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Abstract

Over the last few years, Machine Learning (ML) usage has spread to a wide range
of applications, including areas that deal with highly sensitive data. Privacy preser-
vation of data has thus become increasingly important. As ML models have been
shown to leak their private training data, an essential part of protecting private data
is to avoid privacy leakage of an ML model’s private training set.
One important attack risking the privacy of a training set is the membership infer-
ence attack (MIA). The MIA identifies an element’s membership, it analyzes whether
a given data point is part of a given model’s training set.

This thesis aims at developing new MIAs, especially the in this thesis referred to as
group-based MIAs. Group-based MIAs determine the membership of an individual
data point by exploiting the benefits of grouping elements during the process. For
the novel MIAs, methods from the so-called dataset inference attack (DIA) are used.
The DIA is a method for ownership resolution which determines whether a model
was trained with another model’s training set. More importantly for this thesis, the
DIA uses a novel method to differentiate between training set elements and other
data points, which is applied to this thesis’s new MIAs.
This thesis develops four novel MIAs based on the DIA, of which three are group-
based, and one does not utilize groups. All approaches were tested on two models
trained with CIFAR10 and two further models with CIFAR100 as their training set.
The attacks were evaluated with regard to their true positive rate (TPR) at a 0.1 %
false positive rate (FPR) and the ROC curve with a log scale, which are metrics found
to be suitable for MIAs in previous studies. The results showed that one group-based
approach and the not group-based approach work in all settings, while the other two
group-based MIAs only work with one of the two tested execution strategies. It was
found that the other setup used too ambiguous groups for the attack to work. The
experiments further showed that the working group-based MIAs outperform the not
group-based approach. The most successful approach overall had a performance of
at least 17.9 % TPR at 0.1 % FPR and at best 44.8 % TPR at 0.1 % FPR in the
conducted experiments.
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1 Introduction

Machine Learning (ML) has greatly impacted a wide and diverse range of areas,
spanning from recommendation systems [30] over e-government [1] to health care
[3]. While the usage of ML brings many advantages, it also comes with certain pri-
vacy risks [12, 29, 43]. Especially for applications that deal with sensitive data, it
is essential to prevent privacy leakage. One important factor is thus attacks against
the private training set of an ML model. Understanding these attacks is essential to
develop defenses.
In recent years, the membership inference attack (MIA) has emerged as an attack
against the concealment of a model’s training set. The goal of the attack is to de-
termine whether a given data point is a member—in other words, part of the target
model’s training set [38]. An intuitive example to show its danger is the following:
An ML model is trained to find the right medication for cancer patients. Hence,
the training data only consists of people with cancer. If an MIA was successfully
performed on this model and the used element was indicated to be part of the train-
ing set, the adversary would know that the person of the data point has cancer. To
hopefully prevent this leakage of highly sensitive data in the future, it is necessary
to first research the different possibilities to perform the MIA.

This thesis’s goal is to analyze the possibility of a novel MIA based on methods of
the so-called dataset inference attack (DIA) [28].
The DIA itself is not an MIA, but builds on the learned knowledge from MIAs
that members behave differently to elements outside a target model’s training set
(called non-members) and uses this observation for an attack the other way around:
The DIA starts with access to the training set of a model and then applies the
MIA principles to reveal whether another model was also trained on this training
set. If the other model was indeed trained on the original model’s training set, the
other model is considered to be stolen from the original model. Put differently, the
DIA is used to detect model stealing. While this attack goal itself is not relevant to
this thesis, the methods used by DIA are interesting for developing new MIAs. The
DIA is performed by calculating how far each data point under test of the original
model is away from the decision boundaries to the other classes of the presumably
stolen model, under the assumption that members will be further away from the
boundaries than non-members. For the DIA, the decision boundary is defined as
where, when adapting the data point randomly, its class changes. They call this
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1 Introduction

novel method of walking along the decision boundary Blind Walk. If the model was
stolen, it should behave to the members similarly as the original model. The DIA
then takes all distances of members from the original model and distances of non-
members of the original model to perform a hypothesis test on these two groups.
If the statistical p-value is below a certain threshold, the model is confirmed to be
stolen. It is explained in the DIA paper [28] that this group-based approach can
be more successful at determining whether a point is a member, rather than when
focusing on individual points. For this thesis, it is therefore interesting to look at
whether it becomes easier to predict the membership if we have more than one data
point.

This motivates this thesis’s mentioned goal to analyze whether the DIA methods
can be used for a new MIA, especially for a group-based MIA.

1.1 Definition of research questions

The following research questions thus have to be looked at:

RQ1 How can the findings and methods of the DIA be used for novel MIAs?

RQ2 Is the DIA’s group-based approach applicable for a novel group-based MIA?

RQ3 How well do the novel MIA approaches perform?

1.2 Main contributions

Hence, the main contributions of the thesis are:

• Analysis of the applicability of a group-based approach for a novel MIA. Ar-
gumentation about the limitations of the statistical p-value, used in the DIA,
for a group-based MIA, and introduction of the effect size as an alternative
approach.

• Optimization of the regressor from the DIA to make it applicable for the real-
life requirements of an MIA.

• Application of DIA methods for the development of four new MIAs. One novel,
not group-based MIA called threshold-dependent MIA and three group-based
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MIAs called Removal, Growing and Replacement are presented.

• Analysis of the novel MIAs with the result that Growing, threshold-dependent
MIA work without any restraints and Removal, Replacement in specific set-
tings.

The thesis starts with Chapter 2 about related work, where background information
about the MIA and DIA are described. The following methodology-focused Chapter
3 about novel MIA approaches based on the DIA methods is divided into two sub-
sections. The first subsection analyses the applicability of a group-based MIA which
is based on the DIA’s methods and shows its limitations. In the second subsection,
a novel not group-based MIA and novel group-based MIAs are defined, which use
the DIA methods.
The implementation details of the new attacks are described in Chapter 4. Chapter
5 presents the results of the MIAs, which are discussed in Chapter 6. The thesis
finishes with a conclusion and an outlook in Chapter 7.
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2 Preliminaries

The following chapter defines an MIA and names the reasons for its success. This is
followed by the related work to this thesis’s novel approaches to MIAs by first ex-
plaining the already existing group-based MIA called BlindMIA, its success reasons
and limitations. The chapter closes with the description of the DIA, which methods
will be used in the thesis’s attacks, and its success reasons.

2.1 Membership Inference Attack

An MIA is defined as an attack where, given a data point and a target model, the
adversary tries to determine the membership of the given data point [38].

In the context of MIAs, a target model is an ML model which the adversary attacks.
Depending on the attack scenario, the adversary has either white-box or black-box
access to the target model. A member is a data point that is part of the target
model’s training set. A non-member is a data point that is NOT part of the target
model’s train set, e.g. a data point from the test set. The membership of an element
describes whether the element is a member of the given target model.

More formally, a perfectly performed MIA can be defined as (adapted from [31]):

Definition 2.1.1 (Perfect Membership Inference Attack). Let A : F ×X → {1, 0}
be a membership inference attack, where F is the set of all ML models and X is the
set of all possible input data points for elements in F .
Then:

A(f, x) =

{
1 if x ∈ Df

0 otherwise

where f ∈ F , x ∈ X and Df is the set of all data points used for the training of f .

It has to be noted that real-life MIAs do not tend to be perfect MIAs but rather try
to come close to being perfect. Accordingly, a real-life MIA might wrongly classify
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2 Preliminaries

members as non-members and non-members as members. The perfect MIA is solely
defined in this thesis to give a better understanding of MIAs and their goal.

MIAs can be performed on a wide range of target models ([7], [35], [36]). This thesis
focuses on image classifiers. If not explicitly stated otherwise, image classification is
the standard scenario in this thesis.

Further, group-based MIAs are mentioned in this thesis. We define this as that the
MIA uses group(s) of data instead of individual examples. To avoid confusion, it has
to be emphasized that group-based MIAs still have the same goal as other MIAs to
determine the membership of individual data points, they just make use of groups
in the process of the attack.

2.1.1 Success factors

The reasons why a target model may leak information about whether a given point
is an element of its training set, in other words, MIA’s success factors, can be cate-
gorized as follows:

Overfitting

A model overfits when it has a low training error but fails to generalize well, and
as a result has a high test error [14]. The train-test gap (also called generalization
error), which calculates the difference between the training and test accuracy of the
model [23], makes the impact of overfitting visible: The more a model overfits, the
more the training data is ingrained in its structure. When the model then sees the
data again, it correctly classifies training data more likely than test data—it has
a high train-test gap. Irolla and Chatel examined this relationship: The higher the
train-test gap is, the more train data gets correctly classified and the more test data
gets misclassified [22].
The MIA builds on differences the model makes between training and test data,
making overfitting a success factor of MIAs. Overfitting is a sufficient success reason
for MIAs [32, 43], but it is shown not to be necessary for performing an MIA [43].

Target model type and structure

While an overfitted model is more vulnerable to an MIA, its vulnerability highly
depends on the model type [42].
A model type describes here which specific kind of ML model is used, e.g., a neural
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2.1 Membership Inference Attack

network or support vector machine (SVM). An overfitted model of type A can still be
less vulnerable than a not-overfitted model of type B [38]. This is because a model’s
type defines how much the decision boundary is impacted by a single element. The
more a training point can impact the model structure, the more it is ingrained in the
model and the more the model is vulnerable to an MIA [42]. Truex et al. name as
an example of a vulnerable model type a decision tree: A member can create a new
branch, thereby deeply evolving the structure of the model [42]. This makes it easier
for the adversary to see that the element was part of the training set because it has
a great impact on the decision boundary and thus becomes easier to differentiate
from non-members.

The example shows that not only the type but also an ML model’s structure influ-
ences a model’s vulnerability to MIAs [38].

Training data

There are several success factors for MIAs caused by training data: Limited amount
of training data can increase the risk of overfitting, indirectly increasing the vulnera-
bility to MIAs [38]. Shokri et al. have shown that the more training data is available,
the weaker the MIA gets [38]. A dataset with a high amount of different classes can
also lead to an increased vulnerability because this often results in less training data
per class [42]. The less train data available per class, the less uniform the training
data is. The ML model learns many small amounts of specialized data, hindering
it to generalize well [42]. Little uniformity of data in each class [42] and in general
not very representative training data are further success reasons for MIAs [38]. The
less uniformity a training dataset has, the more influential a training point is on the
decision boundary and the more successful an MIA can be [42].

