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Abstract

Machine learning has experienced a tremendous growth both in academic research
as well as in real world applications. At the same time large amounts of data fuelled
the concerns about security and privacy in machine learning. The result is a likewise
growth of research in terms of privacy preserving machine learning.

To ensure unambiguous communication in academic research we need a clear un-
derstanding of what separates one threat from another and where they have similari-
ties. Most existing taxonomies in this field are either too specialised or not specialised
enough for our cause. Therefore, this works proposes a taxonomy which takes already
existing ones into account and aims to offer a possible categorisation for future at-
tacks. In order to do so this work focuses on five privacy attacks which are formally
introduced and explained further.

Several existing papers on this topic were studied and compared to understand
which are the most used and established terms and taxonomies in current literature.
Besides that, the roles that play a part in private machine learning are presented
and some possible criteria for classification into reasonable categories of privacy at-
tacks are suggested. At the current time this is one of the first works that consider
membership inference, model inversion, attribute inference, property inference and
reconstruction attacks at the same time.
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1 Introduction

1 Introduction

1.1 Motivation
Machine learning has experienced a tremendous growth both in academic research as
well as in real world applications. At the same time large amounts of data fuelled the
concerns about security and privacy in machine learning. Our personal data are being
used by several online services to train models which are used in machine learning ap-
plications. If models are trained on highly sensitive data like health records, it would be
disastrous in terms of privacy if attackers would be able to extract specific information
from a trained model about the used training data. Therefore, researching defence mech-
anisms and revealing security breaches is an increasingly important field. Essential for
the collaborative understanding of different security threats and defence mechanisms are
a uniform taxonomy and terminology. Whether we realise it or not, we are all inherent
taxonomists. We classify things around us, because our daily life is filled with the need
to distinguish between them and put the many objects around us into reasonable groups.
And also, in academic research to ensure unambiguous communication and promote a suc-
cessful development of countermeasures we need a clear understanding of what separates
one threat from another and where they have similarities.

1.2 Problem Statement
In previous works some taxonomies on machine learning attacks were introduced [1, 2, 3,
4], but most of them only provide a partial coverage of privacy attacks or are too special-
ized to a narrow subset of attacks or cover machine learning in general. Additionally, most
of them have many inconsistencies regarding the used terminology. (see Table 7) While
some papers use certain terms synonymously other clearly differentiate them from each
other. This thesis aims to propose a terminology which includes most of the state-of-the-art
attacks on privacy in machine learning while taking existing taxonomies and terminolo-
gies into account and without eradicating existing definitions. Therefore, all previous used
terms must be harmonised differentiated and set into relation. To do so this work aims
to find similarities, differences and shows which criteria can be used to classify the at-
tacks into different reasonable categories. This work focuses on five of the most prominent
privacy attacks on machine learning: membership inference, model inversion, reconstruc-
tion attack, attribute inference and property inference and develops a taxonomy based on
them.

34 papers on certain privacy attacks were studied and taken into account (see Tables
2, 3, 4, 5, 6) as well as several review paper to understand which are the most used and
established terms and taxonomies. Especially recent survey papers will be considered to
represent an as current as possible state of research.
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2 Background

1.3 Limitations
Despite the wide range of different attacks on machine learning this thesis will provide
only a small introduction for attacks that do not target privacy and focus mainly on privacy
attacks trying to propose a finer granulated division for this category. Even if this works
tries to propose a timeless categorisation of machine learning privacy attacks it remains
unclear if future attacks will fit clearly into the proposed taxonomy and if the categories
will need to be updated or new ones will have to be introduced.

2 Background

2.1 Machine Learning
Machine learning (ML) is a fast-growing field devoted to the problem of learning from
data without being explicitly programmed. In the following section a small overview over
learning types and architectures will be given.

2.1.1 Types of Learning

Traditionally ML is split into three types of learning: supervised, unsupervised and rein-
forcement learning. New types and mixed types have emerged over the years.

Supervised Learning In a supervised learning setting, a model f with parameters θ
represents the mapping function between inputs x and outputs y = f (x,θ), where x is a
vector of attributes or features with dimensionality n: x = (x1, x2, . . . , xn). Nevertheless,
the output or label y can have different dimensions. To train the model fS a training data
set S over the distribution D is used, where |S| = m.

The mostly used supervised learning tasks are classification and regression. Examples
for supervised learning algorithms include linear regression, logistic regression, decision
trees or support vector machines but the majority of recent papers are focused on deep
neural networks.

Unsupervised Learning The difference to supervised learning is, there are no labels
y in unsupervised learning. The training set S only consists of the m inputs (x1, . . . , xn).
Unsupervised learning aims to identify structures or patterns in the data. Examples for
unsupervised learning tasks are clustering, feature learning or anomaly detection.

Reinforcement Learning Reinforcement learning is concerned with intelligent agents
that make observations of the environment and use these to take actions in order to maxi-
mize the notion of cumulative reward. Its focus is on finding a balance between exploration
(of unknown territory) and exploitation (of current knowledge).

there are no privacy-related attacks against reinforcement learning at the current
state, but it has been used to launch other privacy-related attacks [5].
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2 Background

Generative and Discriminative Learning Besides the three basic ML paradigms
there are other categories like discriminative and generative algorithms.

Discriminative classifiers aim to model the conditional probability P(y|x) in order to
learn the decision boundaries that are separating the different classes based on the input
data x. Algorithms like logistic regression and neural networks fall under this category.

Generative classifiers on the other hand try to model class and what are the features
of the class. (Mathematically it tries to learn the joint probability distribution, P(x,y), of
the inputs x and label y.) When given a new observation, these classifiers try to predict
which class would have most likely generated the given observation. An example of such
classifiers is Naive Bayes. GANs which generate new data samples matching the proper-
ties of the training data also count as such classifiers.

