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ternetseiten oder ähnliches sind im Literaturverzeichnis angegeben, Zitate aus frem-
den Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher
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Abstract

The field of machine learning (ML) has been growing over the last years. An increas-
ing number of systems based on ML models, which are trained on a wide variety
of data sets, are publicly accessible. Since more and more models are also based on
data that contain private information that also implies that these models and the
associated data must be protected in terms of privacy. A first step in protecting
a model’s privacy is to evaluate its level of protection against attacks. One of such
heuristic privacy evaluation methods that has become widespread in recent years are
membership inference attacks (MIAs) [2, 15, 18, 19, 21, 23]. In the past, the privacy
assessment under MIA did not consider a temporal component of the model, but
only considered the final model. This work now aims to test whether the addition of
a temporal dimension in the form of so-called checkpoints in the context of MIA can
serve to provide a better and more accurate picture of a model’s state of privacy.
In order to test this, two exploratory experiments are conducted in which multi-
ple time series analysis are performed. In addition, a new MIA using checkpoints
is presented. In the end, it can be shown that in certain circumstances, especially
when considering incorrectly classified data, checkpoints can help to provide a better
evaluation of privacy and that the performance of the newly introduced MIA can
compete with the performance of other recent MIA attacks.
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1. Introduction

For many years, machine learning (ML) and, in particular, artificial neural networks
(ANNs) have been a widely used technology. They are applied in a wide range
of areas such as in health care, the legal system, social services, computer vision or
language modeling. To utilize these systems effectively, often a lot of data is required.
This data might be private and contain sensitive personal information and should
therefore be protected in terms of privacy.

In the past, it has been shown that ML models can unintentionally reveal sensitive
information about their underlying training data sets. This private data can be
exposed, for example, through targeted attacks such as the membership inference
attack [19]. Membership inference attacks (MIAs) describe a class of attacks that
aim to identify whether or not a particular data point is part of a training data set
of a model (also called the target model). Although at first glance this information
does not seem to be a serious privacy issue, the following example shows why an
ML model should not disclose even such simple information: In a medical study,
a distinction is often made between case and control groups, where the first group
has a certain health condition that is not present in the second group. Hence, for
example, when studying what factors can lead to cancer, the information about
whether a person belongs to one group or the other can provide information about
that person’s health status. The disclosure of such sensitive information is a serious
violation of privacy.

In practice, MIAs are used (e.g. by the model owners themselves) to make an empir-
ical statement about whether or not a model poses a risk to the privacy of a training
data set. For a realistic assessment, it is therefore important that these attacks are
as comprehensive and effective as possible. This work aims to improve the model’s
privacy risk assessment from the perspective of the model owner in the context of
membership inference by adding another layer of information to the evaluation. Cur-
rently, only one final version of the target model is used in the context of MIA. In
this work, it is now proposed to use not just one version of the target model, but
several models, so called checkpoint. Checkpoints represent different temporal states
of the model during the training phase. In practice, these checkpoints are often used
for different purposes, e.g. to analyze the training progress or to select the best
performing model at the end of the training. Since checkpoints are already created
during training or can be easily collected and stored (i.e. just by adding storage
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1. Introduction

capacity), this is also an easy way to extend the information used by MIA.

In this work, it is hypothesised that the additional information that comes from the
multiplicity of checkpoints can be used to better distinguish between member and
non-member data points. To test this hypothesis, two experiments are conducted.
First, it is investigated whether different behaviour between membership and non-
membership data points can be observed over time (i.e. across checkpoints) by per-
forming an exploratory data analysis. In the second experiment, a new membership
inference attack based on the checkpoints is conducted to see if the additional data
can be used to train an effective adversary.
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2. Background & related Work

In the following chapter, the background and the related work of this thesis is in-
troduced.

2.1. Background

2.1.1. Data sets

CIFAR-10 and CIFAR-100 are two data sets which were published by Krizhevsky
[9] and are widely used in the field of MIA (c.f. [2, 15, 18, 19, 21]). Both data sets
consist of 60,000 images, 50,000 of which are training sample and 10,000 are test
sample. The images have a size of 32 × 32 pixels and are in color (i.e. they have
three pixel channels). Each image is labeled with a class to which it belongs. For
CIFAR-10 there are a total of 10 classes and for CIFAR-100 there are 100 classes
(see table 2.1). The CIFAR-10 data set has a total of 6000 images per class and the
CIFAR-100 600.

Data set Classes

CIFAR-10 airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

CIFAR-100 apple, aquarium fish, baby, bear, beaver, bed, bee, beetle, bicy-
cle, bottle, bowl, boy, bridge, bus, butterfly, camel, can, castle,
caterpillar, cattle, chair, chimpanzee, clock, cloud, cockroach, couch,
crab, crocodile, cup, dinosaur, dolphin, elephant, flatfish, forest, fox,
girl, hamster, house, kangaroo, keyboard, lamp, lawn mower, leop-
ard, lion, lizard, lobster, man, maple tree, motorcycle, mountain,
mouse, mushroom, oak tree, orange, orchid, otter, palm tree, pear,
pickup truck, pine tree, plain, plate, poppy, porcupine, possum, rab-
bit, raccoon, ray, road, rocket, rose, sea, seal, shark, shrew, skunk,
skyscraper, snail, snake, spider, squirrel, streetcar, sunflower, sweet
pepper, table, tank, telephone, television, tiger, tractor, train, trout,
tulip, turtle, wardrobe, whale, willow tree, wolf, woman, worm

Table 2.1.: Classes of CIFAR-10 and CIFAR-100
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2. Background & related Work

Since many of the works that deal with membership inference use CIFAR-10 and
CIFAR-100 as standard evaluation data sets, both will be used in this work.

Notation A data set is denoted as D and is sampled from a distribution D: D ← D.
D consists of the data points X ∈ RND×Nx and their corresponding one-hot encoded
classes Y ∈ [0, 1]ND×Ny , whereND is the number of data points inD,Nx the number
of features and Ny the number of possible classes. One-hot encoded means that a
label y is described as a vector of Ny features and all features are zero except the one
that represents the actual class, also called true class. xi describes the i-th element
of X. yi is the i-th element of Y and describes the class for xi. The CIFAR-10 data
set is noted as DCIFAR−10 and CIFAR-100 as DCIFAR−100.

2.1.2. Neural network

Neural networks, also called artificial neural networks (ANNs), are structurally and
functionally inspired by the human brain (cf. [7]). ANNs consist of different layers:
an input layer, one or more hidden layers, and an output layer. Each layer consists
of nodes that connect the layers with each other (cf. figure 2.1). Each connection
has learnable parameters. In order to improve the performance of an ANN, these
parameters need to be learned by an training algorithm and a data set.