Difficulty of classification

Difficult classification tasks with an uncertain output are more vulnerable, because
the model has to memorize more data than for an easy task [34]. Again, the risk of
overfitting is increased, increasing the vulnerability to an MIA [34].
Similarly, tasks with high-dimensional output are more vulnerable to the MIA [34].
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2 Preliminaries

2.2 Related Work

This subsection first explains BlindMIA, which is relevant to this thesis’s goal be-
cause it is an MIA that also works on groups of data points. Secondly, the DIA is
described, since this thesis will use DIA’s steps and method to develop novel MIA
approaches.

2.2.1 BlindMIA

Preliminaries for BlindMIA

The intuition behind BlindMIA is that members behave differently from non-members
in a hyper-dimensional space [21].
As a prerequisite to understanding how BlindMIA works, the used hyper-dimensional
space (called Reproducing Kernel Hilbert Space (RKHS)) of the attack has to be
understood. The following definitions are necessary to comprehend the RKHS:

An inner product space is defined by Szechtman as [40]:

Definition 2.2.1 (Inner Product). An inner product space is a vector space V with
an inner product ⟨x , y⟩ defined on it. An inner product on V is a mapping of
V × V into R such that for all vectors x, y, z and scalars α, β we have

(i) ⟨αx+ βy , z⟩ = α⟨x , z⟩+ β⟨y , z⟩

(ii) ⟨x , x⟩ ≥ 0, with equality if and only if x = 0.

(iii) ⟨x, y⟩ = ⟨y, x⟩.

An inner product defines a norm on X given by ||x|| =
√
⟨x , x⟩.

The definition of a Cauchy sequence is [8]:

Definition 2.2.2 (Cauchy Sequence). Suppose that ⟨xn⟩ (n = 1, 2, 3, ...) is a se-
quence of real numbers. ⟨xn⟩ is Cauchy if given any ε > 0 there exists an integer
K > 0 such that m,n ≥ K implies |xm − xn| < ε.

A Hilbert space is defined in the following way [40]:
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2.2 Related Work

Definition 2.2.3 (Hilbert Space). A Hilbert space H is a complete inner product
space, complete meaning that every Cauchy sequence in H has a limit in H.

A reproducing kernel is defined as [2]:

Definition 2.2.4 (Reproducing Kernel). A function
K : E × E → C

(s, t) 7→ K(s, t)
is a reproducing kernel of the Hilbert space H if and only if:

(i) ∀t ∈ E, K(., t) ∈ H

(ii) ∀t ∈ E, ∀γ ∈ H < γ,K(., t) >= γ(t)

(iii) ∀(s, t) ∈ E × E, K(s, t) =< K(., t),K(., s) >.

A Hilbert space with a reproducing kernel is called RKHS or proper Hilbert space.

Overview attack

Figure 2.1: Visualization of BlindMIA.

A related MIA for image classification tasks with a group-based approach is Blind-
MIA [21]. BlindMIA is an MIA where the distance between two sets is compared.
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2 Preliminaries

The attack is structured in the following way (a visualization of the steps can be
found in Figure 2.1):
Two datasets are created, one consisting of non-members and the other one contain-
ing elements for which the membership should be determined. The non-members
can be created by e.g. the transformation of a given sample or generation of a sam-
ple with random features. All elements are run through the target model to get
the elements’ output probability distributions. The output probability distribution
of an element is, for all classes, the target model’s predicted probability that the
element is from this class. Two new sets are created, one with the non-member out-
put probability distribution, and the other one with the output probabilities of the
elements for which the membership has to be determined. The output probability
distributions are mapped to the RKHS to make the differentiation of non-members
and members easier than in the output probability distribution space.
One set consists now of non-member output probability distributions that are mapped
to the RKHS, and the other set of output probability distributions that are mapped
to the RKHS of elements for which the membership should be determined. To avoid
confusion, the first set is called Sprob,k

nonmem, the second set Sprob,k
target , “prob” standing for

output probability distributions, “k” for the k dimensions it got mapped to.
The distance between the two sets is calculated with the following formula [21]:

Definition 2.2.5 (D(Sprob,k
target , S

prob,k
nonmem)). For yi ∈ Sprob,k

nonmem, y
′
i ∈ Sprob,k

target , with

Sprob,k
nonmem of size nn, Sprob,k

target of size nt and v is the kernel space dimension, ϕ a
feature space map k 7→ v:

D(Sprob,k
target , S

prob,k
nonmem) = ∥ 1

nt

nt∑
i=1

ϕ(yi)− 1
nn

nn∑
j=1

ϕ(y
′
j)∥v

After the distance between the sets is calculated, one sample gets moved from Sprob,k
target

to Sprob,k
nonmem. The distance between the two sets is calculated again after the move.

If the distance between the two sets decreases after the move, the removed example
is considered a non-member and stays in the Sprob,k

nonmem. Otherwise, the element is
considered a member and moved back in Sprob,k

target .
The comparison of the difference between the distances is called differential com-
parison. The process is repeated until the distance between the two sets converges.
Sprob,k
nonmem is now considered to only consist of non-members and Sprob,k

target to mostly,

ideally only, consist of members. Sprob,k
target might be consisting only mostly of members

after the distance between the two sets converges, because Sprob,k
target might still have

some non-members whose moving didn’t increase the two set’s distance. Potential
non-members who cause this might be elements that are very similar to members.

Because BlindMIA builds on the comparison of elements with the easily created non-
member set, it only needs additionally black-box access to the target model (to get
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2.2 Related Work

the elements’ output probability distributions). The small amount of requirements
to perform BlindMIA makes it a widely-applicable attack.

Success factors

BlindMIA’s success builds on the observation that the removal or addition of an
element influences the position of a whole set in the hyper-dimensional space [21].
Additionally, moving an element from one set to another rather than solely removing
the element from one set changes the position of both sets in the hyper-dimensional
space, improving the algorithm’s sensitivity (sensitivity = true positives (TP)/(TP
+ false positives (FP)) [11]) [21].

Limitations

The attack is limited by its need for the elements’ output probability distributions
from the target model. If the adversary has only access to the target model’s pre-
dicted labels but not the probability distributions, Blind MIA will not work.

Another small limitation is the need to map the output probabilities to RKHS
instead of being able to work with the output probabilities directly. This complexity
may lead to it being harder to optimize in future works.
A limitation not of the attack itself but its success evaluation is that its evaluation
metrics are outdated. Carlini et al. show that the true positive rate (TPR) (TPR
= TP/(TP + false negatives (FN))) at a low false positive rate (FPR) (FPR =
FP/(FP + true negatives (TN))) is a suitable metric to evaluate MIA, while others
can be misleading [6]. Since the BlindMIA paper does not apply TPR at low FPR,
it remains unclear how effective the BlindMIA really is.

2.2.2 Dataset Inference Attack

This thesis’s MIAs are based on the methods from the DIA [28]. The DIA is not an
MIA, it “flips” the MIA to examine whether a complete model was stolen. Model
stealing means that without consent of the model’s owners, a model’s functionality
is used for another model [37, 44], a theft of intellectual property [28]. The DIA
detects stolen models by exploiting that the training data leaves a signature in the
model [28]. Given a model and a training set of another model, it detects whether
the model was trained on the given training set. For simplicity, we call the model
for which it should be found out whether it was stolen “original model” (Moriginal)
and the potentially stolen model “suspect model” (Msuspect).

11



2 Preliminaries

Figure 2.2: Visualization of DIA.

Access to the training and test set of Moriginal, and black-box access to Msuspect

are needed to perform the DIA. The attack is divided into two steps, which are
visualized in Figure 2.2.

Step 1: Embedding generation

The training and test set of Moriginal are run through Msuspect and the points’
distances to the decision boundaries to the other classes are calculated. The decision
boundary can be explained with an example: If you have an element predicted as
one class, and you have changed it enough that the model predicts it as another
class, the element has crossed the decision boundary of the model between the two
classes. The most successful method presented in the DIA paper to calculate the
distances is the novel method Blind Walk, which will be used for this thesis.

Blind Walk

For every data point of the train and test data of Moriginal, the following steps are
performed:
Random noise is added to the data point. The transformed point runs through
Msuspect. The process is repeated until the predicted class differs from the original
point’s class. Then, the distance between the original point and the point with a
different class is calculated. The distance is considered the prediction margin, which
describes the margin of a data point from the decision boundary. To perform Blind
Walk, only black-box access to Msuspect is necessary.
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2.2 Related Work

The vector of distances to the decision boundary for each class created with Blind
Walk is called embedding. Each embedding gets labeled according to the membership
in the original model of the point it was calculated for.

Step 2: Ownership testing

A regressor is trained on the embeddings and their labels. It returns a confidence
score for each embedding, indicating how likely the embedding represents a member
point. The confidence scores of the train and test set of Moriginal are taken as the
input of a hypothesis test. The null hypothesis is that the mean confidence score
of the train set is smaller than the test set’s mean confidence score. The p-value
describes for this hypothesis test how likely the confidence scores are NOT from
two different sets. In other words, how likely the suspect model is not stolen. If the
p-value is below a set threshold, the null hypothesis will get rejected and Msuspect

will be considered stolen.

Reason for success

As mentioned as a success reason for MIAs, the DIA also uses the different behavior
of a model on train and test data. The DIA assumes that train data has usually
a maximized distance to the decision boundary, while test data is generally closer
to the decision boundary. Consequently, all stolen models have the original model’s
train set ingrained in them.