2.1.2 Learning Architectures

The learning process is either a centralized or a distributed one. The main difference in
that case is whether the data and the model are collocated or not.

Centralized Learning In centralized learning settings, the data and the model are
collocated. This means the data used for the training of the model are gathered in one
central place but can have multiple data producers or owners.

Distributed Learning Large amounts of data and memory capacity drive the need for
distributed learning architectures. There are several variants of distributed learning like
collaborative or federated learning, fully decentralized or peer-to-peer learning and split
learning.

Collaborative or federated learning is the mostly common approach in recent lit-
erature. It has the goal to learn one global model from data stored in multiple remote
devices or locations. The data do not leave the remote devices, are processed locally and
then used to update the local models. These model updates are sent to the central server
that aggregates them and creates a global model which the server then sends back to all
participant devices.

2.1.3 Machine Learning as a Service

Machine Learning as a service (MLaaS) are cloud-based computing platforms that offer
ML tools. Users are able to train and evaluate their models remotely or use pre-trained
models which allows them to benefit from machine learning without the cost and time.

These tools are accessed via prediction APIs on a pay-per-query basis. Models from
MLaaS normally are only available for input-output interaction without revealing the
model architecture and parameters.

Is a model is trained on a cloud-based server, it is possible its parameters and training
hyperparameters may be revealed afterwards.
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2 Background

2.2 Roles
To understand who is threatened by which kind of attack it is useful to take a look at the
participants, the assets and their roles and interests in the ML environment.

From a threat model perspective each asset that is potentially threatened (the training
data set, the model itself, its parameters and its architecture) is linked to a participants
who will be affected by an successful attack.

Rigaki et al. [5] identified following roles in this threat model:

(1) The data owners whose data may be sensitive and need to be protected.

(2) The model owners, which may not want to share information about their models.

(3) The model consumers which use the services via user interfaces.

(4) The adversaries which have access to the model’s interfaces as a normal consumer
does and if the model owner allows, they may have access to the model itself.

Figure 1: Threat Model of privacy and confidentiality attacks against machine learning
systems.

4



2 Background

2.3 Adversary
A role which needs special consideration is the adversary or attacker. In order to categorize
and evaluate the attacks we need to elaborate the adversary’s capabilities: the knowledge
about the target model and the data it was trained on (the original data), the adversary’s
strategy and the target.

Based on the attacker’s capabilities, we can call the attacker weak or strong. For
instance, an adversary that possesses the knowledge about the architecture of the target
model and the original training data is stronger than an adversary that does not have that
knowledge. Though it is not always possible to say which capabilities lead to a stronger
attacker [4].

Adversary’s model knowledge

The adversary can receive different amounts of information of the target ML models. De-
pending on how much information the adversary has it can be easier to perform a certain
attack [6].

Traditionally the possible settings are separated into black- and white-box access.
Some papers also use the term grey-box access for situations in between [6] [7].

Black-box When talking about black-box access, also known as query access, we as-
sume that the attacker only controls the input and has access to the output of the trained
model. In most literature he can query the model as often as he needs to (he has unlimited
resources). The adversary does not know the target model, including model architecture,
model parameters, and training data. Therefore, the attacker needs to identify the model’s
vulnerability only by utilizing knowledge about output responded from the target model.

White-box White-box access assumes that the user has full access to the trained model,
including its input, output, architecture, and parameters. To identify the model’s vulnera-
bility the adversary uses this available information to launch an attack. In some literature
the adversary also has complete knowledge about the defence mechanisms that are used.

Grey-box Grey-box access describes situations which are in between. In some previous
works it is characterised as a scenario where the adversary has access to the outputs of a
model’s intermediate layers but has no knowledge about the architecture and parameters
or vice versa [6].

In other literature the term grey-box is used for a specific situation, where the ad-
versary has complete knowledge of the target model, including model architecture, model
parameters, and training data and the only difference to a white-box setting is, that the
adversary does not know the defence mechanism against the adversarial attack. The grey-
box setting usually is used to evaluate the defence against the adversarial attack [7].
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Adversary’s data knowledge

Membership Describes the knowledge if an attacker knows a certain data point was
part of the training data set. This knowledge can for example make it easier to perform a
reconstruction attack [8].

Features Tells what the adversary knows about single features of some instances. For
attribute inference attacks it is necessary to have knowledge about some non-sensitive
features of a data point to be able to infer the sensitive ones.

Properties All the knowledge the attacker has about the data itself. The distribution, if
it is evenly, how many class labels there are and everything that grants him an advantage.

Adversary’s Strategy

We consider two different types of adversarial behaviour, passive and active. They are
roughly reflecting the traditional distinction in security literature between honest-but-
curious and fully malicious adversaries [9].

Passive The passive or honest-but-curious user interacts with the trained model only
as it was intended by design. He is able to observe the updates and performs inference
without changing anything in the training procedure.

All that can be revealed this way is involuntary leakage, if the model has any such
vulnerability [6].

Active If an adversary interferes with the training in any way, they are considered an
active attacker or malevolent user. But also, if the attacker tries to take advantage of po-
tential vulnerabilities in the trained model, such as memorization and overfitting, aiming
to extract sensitive data via privacy attacks.

Adversary’s Target

In IT security we consider three main security goals: Confidentiality, Integrity and Availability.
In context of machine learning they slightly differ from their traditional definition.

Additionally to the CIA Triad we consider privacy a protection target due to possibly
endangered sensitive training data. Tabassi et al. [2] consider privacy violations a special
subset of confidentiality violations.

Confidentiality Confidentiality is violated when an adversary extracts or infers usable
information about the model or the data. This includes extraction attack that reveals
model architecture or parameters, or an oracle attack that enables the adversary to con-
struct a substitute model. But also attacks that reveal confidential information about the
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3 Related Work

data or a membership test to determine if an individual was included in the training data
set of the target model.