Figure 2.1.: Artificial neural network

Notation A neuronal network can also be described as a parameterized function fθ
where θ are the parameters to be learned. The function fθ maps an input x ∈ X to
an output ŷ ∈ [0, 1]Ny :

fθ(x) = ŷ
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2.1. Background

y and ŷ are both one-hot encoded class vectors. In order to get the true class or the
predicted class (i.e. the class that is predicted by a network), an argmax function
needs to be applied (i.e. argmax y for the true class and argmax ŷ for the predicted
class). Thus a correct classification is noted as argmax(ŷ) = argmax(y) and an
incorrect classification as argmax(ŷ) ̸= argmax(y). The parameters θ of the network
fθ are learned by an training algorithm T and a training data set Dtrain sampled
from D:

fθ ← T (Dtrain)

The network function fθ(x) = ŷ can also be described as fθ(x) = σ(z(x)). z(x)
returns the so called logit outputs of the network where z : X → RNy . σ(z) is
also referred to as the softmax layer and returns a probability distribution also
called confidence values, where σ : X → [0, 1]ny . The confidence values can also be
understood as the probabilities of a sample x ∈ X belonging to a specific class. This
specific class that a confidence value represents can also be called a confidence class.
In this work, the function fθ will be cited as ftarget.

2.1.3. Membership inference attack

MIA is a privacy attack that attempts to reveal whether or not a particular data
point is part of a training data set of a particular model (i.e. the target model).
The target model is a neuronal network described as the function fθ. A membership
inference attack can formally be described as a security game. This security game
was introduced by Carlini et al. [2] and is defined as follows:

Definition 1 (Membership inference security game).The game proceeds between a
challenger C and an adversary A:

1. The challenger samples a training data set D ← D and trains a model fθ ← T (D)
on the data set D.

2. The challenger flips a bit b, and if b = 0, samples a fresh challenge point from
the distribution (x, y) ← D (such that (x, y) /∈ D). Otherwise, the challenger
selects a point from the training set (x, y)← D.

3. The challenger sends (x, y) to the adversary.
4. The adversary gets query access to the distribution D, and to the model fθ,

and outputs a bit b̂← AD,f (x, y).
5. Output 1 if b̂ = b, and 0 otherwise

In this work, AD,f is referred to as A
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2. Background & related Work

2.2. Related Work

2.2.1. Membership inference attacks

In the context of ML systems or more precisely of ML classification systems, MIA
was first introduced by Shokri et al. [19]. In their work, they show that under certain
conditions, it is possible to infer the membership of a data point via a simple black-
box access (i.e. where the adversary only has access to the output of the model for a
given input) to the target model. The basic assumption Shokri et al. made is that an
ML model behaves differently if a particular data point was or was not part of the
training set. This different behavior is measured using different information about
the target model and the data points. In the case of Shokri et al., like many other
publications (e.g. [2, 15, 18, 21]), the confidence values are used. This work will also
focus on confidence values when analysing the usability of checkpoints in the context
of MIA.

Figure 2.2.: Training of the shadow models and the attacker model

In order to learn how to distinguish between members and non-members, the attack
by Shokri et al. needs not only the confidence values, but also the information
whether the data point was part of the training data set of the target model or
not. Since this this information is not available with only a black-box access and,
moreover, this is the information that is to be revealed later by the attack, the paper
by Shokri et al. introduces so-called shadow models. Shadow models serve collectively
as a surrogate model for the target model whose behavior they attempt to imitate.
To use shadow models, the attacker A samples data Dattack ← D from the same

6
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data distribution from which the target model’s training data is drawn (i.e. D). As
shown in the visualization 2.2, n shadow models fshadow, i(x), i ∈ {1, .., n} are trained
based on this data, with each shadow model receiving a different subset of Dattack,
i.e. Dshadow, i ← Dattack. A labeled output is then generated for each shadow model
and data point x ← Dattack. The output consists of the returned confidence values
of the data point x and the shadow model fshadow, i, whereas the label describes
whether or not the data point x was used to train the shadow model fshadow, i (i.e.,
whether it is a member or non-member). The attacker A now has access not only
to the confidence values of the shadow models, but also to the ground truth about
whether or not the data point was part of the training set of a particular shadow
model. This information is subsequently used to fit an attacker model fattack(x) (i.e.
a binary ML classifier) to distinguish between member and non-member samples.
As described in the figure 2.3, the attacker model can then be used to predict the
membership status for an unseen data point x ← D. This coined methodology by
Shokri et al. describes the basic structure of a membership inference attack on which
also this work will focus on. Since this work follows an exploratory approach and the
experiments are conducted from the perspective of the model owner, the knowledge
about the membership status of a data point and the access to any information of the
target model are already available. Therefore no shadow models need to be trained in
order to obtain these information. Nevertheless, in chapter 7 we will discuss how this
approach can be applied to a more realistic attack scenario using shadow models.
Furthermore, in this thesis, as the work of Shokri et al., we use an ML system (i.e.
a binary classifier) as an attack model.

Figure 2.3.: Membership prediction of data point x by the attacker model

One of the most recent and promising publications that followed Shokri et al. is the
work by Carlini et al. [2]. They present the likelihood ratio attack (LiRA) as a new
membership inference attack. The novelty is that this paper defines the membership
inference attack as performing a hypothesis test between the null hypothesis H0: a
target model ftarget was trained on a data point (x, y) and the alternative hypothesis
H0: a target model ftarget was not trained on a data point (x, y). Therefore, Carlini
et al. specify the two distributions Qin(x, y) = {f ← T (D ∪ {(x, y)})|D ← D}, repre-
senting ftarget was trained on (x, y), and Qout(x, y) = {f ← T (D \ {(x, y)})|D ← D},
representing ftarget was not trained on (x, y). The attacker then performs a hypoth-
esis test using the Neyman-Pearson lemma that predicts whether it is more likely
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that ftarget comes from the distribution Qin or Qout:

Λ(f ;x, y) =
p(f |Qin(x, y))

p(f |Qout(x, y))

Since this test is not solvable, the paper define the computable distributions Q̃in and
Q̃out. Q̃in and Q̃out are described as the distributions of losses on a data point (x, y)
for a target model ftarget either trained, or not trained on the sample (x, y) which
results in the final equation:

Λ(f ;x, y) =
p(ℓ(f(x), y)|Q̃in(x, y))

p(ℓ(f(x), y)|Q̃out(x, y))

To further reduce the complexity, Carlini et al. assume that Q̃in and Q̃out are Gaus-
sian distributions, thus the attack only needs to estimate the mean and variance
of each distribution. To estimate the distributions Q̃in and Q̃out, they also employ
shadow models. Carlini et al. show that their newly purposed attack outperforms
earlier attacks and exemplify this by not only using metrics already known in the
context of MIA (e.g. balanced accuracy, area under the curve, etc.) but also their
newly propose evaluation metric, namely the receiver operating characteristic (ROC)
curve. The ROC curve measures the true-positive rate (TPR) in relation to the
false-positive rate (FPR). The TPR describes the number of positive examples (i.e.
member data points) that were correctly classified as positive examples and the FPR
indicates how many negative examples (i.e. non-member data points) were falsely
classified as positive examples. Carlini et al. particularly emphasizes the importance
of the false-positive rate and suggest that the true-positive rate should only be con-
sidered when the false-positive rate is very low (i.e. when the false-positive rate is
between 0.001% and 0.1%). They reason that privacy does not require an average
success metric such as balanced accuracy or area under the curve (AUC), as privacy
aims to protect specific individuals. This property is taken into account by the ROC
curve. Therefore, the proposed metric by Carlini et al. is also applied to evaluate
the results of this work. Since LiRA is currently the best performing membership
inference attack and is evaluated by the ROC curve, the results of LiRA presented
in the paper by Carlini et al. are used for comparison purposes. Since Carlini et al.
not only applied the ROC curve metric to their own attack, but also reevaluated
attacks from previous publications, these can also be used for comparison with this
work.