2.2.3 Difference between the DIA and the MIA

It is important to emphasize that the DIA is not an MIA. Like MIAs, it uses the
finding that a model behaves differently on members and non-members, but in con-
trast to MIAs, where it should be determined whether a given data set has members,
the DIA has access to the member set (of Moriginal). Additionally, while the purpose
of MIAs is to determine the membership of a given dataset for a given target model,
the DIA has the different goal of detecting whether a model was stolen.
The motivation behind mentioning DIA in this thesis is that, while it is not an MIA,
its methods might be adapted to use for an MIA, especially for a group-based MIA.
If a group-based MIA based on the DIA methods succeeded, it would only need
access to the predicted labels of the target model instead of the output probability
distributions needed for BlindMIA, making it a potentially more versatile attack.
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This chapter focuses on the novel MIAs developed in this thesis. First, the motivation
behind MIAs based on the DIA methods is explained. The naive group- and p-value-
based attack approaches are defined. p-value limitations for the MIA approaches are
then named. Based on these findings, a new not group-based approach without a
hypothesis test is proposed, the threshold-dependent MIA. This is followed by the
explanation of the effect size as an alternative to the p-value for novel group-based
MIAs. Finally, three new group-based MIAs, which use the effect size instead of the
p-value, are presented (Removal, Replacement, Growing).

3.1 Motivation

This thesis’s general focus is to develop a new MIA based on knowledge of the DIA
and supported by the approach of the BlindMIA.
The motivation behind this is the following:
The BlindWalk method from the DIA [28] requires very little information to succeed:
no additional models have to be trained, only black-box access to the target model
is needed and the necessary non-members can be created easily [28]. Blind Walk is
therefore a very promising method for a novel MIA.
The DIA combines then the Blind Walk with a regressor and a hypothesis test to
statically work on groups. BlindMIA showed a way to perform a group-based MIA
through dynamically working with groups. When combining the DIA methods with
the dynamic group-based approach of the BlindMIA, it can be used for a new group-
based MIA. The novel group-based attack would have the advantage over BlindMIA
that it does not need the target model’s output probability distribution on the data
but only the predicted labels, since only they are necessary for the DIA methods. In
contrast to the BlindMIA, this would cause the novel group-based attack to succeed
in cases where the adversary would only have access to the target model’s predicted
labels.
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(a) Growing attack.

(b) Removal attack.

(c) Replacement attack.

Figure 3.1: Naive attack approaches with p-value.
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3.2 Naive approaches with p-value

Intuitively, the idea would be to approach the MIAs by applying the DIA methods
(including the p-value) straight-forward to the attacks. As explained in the next
subchapter, these approaches with p-value have to be discarded as possible attacks
because of the p-value limitations. However, to understand why and how, the naive
attack approaches first have to be explained in this section. The attacks can be
separated into “p-value-based Growing”, “p-value-based Removal” and “p-value-
based Replacement” and are visualized in Figure 3.1.

3.2.1 p-value-based Growing

p-value-based Growing starts with a small base set of members. The members are
taken in advance, e.g. they can be leaked elements. An element with an unknown
membership is added to the set. The DIA methods (embedding generation with
Blind Walk, ownership testing with regressor, and hypothesis testing) are applied.
The p-values before and after the element is added are compared. Let’s consider the
control set to be members, where a member is added to for every element added to
the base set.
If the p-value with the added element is higher, the element is considered a member
and added to the base set. If the p-value is lower, the element will be considered a
non-member and not kept in the set. The process is repeated for all elements with
an unknown membership. Through the attack, the base set “grows” in members. In
this way, it is possible to fulfill the goal of an MIA to get the membership of the
elements with before unknown membership: The members are the added elements
in the base set, and the non-members are the removed elements.

3.2.2 p-value-based Removal

p-value-based Removal starts with a mixed set, the membership of the set’s elements
are unknown. The same DIA methods as for the p-value-based Growing are applied,
and an element is removed. The p-values of before and after the element is removed
are compared. Again, the control set is a member set, where members are removed
from for every removed element from the mixed set. If the p-value increased, the
removed element is considered a non-member, else a member. The process is re-
peated for the whole mixed set, members are returned to the set, non-members are
permanently removed. Step by step, the process “removes” all non-members from
the mixed set.
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3.2.3 p-value-based Replacement

The third attack is called p-value-based Replacement. Similarly to the p-value-based
Removal it starts with a mixed set with elements of unknown memberships, the DIA
methods are applied, an element is removed and the p-values before and after the
removal are compared. The control set is again a member set. If the p-value increased
and therefore the element is considered as a non-member, it is permanently removed
from the set, members are put back in. The next step differs from the Removal
attack because for the removed non-member a new member is added to the set.
The process is repeated for all initial elements in the mixed set. In contrast to p-
value-based Growing and p-value-based Removal, the size of the mixed set never
changes in p-value-based Replacement. The attack “replaces” all non-members from
the mixed set, only keeping the members.

All attacks can similarly be performed with a non-member control set and where
non-members are permanently added/ members are permanently removed/replaced.
The additional non-members and members for the control sets and replacement have
to be created in advance with e.g. a method from the BlindMIA paper [21], other
methods to create members [38] or leaked elements are used.

3.2.4 Limitations of p-value-based attacks

A straightforward transformation of the DIA to an MIA includes the hypothesis test
and the resulting p-value. An intuitive idea for an MIA based on the DIA would be,
as explained above, to compare the p-values.
Normally, hypothesis tests have sets of the same size, as it is the case for the DIA.
The p-value is then used to either reject the null hypothesis or to fail to reject
the null hypothesis [24]. The described MIA based on the DIA would also perform
hypothesis testing on the same-sized sets when calculating the p-value before and
after adding/removing/replacing elements. But it would further compare p-values
from different hypothesis tests, where the sets of the tests are differently sized: For
p-value-based Growing, the hypothesis test before adding elements is performed on
smaller sets than after elements are added. For Removal, the sets are bigger for
the hypothesis test before elements are removed. In either approach, the calculated
p-values that should be compared stem from differently sized samples.

The sample size however impacts the p-value calculation:
Small sample sizes make the calculated p-value less reliable because they less accu-
rately represent their whole set [5]. E.g. a small subset of the target model’s member
set represents the member set more poorly than a big subset. The lower reliability
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can also lead to irreproducible p-values [19].
A big sample size makes it more likely that the calculated p-value catches a signifi-
cant difference [4]. But big sets can be unreliable in a different way: Independent of
the samples themselves, the calculated p-value will almost always show a significant
difference [9, 27, 39].
As a result, the comparison of p-values from differently sized sample sets can be
unreliable, since the sample size impacts the p-value calculation.
But even if the sample size is the same for two hypothesis tests (like for p-value-
based Replacement), the ability to compare the p-value has its limitations:
Besides the named reasons why a p-value can be unreliable because of the sample
size, many more parameters can influence a p-value calculation, e.g. different mean
differences and standard errors for two hypothesis tests can result in the same p-
value [16]. Further, for the same tested hypothesis, the same p-values from different
hypothesis tests do not mean that the results are the same [15, 16]. Gelman and
Stern showed that studies compared by their significance level can cause misleading
and wrong results [13]. This can be easily explained:
The p-value describes the “probability of the observed result, plus more extreme
results, if the null hypothesis were true” [15], so it can only reject or fail to reject
the null hypothesis. The p-value itself says nothing explicitly about the alternative
hypothesis [15] nor about the magnitude of the difference between the two sets [39].
This is why the comparison of p-values would in this thesis’s case compare with the
wrong focus, it would be unable to help define whether the added/removed/replaced
elements were members.

The theoretical reasoning why the p-value is not applicable for the MIA is backed
by the performed experiments. The p-value-based Replacement attack, where the
size set does not change and the p-value would therefore be most likely to work,
visualizes well its failure. It works as expected up until the last step, the p-value
calculation. That the methods before the hypothesis test are working can be seen
in Figure 3.2 which displays the sum of regressor outputs of a set before subtracted
by after elements were replaced. The expectations for the regressor outputs sums
differences are:

• In a member set: Members are replaced by members → they should have simi-
lar regressor outputs because they have the same membership → the regressor
outputs sums difference should be around zero

• Similar: In a non-member set: Non-members are replaced by non-members
→ they should have similar regressor outputs because they have the same
membership → the regressor outputs sums difference should be around zero

• In a member set: Members are replaced by non-members → they should have
dissimilar regressor outputs because they have different memberships → the
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Figure 3.2: Regressor outputs sums differences of sets where specific amounts of ele-
ments were replaced. The outputs sums differences on the y-axis describe:
The sum of all regressor outputs for the whole set before elements were
replaced, subtracted by the sum after elements were replaced.

regressor outputs sums difference should become more and more negative the
more members are replaced by non-members (Background information: mem-
bers have usually a negative regressor output, non-members a positive output)

• Similar, in a non-member set: Non-members are replaced by members → they
should have dissimilar regressor outputs because they have different member-
ships → the regressor outputs sums difference should become more and more
positive the more non-members are replaced by members

As seen in Figure 3.2, the experiment matches the expectations, showing that the
steps before the hypothesis test worked correctly.
For the p-value calculation, the following is expected:

• In a member set: Members are replaced by members → the set before and after
replacement should have similar p-values because the replaced and elements
for replacement have the same membership → the p-values difference should
be around zero

• Similar: In a non-member set: Non-members are replaced by non-members
→ the set before and after replacement should have similar p-values because
the replaced and elements for replacement have the same membership → the
p-values difference should be around zero

20



3.3 Alternative to p-value: No hypothesis test

Figure 3.3: p-value differences of sets where specific amounts of elements were re-
placed (before replacement subtracted by after replacement).

• In a member set: Members are replaced by non-members → the set before and
after replacement should have dissimilar p-values because the replaced and
elements for replacement have different memberships → the p-values difference
should be more and more positive the more members are replaced

• Similar: In a non-member set: Non-members are replaced by members → the
set before and after replacement should have dissimilar p-values because the
replaced and elements for replacement have different memberships → the p-
values difference should be more and more positive the more non-members are
replaced

The resulting p-values in Figure 3.3 however do not follow the expectations and
seem to be quite random.
To conclude, p-values seem not applicable nor comparable in the context of this
thesis. They can be unreliable and misleading in this setting, making the comparison
unreliable and misleading as well.

3.3 Alternative to p-value: No hypothesis test

An alternative, not group-based approach to avoid the p-value limitations is to not
perform a hypothesis test but to focus on the plain regressor outputs. The group-
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Figure 3.4: Threshold-dependent MIA. The specialized threshold has to be deter-
mined in advance.

dependent hypothesis test is dropped, and the regressor outputs are determined
individually for each element, independently of each other.