Integrity With integrity violated, the process inference is undermined, which can lead
to reduction of confidence or misclassification. In unsupervised learning this violation may
produce a meaningless representation of the input in an unsupervised feature extractor
while in Reinforcement Learning this may cause the learning agent to act unintelligently
or with degraded performance.

Availability If the availability if violated this may induce reductions in quality (such
as inference speed) or access (denial of service) to the point where the ML component is
unavailable or unusable to users.

Privacy Privacy violations are considered a specific class of confidentiality violation
where the data that is obtained is personal and sensitive information. For example, if
an adversary extracts an individual’s medical records in violation of privacy policies.

3 Related Work
One very detailed and comprehensive taxonomy for membership inference attacks in par-
ticular was proposed by Hu et al. [1]. This work presents a wide overview over performed
attacks and all important parameters.

A taxonomy for model extraction attacks was introduced by Oliynyk et al. [4]. There-
fore, several paper on that topic were observed. Special attention was given to the role of
the adversary and his capabilities.

Tabassi et al. [2] developed a comprehensive taxonomy including all kinds of machine
learning attacks, their defences and consequences. Additionally, it deals with the termi-
nology used in machine learning security. All in all, this work offers a good overview of
adversary machine learning in general.

A recent paper that addresses privacy in machine learning is the survey paper of
Rigaki et al. [5]. It sheds light on the many aspects of machine learning privacy.

Liu et al. [10] established a threat model taxonomy focusing on four attacks – namely,
membership inference, model inversion, attribute inference, and model stealing.
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4 Attacks on Machine Learning

4 Attacks on Machine Learning
For all of these four security goals exist attacks which target them:

Security Goal Attack Timing
Integrity Evasion Attacks Inference Phase
Availability Data Poisoning Training Phase
Confidentiality Model Stealing, Model Extraction Inference Phase

Privacy
Model Inversion, Membership Inference,
Attribute Inference, Property Inference Inference Phase

Table 1: Attacks targeting security goals and their timing

In the following section the attacks that don’t fall into the privacy category will be
shortly introduced and looked at in regards of how they can facilitate a privacy attack.
Model extraction and model for example often act as a stepping stone for privacy attacks
[11, 12].

Evasion Attacks
Evasion attacks are some of the most common ones on machine learning models and are
also referred to as adversarial examples. They are performed during inference. It refers to
designing an input (adversarial example), which seems normal for a human but is wrongly
classified by ML models. An often-used example is the alteration of some pixels in a
picture, which leads the image recognition system to fail classifying the result correctly
even if the human eye can’t tell the difference.

Figure 2: A demonstration of fast adversarial example generation (Goodfellow et al., 2014
[13])
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4 Attacks on Machine Learning

According to the goal of the adversary, the adversarial attack falls into two categories:

• Non-targeted Attack

The adversary crafts adversarial examples to cause the target model to misclassify
the input with high confidence, but does not require the prediction to be specified
class.

• Targeted Attack

The adversary crafts adversarial examples to cause the target model to misclassify
the input with high confidence into a particular class t specified by the adversary.

Data Poisoning
Poisoning consists of contaminating the training data set such that the learner trains a
bad classifier. This can lead the classifier to misclassify malicious sample or activities
crafted by the adversary at the testing stage. This way malicious samples, modify data
labels, and corruption could be injected into the training data.

A particular case of data poisoning is called backdoor attack, which aims to teach a
specific behaviour for inputs with a given trigger, e.g., a small defect on images, sounds,
videos or texts. In [14] data poisoning was used as a steppingstone for a model inversion
attack.

Data poisoning has also been used to increase the amount of sensitive information a
model leaks about a particular sensitive attribute [6].

Depending on the attacker’s goals, the poisoning attack falls into three categories:

• Accuracy Drop Attack

The adversary aims to disrupt the training process by injecting malicious samples
to reduce the performance of the target model at the testing stage.

• Target Misclassfication Attack

The adversary aims to enforce test samples to be misclassified at the testing stage.

• Backdoor Attack

The adversary aims to install a backdoor with a specific mark so that the target
model has a target output for that particular input.

Model Stealing
Besides personal data machine learning systems have a second valuable part - the model
itself. This has value because of the amount of work that goes into the development of well
performing models.

9



5 Privacy Attacks on Machine Learning

So firstly, the intellectual property of the model owners is targeted and secondly ex-
tracting the complete model gains the attacker white box access, which makes many at-
tacks much more powerful [15]. Often model stealing attacks are seen as a stepping stone
for further attacks, (e.g. membership inference [12]) which is why they are often men-
tioned in context of privacy attacks especially in survey papers.

Model Extraction

Model extraction is a special form of model stealing in which an adversary aims to steal
parameters of the target model. This is done with a black-box access to the target model
and extracting information. Goal is to extract a (nearly) equivalent substitute model which
behaves very similarly to the model under attack.

Like privacy attacks the model extraction falls under the category of so-called oracle
attacks [2] which query a trained model to extract useful information.

Functionality Extraction

Rather than stealing the model itself, here the goal is to create “knock-offs” of the (black-
box) model solely based on input-output pairs observed from MLaaS queries. Even if these
models are just knock-offs still the intellectual property is violated [9].

5 Privacy Attacks on Machine Learning

Private Data
To better understand the role of different kinds of data in machine learning security we
distinguish between personal, personal “sensitive” and non-personal data.

Personal data is defined in the Article 4 of the GDPR and refers to data that directly or
indirectly relates to an identified or identifiable natural person.

Sensitive data is defined by the GDPR as the personal data revealing racial or ethnic
origin, political opinions, religious beliefs, health-related data or data concerning a per-
son’s sex life or sexual orientation. This data is particularly worthy of protection and data
processing, storage, transfer has to happen with special care.