However, not only Carlini et al. criticizes the use of metrics such as the balanced
accuracy. The work of Rezaei and Liu [15] also highlighted the FPR as an crucial
metric. This work also reevaluates numerous attacks and finds that many of them are
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not effective. However, Rezaei and Liu observe that when the data (i.e. all member
and non-member data points) are subdivided into points that were correctly and
incorrectly classified by the target model, the performance of attacks for incorrectly
classified data points was more promising. In this work, we perform the experiments
not only for the total set of member and non-member data points, but also for the
subsets consisting of correctly and incorrectly classified points.

Furthermore, Shokri et al., Carlini et al. and other works have calibrated their
attacks per class. In the literature this is often referred to as ”per class-hardness”
and means that, for example, a certain decision threshold is set or even a whole
shadow model is trained per class. In this work, this should serve as motivation to
also conduct the experiments per class (i.e. to subdivide the underlying data per
class).

Another important aspect of membership inference attacks that will be explored in
this paper is overfitting. Shokri et al. and others (e.g. [18, 21, 23]) analyzes the effect
of overfitting on the effectiveness of membership inference. Overfitting describes
when a model performs better on the training data set than on the data it has
not seen during training. They observe that overfitting contributes to a model’s
information leakage, but is not the only reason for it. They explain this relationship
by saying that membership inference relies on a model behaving differently on the
training data than on the test data, which is exactly what overfitting describes. A
metric also used by Shokri et al. to quantify the overfitting of a model is the train-
test accuracy gap. The training-test accuracy gap is the difference between the train
and test accuracy of the target model. In this work, overfitting will also be measured
by the train-test accuracy gap and is related to the results in order to verify whether
the statements made by Shokri et al. also apply to this work.

2.2.2. Time series

An important part of the experiments in this work are time series and time series
analysis. A time series represents a sequence of observations of a variable at multiple
time points ordered by time. Time series often show a high dependency over time in
the form of trends or seasonal effects, which means the data points of a time series
are not independent and identically distributed (iid). This is problematic since many
conventional statistical methods are based on the assumption that the underlying
data fulfils the iid property. Methodologies that deal with these specific character-
istics of time series are referred to as time series analysis (cf. [13, 20]). With the
additional data dimension provided by the checkpoints, the data in this paper can
be described as time series. The metrics used for this data are therefore referred to
as time series analysis.
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One statistical value to be analyzed in this work is the correlation between time
series by the Pearson correlation coefficient (cf. Pearson [12]). In order to test time
series for correlation, they must be stationary. A time series is stationary if there
is no time dependency (i.e. they do not exhibit trends or seasonal patterns). To
determine whether a time series is stationary or not, the Dickey-Fuller test (DFtest)
or augmented Dickey-Fuller test (ADFtest) can be applied. The DFtest was developed
in 1979 by Dickey and Fuller [4]. The ADFtest is a further development of this test
and was developed by Said and Dickey [17] and can be used for a broader range of
models (i.e. autoregressive models). One statistical value the ADFtest calculates is
the p-value. To address the p-value of the test ADFtest,p-value is written. For a given
time series t it can then be assumed that t is stationary if ADFtest,p-value(t) < 0.05
holds true. Since in this thesis it is important to operate on time series that are
stationary and it is not clear which order the autoregressive models of the time
series of this work follow, the ADFtest is used in this thesis (cf. Greene [5]).

If the ADF test determines that the time series must be assumed to be non-
stationary, stationarity can be created by the calculation of differences (i.e. the
differences between successive observations). The results of the first process of dif-
ferencing are often called first differences and is usually sufficient to make the time
series stationary (cf. Hyndman and Athanasopoulos [6]). The first differences, de-
noted as Diff(1), for a given time series t are calculated by x′i = xi+1 − xi where x
describes all time points of t.

If it is certain that time series are stationary, two time series can be compared using
the Pearson correlation coefficient. The Pearson correlation coefficient was defined
by Pearson [12] in 1895. The Pearson Correlation Coefficient measures the linear
correlation of two variables. The resulting ratio lies between -1 and 1. 1 means
a strong positive correlation and -1 a strong negative correlation, 0 stands for no
correlation (cf. Kirch [8]).

In this work the Pearson correlation coefficient is used in order to analyse and
compare time series. If a time series is tested as non-stationary, differences will be
calculated.

2.2.3. Support vector machines

Support vector machines (SVMs) are a set of supervised learning methods that are
used for different purposes in machine learning, such as binary classification. SVMs
were developed in 1963 by Vladimir N. Vapnik and Alexey Ya. Chervonenkis and
then improved by Boser, Guyon, and Vapnik [1] in 1992 and Cortes and Vapnik
[3] in 1995. Since SVMs are simple but well performing classification systems, this
method will be applied in this work in order to train an attacker model (i.e. a binary
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classifier).
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3. Approach

The goal of this work is to test whether checkpoints contain valuable information
that can help better distinguish membership data points from non-membership data
points. The associated hypothesis H0 and H1 are denoted as:

Hypothesis 0 (H0).Checkpoints do not provide useful information to make a more
accurate conclusion about whether or not a data point was part of the training data
set of the target model.

Hypothesis 1 (H1).Checkpoints provide useful information to make a more accurate
conclusion about whether or not a data point was part of the training data set of the
target model.

To test these hypotheses, two exploratory experiments are conducted. Both exper-
iments are carried out from the perspective of the model owner (i.e. full access is
granted to the target model including the checkpoints and the used data sets). The
reason for this is that the methods explored in the experiments are intended to con-
tribute to a better evaluation of the privacy of a target model from the perspective of
the model owner, rather than to present a realistic attack scenario. The experiments
are described in the subsequent sections.

