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ABSTRACT
Deployment of strong cryptographic ciphers for DNSSEC is es-
sential for long term security of DNS. Unfortunately, due to the
hurdles involved in adoption of new ciphers coupled with the limp-
ing deployment of DNSSEC, most domains use the weak RSA-1024
cipher.

The main problem towards deployment of new ciphers is the
resulting bloat of DNSSEC-signed responses due to support of mul-
tiple ciphers. This causes not only load on network, but worse, it
results in DNS lookup failures, e.g., many network devices block
such huge packets. Merely dropping the old ciphers and moving to
use new stronger ciphers is not an option since this would break
the DNS functionality for all the clients which do not support those
new ciphers. The requirement to support new ciphers on both
clients and servers coupled with the possible DNS failures due to
the resulting large responses reduces the motivation to improve
the security of DNS.

We aim to resolve this vicious circle. In this work we propose
an approach for deployment of new ciphers using a single-sided
cipher-suite negotiation. Our mechanism uses machine learning
for inferring the set of ciphers potentially supported by the client
and then selecting the best cipher from that list. Our evaluations
demonstrate that our single-sided cipher-suite negotiation not only
allows the domains to unilaterally improve security without waiting
for clients to integrate support for new secure ciphers, but it also
improves DNS performance by reducing failures.

Our results show that a single sided solution can, not only push
adoption of new ciphers forward, but it also will resolve the existing
interoperability problems with DNSSEC. Our design and prelim-
inary analysis on the feasibility of applying machine learning to
this context results in more secure and available DNSSEC. We out-
line our methodology for machine learning assisted cipher-suite
negotiation and provide steps and challenges for future research.
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1 INTRODUCTION
DNSSEC [RFC4033-RFC4035] was proposed more than two decades
ago, yet is still not widely deployed, only about 1% of the domains
are signed andmost DNS resolvers do not validate responses.Worse,
even the signed domains often still remain vulnerable due tomiscon-
figured or weak cryptographic keys, [1, 5]. Unfortunately, support-
ing multiple ciphers does not solve the problem since the additional
cryptographic material of DNSSEC increases the packet size sig-
nificantly causing the signed DNS responses to be blocked by the
intermediate network devices. On the other hand, selecting and
using just one strong cipher is also not an option since many DNS
resolvers do not have support for new ciphers. When a resolver
receives records signed with ciphers it does not understand, the
validation fails. As a result, a large fraction of the DNS servers still
support RSA 1024, [4]. Even now, when most resolvers support old
ciphers and insufficiently strong keys, DNSSEC-signed responses
are often blocked causing the clients connectivity problems. Pro-
posals for cipher suite negotiation of DNSSEC, [2, 3], did not see
adoption since they require modifications to both the resolvers and
the nameservers. Other proposals consider out-of-band channels
for signalling the supported ciphers such as in transport layer EDNS
mechanism [RFC6975]. Although standardised eight years ago they
are still not supported by the DNS resolvers in the Internet.

Our contribution. In this work, we propose a new approach
for integrating ciphers into DNSSEC. According to our proposal
the domains can unilaterally deploy new ciphers. The key idea
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Figure 1: Visualization of the learning process. (1) Training data is collected by deploying an ad network. The ad on a client
triggers queries to our nameserver. We collect information about the query success fromwithin the ad client and information
about the resolver’s query from the queries at our authoritative name server. (2) The collected data is used to train a predictive
model using machine learning. (3) The model is used to predict the supported ciphers in a real-world scenario.

behind our proposal is that the nameservers can extrapolate based
on the information learnt from the DNS requests which ciphers
the resolvers probably cannot handle. On the nameserver side we
continually monitor the communication with the resolvers, and
dynamically build models using Machine Learning (ML) about the
supported ciphers by each resolver. The models are built based on
caching and query behaviour, as well as properties in the IP and
transport headers of the DNS requests. For learning the behaviour
of the resolvers we use decision tree (DT) based approach. From the
set of predicted supported ciphers, the cipher for the DNS response
is chosen based on server-side preference. The classifiers that pre-
dict algorithm support are pre-trained based on a large volume of
network traces with queries and responses to open resolvers on
the Internet and popular resolver software in our lab. Next, our
server-side module selects the best (i.e., the strongest) cipher which
is supported by the resolver, among the ciphers used by the domain.