3.3.1 Threshold-dependent MIA

The thesis’s approach for an MIA based on the regressor outputs is called
threshold-dependent MIA. It is visualized in Figure 3.4
For the threshold-dependent MIA, the elements for which the membership should
be determined are the input. Their embeddings are generated with DIA’s Blind
Walk and are then run through the regressor. If the regressor output is below a set
threshold, the element is labeled as a member. Otherwise, the element is considered
a non-member. The MIA’s output is “dependent” on the threshold.
The regressor has to be trained in advance on members and non-members, and the
threshold value has to be determined in advance. Section 4.3 in the next chapter,
Chapter 4, will focus on how the threshold can be found.

3.4 Alternative to p-value: Effect size

While a not group-based approach should be sufficient for an MIA to succeed, Blind-
MIA [21] showed the promising value of a group-based approach, and the possibility
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of it being more successful than a non-group-based MIA. This is why in this thesis
group-based approaches are further examined besides the presented non-group-based
threshold-dependent MIA.

Another way than the p-value to compare the difference between two groups is the
effect size [18, 25, 39].
Effect size is defined as “the magnitude of the difference between two groups” [39].
To clarify the difference between effect size and p-value: p-value can show whether
there is a difference between two groups but not the size of the difference [18, 39],
showing the size of a difference is what the effect size does.
This makes the effect size suitable to look at in this thesis’s context and even su-
perior to the p-value because it focuses on what effect the added/removed/replaced
elements have on the set—rather than whether it has an effect as the p-value does.
In other words, it answers exactly the question of this thesis’s group-based MIA.
Most importantly, it is applicable for the attack in contrast to the p-value because
effect sizes are comparable with each other in this thesis’s context:
Effect size is independent of the set size [39], which means that when elements are
removed or added to the set (as done in the Removing, Growing attack), this alone
does not influence the effect size calculation. A standardized effect size is used in
this thesis, which makes it scale-free and the effect sizes comparable across different
studies [10]. To sum up, the effect sizes can be compared reliably in contrast to the
p-value, making it a suitable alternative for this thesis’s group-based MIA.

The used effect size is Cohen’s d. It is part of the “d-family” of effect sizes, which
measure the difference between groups [10], as it is the case in this thesis. Cohen’s
d assumes that the standard deviation of both groups is roughly the same [10, 25].
Looking at this thesis’s experiments, the control group and the set, where elements
are removed/added/replaced, have mostly a similar standard deviation because most
of the elements are of the same membership. It is important to note that for Removal
and Replacement the standard deviation of the mixed set initially differs from that
of its homogenous control set, until the mixed set mainly consists of one type. Nev-
ertheless, experiments for this thesis showed that Cohen’s d still works well in these
cases, leading to the assumption that the standard deviations are still close enough
for Cohen’s d to work.
Additionally, normality is mentioned in [26] as a condition for Cohen’s d, while not
mentioned in other sources [10]. Again, normality is only given for sets where the
majority of elements are of one membership, not for an initially mixed set. Still,
Cohen’s d seems to also work sufficiently well enough in these cases. To conclude,
the assumptions for Cohen’s d are mostly fulfilled in the experiments, and in the
cases where they initially might not, the discrepancy appears to be small enough
for Cohen’s d to nevertheless work correctly, making it a suitable effect size for this
thesis. In preparation for the thesis, it was also found empirically that Cohen’s d
works the best compared to other effect sizes in the given context.
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Cohen’s d is defined in the following way [10]:

Definition 3.4.1 (Cohen’s d). For M1 = mean of group one, M2 = mean of group
two,
Cohen’s d = M1−M2

SDpooled

where SDpooled, the pooled standard deviation, is for two groups A and B of size
nA, nB and with means XA, XB

SDpooled =
√∑

(XA−XA)2+
∑

(XB−XB)2

nA+nB−2

3.4.1 Group-based MIA with effect size

The group-based attack is performed quite similarly to the discarded p-value-based
attack approaches (p-value-based Growing, p-value-based Removal, p-value-based
Replacement). The big difference to the discarded p-value-based approaches is that
as the last step not the p-value but the effect size gets calculated and compared.
The visualization of the attacks can be found in Figure 3.5. The attacks are called
Growing, Removal, and Replacement.
For Growing, the effect size gets calculated before and after the element with the
unknown membership is added to the base set and for Replacement before and after
an element is replaced.
Similarly, for Removal the effect sizes before and after an element is removed from
the mixed set are compared.
The other difference to the discarded p-value-based attack approaches is that no
elements are removed/replaced/added from/to the control set. It does not change
during the attacks, always consisting of as many elements as possible. Effect size does
not need the sets to be of the same size, and keeping the biggest possible size for
the control set can avoid certain problems that might arise otherwise. For example,
if for Removal elements were removed from the control set, it would be possible that
the control set would become very small, and the kept elements would by chance
be not good representations of their membership type, leading to misleading effect
sizes.
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(a) Growing attack.

(b) Removal attack.

(c) Replacement attack.

Figure 3.5: Group-based MIAs with effect size named Growing, Removal and
Replacement.
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4 Implementation

This chapter introduces the implementation details of the attacks presented in the
previous Chapter 3. It starts with the description of the parts that are applied
for all attacks, e.g. the target models. How the regressor should be optimized for
the attacks is explained in the next section. This is followed by implementation
details specifically for the threshold-dependent MIA and then details specifically
for the group-based MIAs. The chapter ends with a description of the used evaluation
metrics for the attacks.

4.1 General

The group-based (Removal, Replacement, Growing) MIAs and threshold-dependent
MIA are all performed in the same setting:
The attacks are executed on the CIFAR10 and CIFAR100 datasets.
The target models for the attacks on CIFAR10 data are a MobileNet [20] and a
GoogLeNet model [41]. The MobileNet model has a train accuracy of 94 % and
a test accuracy of 89 %. The GoogLeNet model’s train accuracy is 98 % and test
accuracy is 90 %. For the CIFAR100 attacks, MobileNet [20] and ShuffleNet [45] are
used as target models. MobileNet’s train accuracy is 90 % and its test accuracy is
67 %. ShuffleNet has a train accuracy of 92 % and a test accuracy of 65 %.
To perform each attack, the adversary needs black-box access to the target model.
Black-box access is defined in this thesis similarly to the DIA paper [28], which
means that the adversary has only label query access.
Each experiment has a test set of 1000 members and 1000 non-members. To avoid
any confusion, the test data is what the novel MIAs (and optimized regressor) are
tested on and consists of members (= train data of the MIA’s target model) and
non-members (= test data of the MIA’s target model). When “test set” is mentioned
from now on in the thesis, it means the test data of the experiments, not a set of
only non-members.
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4.2 Membership confidence regressor

The regressor to predict the membership confidence based on the decision boundary
distances of an element (= Blind Walk embedding) from the DIA paper [28] is used.
Since it has to be trained on members and non-members in advance and especially
members as private elements can be hard to retrieve in the context of an MIA, it
was optimized to assure the minimal amount of needed members.

4.2.1 Regressor optimization

All training data for the regressor has to be created beforehand. Non-members can
be created with the e.g. methods of the BlindMIA [21]. They propose to create new
non-members by transforming or adding random noise to an existing non-member,
adopting an element from another domain, or creating a sample with random fea-
tures [21]. Either leaked members can be used for the training set or they have to be
created as well, e.g. with one of the methods mentioned by Shokri et al.[38]. They
suggest to either add noise to known members, create elements based on statisti-
cal knowledge about the population the member set was drawn from, or synthesize
members by using elements that the target model has a high confidence on [38].
Please note that since (non-)member creation is not the focus of this thesis, the
elements for the attacks will not be manually created but taken from the datasets.
Nevertheless, working creation methods have been shown in the above-mentioned
papers, which could be applied in a real-life attack.

Because non-members and members have to be created/sourced for the regressor’s
train set in a real-life attack, it is impractical if unnecessarily many elements are
required. An experiment is performed in this thesis to find the minimal regressor’s
training set size for the regressor to work correctly. The regressor is trained with
different amounts of training set sizes and the test accuracies get compared to find
the best suitable amount of training data.
The test accuracy is not directly of the regressor itself (since it does not label the
data but gives confidence scores), it is rather of a classifier on top of the regres-
sor. This classifier simply divides the elements into members and non-members by
separating the regressor confidence scores according to a fixed threshold. While the
accuracy is not measured directly on the regressor, it was decided to be the best
suitable measurement for the regressor in this thesis’s interest: The performance of
the regressor is important in the context of how well members and non-members
can be divided with the regressor outputs as a base. To simplify the context, it is in
this thesis talked about the accuracy of the regressor instead of the accuracy of the
classifier on the regressor.
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In a real-life attack with a limited amount of data, the test accuracy can be calcu-
lated for a growing set of created elements, creating more elements and repeating
the experiment as long as the accuracy is insufficient. As soon as it is satisfactory,
the attacker can stop creating elements. They should now have only created as few
elements as necessary.

Members as private elements are naturally harder to create than non-members,
especially when there is very limited knowledge about the target model’s training
set. The fewer members are necessary for the regressor to work correctly, the easier.
Therefore, a second experiment is performed to find the minimal necessary amount
of members for the regressor’s training set after the experiment to find the necessary
amount of training data. The process is similar to the first experiment, but instead
of different training set sizes, different member set sizes in the training set are looked
at. Additionally, a grid search is performed to find the optimal learning rate and the
epochs amount and batch size get optimized.

4.3 Threshold-dependent MIA specific

As in more detail described in Chapter 3, the attack runs the embeddings through
the optimized regressor and classifies them dependently on whether they are above
a certain threshold. Finding the optimal threshold is thus essential for the success
of the threshold-dependent MIA.

This thesis applies two ways to find the threshold:
Firstly, because it is known that the test set consists of half members and half non-
members, the median of all regressor outputs is taken as the threshold. This approach
promises a quite accurate threshold but is only possible to use when the distribution
of the set is known. It would thus be applicable for attacks where the amount of
members and non-members is roughly known and the attack serves to determine
which of the elements exactly are members. The idea could also be applied for attacks
where the distribution is not half-half, e.g. if it can be assumed that 3/4 of the set
are members, not the median but the regressor output that is bigger than 3/4 of the
elements can be taken as threshold (because members usually have smaller regressor
outputs than non-members). The distribution could also be manually created when
e.g. it is likely that the test elements are all members or at least a vast majority,
the same amount of non-members could be added to the set to be able to use the
median as the threshold.

