ¬ i1 R i1 ∧ i1 le i1 ) −→ ¬ (IK45 −→ ID45 ) by smt

i1

≤
9.5.12 IDB > IKB

lemma C12-a: IKB −→ IDB nitpick oops
theorem C12-b: (#1 i1 ∧ ¬ i1 R i1 ∧ i1 le i1 ) −→ ¬ ( IKB −→ IDB) by smt

i1

≤
9.5.13 IS5 > IKB5

lemma C13-a: IKB5 −→ IT5 nitpick oops
theorem C13-b: (#1 i1 ∧ ¬ i1 R i1 ∧ i1 le i1 ) −→ ¬ (IKB5 −→ IT5 ) by smt
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i1 i2

R

R

≤ ≤

R

9.5.14 ID4 > ID

lemma C14-a: ID −→ ID4 nitpick oops
theorem C14-b: (#2 i1 i2 ∧ i1 R i1 ∧ i1 R i2 ∧ i2 R i1 ∧ ¬ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (ID −→ ID4 ) by smt
lemma C14-c: #1 i1 −→ (ID −→ ID4 ) by (smt FR)

i1 i2

R

R

≤ ≤9.5.15 ID5 > ID

lemma C15-a: ID −→ ID5 nitpick oops
theorem C15-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ i2 R i1 ∧ ¬ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (ID −→ ID5 ) by smt
lemma C15-c: #1 i1 −→ (ID −→ID5 ) by (smt FR)

i1 i2
R

≤ ≤

R

9.5.16 IDB > ID

lemma C16-a: ID −→ IDB nitpick oops
theorem C16-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ ¬ i2 R i1 ∧ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (ID −→ IDB) by smt
lemma C16-c: #1 i1 −→ (ID −→ IDB) by smt

i1 i2
R

≤

R

≤

R

9.5.17 ID45 > ID4

lemma C17-a: ID4 −→ ID45 nitpick oops
theorem C17-b: (#2 i1 i2 ∧ i1 R i1 ∧ i1 R i2 ∧ ¬ i2 R i1 ∧ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (ID −→ IDB) by smt
lemma C17-c: #1 i1 −→ (ID4 −→ ID45 ) by (smt FR)

i1 i2

R

R

≤ ≤9.5.18 IT > ID

lemma C18-a: ID −→ IT nitpick oops
theorem C18-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ i2 R i1 ∧ ¬ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (ID −→ IT ) by smt
lemma C18-c: #1 i1 −→ (ID −→ IT ) by smt

i1 i2
R

≤ ≤

R

9.5.19 IS4 > ID4

lemma C19-a: ID4 −→ IT4 nitpick oops
theorem C19-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ ¬ i2 R i1 ∧ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→ ¬ (ID4 −→ IT4 ) by smt
lemma C19-c: #1 i1 −→ (ID4 −→ IT4 ) by smt
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i1 i2

R

R

≤ ≤

R

9.5.20 IS5 > ID45

lemma C20-a: ID45 −→ IT5 nitpick oops
theorem C20-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ ¬ i2 R i1 ∧ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (ID45 −→ IT5 ) by smt
lemma C20-c: #1 i1 −→ (ID45 −→ IT5 ) by smt

i1 i2

R

R

≤ ≤9.5.21 IB > IDB

lemma C21-a: IDB −→ ITB nitpick oops
theorem C21-b: (#2 i1 i2 ∧ ¬ i1 R i1 ∧ i1 R i2 ∧ i2 R i1 ∧ ¬ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (IDB −→ IT5 ) by smt
lemma C21-c: #1 i1 −→ (IDB −→ ITB) by smt

i1 i2
R

≤

R

≤

R

9.5.22 IB > IT

lemma C22-a: IT −→ IKB nitpick oops
theorem C22-b: (#2 i1 i2 ∧ i1 R i1 ∧ i1 R i2 ∧ ¬i2 R i1 ∧ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (IT −→ IKB) by smt
lemma C22-c: #1 i1 −→ (IT −→ IKB) by smt

i1 i2
R

≤

R

≤

R

9.5.23 IS5 > IS4

lemma C23-a: IT4 −→ IT5 nitpick oops
theorem C23-b: (#2 i1 i2 ∧ i1 R i1 ∧ i1 R i2 ∧ ¬i2 R i1 ∧ i2 R i2
∧ i1 le i1 ∧ ¬ i1 le i2 ∧ ¬ i2 le i1 ∧ i2 le i2 )−→¬ (IT4 −→ IT5 ) by smt
lemma C23-c: #1 i1 −→ (IT4 −→ IT5 ) by smt

i1

≤
9.5.24 IS5 > IKB

lemma C24-a: IKB −→ IT5 nitpick oops
theorem C24-b: (#1 i1 ∧ ¬ i1 R i1 ∧ i1 le i1 ) −→ ¬ (IKB −→ IT5 ) by smt

10 Comparison of LEO-II and Satallax

For ten theorems used in the verification process a proof was found by Sledgehammer but
it could not be reconstructed. Two theorems remained unproven. Interestingly, it made a
noticeable difference whether LEO-II or Satallax were used to find the proof. LEO-II found
ten of those proofs, Satallax only three. The time limit for both provers was 60 seconds
and we limited the statements Sledgehammer used to those which were really necessary.
All results can be seen in Table 2. The × symbol denotes the cases in which a timeout
occured, the X is used when the prover found a proof.

Clearly, for this setting LEO-II was much more effective than Satallax. All data in the
table was obtained from an rather slow 1.7GHz dual-core laptop with 8GB memory. But
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even when setting the timeout option for Satallax to over 60 seconds, it did mostly not
show any improvement. In fact, LEO-II was often ready before the 60 seconds were over.

Table 2: Comparison of the number of proofs found by Satallax and LEO-II

lemma Satallax LEO-II

A1-b-1 × X
A1-c-2 X X
A2-a-2 One line reconstruction failed but ISAR proof found X
A2-c-1 One line reconstruction failed but ISAR proof found X
A4-b-2 × ×
A4-c-2 × X
A5-a-2 × X
A6-c-1 × X
A6-c-3 × X
H3 × X
H4 × X
C5-c × ×

11 Conclusion

In this thesis the intuitionistic modal logic cube was verified. Therefore, an embedding
of IML in HOL was presented and used to show alternative axiomatisations and inclusion
relationships.

All in all, two theorems could not be proven at all. One of it is not directly necessary for
the verification process, the other states the equivalence of an intuitionistic modal axioms
and its respective frame condition. For another ten theorems LEO-II found a proof but
the integration into Isabelle failed. Further work remains to verify all theorems.

One of the most surprising findings of this thesis is that it was possible to show an equiva-
lence between the classical frame correspondences and the intuitionistic modal axioms! It
remains an open issue to find the reasons for this behaviour. If the equivalence is valid, it
would be possible to verify the whole intuitionistic modal cube in the same way as in [2].

In summary, it is possible to verify all relationships in the modal logic cube. The method-
ology proposed in [4] could also be used to verify other cubes.
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