Non-personal data Everything outside the scope of personal is non-personal data. This
does not necessarily mean that it’s leakage can be seen uncritical. Data that has to per-
sonal connection at first sight may help to recover sensitive data in some cases.
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5 Privacy Attacks on Machine Learning

5.1 Membership Inference
Goal

Membership Inference Attacks (MIA) are a very popular category of privacy attacks in
machine learning. The attacker’s goal is to determine whether a data point was part of
the training set which was used to train the target model.

Motivation

Even though this may not at first seem to pose a serious privacy risk, sensitive data could
be potentially revealed. For example when it is determined if an individual’s data was used
to train a model, which is trained to predict certain health conditions one can assume this
individual suffers from this health condition.

Definition

In a MIA, the adversary attempts to infer whether a specific point was included in the
data set used to train a given model.

The adversary is given a data point z = (x; y), access to a model A(S), the size of the
model’s training set |S| = n, and the distribution D that the training set was drawn from.
With this information the adversary must decide whether z ∈ S.

Experiment 1 (Membership experiment ExpMIA(A ; A;n;D)). Let A be an adversary, A
be a learning algorithm, n be a positive integer, and D be a distribution over data points
(x; y). The membership experiment proceeds as follows:

1. Sample S~Dn , and let AS = A(S).

2. Choose b ← {0;1} uniformly at random.

3. Draw z ∈ S if b = 0, or z ∉ S if b = 1

4. ExpMIA(A ; A;n;D) is 1 if A (z; A(S);n;D) = b and 0 otherwise. A must output either
0 or 1.

Definition 1 (Membership advantage). The membership advantage of A is defined as

AdvMIA(A ; A;n;D)= Pr[ExpMIA(A ; A;n;D)= 1|b = 1]−Pr[ExpMIA(A ; A;n;D)= 1|b = 0]

where the probabilities are taken over the coin flips of A , the random choices of S and
b, and the random data point z ∈ S or z ∉ S.
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5 Privacy Attacks on Machine Learning

Early work

Shokri et al. [11] first introduced this kind of attack. They demonstrated an attack, where
the adversary, uses black-box queries to a supervised ML model, trying to verify whether
certain data records were used to train the model. To accomplish that attacker trains a
some so called shadow models which are imitating the target model’s behaviour, where the
number of shadow models are distributed similarly to the target model’s training data. Us-
ing this shadow models the adversary finally trains an attack model which distinguishes
whether a sample was used in the training of the target or not.

Further attacks

Salem et al. [16] performed a quite successful membership inference attacks with only one
shadow model.

Nasr et al. [17] redesigned the attack by using one-hot encoded class labels as part of
input features and training a single NN attack classifier for all class labels.

Causes

One well known cause that was shown to improve the accuracy of MIA in black-box attacks
is poor generalisation of the model [11]. The effect of overfitting was later confirmed by
Yeom et al. [18].

Additionally Truex et al. [19] shed light on some causes and circumstances that influ-
ence the efficiency of a MIA. The data seems to matter a lot. The more classes the target
model was trained on the more vulnerable it was, because each class takes up a smaller
region in the latent space and there is less uninformed space. the algorithm also plays
an important role. Algorithms whose decision boundaries are unlikely to be drastically
impacted by a particular instance are more resilient.

Limitations

MIAs are not suitable for every kind of machine learning task. In order to create an attack
model that works efficiently, the adversary must be able to explore the feature space, So if
we have to deal with a complex image classification for high resolution photos the cost of
creating training examples for the attack will not be reasonable anymore.
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5 Privacy Attacks on Machine Learning

Reference Access

Author Year Black-box White-box Algorithm

Shokri et al. [11] 2017 • Neural network
Hayes et al. [20] 2018 • • GAN
Long et al. [21] 2018 • Neural network
Melis et al. [22] 2018 • Neural network
Salem et al. [16] 2018 • Neural network
Yeom et al. [18] 2018 • Neural network, DT, Linear Regression
Nasr et al. [17] 2018 • Neural network
Nasr et al. [12] 2019 • Neural network
Chen et al. [23] 2020 • • GAN

Table 2: Observed Membership Inference Attacks

5.2 Model Inversion
Goal

Model Inversion (MI) attacks are a type of privacy attack that tries to recover average
representation of the training classes given access only to a trained classifier. This at-
tack specifically aims to extract an average representation of each of the classes the
model was trained on given that the adversary has access to a model (either black-box
or white-box). This can allow an adversary to reconstruct average representation of train-
ing classes which were included in the training data without previous knowledge of it.
Though, they’re unable to extract individual instances.

Motivation

A reconstruction of training data can lead to a violation of the individual’s privacy. If we
regard the software Faception, which is marketed by an Israeli concern with the same
name [24]. Faception is a machine learning model which draws conclusions from an indi-
vidual’s face on the personality. The developers state that their model is able to determine
if a portrait belongs to "an Extrovert, a person with High IQ, Professional Poker Player
or a Terrorist" [24]. Especially in view of the latter category an adversary could have a
special interest in knowing how an person of this category would look like on average.

Definition

In MI the adversary aims to infer an average representation of a given class. The attacker
is given a class label y and has to reconstruct an average representation of the m features
(x1 . . . , xm). We assume this representation is given by Ave(x).

Model inversion is formalized in Experiment 2 where the adversary is given a class
label y.
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5 Privacy Attacks on Machine Learning

Experiment 2 (Model inversion experiment ExpMI(A ; A;n;D)). Let A be an adversary, n
be a positive integer, and D be a distribution over data points (x; y). The model inversion
experiment proceeds as follows:

1. Sample S~Dn , and let AS = A(S).

2. Choose b ← {0;1} uniformly at random.

3. Draw z ∈ S if b = 0, or z ∉ S if b = 1

4. ExpMI(A ; A;n;D) is 1 if A (ϕ(z); A(S);n;D)= Ave(xi) and 0 otherwise.

Definition 2 (Model inversion advantage). The model inversion advantage of A is defined
as

AdvMI(A ; A;n;D)= Pr[ExpMI(A ; A;n;D)= 1|b = 1]−Pr[ExpMI(A ; A;n;D)= 1|b = 0]

where the probabilities are taken over the coin flips of A , the random choices of S and
b, and the random data point z ∈ S or z ∉ S.

