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ASYMPTOTICS OF SOLUTIONS
FOR NONLOCAL ELLIPTIC PROBLEMS IN PLANE ANGLES

P. L. Gurevich UDC 517.956.8

In the paper we investigate asymptotics of solutions for nonlocal elliptic problems in plane angles and
in R2 \ {0}. These problems arise in studying nonlocal problems in bounded domains in the case
where support of nonlocal terms intersects with a boundary of a domain. We obtain explicit formulas
for the asymptotic coefficients in terms of eigenvectors and associated vectors of both adjoint nonlocal
operators acting in spaces of distributions and formally adjoint (with respect to the Green formula)
nonlocal transmission problems.

1 INTRODUCTION

T. Carleman [1] was one of the first to study nonlocal elliptic problems. Investigation of nonlocal prob-
lems with shifts mapping a boundary on itself are closely associated with paper [1]. In [2], A. V. Bitsadze and
A. A. Samarskii considered the Laplace equation in a domain G ⊂ Rn with the boundary condition that connects
the values of an unknown function on a manifold Υ1 ⊂ ∂G with its values on some manifold inside G; on ∂G \Υ1

the Dirichlet condition was set. Such a formulation is associated with further investigating nonlocal problems with
shifts mapping a boundary inside a domain. One can find a detailed bibliography devoted to nonlocal elliptic
problems in [3].

In the theory of nonlocal elliptic problems of this type, the most difficult case deals with the situation where
support of nonlocal terms intersects with a boundary [4–8]. This leads to appearance of power singularities for
solutions near some set K. Therefore, the problem of asymptotics of solutions near this set arises. Asymptotic
formulas for solutions to nonlocal elliptic problems in plane domains were first obtained by A. L. Skubachevskii
in [5]. They allow one to prove a number of principally new properties (in comparison with “local” elliptic problems
both in domains with angular points [9, 10] and in domains with smooth boundary). For example, smoothness
of generalized solutions for nonlocal elliptic problems can be violated both near vertexes of small angles and near
a smooth boundary even for arbitrarily small coefficients in nonlocal terms [5, 11].

In this paper we investigate the asymptotic behavior of solutions for nonlocal elliptic boundary-value problems
in plane angles and in R2 \ {0}. Such problems arise as model ones when studying asymptotics of solutions for
nonlocal elliptic problems in bounded domains near the set K. We obtain explicit formulas for the asymptotic
coefficients in terms of eigenvectors and associated vectors of both adjoint nonlocal operators (acting in spaces of
distributions) and formally adjoint (with respect to the Green formula) nonlocal problems. Earlier adjoint nonlocal
problems were studied in [12, 13].

Note that a number of statements are proved similarly to results of papers [14, 15]. In these cases we shall
just give schemes of proofs.

2 STATEMENT OF NONLOCAL PROBLEMS IN PLANE ANGLES AND PRELIMINARY INFORMATION.
ASYMPTOTICS OF SOLUTIONS

1. Consider the plane angle K = {y ∈ R2 : r > 0, b1 < ω < b2} with sides γσ = {y ∈ R2 : r > 0, ω = bσ}
(σ = 1, 2). Here (ω, r) are the polar coordinates of a point y; −π < b1 < b2 < π.
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Denote by P(Dy), Bσµ(Dy), and BG
σµ(Dy) homogeneous differential operators with constant complex coef-

ficients of orders 2m, mσµ � 2m− 1, and mσµ � 2m− 1 respectively (σ = 1, 2; µ = 1, . . . ,m). We shall suppose
that the operator P(Dy) is properly elliptic and the system of operators {Bσµ(Dy)}mµ=1 is normal and covers P(Dy)
on γσ (see [16, Chap. 2]). We do not impose any conditions (except the restrictions on orders) on the operators
BG
σµ(Dy), which play further the role of nonlocal ones.

Consider the following nonlocal elliptic problem in the plane angle K:

P(Dy)u = f(y) (y ∈ K), (2.1)

Bσµ(Dy)u ≡ Bσµ(Dy)u(y)
∣∣
γσ

+ (BG
σµ(Dy)u)(Gσy)

∣∣
γσ

= gσµ(y) (y ∈ γσ), σ = 1, 2; µ = 1, . . . ,m. (2.2)

The notation (BG
σµ(Dy)u)(Gσy) means that the expression (BG

σµ(Dy′)u)(y′) is taken for y′ = Gσy; Gσ is the operator
of rotation by the angle ωσ and expansion by βσ times in the plane {y} such that b1 < b1 + ω1 = b2 + ω2 = b < b2,
0 < βσ.