The second approach for finding the threshold is for when the adversary does not
know the distribution in their test set. Then, the regressor outputs are clustered into
two sets and the maximum of the lower cluster is taken as the threshold. Alterna-
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tively, the minimum of the higher cluster could be taken. This thesis uses k-means
clustering for 1-dimensional data, as presented by Grønlund et al. [17].

4.4 Group-based MIAs specific

The group-based MIAs with effect size, which in detail are explained in Chapter
3, differ from the threshold-dependent MIA by the application of effect size on
the test set (e.g. mixed set for Removal) and the control set before and after an
element/elements are replaced/removed/added. Ideally, the effect size varies enough
between when only one member is replaced/added/removed compared to a non-
member, so the attack can be performed by removing/adding/replacing one element
at a time. To find out whether this is the case or whether more elements have to be
removed/added/replaced at once, a first experiment is performed for the attack:
For a set where the membership is already known (so not the test set), differ-
ent amounts of randomly chosen members and non-members are repeatedly re-
moved/added/replaced at once and the mean effect size difference (effect size before
- effect size after) is looked at. The minimal amount of elements where there is a
clear difference visible in the effect size difference between removed/added/replaced
members and non-members is then used for the attack. For example, if the mean
effect size difference over the repetitions between one removed member is different
from the one of one removed non-member, the attack can be performed by removing
only one element at once.
The experiment is not performed on the same elements as the test set, but on a
different set to adapt this step to a more real-life attack setting. Here, the adversary
would not know the true membership of the test set elements, however, they would
know the membership of similar data beforehand for the regressor training. This
similar data could then be used for the above-described step. The idea behind the
experiment is that since the data behaves similarly to the test set, it should clar-
ify also for the test set how many elements have to be removed/added/replaced at
once. Based on the results presented in the next chapter, for the following steps, it
is considered that removing/adding/replacing one element at once is enough.

Instead of just differentiating between a positive and negative effect size, a threshold
is necessary because the performed experiments have shown that the effect size does
not always differentiate between members and non-members of the target model
perfectly. For example, when a non-member is removed from the mixed set and the
control set is a member set, the effect size might increase in some cases instead of
decreasing. In other words, it describes that the mixed set is now less like the con-
trol set, while in truth it is more like the control set without the non-member. This
could be because the specific non-member is not that easy to differentiate from a
member. Nevertheless, in these cases, the effect size only increases a little bit while
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when a non-member is removed it increases substantially more than when a member
is removed. This makes the removal of a non-member vs. the removal of a member
still distinguishable with a reasonable threshold.
For getting the suitable threshold, all elements from the test set are removed/replaced
/added from/to the mixed set/base set one at a time and the effect size difference is
saved for this element’s removal/replacement/addition. Instead of then permanently
removing/replacing/adding them according to the threshold as it is done in the at-
tack, they get then added/removed again in this step. As a result, each element
gets removed/replaced/added from the mixed set (or for Growing base set) that the
attacks first starts with.
Then, the effect size differences are used to calculate the threshold. The same meth-
ods as for the threshold-dependent MIA are used: For test sets like the one used
in the thesis where the distribution of half members, half non-members is known,
the median of the effect size differences is taken as the threshold. For when the dis-
tribution is unknown, k-means clustering for 1-dimensional data [17] with k = 2 is
applied to the effect size differences and the maximum of the lower cluster is used
as the threshold.
The idea behind this step is that the effect size difference should be the least ex-
treme at the beginning of the group-based MIAs. For example, when you remove an
element from a mixed set that is half full of members and half full of non-members
and calculate the effect size difference compared to a non-member set, the removed
element should not have had a big impact. In contrast, later in the attack, when
the mixed set consists mostly of non-members, a removed member should have a
bigger impact and the effect size difference should be more extreme. As a result, the
calculated effect size differences for members and non-members in this step should
be the closest to each other that they will ever be in the attack. Calculating the
threshold on them should thus result in a good estimation of the optimal threshold
for the whole attack.

The actual attack is performed with either member or non-member as the control
set. Accordingly, either members or non-members are removed/added/replaced. The
control set consists of 1000 elements.
For Growing, the base set consists of 500 elements.

4.5 Metrics

This thesis’s evaluation of the novel MIAs is based on the findings of Carlini et al.
[6], that the ROC curve with log-scale and the TPR at a low FPR are good metrics
to evaluate the success of an MIA. The paper proposes to look at TPR at 0.1 % and
0.001 % FPR. Since an FPR of 0.001 % would need a test set of at least size 100
000 elements (1/100 000 = 0.00001 = 0.001 %), while the CIFAR datasets have only
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60 000 elements, 0.001 % FPR is disregarded in this thesis. Additionally, the ROC
curve without log scale and AUC are looked at to evaluate whether the attack is
generally working or random. The amounts of correctly classified members and non-
members from the confusion matrix are reported to evaluate how well the threshold
is working. The accuracy and F1-score are also reported for completeness, similar
to as done with the accuracy by Carlini et al. [6]. Likewise, they will be disregarded
in the evaluation because according to [6] they are not informative about the MIAs
success.
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5 Results

The chapter analyses first the results of the regressor optimization, followed by
the results of the threshold-dependent MIA and group-based MIAs (Removal,
Growing, Replacement with non-member or member control set). “Results” finishes
with a summary of the findings.

5.1 Regressor optimization

DIA regressor
for target models
trained on CIFAR10

Optimized regressor
for target models
trained on CIFAR10

Target model MobileNet GoogLeNet MobileNet GoogLeNet

Test accuracy 69.40 % 68.80 % 74.90 % 76.40 %

Amount train data 10000 5000

Amount members in train data 5000 2000

Amount non-members in train data 5000 3000

Loss function DIA loss MSE loss

Learning rate 0.1 0.05

Epochs 1000 400

Batch size All elements at once 16

Table 5.1: Comparison of regressor from DIA paper [28] and optimized regressor for
target models trained on CIFAR10.

As explained in Chapter 4, the regressor that predicts membership confidences based
on the decision boundary distances was originally taken from the DIA paper [28],
and then optimized to better fit the purpose of MIAs. Table 5.1 shows the hyperpa-
rameter and performance of the original and optimized regressor for target models
trained with CIFAR10, Table 5.2 for target models trained with CIFAR100. For all
models, the amount of training data was able to be reduced from 10000 to 5000 ele-
ments: Only 2000 members and 3000 non-members in the training set instead of the
original 5000 each were necessary for the optimized regressor. The loss function was
changed from their own DIA loss, which took the mean of the non-squared values,
to Mean Squared Error (MSE) for all regressors. MSE is defined as [33]:
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5 Results

DIA regressor
for target models
trained on CIFAR100

Optimized regressor
for target models
trained on CIFAR100

Target model MobileNet ShuffleNet MobileNet ShuffleNet

Test accuracy 86.30 % 90.90 % 90.10 % 92.60 %

Amount train data 10000 5000

Amount members in train data 5000 2000

Amount non-members in train data 5000 3000

Loss function DIA loss MSE loss

Learning rate 0.1 0.1

Epochs 1000 400

Batch size All elements at once 16

Table 5.2: Comparison of regressor from DIA paper [28] and optimized regressor for
target models trained on CIFAR100.

Definition 5.1.1 (Mean Squared Error). MSE =
∑n

i=1(yi−λ(xi))
2

n
where yi is the true target value for test instance xi, λ(xi) is the predicted target
value for test instance xi, and n is the number of test instances.

In comparison, MSE puts larger weight on big errors and punishes small errors less
than the DIA loss. While the original regressors put all elements in a single batch,
the optimized regressors have a batch size of 16. The epochs were reduced to 400
from 1000 based on when the test accuracy stopped getting better.
For the regressors based on the CIFAR10 dataset, the learning rate was adapted
from 0.1 to 0.05 to make the training more stable.
The performances of all regressors were improved by the optimization: The test ac-
curacy of the regressors for CIFAR100 target models improved by 3.8 % (MobileNet)
and 1.7 % (ShuffleNet) and for CIFAR10 target models by 5.5% (MobileNet) and
7.6 % (GoogLeNet).
With test accuracies above 90 % for both CIFAR100 in contrast to test accuracies
above 70 % for CIFAR10, the optimized regressors work better for CIFAR100 target
models.

5.2 Method to determine thresholds

As mentioned in Chapter 4, the threshold for the regressor outputs
(threshold-dependent MIA) and for the effect size differences (group-based MIAs)
were calculated with the median and through clustering. Since the median should
be often applicable (and to keep the result chapter length reasonable) the analysis is
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5.3 Group-based MIAs with effect size

focused solely on the results that are using the median-based thresholds. The results
for the attacks with a threshold through clustering can be found in the appendix. The
attacks with a median-based threshold are usually more successful than those with
a cluster-based threshold, for both the threshold-dependent MIA and group-based
MIAs.

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Threshold Median as threshold

Threshold-dependent MIA 0.83654 0.67631 -0.55246 0.38511

Table 5.3: Optimal, rounded thresholds for threshold-dependent MIA.

5.2.1 Threshold-dependent MIA

The optimal threshold for classifying the regressor outputs as members or non-
members can be found in Figure 5.3.

The performance details of the threshold-dependent MIA on the models are pre-
sented in Table 5.4 and the ROC curves in Figure 5.1. As seen in Figure 5.1, the
attack proves to be successful against all models as it is better than the random
baseline.
All attacks have an AUC higher than 0.8, with the attack on the CIFAR100 Shuf-
fleNet model having the highest AUC (0.86). For the MIA on CIFAR10 MobileNet
and GoogLeNet, no FPR at 0.1 % was found (5.4). The reason for this is that many
elements had the same value as the highest regressor output so the FPR could never
become 0.1 %. The closest higher FPRs were 1.1 % for MobileNet and 3.1 % for
GoogLeNet, values considerably higher than 0.1 % and therefore hard to use for
comparison. At 0 % FPR, the TPR is 0 % for both models. The attacks on the
CIFAR100 models had a TPR of higher than 0 % at 0.1 % FPR. The attack on
CIFAR100 ShuffleNet has the highest TPR at 0.1 % FPR (6.9 %).
For all median-based thresholds, between 732 and 806 of the 1000 members/non-
members are correctly classified. With a difference of 19 (CIFAR10 MobileNet), 2
(CIFAR10 GoogLeNet), 13 (CIFAR100 MobileNet) and 5 (CIFAR100 ShuffleNet)
the attacks on all models classify more non-members correctly than members.