3.1. Data sets & target model

Both experiments use the same data sets and target models. As data sets DCIFAR-10

and DCIFAR-100 are used. The training data sets or, in this context, also called
member data sets, are denoted as DCIFAR-10,member and DCIFAR-100,member. The test
data sets or also called non-member data sets, are described as DCIFAR-10,non-member

andDCIFAR-100,non-member. For each data set, one target model is trained by a training
algorithm:

ftarget,CIFAR-10 ← T (DCIFAR-10,member),

ftarget,CIFAR-100 ← T (DCIFAR-100,member)

Since checkpoints are now introduced as a further dimension, the target model at
checkpoint cj ∈ C, where C are all checkpoints and cj the jth checkpoint, is noted
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as ftarget,j . When ftarget is noted without the checkpoint index j, the target model
including all checkpoints is meant. Nc describes the total number of checkpoints,
which means that j ∈ {1, ..., Nc} and thus cNc notes the last checkpoint. A checkpoint
is generated after nb batches during each epoch and at the end of each epoch. Batches
are the smallest data unit during the training of a model. A batch contains a small
part of the size, called batch size, of the whole training data set. If all batches
are run through, it is called an epoch. For each checkpoint cj ∈ C and data point
xi ∈ DCIFAR-10 or data point xi ∈ DCIFAR-100 there is an output vector of confidence
values ŷi,j , where i marks the output for the ith data point and j the output for the
jth checkpoint. This can also be described as ftarget,j(xi) = ŷi,j . In the following ,
the output vector previously described as ŷi,j is referred to as confi,j . If Confmember

or Confnon-member is noted, the confidence values of all member or non-member data
points are meant respectively.

3.2. Experiment I

In order to prove H0 or H1, in experiment I it is explored whether the confidence
values of the member and non-member data points show differences over all check-
points. To test this, the time series of member and non-member data points resulting
from the confidence values of all checkpoints are compared using time series analysis.
If differing characteristics become evident, the hypothesis H0 can be disproved and
H1 can be accepted.

3.2.1. Methodology

For the first experiment, schematized in figure 3.1, the confidence values of member
Confmember and non-member Confnon-member data points of all checkpoints and for
each data set DCIFAR-10 and DCIFAR-100 separately are used to form the time series
Tmember and Tnon-member. These time series Tmember and Tnon-member are further ag-
gregated by different averaging methods. For experiment I, there are three different
aggregations for Tmember and Tnon-member:

1. Aggregation per confidence class

2. Aggregation per confidence class and true class

3. Aggregation per confidence class, true class and predicted class

Each aggregation analyzes a certain level of detail. The first part provides a coarser
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3.2. Experiment I

Figure 3.1.: Schema of experiment I

overview, whereas the second part examine in more detail where dissimilarities that
may have already been identified in part one come from or whether new anoma-
lies can be found. The third part provides the most in-depth view and and builds
on findings of the previous aggregations. The resulting time series of theses aggre-
gations are denoted as Tmember and T non-member. For the first and second type of
aggregation the time series Tmember and T non-member are further subdivided into
an unfiltered part, into a part filtered by confidence values only leading to correct
classifications and a part filtered by confidence values only leading to incorrect clas-
sifications. For the resulting time series Tmember and T non-member, ADFtest is used
to check whether they are stationary or not. If they are not stationary, Diff(1) is
applied to each time series and then ADFtest is used again to check if the time series
are now stationary. This process is repeated until all time series are stationary. The
resulting time series Tmember are then compared with the time series T non-member via
the Pearson correlation Corr and the windowed Pearson correlation Corrwindowed.
The windowed Pearson correlation Corrwindowed is defined as the Pearson correla-
tion Corr between two time series where only a window of size xw of both time
series are considered (i.e. only xw time points are considered). This window slides
over the two time series with a step size of xs. For each point of the window, the
Pearson correlation Corr is again calculated. The window slides from the begin-
ning of the time series to the end. Using this technique, it can be analysed if the
correlation is more distinct during a specific time of the overall times series. The
resulting correlation coefficients are subsequently called Corrmember, non-member and
Corrwindowed, member, non-member respectively. These aggregated time series Tmember

and T non-member, the correlation coefficients Corrmember, non-member and windowed
correlation coefficients Corrwindowed, member, non-member are then visualized.
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3. Approach

3.3. Experiment II

Figure 3.2.: Schema of experiment II

The second experiment aims at exploring new effective MI attacks using checkpoints
as additional information. In order to prove H0 or H1, the performance of the re-
sulting attacks will be tested with the ROC curve metric. If the resulting attacks
will perform better than comparable MI attacks according to the ROC metric, the
hypothesis H0 can be disproved and H1 can be accepted.

3.3.1. Methodology

In the second experiment, visualized in figure 3.2, a new attack on membership infer-
ence will be performed using checkpoints in different settings. Since in experiment
I it was found that the most promising results come from confidence values that
lead to incorrect classifications, this experiment will also focus on this subset. As for
experiment I, the attack is applied to DCIFAR-10 and DCIFAR-100 separately and the
confidence values Confmember and Confnon-member of a specific number of checkpoints
are again used to form the time series Tmember and Tnon-member. For experiment II,
there are two parts, each with a different number of checkpoints used for Confmember

and Confnon-member:

1. All Nc checkpoints are used

2. The first nc checkpoints are used, where nc < Nc
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nc is chosen such that the train-test accuracy gap of checkpoint cnc is significantly
lower than that of checkpoint cNc . The idea behind this approach is that research
has shown that attacks on models that are subject to strong overfitting (i.e. also
measured by the train-test accuracy gap) can sometimes yield better attack results
than those that are not so strongly overfitted. Therefore, it is tested whether a more
overfitted target model (i.e. a target model ftarget,Nc) provides a better attack surface
for the performed attacks than a less overfitted target model (i.e. the target model
ftarget,nc).

The resulting time series Tmember is used two times: once without further aggregation
and once aggregated per confidence class. The latter results in the time series Tmember

and is representative for the target model. For the resulting time series Tmember,
Tmember and Tnon-member, again ADFtest is used to check whether they are stationary
or not. If they are not stationary, Diff(1) is applied to each time series and ADFtest

is used again to check if the time series are now stationary. This process is repeated
until all time series are stationary. The resulting time series Tmember and Tnon-member

are compared with the time series Tmember using the Pearson correlation Corr. This
is done for all Nmember and Nnon-member data points in Tmember and Tnon-member,
respectively, and all Ncl confidence classes. Subsequently, the resulting correlation
coefficients are called Corrmember and Corrnon-member. Corrmember and Corrnon-member

are then used as the data set DA to train the adversary A (i.e. its attacker model fA
which is a binary classifier) and test it afterwards. The attacker model is trained in
two ways: over all true classes and per true class (i.e. to build an attack that learns
per class-hardness scores). The resulting trained adversaries A are tested using a
ROC curve.

17





4. Implementation

4.1. Software tools & libraries

For the implementation purposes, Python is used as the programming language.
Python has many scientific libraries that are also used in this work (e.g. NumPy,
pandas, SciPy, statsmodels, scikit-learn Pytorch, matplotlib and seaborn). As the
development environment, JupyterLab is employed as it provides a suitable web-
based interactive interface for machine learning and for performing data analysis.