For any set G ⊂ Rn (n � 1), denote by C∞
0 (G) the set of infinitely differentiable in Ḡ functions with supports

belonging to G. We introduce the space H l
a(K) as a completion of the set C∞

0 (K̄ \ {0}) in the norm ‖w‖Hl
a(K) =( ∑

|α|�l

∫
K

r2(a−l+|α|)|Dα
yw(y)|2 dy

)1/2

, where a ∈ R, l � 0 is an integer. By H
l−1/2
a (γ′) for l � 1 we denote the

space of traces on a ray γ′ = {y ∈ R2 : r > 0, ω = b′} (b1 � b′ � b2) with the norm ‖ψ‖
H

l−1/2
a (γ′) = inf ‖w‖Hl

a(K)

(w ∈ H l
a(K): w

∣∣
γ′ = ψ).

Introduce the bounded operator corresponding to problem (2.1), (2.2):

L = {P(Dy),Bσµ(Dy)} : H l+2m
a (K)→ H l

a(K, γ) = H l
a(K)×

∏
σ=1,2

m∏
µ=1

H l+2m−mσµ−1/2
a (γσ).

2. Write the operators P(Dy), Bσµ(Dy), and BG
σµ(Dy) in polar coordinates: P(Dy) = r−2mP̃(ω,Dω, rDr),

Bσµ(Dy) = r−mσµ B̃σµ(ω,Dω, rDr), and BG
σµ(Dy) = r−mσµ B̃G

σµ(ω,Dω, rDr), where Dω = −i ∂∂ω and Dr = −i ∂∂r .
We shall denote by w̃(λ) the Mellin transformation of a function w ∈ C∞

0 (R+):

w̃(λ) = (2π)−1/2

∞∫
0

r−iλ−1w(r) dr.

Put {f, gσµ} = 0 in (2.1) and (2.2) and formally perform the Mellin transformation. Then we get

P̃(λ)ũ(ω, λ) = 0 (b1 < ω < b2), (2.3)

B̃σµ(λ)ũ(ω, λ) ≡ B̃σµ(λ)ũ(ω, λ)
∣∣
ω=bσ

+ β−mσµ+iλ
σ B̃G

σµ(λ)ũ(ω + ωσ, λ)
∣∣
ω=bσ

= 0. (2.4)

Here (and further) for short we omit the arguments ω and Dω in differential operators. This problem is the ordinary
differential equation (2.3) with nonlocal conditions (2.4) that connect the values of a solution ũ and its derivatives
at the point ω = bσ with the values of a solution ũ and its derivatives at the internal point ω = b of the interval
(b1, b2). The asymptotics of solutions for the nonlocal problem (2.1), (2.2) in the angle K will be described in terms
of eigenvalues and corresponding Jordan chains of problem (2.3), (2.4).

Let us consider the operator-valued function corresponding to nonlocal problem (2.3), (2.4)

L̃(λ) = {P̃(λ), B̃σµ(λ)} : W l+2m(b1, b2) →W l[b1, b2] = W l(b1, b2)× C
2m.

Here W l(·) = W l
2(·) is the Sobolev space of order l � 0 (if l = 0, we put W 0(·) = L2(·)).

Now we shall recall some well-known definitions and facts (see [17]). A holomorphic at a point λ0 vector-
function ϕ(λ) with values in W l+2m(b1, b2) is called a root function of the operator L̃(λ) at λ0 if ϕ(λ0) �= 0 and
the vector-function L̃(λ)ϕ(λ) is equal to zero at λ0. If L̃(λ) has at least one root function at a point λ0, then
λ0 is called an eigenvalue of L̃(λ). The multiplicity of zero for the vector-function L̃(λ)ϕ(λ) at the point λ0 is
called a multiplicity of the root function ϕ(λ); the vector ϕ(0) = ϕ(λ0) is called an eigenvector corresponding to the

eigenvalue λ0. Let ϕ(λ) be a root function at a point λ0 of multiplicity κ and ϕ(λ) =
∞∑
j=0

(λ − λ0)jϕ(j). Then the

vectors ϕ(1), . . . , ϕ(κ−1) are called associated with the eigenvector ϕ0, and the ordered set ϕ(0), . . . , ϕ(κ−1) is called
a Jordan chain corresponding to the eigenvalue λ0. The rank of the eigenvector ϕ(0) (rankϕ(0)) is the maximum
of the multiplicities of all root functions such that ϕ(λ0) = ϕ(0).
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Remark 2.1. An eigenvector and associated vectors ϕ(0),. . . , ϕ(κ−1) of the operator L̃(λ) corresponding to
an eigenvalue λ0 satisfy the equalities

ν∑
q=0

1
q!
∂qλL̃(λ0)ϕ(ν−q) = 0, ν = 0, . . . ,κ − 1. (2.5)

Here and further, ∂qλ is the derivative of order q with respect to λ.
From equalities (2.5) and Lemma A.1, it follows that eigenvectors and associated vectors of the operator

L̃(λ) are infinitely differentiable functions in the interval [b1, b2].