Our mechanism allows the domains to unilaterally adopt new ci-
phers without exposing the clients to potential connectivity failures.
The clients with DNS resolvers that support the new ciphers imme-
diately enjoy the additional security benefits. On the other hand,
our mechanism reduces the failures when the nameservers com-
municate with resolvers that support multiple ciphers or ciphers
with multiple keys of different sizes.

2 SERVER-ONLY CIPHERS NEGOTIATION
Design. The goal is to identify the best cipher for each given re-
solver and to send responses using only that cipher, On the name-
server we create 𝑛 copies of the zonefile for each of the 𝑛 ciphers
supported by a given domain. Each copy of the zonefile is signed
by one cipher. During the communication with the resolvers the
server applies ML to decide on the optimal cipher to use and pro-
vides records from the corresponding zonefile.

ML-Features. The server uses the queries from the DNS re-
solvers to decide on the most suitable cipher for communication
with that resolver. We extract features from the time domain, from
TCP/IP headers and the payload of the DNS requests packets sent
by the resolver.
• Time domain: these features are related to the query behaviour
of DNS resolvers.
• Transport layer features: these are features in EDNS and the trans-
port layer protocol that is used for communication.
• DNS header features: these are parameters in DNS header.
• IP header features: these are parameters which can be used to
fingerprint the operating system of the DNS resolver.
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Figure 2: Schematic view of how the cipher suit(s) are se-
lected using models trained with machine learning. The de-
cision is based on the features that we defined. In the shown
case, a response with Ed25519 signatures is sent.

• Payload: the DNS queries and the caching behaviour of the re-
solver.

This information is then fed into a pre-trained model that will
determine a prediction for the set of cipher suites understood by
the resolver in question. The response given by the authoritative
name server will then use the best of the predicted cipher suites.
The process is illustrated in Figure 2.

Ad Client Data Server Data
Client Query Name Result Remote IP TTL TC bit ...
0xab ab.rsasha256... ok 2a::42 3 set ...
0xab ab.ecdsasha256... ok 2a::42 4 no
0xab ab.ed25519... fail 2a::42 4 set
0xc0 c0.rsasha256.... ok 1.1.1.1 3 ...

Table 1: Training data.

Model training.Themodels used for cipher selection are trained
using machine learning techniques. We describe the training pro-
cess in Figure 1. For any training, it is essential to obtain feedback as
to whether validation using the selected cipher suite was successful.
We collect this data using an ad network, where a client computer
is instructed by the ad to query certain zones in the DNS using its
pre-configured resolver. Whether or not validation happened, and
whether or not the validation was successful, can then be deter-
mined for the resolver in use. This is done for a number of different
cipher suits1. By encoding a unique client-id in the DNS query, this
data is matched up with the DNS traffic data that is recorded at the
authoritative name servers of our domain, to create training sets
for the prediction models; An example is displayed in Table 1.

1Observe that we implicitly also testing whether or not the cipher suites used by any
parent zones are supported. Of course, we expect very broad support for the cipher
suites used by root and top level zones.



In our measurements we collected a total of 207 resolvers cov-
ering our 8 lab resolvers, 13 popular open resolver services and
186 randomly selected validating resolvers from UDP/53 port scans
resolve our domains. Using the RCODE and AD flag from the query
response at the client under our control, we were able to determine,
which resolvers support which algorithms and with what key sizes
(RSA only). The results are shown in Table 2.