4.2. Data sets & target model

For the training of the target models ftarget,CIFAR-10 and ftarget,CIFAR-100 50% of
the training data of the respective data set (i.e. DCIFAR-10 and DCIFAR-10) is used.
DCIFAR-10, member, DCIFAR-10,non-member, DCIFAR-100,member and DCIFAR-100,non-member

thus consist of 25,000 data points each. As network architecture for the target models
a wide ResNet [24] with a depth of 28 and a width of 2 is employed. All other
network parameters can be found in the table 4.1. For the implementation, we utilize
the PyTorch implementation [14] of the original paper code [11] of the wide ResNet.
Additionally, to train the target models, again the Python library PyTorch is used.

During training, the data sets DCIFAR-10, member and DCIFAR-100, member are divided
into batches with a batch size of 128. For a data set size of 25,000, this results in
195 batches (i.e. 25, 000//128 = 195), where the last batch has a size of only 40 data
points (i.e. 25, 000 mod 128 = 40). Furthermore, as by Carlini et al., 200 epochs
are defined as the total training length. The learning rate is implemented as in the
original paper on Wide ResNet by Zagoruyko and Komodakis. The learning rate is
adjusted after a certain number of epochs. The exact learning rates per epoch can
be taken from the table 4.2. Further training parameters can be found in table and
4.3. The checkpoints are stored after a batch interval of 100 (i.e. nb = 100). Since
also at the end of each epoch an checkpoint is saved, in total, 400 checkpoints are
stored (i.e 200 × 2). For each checkpoint a test- and train-accuracy is calculated
during the training. After training, all data points, separated into member and non-
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4. Implementation

member data sets, are fed through the checkpoints C of the trained target models
ftarget, CIFAR-10 and ftarget, CIFAR-100. The output values (i.e. the confidence values)
Confmember and Confnon-member are then stored. The target models ftarget, CIFAR-10

and ftarget, CIFAR-100 and the generated data Confmember and Confnon-member (i.e. for
CIFAR-10 and CIFAR-100, respectively) serve as the starting point for experiments
I and II.

Parameter Value

Network architecture wide ResNet

Depth 28

Widen factor 2

Drop out rate 0.3

Table 4.1.: Network hyper parameters

Epoch Learning Rate

0 - 60 0.1

61 - 120 0.02

121 - 160 0.004

161 - 200 0.0008

Table 4.2.: Learning rate over time

Parameter Value

Batch size 128

Epochs 200

Optimizer Stochastic Gradient Descent

Momentum 0.9

Weight decay 0.0005

Initial learning rate 0.1

Learning rate decay ratio 0.2

Table 4.3.: Training hyper parameters

4.3. Experiments I

For the experiment I, the resulting data Confmember and Confnon-member are further
processed: the time series Tmember and Tnon-member are build, which are then aggre-
gated and on which stationarity is tested and enforced. For these steps, NumPy and
Pandas are used for basic data processing and handling, whereas statsmodels is em-
ployed for the augmented Dicky-Fuller test. The resulting time series Tmember and
T non-member are stored and used for the execution of the time series analysis. SciPy
is used for the Pearson correlation and the windowed Pearson correlation. For the
windowed Pearson correlation a window size of 100 and a step size of 10 is selected.
To visualize the results we employ seaborn and matplotlib.

20



4.4. Experiments II

4.4. Experiments II

For the implementation of experiment II, at first the resulting data Confmember and
Confnon-member is again further processed. The time series Tmember and Tnon-member

are build, but this time only for Tmember a further aggregation takes place. Then,
on all resulting time series Tmember, Tmember Tnon-member stationarity is tested and
enforced. Furthermore, for Tmember, Tmember Tnon-member the Pearson correlation is
calculated so that it results in the the data set DA. Again, NumPy, Pandas and
statsmodels are used for these purposes. In the next step the attacker model fA is
trained. Therefore the data set DA is split into 75% training data DA−train and 25%
test data DA−test. For nC 120 is chosen (i.e. for the training of some attacker models,
only the first 120 checkpoints are considered). As attacker model architecture a SVM
from the scikit-learn library is used as a binary classifier. In the last step the trained
attacker model is tested via ROC. The ROC functionality is again provided by the
scikit-learn library. For visualisation purposes, matplotlib was used again.
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5. Results

In the following section, the results of the experiment I and II are presented.

5.1. Data sets & target model

(a) Train and test accuracy (b) Train and test accuracy gap

Figure 5.1.: CIFAR-10 target model

(a) Train and test accuracy (b) Train and test accuracy gap

Figure 5.2.: CIFAR-100 target model

For the CIFAR-10 data set, the training of the target model fTarget, CIFAR-10 resulted
in a final training accuracy of 99.92% and a test accuracy of 91.91% (cf. 5.1a). The
difference between training and test accuracy was thus 8.02% (cf. 5.1b). This is a

23



5. Results

better result in terms of test accuracy and train-test gap compared to the work of
Carlini et al. For CIFAR-100, the target model ftarget, CIFAR-100 achieved a training
accuracy of 98.88% and a test accuracy of 64.91%, giving an absolute train-test
accuracy gap of 33.97% (cf. ??). Here, too, the target model used is better than the
one used by Carlini et al. in terms of the train-test accuracy and gap.

Furthermore, the figures ?? and ?? show that the accuracies jump after 60 and 120
epochs. This is due to the fact that the learning rate is adjusted at these points
in time (cf. table 4.2). The learning rate is also adjusted after 160 epochs, but no
significant change in accuracies can be seen. The leaps are stronger for the CIFAR
100 model than for the CIFAR 10 model.

5.2. Experiment I

5.2.1. CIFAR-10

Aggregation per confidence class

To get a first overview, the aggregated time series based on all confidence values
and the confidence values that led to correct or incorrect classifications were plotted
separately. These plots show that at first glance the time series of members and
non-members based on incorrect classifications have the strongest dissimilarities.
Examples can be found in the figures A.1 in the appendix.

The Pearson correlation coefficients of these time series are visualised in the figures
5.3. The shown heat maps confirm the previous statement: the greatest differences
between member and non-member time series were archived based on incorrectly
classified data. It could also be observed that for incorrectly classified data some
confidence classes showed larger (e.g. ”bird”) or smaller (e.g. ”horse”) differences.

The windowed Pearson correlation coefficients for the incorrectly classified data in
figure 5.4 show that these dissimilarities are more significant towards the end of the
model’s training. In the same figure, the train-test accuracy gap is plotted above the
windowed Pearson correlation coefficients. It can be seen that as the dissimilarity
increases, there also seems to be a greater discrepancy between the train and test
accuracy.
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5.2. Experiment I

(a) All

(b) Correctly classified

(c) Incorrectly classified

Figure 5.3.: CIFAR-10: Pearson correlation coefficients per confidence class of member vs.
non-member time series of aggregated confidence values

Aggregation per confidence class & true class

For part II, again, the aggregated time series were visualized. Even with this more
detailed data analysis (i.e. subdivided by true class), only the time series based
on incorrect classifications showed clear differences. Examples can be found in the
figures A.2 in the appendix.