5.3 Group-based MIAs with effect size

For all group-based MIAs with effect size, the first pre-experiment before the attack
(finding the minimal amount of elements that have to be added/removed/replaced

35



5 Results

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Threshold Median as threshold

TPR at 0.1 % FPR

Not found,
0.1 % FPR does not exist.
———————————–
TPRs at
closest existing FPRs:
At 1.1 % FPR: 11.7%
At 0 % FPR: 0%

Not found,
0.1 % FPR does not exist.
———————————–
TPRs at
closest existing FPRs:
At 3.1 % FPR: 14.3%
At 0 % FPR: 0%

2.2% 6.9%

AUC 0.81 0.84 0.83 0.86

Accuracy 76.25% 80.5% 73.85% 78.65%

F1-score 76.02% 80.48% 73.67% 78.59%

Amount
correctly classified
members
(out of
1000 members)

753 804 732 784

Amount
correctly classified
non-members
(out of
1000 non-members)

772 806 745 789

Table 5.4: Performance of the threshold-dependent MIA. When 0.1 % FPR does
not exist, the closest FPRs are mentioned.

at once) showed, that one element is enough for the attacks on the target models to
divide between member and non-member. Therefore, in the following experiments,
only one element is removed/added/replaced at once.

The optimal thresholds from the second pre-experiment i.e., analyzing which effect
size difference threshold is suitable to divide between members and non-members,
can be found in Table 5.5.

5.3.1 Removal with control set non-members

Figure 5.2 depicts the ROC curves for the Removal attack with a non-member con-
trol set. All attacks have an AUC of around 0.8, for GoogLeNet and ShuffleNet, the
AUC is the highest at 0.83. As it becomes especially visible in Plot (b) of Figure
5.2 (ROC curve with a log scale), all models perform very poorly at low FPRs (see
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5.3 Group-based MIAs with effect size

Model MobileNet GoogLeNet MobileNet ShuffleNet

Datatset CIFAR10 CIFAR100

Threshold type Median as threshold

Removal
(non-member
control set)

-8.34E-05 -7.55E-05 0.000408511749173 0.000127381497711

Removal
(member
control set)

-0.000224209779989 -0.000219135926477 0.000262594563277 -5.91E-05

Growing
(non-member
control set)

-1.53E-03 -1.32E-03 -0.001269073438641 -0.002302819265117

Growing
(member
control set)

0.001288472187745 0.001383560564791 4.47E-06 1.03E-03

Replacement
(non-member
control set)

-7.97E-05 -7.38E-05 0.000408511749173 0.000153541643544

Replacement
(member
control set)

-0.000224873464333 -0.000264211535473 0.000256300559011 -7.83E-05

Table 5.5: Optimal thresholds for group-based attacks.

Table 5.6). This is represented again in the TPR at 0.1 % FPR, where the attack
has on all models a TPR of 0 %. By this metric, the attack fails to work correctly
as an MIA.
Despite the overall poor performance, the MIAs work well on members with the me-
dians as thresholds, with at least 902 and up to 929 correctly classified members. Be-
tween 680 and 851 non-members are correctly classified, therefore all attacks classify
more members correctly (difference of 95 for CIFAR100 MobileNet, 78 for CIFAR100
ShuffleNet, 222 for CIFAR10 MobileNet, 153 for CIFAR10 GoogLeNet).

5.3.2 Removal with control set members

All Removal attacks with a control set of members have an AUC of 0.97 (CIFAR10
MobileNet) or 0.98 (other models), as seen in their ROC curves 5.3. All attacks are
above the random baseline and thus work. The TPR at 0.1 % FPR, see Table 5.7, is
for all Removal attacks high (lowest: 17.9 % for CIFAR10 MobileNet, highest: 44.8
% for CIFAR100 ShuffleNet). According to this metric, the attack performs very
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Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Non-member

Threshold Median as threshold

TPR at 0.1 % FPR 0.00% 0.00% 0.00% 0.00%

AUC 0.79 0.83 0.8 0.83

Accuracy 79.10% 84.65% 86.75% 89.00%

F1-score 81.18% 85.74% 87.35% 89.41%

Amount correctly classified members
(out of 1000 members)

902 923 915 929

Amount correctly classified non-members
(out of 1000 non-members)

680 770 820 851

Table 5.6: Performance of the Removal attack with a control set of non-members.

well and the best on the ShuffleNet model.
For the specific medians as thresholds, between 876 and 937 elements of each type
are correctly classified. The MIAs on all models classify more non-members correctly
(difference: 47 (CIFAR10 MobileNet), 38 (CIFAR10 GoogLeNet), 21 (CIFAR100
MobileNet), 20 (CIFAR100 ShuffleNet)).

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Member

Threshold Median as threshold

TPR at 0.1 % FPR 17.90% 29.50% 28.10% 44.80%

AUC 0.97 0.98 0.98 0.98

Accuracy 89.95% 92.00% 90.95% 92.70%

F1-score 89.71% 91.85% 90.85% 92.62%

Amount correctly classified members
(out of 1000 members)

876 901 899 917

Amount correctly classified non-members
(out of 1000 non-members)

923 939 920 937

Table 5.7: Performance of the Removal attack with a control set of members.

5.3.3 Growing with control set non-members

Table 5.8 and Figure 5.4 show the performance of the Growing attack with a non-
member control set. The ROC curves (5.4) show that the attacks are working since
they are above the random baseline. All Growing attacks have an AUC of 0.92 (CI-
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5.3 Group-based MIAs with effect size

FAR100 MobileNet) or higher. The attack on CIFAR100 MobileNet has the lowest
TPR at 0.1 % FPR (0.8 %), the other MIA’s rates are considerably higher, CIFAR10
GoogLeNet having the highest TPR (11.5 %).
Besides the amount of correctly classified members at the MIA on the CIFAR100
MobileNet (538), more than 830 elements are at least correctly classified of each
type with the medians as thresholds. All attacks classify more non-members cor-
rectly: CIFAR10 MobileNet difference is 80, CIFAR10 GoogLeNet is 43, CIFAR100
MobileNet is 407 and CIFAR100 ShuffleNet is 32. With only slightly more than half
of the members correctly classified for the CIFAR100 MobileNet model, the attack
does not work significantly better than random in this case.

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Non-member

Threshold Median as threshold

TPR at 0.1 % FPR 5.60% 11.50% 0.80% 3.00%

AUC 0.93 0.95 0.92 0.95

Accuracy 87.30% 90.25% 74.15% 92.00%

F1-score 86.77% 90.04% 67.55% 91.87%

Amount correctly classified members
(out of 1000 members)

833 881 538 904

Amount correctly classified non-members
(out of 1000 non-members)

913 924 945 936

Table 5.8: Performance of the Growing attack with a control set of non-members.

5.3.4 Growing with control set members

All Growing attacks with a control set of members work since they are above the
random baseline (see ROC curves 5.5). The CIFAR100 ShuffleNet model attack has
the biggest AUC (0.95), all other AUCs are only slightly smaller with 0.93 or higher.
The MIA on the GoogLeNet model has also the highest TPR at 0.1 % FPR (see
performance attack: 5.9, 11.7 %). The attack on the CIFAR100 MobileNet model
has with 0.8 % the lowest TPR at 0.1 % FPR.
658 non-members are correctly classified with the median as the threshold for the
CIFAR10 MobileNet as the target model. Besides that, all attacks classify at least
above 790 elements of one type correctly with the medians as thresholds. Besides the
CIFAR100 MobileNet attack (difference 21), all attacks classify more non-members
correctly (CIFAR10 MobileNet: difference 274, CIFAR10 GoogLeNet difference 135,
CIFAR100 ShuffleNet distance 8).

39



5 Results

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Member

Threshold Median as threshold

TPR at 0.1 % FPR 5.40% 11.70% 0.80% 3.10%

AUC 0.93 0.94 0.93 0.95

Accuracy 79.50% 86.15% 89.95% 91.60%

F1-score 81.97% 87.03% 89.84% 91.63%

Amount correctly classified members
(out of 1000 members)

932 929 889 920

Amount correctly classified non-members
(out of 1000 non-members)

658 794 910 912

Table 5.9: Performance of the Growing attack with a control set of members.

5.3.5 Replacement attack with control set non-members

Table 5.10 and Figure 5.6 present the performance of the Replacement attack with
a control set of non-members. The AUC is the highest for the attack on CIFAR
GoogLeNet (0.81) and the lowest for on CIFAR100 MobileNet (0.2). The ROC
curves with log scale (plot (b), 5.6) show that the attack does not work since it
is not better than the random baseline. Accordingly, the attacks have a low or even
0 % (CIFAR100 MobileNet) TPR at 0.1 % FPR.
While the medians as thresholds perform quite well on attacks on the CIFAR10
models (at least 763 correctly classified elements of each type), they do not work on
the CIFAR100 models, with for ShuffleNet even only 1 member correctly classified.
Accordingly, the difference between correctly classified members and non-members
is high for CIFAR100 models with 887 (CIFAR100 MobileNet) and 999 (CIFAR100
ShuffleNet). The attacks on CIFAR10 models both classify more members correctly
(Difference MobileNet: 17, ShuffleNet: 125).

5.3.6 Replacement attack with control set members

The Replacement attack with members as a control set works not randomly since it
is above the random baseline (ROC curves, Figure 5.7). The CIFAR100 MobileNet
attack has the highest AUC (0.95), and the CIFAR10 MobileNet has the lowest
(0.87). The attack on CIFAR100 MobileNet has the highest (13.4 %) TPR at 0.1 %
FPR, CIFAR10 GoogLeNet the lowest (5.6 %).
Besides the attack on the CIFAR100 MobileNet model (908 correctly classified mem-
bers, 898 correctly classified non-members), the medians as thresholds do not work
for the Replacement attack: For the remaining models, zero non-members are cor-
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Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Non-member

Threshold Median as threshold

TPR at 0.1 % FPR 0.20% 0.20% 0.00% 1.40%

AUC 0.79 0.81 0.2 0.96

Accuracy 80.15% 82.55% 51.55% 50.05%

F1-score 80.32% 83.57% 66.43% 0.19%

Amount correctly classified members
(out of 1000 members)

810 888 959 1

Amount correctly classified non-members
(out of 1000 non-members)

793 763 72 1000

Table 5.10: Performance of the Replacement attack with a control set of non-
members.

rectly classified.