Early work

The concept of MI is introduced by Fredrikson et al. [25]. They succeeded with recon-
structing recognizable characteristics of a portrait from training data of a facial recogni-
tion model. The attacker was given only API access to a facial recognition system and the
name of the person whose face is recognized by it. In order to do so they used so-called
“hill climbing”. They repeated targeted queries which they slightly adjusted every time to
maximize the output probabilities step by step.

In academic literature this example can be often found, however this case is an extreme
one, because every output class of the model represents an individual person. This means
every data point belonging to a class are just different pictures of the same person. So, if
the adversary tries to create an input which leads to a high confidence score of a target
class he just gets a mean value of all pictures belonging to the same class, not an actual
single data point.

Terminology

The term model inversion is in some cases used as an umbrella term for all kinds of re-
construction attacks like attribute inference and in rare cases even property inference
[26]. In [27] they can most likely be counted to class-wise representation reconstruction
attacks. Rigaki et al. [5] vice cersa counted it with attribute inference as part of a group
of reconstruction attacks.

This work refers to model inversion exclusively for attacks that reveal an average rep-
resentation of each of the classes.
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Further attacks

Hitaj et al. [28] were able to construct class representatives using GANs. They also used
models where all members of the same class are visually similar (handwritten digits and
faces).

Hidano et al. [14] managed to perform an attack where no knowledge of nonsensitive
features was needed. They made their attack work by poisoning training data properly.

Causes

Yeom et al. [18] showed that a higher generalization error can lead to a higher probability
to infer data attributes, but also that the influence of the target feature on the model is an
important factor.

Limitations

Attacks like this only seem to be successful if the if the data point of one class does not
contain too wide variation. In this case all the training data points which belong to one
class were frontal pictures of the same person and the attacker was able to reconstruct the
mean value of them. As soon as we have many varying pictures, the reconstructions will
be unusable because the object won’t be recognisable anymore. This was demonstrated by
Shokri et al. [11].

Reference Access

Author Year Black-box White-box Algorithm

Fredrikson et al. [25] 2015 • • DT, Neural network
Wu et al. [29] 2016 • • Logistic Regression, Neural network
Hitaj et al. [28] 2017 • Neural network
Hidano et al. [14] 2017 • Linear Regression
Zhao et al. [30] 2022 • Neural Network

Table 3: Observed Model Inversion Attacks

5.3 Attribute Inference
Goal

Attribute Inference (AI) attacks are often referred to as model inversion. But other then
in classical model inversion attacks [25] here the adversary is able to actual reconstruct
features from single data points. In this kind of attack an adversary is given access to
a model as well as incomplete information about a data point. This can be some non-
sensitive attributes. The goal is to infer the missing information for that point, just as
sensitive attributes.
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Motivation

Non-sensitive data is probably not as protected as sensitive. Still it can be used to run
this attack. It should not be possible for an attacker who already knows the name, age
and weight of training data point to infer other sensitive data like blood type or medical
conditions.

Definition

We assume that data points are triples z = (v; t; y), where (v; t)= x ∈ X and t is the sensitive
features targeted in the attack. The fixed function ϕ describes the information about data
points known by the adversary. Let T be the support of t when z = (v; t; y) ∈D. The function
π is the projection of X into T where π(z)= t.

Attribute inference is formalized in Experiment 3 where the adversary is given partial
information ϕ(z) about the challenge point z.

Experiment 3 (Attribute Inference experiment ExpAI(A ; A;n;D)). Let A be an adver-
sary, n be a positive integer, and D be a distribution over data points (x; y). The attribute
experiment proceeds as follows:

1. Sample S~Dn , and let AS = A(S).

2. Choose b ← {0;1} uniformly at random.

3. Draw z ∈ S if b = 0, or z ∉ S if b = 1

4. ExpAI(A ; A;n;D) is 1 if A (ϕ(z); A(S);n;D)=π(z) and 0 otherwise.

Definition 3 (Attribute advantage). The Attribute advantage of A is defined as

AdvAI(A ; A;n;D)= Pr[ExpAI(A ; A;n;D)= 1|b = 1]−Pr[ExpAI(A ; A;n;D)= 1|b = 0]

where the probabilities are taken over the coin flips of A , the random choices of S and
b, and the random data point z ∈ S or z ∉ S.

Early work

Fredrikson et al. [31] first proposed this AI attack, which is related to the model inversion
attack. By using black-box access and partial information about an individual’s medical
record the attacker was able to recover the individual’s genomic information. Given a lin-
ear regression model that predicted a suggested dose of the drug Warfarin using a feature
vector consisting of patient demographic information and medical history they were able
to infer the sensitive attribute: the genetic markers. Their algorithm completes the target
feature vector with each of the possible values and then computes a weighted probability
estimate that this is the correct value.
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Terminology

In literature the term attribute inference has also been used in a different way to describe
attacks where an attacker uses publicly accessible data to infer sensitive "attributes" [32,
33, 34]. This kind of attacks will not be included in this taxonomy because they target the
individual’s data directly instead of training data of an ML model.

Other literature counts attribute inference to model inversion [5, 35]. This thesis dif-
ferentiates between these two attacks and refers to attacks that actually reconstructs sen-
sitive attributes of a data point instead of a representation over the classes in the training
data.

Further Attacks

Yeom et al. [36] examined the connections between AI and MIAs and showed a reduction
from the membership inference attack to the attribute inference attack and vice versa.