Algorithm KeyLength Share of Resolvers
ecdsap256sha256 256 95.16%
ecdsap384sha384 384 74.19%
ed25519 256 78.49%
ed448 456 13.98%
rsasha1 1024 37.63%

1871 37.63%
2048 37.63%
4096 37.10%

rsasha1nsec3sha1 1024 74.73%
1871 75.27%
2048 74.73%
4096 74.19%

rsasha256 1024 75.27%
1871 76.34%
2048 75.27%
4096 72.58%

rsasha512 1024 75.27%
1871 76.34%
2048 74.73%
4096 73.12%

Table 2: Resolvers and the supported ciphers and key lengths.

Once the training data is gathered, it must be decided which kind
of model we use. In this work we train a decision tree, as we expect
decision processes to not be overly complicated. Furthermore, such
models can be nicely analyzed and explained.

Implementation. We develop our mechanism as a separate
module which implements our ML classifier and based on the re-
quests that it receives from the resolver, identifies the optimal cipher
to use. We also develop a script which given a zonefile on the name-
server, and the cryptographic keys, generates a separate zonefile
per cipher each signed with the corresponding key. Once the op-
timal cipher is identified our module signals to the script on the
nameserver which zonefile copy should be used (protected with
the corresponding optimal cipher).

3 EVALUATION
In this section we present our preliminary evaluation results. After
obtaining the classifiers for each cipher, we checked the accuracy
of their prediction by comparing to the test set (the part of the col-
lected data which was not used for training). Each classifier shows
moderate accuracy, with the proportion of false predictions making
up about one third of test examples. The detailed metrics are shown
in Table 3. An increase in training data or an increase in the number
of features would further improve the individual classifier quality.
Most importantly, our preliminary work, including the classifier
and the training data, is currently based on a single DNS query
to the server. However, in typical scenarios, the resolving process
involves several queries to the server, which further improve preci-
sion. Notice however, that the individual classifier’s wrong guesses
only mean that our mechanism predicted another better cipher,
which is still correctly supported by the resolver.

To assess the performance of our cipher selection mechanism, we
used the classifiers to predict which cipher would be selected for the

DNS queries contained in our test set. Since for each query in the
test set the responsible DNS resolver, that sent it, is known, the cor-
rectness of the prediction can be assessed using the resolver cipher
support that we collected during our evaluation of the resolvers in
the lab.

true true false false
algorithm neg. pos. neg. pos.
rsasha1 80% 0% 20% 0%
rsasha1nsec3sha1 39% 25% 22% 14%
rsasha256 39% 26% 22% 13%
rsasha512 35% 26% 21% 18%
ecdsap256sha256 30% 20% 31% 18%
ecdsap384sha384 39% 21% 24% 16%
ed25519 43% 16% 28% 13%
ed448 86% 4% 5% 5%

Table 3: Performance of the decision-tree classifiers.

The results of this procedure show that the choice of algorithm
in more than 99% of the cases matches the best cipher supported by
the involved resolver. In cases where the prediction was incorrect,
the resolver’s capabilities were mostly underestimated, resulting in
weaker security than what could be possible with the resolver in
question. On the other hand, cases where the resolver’s capabilities
were overestimated, and validation at the resolver side was skipped,
are relatively few. Overall, for almost all resolvers, the security
that could be achieved with the cipher chosen by our mechanism is
higher than what would be achieved with setting the cipher fixed to
the recommended setting, i.e., ecdsap256sha256. (The exceptions be-
ing bind9113, kresd532, and cznic-odvr, with the latter presumably
using kresd).

4 CONCLUSIONS
We propose a new approach for deployment of ciphers in DNSSEC,
which eliminates the requirement to change both ends of the com-
munication. We use ML to learn the client side behaviour and
identify an optimal cipher that the server can use which is also
supported by the DNS resolver. Our initial evaluations show 99%
success on our dataset of resolvers in the Internet. Our approach not
only pushes deployment of new ciphers forward, but also reduces
the failures with DNSSEC signed responses.
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