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Member

Threshold Median as threshold

TPR at 0.1 % FPR 10.90% 5.60% 13.40% 11.70%

AUC 0.87 0.91 0.95 0.86

Accuracy 49.15% 49.30% 90.30% 48.20%

F1-score 65.90% 66.04% 90.35% 65.05%

Amount correctly classified members
(out of 1000 members)

983 986 908 964

Amount correctly classified non-members
(out of 1000 non-members)

0 0 898 0

Table 5.11: Performance of the Replacement attack with a control set of members.

5.4 Summary of results

Summarizing the results from above, the following statements can be made:

Regressor The regressors were successfully improved while achieving the goal of
reducing the amount of train data and members in the train data.
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Attacks The threshold-dependent MIA, Removal with a member control set,
Growing with a non-member and member control set and Replacement with a mem-
ber control set succeeded as attacks and according to the stricter metrics of [6] as
MIAs. Concerning the TPR at 0.1 % FPR, the Removal with member control set
was overall the most successful MIA.

The attack Removal with a non-member control set failed to work and Replacement

with a non-member control set only partially worked as an attack.

The threshold-dependent MIA performed better on the CIFAR100 target models
than on the CIFAR10 target models.

For the group-based attacks, no clear pattern emerges about the success of the at-
tacks depending on the target models. CIFAR100 ShuffleNet and CIFAR10 GoogLeNet
are in two attacks the target models where the attack is most successful on, CI-
FAR100 MobileNet one time. The MIAs work the worst three times on the CIFAR100
MobileNet model and one time on CIFAR10 MobileNet and CIFAR10 GoogleNet
each.

Medians as thresholds for attacks The MIAs with medians as their thresholds for
the threshold-dependent MIA, Removal, and Growing attacks worked (besides for
MobileNet 100 for Growing with non-member control set). The threshold-dependent
MIA, Removal with a member control set, and Growing with a non-member control
set all classify slightly more non-members than members correctly. For Removal with
a non-member set and Growing with a member set (besides CIFAR100 MobileNet),
slightly more members are correctly classified.

The thresholds failed to separate the elements correctly for the Replacement attacks
(besides for CIFAR10 models for Replacement with non-member control set and
CIFAR100 MobileNet for Replacement with member control set).
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Figure 5.1: ROC curve without log scale and with log scale for the
threshold-dependent MIA.
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Figure 5.2: ROC curve without log scale and with log scale for the Removal attack
with a control set of non-members.
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Figure 5.3: ROC curve without log scale and with log scale for the Removal attack
with a control set of members.
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Figure 5.4: ROC curve without log scale and with log scale for the Growing attack
with a control set of non-members.
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Figure 5.5: ROC curve without log scale and with log scale for the Growing attack
with a control set of members.
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Figure 5.6: ROC curve without log scale and with log scale for the Replacement

attack with a control set of non-members.
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Figure 5.7: ROC curve without log scale and with log scale for the Replacement

attack with a control set of members.
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6 Discussion

The following chapter discusses the results presented in the last chapter. It starts
with the optimization of the regressors that are used in all novel attacks. Then, the
failure of the p-value-based attack approaches is shortly reviewed, followed by the
discussion of the methods to determine the thresholds. The threshold-dependent

MIA and group-based MIAs (Removal, Replacement, Growing) are looked at and
possible success and failure reasons are named. The chapter concludes with summa-
rized answers to the research questions.

6.1 Optimized regressor

As all attacks rely on an efficient and accurate regressor, it was important to start
the implementation by optimizing it.
In each case, a successful reduction of the amount of needed train data, and espe-
cially the number of members in their train data, was possible. While all regressors
had an improved accuracy, the regressors trained on the CIFAR100 embeddings
had a very high accuracy, around 10 % higher than the ones trained on the CI-
FAR10 embeddings. To avoid confusion, as explained in Section 4.2.1 in Chapter
4, when talking about the accuracy of the regressor the accuracy of a classifier on
the regressor is described. The result falls in line with the in Chapter 2 described
success factor of an MIA, that members and non-members are more easily distin-
guishable in datasets with many classes. To sum up, the optimized regressors fulfill
the goal of reducing the amount of training data overall and especially members in
the train data, while even outperforming the original regressors. Nevertheless, still
3000 non-members and 2000 members are needed for the training. Since in a real-life
setting the fewer elements are needed in advance for an MIA, the better, it would be
beneficial to find ways of optimizing the regressors even more in future research.
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6.2 p-value-based attack approaches

In Chapter 3, it was theoretically explained and shown in experiments that the p-
value is not applicable for novel MIAs based on the DIA. As a result, the p-valued-
attack approaches are to be discarded because the initial experiments showed that
they are not working properly. Instead, the threshold-dependent MIA and group-
based attacks with the effect size are suitable alternatives.

6.3 Threshold determination methods

The presented methods to get the thresholds for the regressor output sums dif-
ference (for threshold-dependent MIA) and effect size difference (for Removal,
Replacement, Growing) are using either the median or a clustering approach. When
the distribution in the attack’s test set is known, like in this thesis, the median
outperforms the threshold through clustering. As argued in Chapter 4, the median
should be often applicable and was therefore looked closer at in this thesis. The
optimal found median thresholds vary considerably for the different target models,
especially for the threshold-dependent MIA. It was found that most of the ele-
ments have scores at the two ends of the possible confidence scores, with only a
few elements in between. This may explain why the median thresholds vary a lot
between the two extremes, while it only slightly changes the actual classification
results.
Over all attacks, the median-based threshold classifies members and non-members
similarly well. This is expected because the median, as the middle of all values on
a test set with half members and half non-members, should separate both groups
equally well. However, for some sporadic attacks on specific target models presented
in Chapter 5, the median did not work sufficiently well enough as the threshold.
A possible explanation is that in these cases, the members and non-members had
overlaps because their distances to the decision boundaries were sometimes close to
each other. Another reason could be that because of the permanent changes to the
elements of the set (e.g. in Removal the mixed set shrinks in size), the set changes
in some cases so much in behavior that the specific fixed threshold does not reflect
it well enough anymore.
This shows the need to perform further research on threshold determination meth-
ods.
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6.4 Threshold-dependent MIA

The threshold-dependent MIA is a novel MIA that applies the DIA methods while
dropping the hypothesis test. The results show that it works as an MIA in general,
but better on the CIFAR100 than on the CIFAR10 embeddings. Similar to the
better regressor performance on CIFAR100 embeddings, this follows the explained
success factor in Chapter 2 that MIAs work better on datasets with many classes
(like CIFAR100) due to the datasets’ higher generalization errors than datasets with
fewer classes (like CIFAR10): Because the regressor more accurately works on the
CIFAR100 embeddings, the threshold-dependent MIA can more accurately divide
between members’ regressor outputs and non-members’ regressor outputs.

6.5 Group-based MIAs with effect size

The group-based MIA with effect size (Removal, Replacement, Growing) is the sec-
ond novel MIA approach introduced in this thesis. It applies the DIA methods and
makes use of the effect size instead of the p-value. The results showed which ways of
performing the attack work and which do not. The next subchapters name possible
reasons for why some attacks failed and others succeeded.

6.5.1 Possible reasons for failures

The attacks Removal and Replacement with a non-member control set failed. Pos-
sible reasons could be a combination of two things:

Firstly, in contrast to the Growing attacks, both attacks start with a big mixed
set, consisting of half members and half non-members. This makes it an ambiguous
dataset, which might make it more likely that the effect size might not be always able
to clearly differentiate whether a member or a non-member was removed/replaced.
Even though the mixed set should become less diverse the more elements are re-
moved/replaced, this step might not work properly because of the possible failure of
the attack with an at the beginning ambiguous dataset: The attacks remove/replace
the wrong elements (non-members instead of members) from the mixed set, this
results in a smaller (or with more replaced elements) set, which nevertheless is am-
biguous because it consists not of mostly non-members but still a mixture of elements
and so the initial problem is continuing.

The second reason for the failures might be the non-member control set and its
ambivalence. As mentioned in the DIA paper [28] and described in Chapter 2, mem-
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bers tend to have the maximum distance from the decision boundary. In contrast,
non-members can be less clearly determinable, some might be closer to the decision
boundary and others further away. A non-member control set might thus be more
heterogeneous than a member control set and therefore disadvantageous to correctly
determine the effect size, similar to the described possible problems with an ambigu-
ous mixed set. An example that a non-member control set alone is not a reason for
failure is that the Growing attack with a non-member control set works similarly
well as with a member control set.

To conclude, the attacks might both be failing for the combination of the reasons:
An ambiguous mixed set, combined with an ambiguous control set, might be too
ambivalent in general for the attacks to succeed.

6.5.2 Possible reasons for success

The same possible reasons why Removal and Replacement with a non-member con-
trol set fail, might be why Removal, Replacement, Growing with a member control
set, and Growing with a non-member control set succeed:

The attacks with a member control set might have the advantage, as mentioned
above and in the DIA paper [28], that members have a usually maximized distance
to the decision boundary. This makes a set full of members less ambiguous, which
might be an advantage for successfully calculating the effect size. An indicator of
what big of a difference a member control set can make in contrast to a non-member
set is the Removal attacks: While the Removal attack fails to work with a non-
member control set, the Removal attack with a member control set is the most
successful of all attacks.

While the diverse mixed set might be one of the reasons why Replacement and
Removal with a non-member set failed, the lack of ambivalence might be the reason
why the other attacks succeeded.