The same picture emerged for the correlation coefficients. We found that there were
differences between the time series of members and non-members only for incorrectly
classified data points. The complete heat maps can be found in the figures A.3 in
the appendix. For incorrectly classified data, again, some true classes in combina-
tion with a confidence class showed stronger differences (e.g. true class = ”truck”,
confidence class = ”frog”).
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5. Results

Figure 5.4.: CIFAR-10: Windowed Pearson correlation coefficients per confidence class of
member vs. non-member time series of aggregated, incorrectly classified con-
fidence values with train-test accuracy gap over time

Figure 5.5.: CIFAR-10: Windowed Pearson correlation coefficients per true and confidence
class of member vs. non-member time series of aggregated, incorrectly classi-
fied confidence values with train-test accuracy gap over time

Looking at the windowed correlation coefficients of the incorrectly classified data in
the figure 5.5, it becomes apparent that the later checkpoints again lead to greater
dissimilarities.
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5.2. Experiment I

Aggregation per confidence class, true class & predicted class

Figure 5.6.: CIFAR-10: Windowed Pearson correlation coefficients per true, predicted and
confidence class of member vs. non-member time series of aggregated confi-
dence values for confidence, true and predicted classes ”airplane”, ”automo-
bile”, ”bird”, ”cat”, ”deer”

In the last part, we could see that if the predicted class corresponds to the true class
(i.e. a correct classification), there are hardly any differences. On the other hand,
if the predicted class does not correspond to the true class (i.e. a false classifica-
tion), stronger dissimilarities can be seen. The corresponding time series plots and
correlation coefficient heat maps can be found in the appendix figures A.4 and A.5

Here too, the windowed correlation coefficients depicted in figure 5.6 show a tendency
towards greater deviations between the data points of members and non-members
towards the end of the training. The grey fields indicate that there was not enough
data available to provide meaningful values. It is noticeable that for some true classes
in combination with a predicted class and confidence class, the differences were much
stronger than in figure 5.5.
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5.2.2. CIFAR-100

Aggregation per confidence class

(a) All

(b) Correctly classified

(c) Incorrectly classified

Figure 5.7.: CIFAR-100: Pearson correlation coefficients per confidence class of member vs.
non-member time series of aggregated, correctly classified confidence values
for confidence classes ”train”, ”trout”, ”tulip”, ”turtle”, ”wardrobe”, ”whale,
”willow tree”, ”wolf”, ”woman”, ”worm”

While similar overall results could be observed for CIFAR-100 as for CIFAR-10,
it is noticeable that for part I, the differences between the aggregated time series
of incorrectly classified member and non-member data points are not as strong as
for CIFAR-10. This can be viewed in the figures 5.7. Further plots can be found in
the appendix figures A.6. Their correlation coefficients over time depicted in plot 5.8
suggest that the deviations become stronger towards the end of the model’s training.
This is equivalent to the result of CIFAR-10.
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5.2. Experiment I

Figure 5.8.: CIFAR-100: Windowed Pearson correlation coefficients per confidence class
of member vs. non-member time series of aggregated, incorrectly classified
confidence values with train-test accuracy gap over time for confidence classes
”apple”, ”aquarium fish”, ”baby”, ”bear”, ”beaver”, ”bed, ”bee”, ”beetle”,
”bicycle”, ”bottle”

Aggregation per confidence class & true class

In part II, it was found that differences between members and non-members could
not only be identified based on incorrectly classified data but also for time series
based on correctly classified data (cf. 5.9). But, here too, it could be observed that the
strongest dissimilarities are present among the incorrectly classified data. Additional
plots can be found in the appendix figures A.7. Again, a clear temporal trend can
be found: the correlation of member and non-member time series decreases towards
the end. Example figures can be found in the appendix A.8.

Aggregation per confidence class, true class & predicted class

The previously found results were also confirmed in part III. However, it is interesting
to note, that some true classes combined with a predicted class and confidence class
have substantially larger dissimilarities than others (cf. 5.10). Furthermore, there
are significantly more grey areas for CIFAR-100 than for CIFAR-10. This is because
there are also significantly more classes and therefore less data available per true
class and predicted class. The temporal trend of the correlation coefficients of this
analysis corresponds to previous findings. A visualisation illustrating this can be
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5. Results

(a) All

(b) Correctly classified

(c) Incorrectly classified

Figure 5.9.: CIFAR-100: Pearson correlation coefficients per true and confidence class
of member vs. non-member time series of aggregated confidence values for
confidence classes ”apple”, ”aquarium fish”, ”baby”, ”bear”, ”beaver”, ”bed,
”bee”, ”beetle”, ”bicycle”, ”bottle”

found in the appendix A.9 and A.10.
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Figure 5.10.: CIFAR-100: Pearson correlation coefficients per true class, predicted class
and confidence class of member vs. non-member time series of aggregated
confidence values for confidence, true and predicted classes ”apple”, ”aquar-
ium fish”, ”baby”, ”bear”, ”beaver”, ”bed, ”bee”, ”beetle”, ”bicycle”, ”bot-
tle”

5.3. Experiment II

5.3.1. CIFAR-10

All 200 checkpoints are used

Figure 5.11.: CIFAR-10: Histogram of Pearson correlation coefficients per confidence class
of member and non-member time series of aggregated, incorrectly classified
confidence values

For experiment II, part I, the plotted histograms in 5.11 show an overview of the
distributions of the Pearson correlation coefficients the attack was based on. At
first sight, no clear separation of the two distributions is visible and the correlation
coefficients of the member data points seem to be unevenly distributed. The latter
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could be due to the fact that only few data was available: The histograms of the
correlation coefficients of members consist of only 19 data points. The results of
the histograms indicate that it does not seem to be easy to distinguish between
data points from members and non-members and that the results of the attack may
not be interpreted as meaningful since too little data is available. As expected, the
results of the attack based on the available data suggest that no effective adversary
could be trained (cf. 5.12a).

For part I, there was not enough data available to carry out the attack per true
class.

(a) max. epoch 200 (b) max. epoch 120

Figure 5.12.: CIFAR-10: ROC curves of membership inference attack based on Pearson
correlation coefficients of member and non-member time series of aggregated,
incorrectly classified confidence values

The first 120 checkpoints are used

For part II, since in epoch 120 an adjustment of the learning rate took place and a
jump in the difference between test and training accuracy was observed, this time
point was chosen as the maximum epoch. Although, the jump in the test-train
accuracy gap was significantly higher for CIFAR-100 than for CIFAR-10, for both
data sets the same maximum epoch was chosen in order to be able to compare the
results.

Unlike in part I, the histograms seen in 5.13 show that without subdividing the data
per true class, the correlation coefficients of members look more evenly distributed.
This might be due to the fact that more data is available (i.e. 1292 data points).
Now, the distributions of the correlation coefficients of members and non-members
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Figure 5.13.: CIFAR-10: Histogram of Pearson correlation coefficients per confidence class
of member and non-member time series of aggregated, incorrectly classified
confidence values with max. epoch 120

look very similar. The results for the corresponding attack suggested that no effective
attack can be carried out despite the larger amount of data available (cf. 5.12b).