Causes

It is suggested that AI, like MIA, is indeed sensitive to overfitting [36]. Regardless of
the generalization error, the attacker’s ability to learn more about the training data also
increases the chance of a successful attack.

Limitation

At least some non-sensitive attributes are previously needed to perform that attack and
infer the targeted sensitive attribute.

Reference Access

Author Year Black-box White-box Algorithm

Fredrikson et al. [31] 2014 • Linear Regression
Yeom et al. [18] 2018 • Linear Regression, DT, Neural network
Wang et al. [37] 2018 • Neural network
Zhang et al. [38] 2020 • Neural network
Mehnaz et al. [39] 2020 • DT, Neural network
Yeom et al. [36] 2020 • Linear Regression, DT, Neural network
Zhao et al. [40] 2021 • • Neural network

Table 4: Observed Attribute Inference Attacks
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5.4 Property Inference
Goal

A Property Inference attack (PIA) aims to extract information about the data set proper-
ties which are not correlated to the learning task. This can for example be the ratio of men
and women in a medical data set where the sex was not an encoded attribute.

Motivation

PIAs can lead to draw conclusions about the distribution of the training data like gender
or age. This can be problematic in some scenarios. For example, if a business trains a
model with their client’s data. An attack could reveal the demography of their customer
base.

Definition

In a PIA, the adversary aims to infer training data set properties of a given model. This
property is unrelated to the main classification task of the model.

The adversary has access to a model A(S), the size of the model’s training set |S| = n,
and the distribution D that the training set was drawn from. He has also a property P
about the data set which he to classify as true or false.

Experiment 4 (Property experiment ExpPIA(A ; A;n;D)). Let A be an adversary, n be a
positive integer, P(S) a property regarding the training data set S and D be a distribution
over data points (x; y). The property experiment proceeds as follows:

1. Sample S~Dn , and let AS = A(S).

2. Choose b ← {0;1} uniformly at random.

3. Draw P(S)= f alse if b = 0, or P(S)= true if b = 1

4. ExpPIA(A ; A;n;D) is is 1 if A (z; A(S);n;D)= b and 0 otherwise. A must output either
0 or 1.

Definition 4 (Property advantage). The property advantage of A is defined as

AdvPIA(A ; A;n;D)= Pr[ExpPIA(A ; A;n;D)= 1|b = 1]−Pr[ExpPIA(A ; A;n;D)= 1|b = 0]

where the probabilities are taken over the coin flips of A , the random choices of S and
b, and the random data point z ∈ S or z ∉ S.

Early work

Ateniese et al. [41] are one of the first, to extract “something meaningful relating to
properties of the training set. They investigated if a speech recognition classifier was
trained only with people who speak an Indian-English dialect.
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Further attacks

Ganju et al. [42] transitioned this approach to fully connected networks where the weights
and biases of the neural networks were used as input to the meta-classifier.

Wang et al. [43] proposed three kinds of PIAs: class sniffing, quantity inference, and
whole determination. Class sniffing detects whether a training label is present within a
training round. Quantity inference determines how many clients have a given training
label in their data set. The whole determination infers the global proportion of a specific
label.

Causes

PIAs are possible even with well-generalized models [42, 22] so overfitting does not seem
to be a cause of PIAs. Unfortunately, regarding property inference attacks, we have less
information about what makes them possible and under which circumstances they appear
to be effective.

Limitations

To train the meta-classifier, the attacker first needs training data to train the shadow
classifier. This might not be the case in practice. However, there are many existing ap-
proaches to facilitate the generation of training data. For example, the attacker could
generate synthetic training data for the shadow models using model inversion attacks

Reference Access

Author Year Black-box White-box Algorithm

Ateniese et al. [41] 2015 • SVM, HMM
Melis et al. [22] 2018 • Neural network
Ganju et al. [42] 2018 • Neural network
Wang et al. [43] 2019 • Neural network
Parisot et al. [26] 2021 • Neural network
Zhou et al. [44] 2021 • GAN

Table 5: Observed Property Inference Attacks
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5.5 Reconstruction Attack
Goal

The goal of a reconstruction attack (RA) is to reconstruct test data partially or fully. This
if often done by external knowledge on feature vectors or the data used to build the ML
model. This feature vectors can be used to reconstruct the raw data. This usually requires
white-box access to the ML models deployed.

Another approach is to use deep leakage from gradients [45, 46].

Motivation

Reconstruction of sensitive data out of publicly available data means a huge privacy viola-
tion. Especially if the recovered information can be used to hack into further systems and
even deal more damage to an individual’s privacy.

Definition

In a RA, the adversary aims to infer raw training data points of a given model. The
adversary has access to a model A(S), the size of the model’s training set |S| = n, and the
distribution D that the training set was drawn from and feature vectors f⃗ = ( f1, . . . , fm)
corresponding to a data point z (in some cases gradients).

His goal is to reconstruct raw data r = rec(z).

Experiment 5 (Reconstruction experiment ExpRA(A ; A;n;D)). Let A be an adversary, n
be a positive integer and D be a distribution over data points z = (x; y). The reconstruction
experiment proceeds as follows:

1. Sample S~Dn , and let AS = A(S).

2. Choose b ← {0;1} uniformly at random.

3. Draw z ∈ S if b = 0, or z ∉ S if b = 1

4. ExpRA(A ; A;n;D) is is 1 if A (z; A(S);n;D)= rec(z) and 0 otherwise.

Definition 5 (Reconstruction advantage). The reconstruction advantage of A is defined
as

AdvRA(A ; A;n;D)= Pr[ExpRA(A ; A;n;D)= 1|b = 1]−Pr[ExpRA(A ; A;n;D)= 1|b = 0]

where the probabilities are taken over the coin flips of A , the random choices of S and
b, and the random data point z ∈ S or z ∉ S.
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Early work

Feng et al. [47] demonstrated in 2011 an attack to reconstruct fingerprint images directly
from minutiae templates. The main idea was to reconstruct the phase image from minu-
tiae which is then converted into the original grayscale image and then to launch an attack
against fingerprint recognition systems to infer private data.