In contrast to the threshold-dependent MIA, the group-based MIAs do not perform
better on any specific target model type. This might be because the attacks are less
straightforward, so their success is more independent of the target models’ amount
of classes and more dependent on how well the set and the control set are comparable
via effect size.
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6.6 Comparison of group-based and non-group-based MIAs

The most successful group-based attack (Removal with a member control set) has a
TPR of 44.8 % at 0.1 % FPR (for the CIFAR100 ShuffleNet model). In comparison,
the most successful non-group-based attack (threshold-dependent MIA, also on the
CIFAR100 ShuffleNet model) has a TPR of 6.9 % at the same FPR. The best group-
based attack is therefore 37.9 % better than the best non-group-based attack, making
it a substantially more successful MIA. The superiority of the group-based MIA is
as expected because of the potential of group-based approaches for determining the
membership shown in this thesis (DIA [28] and BlindMIA [21], see Chapters 2, 3).
The better performance validates the need for higher complexity in the group-based
MIAs and shows that it should be focused on this attack type in future research.

6.7 Answers to research questions

Coming back to the research questions of this thesis, the answers can now be sum-
marized as the following:

RQ1 How can the findings and methods of the DIA be used for novel MIAs?
As described in detail in Chapter 3, they can be used to perform a
threshold-dependent MIA and group-based MIAs using the statistical effect size
(Removal, Replacement, Growing). All attacks follow the DIA methods and first run
the elements through the target model, create the embeddings with Blind Walk and
use a regressor on the embeddings. The threshold-dependent MIA then separates
the regressor outputs directly in predicted members and non-members, the group-
based MIAs apply the effect size to predict the membership.

RQ2 Is the DIA’s group-based approach applicable for a novel group-based MIA?
The approach until the hypothesis testing is applicable for an MIA, the hypothesis
test with the p-value has to be dismissed and replaced by the effect size, as described
in Chapter 3. The changed group-based approach (Removal, Replacement, Growing)
is applicable for a novel attack.

RQ3 How well do the novel MIA approaches perform?
Four out of six group-based attacks and the threshold-dependent MIA succeed as
MIAs.
Removal with a member control set performs overall the best and has the highest
TPR at 0.1 % FPR of all attacks with 44.8 % (for the CIFAR100 ShuffleNet target
model). Removal and Replacement with non-member control set fail to succeed.
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The MIAs with the median as their specific threshold perform overall well, how-
ever, the attacks fail on certain target models for the Replacement with a non-
member, member set, and Growing with a non-member control set. This is de-
scribed in Chapter 5 and discussed in this chapter. In general, the group-based
attacks are substantially more successful than the one working on individual points
(threshold-dependent MIA), justifying the extra complexity needed for group com-
parisons.
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This thesis looked at the applicability of DIA methods for a novel MIA, especially
for a group-based MIA.
It was argued that the p-value from the DIA was not applicable for the new MIA ap-
proaches and four new MIAs were presented: threshold-dependent MIA, Removal,
Growing and Replacement, each with member and non-member control set. The lat-
ter ones used the effect size instead of the p-value, while the threshold-dependent
MIA renounced the group-based approach altogether.
The attacks were evaluated by looking at the ROC curve with and without log scale,
the AUC and the TPR at 0.1 % FPR.
Removal and Replacement with a non-member control set failed as attacks, as a
possible reason the ambivalence of the sets was named. All other attacks succeeded,
Removal with a member control set was found to be the most successful attack. It
outperformed the non-group-based attack, highlighting the relevance of group-based
MIAs.

7.1 Future research

In general, this thesis shows that future research should be focused on group-based
MIAs (especially Removal with a member control set) as they outperformed the
non-group-based attack (threshold-dependent MIA) in this thesis.

Specific to the presented attacks, it would be interesting to find ways to improve
the regressor even more so that even less training data (which needs the creation of
members and non-members) is needed.
Additionally, more methods to find the threshold for the attack, besides the median
and clustering, should be looked at to find the optimal solution.
The attacks could further be evaluated on more datasets, models and different types
of data besides image classification to get a deeper understanding of their applica-
bility.
Another important next step to understand which value the attacks hold would be
to compare them to other MIAs.

Besides the above-mentioned research in further developing the attacks, the de-

57



7 Conclusion and Outlook

scribed novel MIAs can be used for the evaluation of current and future defenses
against MIAs, to protect the privacy of the machine learning model’s sensitive train-
ing data.
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Appendix

7.2 Appendix

7.2.1 Threshold-dependent MIA, threshold through clustering

The found threshold through clustering for CIFAR10 MobileNet is 0.0268, for CI-
FAR10 GoogLeNet 0.0068, 0.0615 for CIFAR100 MobileNet and -0.0363 for CI-
FAR100 ShuffleNet.

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Threshold Threshold through clustering

TPR at 0.1 % FPR

Not found,
0.1 % FPR does not exist.
———————————–
TPRs at
closest existing FPRs:
At 0.8 % FPR: 10.5%
At 0 % FPR: 0%

Not found,
0.1 % FPR does not exist.
———————————–
TPRs at
closest existing FPRs:
At 2.9 % FPR: 15.3%
At 0 % FPR: 0%

1.80% 3.90%

AUC 0.81 0.83 0.83 0.88

Accuracy 77.45% 79.00% 70.95% 82.80%

F1-score 73.70% 76.45% 73.84% 81.32%

Amount correctly classified
members
(out of 1000 members)

632 682 820 749

Amount correctly classified
non-members
(out of 1000 non-members)

917 898 599 907

Table 7.1: Performance of the threshold-dependent MIA. When 0.1 % FPR does
not exist, closest FPRs are mentioned.
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(a) without log scale

(b) with log scale

Figure 7.1: ROC curve without log scale and with log scale for the
threshold-dependent MIA.
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7.2.2 Group-based MIA with effect size, threshold through clustering

Model MobileNet GoogLeNet MobileNet ShuffleNet

Datatset CIFAR10 CIFAR100

Threshold type Threshold through clustering

Removal
(non-member control set)

-4.77E-05 -5.36E-05 -9.03E-05 -7.36E-05

Removal
(member control set)

7.80E-05 5.74E-05 -1.38E-05 -2.96E-06

Growing
(non-member control set)

-0.003194736636272 -0.002742686675566 0.002217660043317 -0.001816807305138

Growing
(member control set)

3.83E-04 3.32E-04 1.85E-03 9.80E-04

Replacement
(non-member control set)

-3.12E-05 -1.80E-05 -9.03E-05 -7.05E-05

Replacement
(member control set)

6.24E-05 5.97E-05 -1.49E-05 1.68E-05

Table 7.2: Optimal thresholds for group-based attacks.

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Non-member

Threshold Threshold through clustering

TPR at 0.1 % FPR 0.00% 0.00% 0.00% 0.00%

AUC 0.79 0.83 0.8 0.83

Accuracy 79.35% 85.15% 85.85% 88.80%

F1-score 81.25% 86.14% 86.94% 89.32%

Amount correctly classified members
(out of 1000 members)

895 923 942 937

Amount correctly classified non-members
(out of 1000 non-members)

692 780 775 839

Table 7.3: Performance of the Removal attack with a control set of non-members.
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(a) without log scale

(b) with log scale

Figure 7.2: ROC curve without log scale and with log scale for the Removal attack
with a control set of non-members.
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(a) without log scale

(b) with log scale

Figure 7.3: ROC curve without log scale and with log scale for the Removal attack
with a control set of members.
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(a) without log scale

(b) with log scale

Figure 7.4: ROC curve without log scale and with log scale for the Growing attack
with a control set of non-members.
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(a) without log scale

(b) with log scale

Figure 7.5: ROC curve without log scale and with log scale for the Growing attack
with a control set of members.

71



Bibliography

(a) without log scale

(b) with log scale

Figure 7.6: ROC curve without log scale and with log scale for the Replacement

attack with a control set of non-members.
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(a) without log scale

(b) with log scale

Figure 7.7: ROC curve without log scale and with log scale for the Replacement

attack with a control set of members.
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Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Member

Threshold Threshold through clustering

TPR at 0.1 % FPR 0.10% 1.70% 38.30% 44.40%

AUC 0.97 0.98 0.98 0.98

Accuracy 86.80% 90.40% 90.30% 92.75%

F1-score 85.53% 89.81% 90.46% 92.63%

Amount correctly classified members
(out of 1000 members)

780 846 920 920

Amount correctly classified non-members
(out of 1000 non-members)

956 962 886 886

Table 7.4: Performance of the Removal attack with a control set of members.

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Non-member

Threshold Threshold through clustering

TPR at 0.1 % FPR 6.00% 7.50% 0.80% 3.30%

AUC 0.92 0.94 0.94 0.95

Accuracy 65.20% 74.95% 59.10% 91.90%

F1-score 48.29% 67.40% 70.74% 91.88%

Amount correctly classified members
(out of 1000 members)

325 518 989 917

Amount correctly classified non-members
(out of 1000 non-members)

979 981 193 921

Table 7.5: Performance of the Growing attack with a control set of non-members.

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Member

Threshold Threshold through clustering

TPR at 0.1 % FPR 5.30% 11.90% 0.80% 3.10%

AUC 0.93 0.95 0.93 0.95

Accuracy 86.05% 89.50% 88.95% 91.70%

F1-score 84.89% 88.77% 89.44% 91.72%

Amount correctly classified members
(out of 1000 members)

784 830 936 920

Amount correctly classified non-members
(out of 1000 non-members)

937 960 843 914

Table 7.6: Performance of the Growing attack with a control set of members.
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Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Non-member

Threshold Threshold through clustering

TPR at 0.1 % FPR 0.10% 0.30% 0.00% 0.00%

AUC 0.94 0.82 0.18 0.59

Accuracy 50.05% 82.85% 52.35% 64.75%

F1-score 0.19% 83.63% 67.50% 72.39%

Amount correctly classified members
(out of 1000 members)

1 876 990 924

Amount correctly classified non-members
(out of 1000 non-members)

1000 781 57 371

Table 7.7: Performance of the Replacement attack with a control set of non-
members.

Target model MobileNet GoogLeNet MobileNet ShuffleNet

Dataset CIFAR10 CIFAR100

Control set Member

Threshold Threshold through clustering

TPR at 0.1 % FPR 10.90% 15.10% 16.20% 10.90%

AUC 0.86 0.92 0.96 0.86

Accuracy 48.75% 48.85% 90.45% 47.65%

F1-score 65.54% 65.63% 90.74% 64.54%

Amount correctly classified members
(out of 1000 members)

975 977 936 953

Amount correctly classified non-members
(out of 1000 non-members)

0 0 873 0

Table 7.8: Performance of the Replacement attack with a control set of members.
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