Figure 5.14.: CIFAR-10: ROC curve of membership inference attack based on Pearson
correlation coefficients per true class of member and non-member time series
of aggregated, incorrectly classified confidence values with max. epoch 120

For the histograms of the correlation coefficients subdivided per true class, we found
that for some true classes there were not enough data points to present a meaningful
distribution and that a clear separation between members and non-members was not
given at first glance. The full histograms can be found in the appendix figure A.11.
Nevertheless, the ROC curves for the attacks that were performed per true class,
show that for certain true classes (e.g. for the true class ”airplane”) good performing
attacks can be trained (cf. 5.14). The TPR and FPR of the best performing true
class compared to the results of other methods can be found in table 5.1.
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Method max.
epoch

TPR @ 0.001% FPR TPR @ 0.1% FPR

Carlini et al. [2] 2.2% 8.4%
Sablayrolles et al. [16] 0.1% 1.7%
Long et al. [10] 0.0% 2.2%
Watson et al. [22] 0.1% 1.3%

This work 120 6.7% 6.7%

Table 5.1.: CIFAR-10: Comparison between other methods and the work’s method for true
class ”frog”

5.3.2. CIFAR-100

All 200 checkpoints are used

Figure 5.15.: CIFAR-100: Histogram of Pearson correlation coefficients per confidence class
of member and non-member time series of aggregated, incorrectly classified
confidence values for 10 sample confidence classes

For CIFAR-100, it can already be seen in the distributions of the correlation coeffi-
cients of members and non-members that even though they look very similar, there
is a slight offset of the distributions (cf. 5.15). Furthermore, the ROC curve in figure
5.16a shows that an attack could be carried out that reaches a good performance
(i.e. a high TPR at a low FPR). A comparison of this attack to other methods can be
found in table 5.2. Again, there was not enough data points to perform the attacks
per true class.

The first 120 checkpoints are used

In part II, only the data points up to the 120 epoch were used. The distributions of
the correlation coefficients of members and non-members not separated by the true
class show that they are now more similar than in part I. The appendix figure A.13
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(a) max. epoch 200 (b) max. epoch 120

Figure 5.16.: CIFAR-100: ROC curves of membership inference attack based on Pearson
correlation coefficients of member and non-member time series of aggregated,
incorrectly classified confidence values

shows all distributions. The corresponding ROC curve also shows that the attack
performs worse than in part I (cf. 5.16b).

Method max.
epoch

TPR @ 0.001% FPR TPR @ 0.1% FPR

Carlini et al. [2] 11.2% 27.6%
Sablayrolles et al. [16] 0.8% 7.4%
Long et al. [10] 0.0% 4.7%
Watson et al. [22] 0.9% 5.4%

This work 200 1.4% 4.1%
120 0.0% 0.0%

Table 5.2.: CIFAR-100: Comparison between other methods and the work’s method

The ROC curves for the attacks that were carried out per true class show that some
attacks achieve better results (e.g. the true class ”apple”) than the previous attack.
The ROC curves for this attack can be found in the appendix figure A.14. However,
since there is little data available for each true class, these results might not be
assumed to be sufficiently significant.
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6.1. Experiment I

For experiment I, it was observed that the correlation between member and non-
member data points in terms of all their confidence values and all their confidence
values leading to correct classifications over time was very high. Hence, in this em-
ployed experimental setup, it can be assumed that little to no information can be
gained for a better distinction between member and non-member data points. How-
ever, when only incorrectly classified points were evaluated, the correlation decreased
and it can thus be assumed that the use of checkpoints in this setting could help
to better identify member data points. This is similar to what Rezaei and Liu [15]
found in their work. Since privacy aims to protect each individual, this incorrectly
classified data is also relevant when it comes to privacy. Thus, even if a target model
poses a privacy risk only for incorrectly classified data points, it still poses a privacy
risk for each of these samples.

Furthermore, when analysing the correlation coefficients of the incorrectly classified
points per true and predicted class, it was found that some combinations were more
dissimilar than others and thus it can be concluded that some classes are more
vulnerable to the attack than others. This could be due to a more diverse data set
for certain classes (e.g. the data set has more outliers), which could also lead to a
larger difference between member and non-member data points.

We could also see that the analysed time series of incorrectly classified confidence
values became increasingly dissimilar towards the end. This is consistent with the
increase in the train-test accuracy gap (i.e. higher overfitting). This supports the
results of previous research (e.g. [18, 19, 21, 23]) where a higher overfitting was asso-
ciated with a higher difference between the outputs of member and non-member data
points. Nevertheless, a high train-test accuracy gap is not sufficient to explain what
causes dissimilarity between member and non-member scores. As it has been found,
there are also clear dissimilarities in CIFAR-10, although the train-test accuracy gap
is significantly smaller than in CIFAR-100.

Finally, for experiment I, it can be concluded that the hypothesis H0 made in this
thesis could be partially falsified and the hypothesis H1 could be confirmed since
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for incorrectly classified confidence values a different behavior between membership
and non-membership data points could be observed over time. This indicates that
checkpoints could be used as additional information to better evaluate the privacy
risk of an attack.

6.2. Experiment II

For experiment II, it was found that in the context of the CIFAR-10 data set,
an effective attack could only be trained for single true classes using the first 120
epochs. Whereas for CIFAR-100, it was shown that with a max. epoch of 200 and
without subdividing per true class, the best results were archived. Using all 200
training epochs for both data sets and using 120 epochs for the CIFAR-100 data
set, there was not enough data to produce meaningful results when separating the
attack by true class. This would likely have increased the performance of the attack.
Comparing the attack results for max. 200 and max. 100 without subdividing per
true class, it can be concluded that the CIFAR-100 data set was more vulnerable to
the attack than the CIFAR-10 data set. This supports results from previous research
(e.g. [2, 15, 18, 19]) where it was found that CIFAR-100 is generally easier to attack
than CIFAR-10. Furthermore, for both data sets, we found, that some classes were
more vulnerable to the attack than others.

Even though LiRA performs better than our attack, the presented results can com-
pete with other previous MI attacks. Moreover, it is noticeable that LiRA was per-
formed with a more poorly trained model (i.e. in terms of the train-test accuracy
gap). Therefore, our attack could perform even better with the same model used by
Carlini et al. for LiRA.