Terminology

The term reconstruction attack is sometimes mistakenly used as an umbrella term for
all kind of attacks that are reconstruction training data or gain information about it. In
other words all attacks that target attribute privacy [5]. Some literature refers to database
reconstruction attacks on public data [48]. In regards of ML most refer to the reconstruc-
tion of raw data from feature vectors ([49]) or more recently to leakage from gradients
([45, 46, 27])

Further attacks

Al-Rubaie et al. [49] researched RAs using gestures raw data from user’s authentication
profiles. They were able to utilize the actual feature vectors that were stored in the user
profiles to reconstruct raw data which then to use that information to hack into other
systems.

Deep Leakage from Gradient (DLG) [45] was the first work to fully reveal the private
training data from gradients, which can obtain the training inputs as well as the labels in
only a few iterations. This approach was improved by Zhao et al. in 2020 [46].

Causes

These attacks are especially possible if the feature vectors used during the training phase
to build the ML model were not flushed from the server after the model was finished. Also
ML models that store explicit feature vectors (e.g. SVM) should be avoided.

Limitations

In both DLG [45] and iDLG [46] are several weaknesses that may limit their applicabil-
ities. Both adopted a computationally expensive second-order optimization method, both
are only suitable for the gradient computed on a small batch of samples and both works
used untrained model neglecting gradients over multiple communication rounds. [8]

21



5 Privacy Attacks on Machine Learning

Reference Access

Author Year Black-box White-box Algorithm

Al-Rubaie et al. [50] 2016 • SVM
Oh et al. [51] 2019 • Neural networks
Zhu et al. [45] 2019 • Neural network, GAN
Zhao et al. [46] 2020 • Neural network, GAN
Lyu et al. [8] 2021 • Neural Network
Xie et al. [52] 2021 • Neural Network
Balle et al. [53] 2022 • Neural Network

Table 6: Observed Reconstruction Attacks

5.6 Relation between Privacy Attacks
Model Inversion - Attribute Inference

Although they either often used synonymously or summarized under reconstruction at-
tacks there are differences. They are both related because both of them use access to the
model to reconstruct some of the training data. But whereas the model inversion attack
only reveals an average representation of each of the classes (see Fig. 3), the attribute
inference can actual reconstruct some features of data points, which is a different threat.

Figure 3: Model Inversion reconstructs the average representation - not a single image
(Battis et al., 2021 [54])
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Membership Inference - Attribute Inference

Yeom et al. [36] researched the connections between membership inference and attribute
inference attacks and suggest that attribute inference may be more difficult than member-
ship inference attribute because advantage implies membership advantage. They showed
that these two attacks are closely related through reductions in both directions. Further
their results confirm that models become more vulnerable to both types of attacks as they
overfit more.

Model Inversion - Reconstruction Attack

While both attacks aim to infer some of the training data, the most important difference
is that reconstruction attacks infer single data points while model inversion is only able
to reproduce an average representation.

Sometimes these two terms are also often used for one another (see Table 7). Other
literature uses reconstruction as an umbrella term for model inversion and attribute in-
ference attacks [5].

Al-Rubaie et al. [49] however proposes a differentiation between model inversion and
reconstruction, stating that model inversion is only able to restore feature vectors while
reconstruction manages to recover actual raw data.

Figure 4: Model Inversion and Reconstruction Attack in comparison (Al-Rubaie et al.,
2018)

Attribute Inference - Reconstruction Attack

Both attacks aim to infer or reconstruct attributes of data points. In attribute inference
attacks the adversary has in the most cases access to some attributes of a data point and
tries to recover the sensitive attributes correlation to given data point.

Whereas in reconstruction attacks the attacker often has access to the feature vectors
and aims to reconstruct raw data.
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6 Taxonomy

6.1 Existing Taxonomies
Most already existing taxonomies are either too specialised or not specialised enough for
our cause. But the following shown taxonomies were taken into account when creating
one for privacy attacks following their example.

Hu et al. [1] developed a very detailed taxonomy regarding membership inference at-
tacks and assigned conducted attacks to the categories. For our matter this taxonomy
is too specialised to membership inference attacks and therefore not suitable for privacy
attacks in general. However, this approach could be suitable if a finer granulated classifi-
cation is desired and could be considered in future work.

Figure 5: Taxonomy of Model Extraction attacks (Hu et al., 2022)

Oliynyk et al. [4] however introduced a less fine granulated taxonomy tailored to model
extraction attacks. The kind of attacks do not suit the privacy-related attacks, but the
degree of detail seemed just about right for the causes of this work.

Pitropakis et al. [3] suggest a taxonomy for adversarial attacks on machine learning
in general based on the attacker’s knowledge and capabilities.
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Figure 6: Taxonomy of Adversarial attacks (Pitropakis et al., 2019)

Tabassi et al. [2] created a taxonomy for adversarial machine learning regarding at-
tacks, defences and consequences. This taxonomy seems to be the most general but de-
tailed taxonomy at that time. But both are too general regarding our focus on privacy
attacks.

6.2 Criteria For Classification
Timing of the attack

One variable is where the attack takes place. This can happen at two times: the training
phase or the inference phase.

• Training Phase: the adversary attempts to manipulate the training data which
will be used to train the model. This can be done by injecting data or changing labels
for example.

• Inference Phase: the adversary collects information about the trained model by
querying it and observing inferences made by it

Timing of attack correlates in most cases with the target. If we know the targeted se-
curity goals and the appropriate attack, we know the time the attack has to be performed.
An overview over which attacks target which security goal is shown in Table 1.

All our privacy attacks take place while inference that’s why in a privacy attack focused
taxonomy the timing may seem to be irrelevant but previous works have shown that poi-
soning the data beforehand may simplify following privacy attacks [14]. Therefore, it could
be interesting to know if an attacker had the opportunity to manipulate training data.

Targeted Security Goal

In the previous section it was shown that the targeted security goals in most cases sets
the timing of the attack. An overview and explanation over the security goals was given in
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subsection 2.3. Our attacks revolve around privacy, so we want to take a look at different
kinds of privacy. One useful subdivision of privacy is the distinction between membership
privacy and attribute privacy [55].

• Membership privacy refers to the information if a particular data point was in-
cluded into the training set and therefore is a member of it. Depending on the kind
of ML model this can lead to violation of privacy. For example, if an individual was
member in a data set that contains people with a specific health condition knowledge
about the membership this individual reveals status about this health condition.

• Attribute privacy is about protecting potentially sensitive attributes of individual
data points. An attacker who already knows about a data point that is member of
the training data set should not be able to infer more sensitive attributes about.

While membership inference attacks target the membership privacy, model inversion
and attribute inference attack the attribute privacy.

Another subdivision that can be made is between the individual’s privacy and the
group privacy. While model inversion, membership inference and attribute inference tar-
get the privacy of an individual, property inference mostly just reveals information about
the distribution over the whole training data set.

Target

Another factor that needs to be considered is the kind of target of an attack. Our four
suggested privacy attacks all aim to infer something of the used training data, Model ex-
traction attacks on the contrary aim to steal the model or its functionality. In the proposed
taxonomy model extraction attacks will be taken into account because stealing or extract-
ing the model will possibly "open" the model for the adversary so that he will be able to
perform following attacks with a white-box access.

Kind of data

The kind of data that is used to train the model plays also a role in regards of suitable pri-
vacy attacks. While in Fredrikson et al. [25] model inversion attack it was easy to recog-
nise an individual on the average presentation of the used frontal pictures, the mean value
of some data with categorical values may be not be as useful for an attacker. Furthermore,
membership inference attacks are not easy to perform with complex image classification
for high resolution photos.

Adversary’s capabilities

As already mentioned in Subsection 2.3 adversaries can have a variety of capabilities
regarding knowledge and strategy. This factor has to be taken into account when looking
at attacks because different access to the target model can result in a different of success.
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6.3 Proposed Taxonomy
Regarding all these factors the following taxonomy was developed:

P
riv

ac
y

at
ta

ck
s

Security Goal
Individual’s Privacy

Membership Privacy Shokri et al. [11]

Attribute Privacy Yeom et al. [18]

Group Privacy Ganju et al. [42]

Adversary

Knowledge
Black-box Mehnaz et al. [39]

White-box Al-Rubaie et al. [50]

Strategy
Active Hidano et al. [14]

Passive Wang et al. 2019 [43]

Target

Data

Image Fredrikson et al.[25]

Text Carlini et al. [56]

Audio Ateniese et al.[41]

Tabular Fredrikson et al. [31]

Model
Model Stealing Tramèr et al. [57]

Functionality Stealing Orekondy et al. [58]

Figure 7: Proposed Taxonomy with chosen examples.

6.4 Terminology
As stated in Section 5 the used terms in literature are often misleading and inconsistent.
Therefore an overview is introduced to clarify the usage of used terms in this work com-
pared to the used terms in other works.

Terminology used Used synonymously for Used as a generic term for
Membership Inference linkage attacks [6] tracing [59][17][60][61]

Model Inversion
Input Inference, data extraction[15],
reconstruction [6][5], attribute inference[5][35]

membership inference [7][26],
reconstruction attack,
Property inference [26]

Attribute Inference reconstruction[5], model inversion[5][35]
Model Extraction Parameter Inference[15], Model stealing[10][4] Property Inference [6]
Reconstruction Attribute inference [5] [6] Attribute Inference, Model Inversion[5]

Table 7: The first column gives the term primarily used within literature. The second and
third column lists other terms used across literature
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6.5 Classification of Attacks
Regarding our introduced terminology and the criteria for classification of machine learn-
ing attacks a classification system for existing privacy attacks is proposed which aims to
allow future attacks to be classified within this system. The main criteria which were con-
sidered were the attack timing and the targeted security goals where our different kinds
of privacy were considered.

For non-privacy attacks this categorisation can be easily refined and expanded in a
similar way. An approach for that is given in appendix B.

Figure 8: Classification of privacy attacks
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7 Conclusion

7.1 Results
Five privacy attacks were introduced and distinguished between. But also, similarities
and relations between them were discussed and shown. It was pointed out that in liter-
ature some inconsistencies regarding the terminology of machine learning attacks exist
and a general terminology was proposed that was orientated towards the already most
common used one. Based on chosen survey paper and our five attacks a taxonomy and cat-
egorisation were introduced that allows any to this date existing attacks to be classified.
Exemplary some specific attacks were chosen and categorised. The proposed taxonomy
does not contradict any of the already existing ones and tries to take every definition and
subset of attacks into account.

7.2 Future Work
Especially in term of terminology there needs to be some clarification to prevent misun-
derstandings. In particular the terms reconstruction attacks as well as attribute inference
and model inversion would benefit some clear definition.

Additionally it could be a future task to extend the proposed taxonomy and categori-
sation. This could comprise providing a refined and expanded description of the evasion
and poisoning attacks which are only considered superficial in this work. As new findings
occur in research taxonomy and classification can be expanded or refined for new machine
learning attacks. A suggestion how this could be approached is shown in Appendix A and
B.
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Figure 9: Example for possible expanded taxonomy.
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B Expanded Classification

Figure 10: Classification of ML-attacks regarding timing and security goals
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