In general, it has been shown that at a higher train-test accuracy gap (i.e. at max.
epoch 200), fewer erroneous examples were produced and thus fewer data points were
available to train an attack. In the context of MIA, a higher train-test accuracy gap is
often problematic, as it is an indicator of a higher dissimilarity between member and
non-member data points, and thus a more vulnerable target model. Nevertheless, in
this work, we have shown that a higher train-test accuracy gap (i.e. coupled with a
higher train accuracy) also leads to a smaller attack surface. For the CIFAR-10 data
set, this even led to an attack that could not be effectively trained or results that
could not be considered meaningful. In contrast, for a smaller train-test accuracy gap
(i.e. at max. epoch 120), the target model is often less vulnerable to attack because
the data points from members and non-members are more similar. This was also
shown in Experiment I: later checkpoints produced more similar results than earlier
checkpoints. However, this work has also demonstrated that a smaller gap between
training and test accuracy can lead to a larger attack surface (i.e. more incorrectly
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classified samples), allowing for an effective attack, as seen in CIFAR-10. This can
be described as a trade-off between training a target model with a higher train-test
accuracy gap (i.e. coupled with a higher train accuracy), which may result in higher
dissimilarity between members and non-members but a smaller attack surface, or
opting for more general training, which may result in lower dissimilarity between
members and non-members but a larger attack surface.

Finally, we can conclude for experiment II that the hypothesis H0 stated in this
thesis could again be partially disproved and the hypothesis H1 could be confirmed.
It was found that adding checkpoints to an membership inference attack can lead
to effective results in certain scenarios and can thus be used to better assess the
privacy risk of a target model.
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7. Discussion and future work

Experiment I demonstrated that the analysis performed can be used to effectively
assess the similarity of member and non-member data points over time. In practice,
this could be used to better assess the risk of an MI attack on the privacy of the target
model, not only in general but also with respect to a specific training time point (i.e.
assessing which checkpoints of the model are more prone to vulnerabilities). Whether
higher dissimilarity between member and non-member data points always implies
higher privacy risk and vice versa remains an open question for future work.

The proposed attack in Experiment II is simple but still achieves good results com-
pared to other attacks (i.e. except LiRA). However, this only refers to incorrectly
classified points. It remains open whether the points not taken into account can also
be made vulnerable using checkpoints using other methods. Furthermore, it remains
to be critically considered how meaningful the results are when the attacks are based
on a very limited number of data.

Moreover, in this work we have chosen the perspective of the model owner to conduct
the analysis.The potential attacks carried out thus had full access to the target
model’s information. To be able to argue from the perspective of a realistic attacker,
shadow models could be trained in future work. It must be taken into account that
in most real scenarios there is no access to the checkpoints of the target model.
The attack presented in this work would therefore not be applicable. It remains
open, if checkpoints of the shadow models could then still be used do gain better
result. Nonetheless, this work is primarily to be understood as a contribution to a
better assessment of the data security of a target model from the model owner’s
perspective.

Furthermore, in future work, more data sets could be evaluated using the method-
ology presented in this thesis. In addition, only one metric (i.e. Pearson correlation
coefficient) was applied to analyse the checkpoints. In subsequent work, other metrics
could be employed. It could also be investigated whether the use of a limited number
of checkpoints could lead to better results. For example, only the later checkpoints
could be used, as this work has shown that the confidence values of members and
non-members of later checkpoints show the greatest differences. It is also conceivable
that the use of checkpoints presented here could be used in combination with other
MI attacks to improve their performance. For example, in the context of LiRA, the
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7. Discussion and future work

checkpoints could be used as additional shadow models.

Finally, this work does not allow a general conclusion on whether using checkpoints
in the context of MIA gives better results than not using them. While the attack
presented in this work is better than some other attacks, a direct comparison is
missing. LiRA could be used for this purpose. In this way, one could compare whether
LiRA is improved by the use of checkpoints or not.
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A. Appendix

A.1. Experiment I

(a) All

(b) Correctly classified

(c) Incorrectly classified

Figure A.1.: CIFAR-10: Member and non-member time series of aggregated confidence
values for confidence classes ”airplane” and ”automobile”

A.2. Experiment II
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A. Appendix

(a) All

(b) Correctly classified

(c) Incorrectly classified

Figure A.2.: CIFAR-10: Member and non-member time series of aggregated classified con-
fidence values for true class ”airplane” and confidence classes ”airplane” and
”automobile”
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A.2. Experiment II

(a) All

(b) Correctly classified

(c) Incorrectly classified

Figure A.3.: CIFAR-10: Pearson correlation coefficients per true and confidence class of
member vs. non-member time series of aggregated confidence values
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A. Appendix

(a) Correctly classified (predicted class ”airplane”)

(b) Inorrectly classified (predicted class ”truck”)

Figure A.4.: CIFAR-10: Member and non-member time series of aggregated confidence
values for true class ”airplane” and confidence classes ”airplane” and ”truck”

Figure A.5.: CIFAR-10: Pearson correlation coefficients per true, predicted and confidence
class of member vs. non-member time series of aggregated confidence values
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A.2. Experiment II

(a) All

(b) Correctly classified

(c) Incorrectly classified

Figure A.6.: CIFAR-100: Member and non-member time series of aggregated confidence
values for confidence classes ”apple” and ”aquarium fish”

47



A. Appendix

(a) All

(b) Correctly classified

(c) Incorrectly classified

Figure A.7.: CIFAR-100: Member and non-member time series of aggregated classified
confidence values for true class ”aquarium fish” and confidence classes ”apple”
and ”aquarium fish”
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A.2. Experiment II

Figure A.8.: CIFAR-100: Windowed Pearson correlation coefficients per true and confi-
dence class of member vs. non-member time series of aggregated, incorrectly
classified confidence values with train-test accuracy gap over time for confi-
dence and true classes ”apple”, ”aquarium fish”, ”baby”, ”bear”, ”beaver”,
”bed, ”bee”, ”beetle”, ”bicycle”, ”bottle”

(a) Correctly classified (predicted class = ”girl”)

(b) Incorrectly classified (predicted class = ”woman”)

Figure A.9.: CIFAR-100: Member and non-member time series of aggregated confidence
values for true class ”girl” and confidence classes ”girl” and ”woman”
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A. Appendix

Figure A.10.: CIFAR-100: Windowed Pearson correlation coefficients per true, predicted
and confidence class of member vs. non-member time series of aggregated
confidence values for confidence, true and predicted classes ”apple”, ”aquar-
ium fish”, ”baby”, ”bear”, ”beaver”, ”bed, ”bee”, ”beetle”, ”bicycle”, ”bot-
tle”
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A.2. Experiment II

Figure A.11.: CIFAR-10: Histogram of Pearson correlation coefficients per confidence class
and true class of member and non-member time series of aggregated, incor-
rectly classified confidence values with max. epoch 120
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Figure A.12.: CIFAR-100: Histogram of Pearson correlation coefficients per confidence
class of member and non-member time series of aggregated, incorrectly clas-
sified confidence values
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A.2. Experiment II

Figure A.13.: CIFAR-100: Histogram of Pearson correlation coefficients per confidence
class member and non-member time series of aggregated, incorrectly classi-
fied confidence values with max. epoch 120
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A. Appendix

Figure A.14.: CIFAR-100: ROC curve of membership inference attack based on Pearson
correlation coefficients per true class of member and non-member time series
of aggregated, incorrectly classified confidence values with max. epoch 120
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