From Lemma 2.1 of [6], it follows that all eigenvalues of the operator L̃(λ) are isolated. Moreover,
dim ker L̃(λ0) <∞ for any eigenvalue λ0, and the ranks of all eigenvectors are finite. Suppose J = dim ker L̃(λ0)
and ϕ(0,1), . . . , ϕ(0,J) is a system of eigenvectors such that rankϕ(0,1) is the greatest of the ranks of all eigenvectors
corresponding to the eigenvalue λ0, and rankϕ(0,j) (j = 2, . . . , J) is the greatest of the ranks of eigenvectors from
some orthogonal supplement in ker L̃(λ0) to the linear manifold of the vectors ϕ(0,1), . . . , ϕ(0,j−1). The numbers
κj = rankϕ(0,j) are called partial multiplicities of the eigenvalue λ0, and the sum κ1 + · · · + κJ is called a (full)
multiplicity of λ0. If the vectors ϕ(0,j), . . . , ϕ(κj−1,j) form a Jordan chain for every j = 1, . . . , J , then the set of
vectors {ϕ(0,j), . . . , ϕ(κj−1,j) : j = 1, . . . , J} is called a canonical system of Jordan chains corresponding to the
eigenvalue λ0.

Example 2.1. Put b1 = −ω0 and b2 = ω0. In the plane angle K = {y ∈ R2 : |ω| < ω0} (0 < ω0 < π) with
sides γσ = {y ∈ R2 : ω = (−1)σω0}, σ = 1, 2, we consider the nonlocal problem

∆u = f(y) (y ∈ K), (2.6)

u
∣∣
γ1

= 0, u
∣∣
γ2

+ bu(G2y)
∣∣
γ2

= 0, (2.7)

where b ∈ R, G2 is the operator of rotation by the angle −ω0. The following model nonlocal eigenvalue problem
corresponds to problem (2.6), (2.7):

d2ϕ(ω)
dω2

− λ2ϕ(ω) = 0 (|ω| < ω0), (2.8)

ϕ(−ω0) = 0, ϕ(ω0) + bϕ(0) = 0. (2.9)

One can immediately check (see also [14, Chap. 2]) that, for b = 0 (that is, if problem (2.6), (2.7) is
“local”), the eigenvalues of problem (2.8), (2.9) have the form λk = i πk2ω0

, k ∈ Z \ {0}. The eigenvectors ϕ(0)
k (ω) =

ei
πk
2ω0

ω − e−i
πk
2ω0

ω correspond to these eigenvalues. Associated vectors are absent, that is, all the eigenvalues are of
multiplicity 1.

Now we shall show that, for b �= 0, there may be Jordan chains with a length more than 1 corresponding to
eigenvalues of problem (2.8), (2.9).

(I) First we consider the case λ �= 0. Substituting the general solution ϕ(ω) = c1e
λω + c2e

−λω for Eq. (2.8)
into nonlocal conditions (2.9), we get

c1e
−λω0 + c2e

λω0 = 0,

(eλω0 + b)c1 + (e−λω0 + b)c2 = 0.
(2.10)

Equate the determinant D(λ) of system (2.10) with zero:

(e−λω0 − eλω0)(eλω0 + e−λω0 + b) = 0.

(1) Let us have e−λω0 − eλω0 = 0. Then we obtain the series of eigenvalues

λ1k = i
πk

ω0
, k ∈ Z \ {0}.

The eigenvectors
ϕ

(0)
1k (ω) = ei

πk
ω0
ω − e−i

πk
ω0
ω
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correspond to these eigenvalues. Consider the problem of finding an associated vector ϕ(1)
1k (ω). According to (2.5),

ϕ
(1)
1k (ω) satisfies the equation

d2ϕ
(1)
1k

dω2
+

(πk)2

ω2
0

ϕ
(1)
1k − 2i

πk

ω0
ϕ

(0)
1k = 0 (|ω| < ω0)

and nonlocal conditions (2.9). Substituting the general solution ϕ(ω) = c1e
i πk

ω0
ω + c2e

−iπk
ω0
ω +ω(ei

πk
ω0
ω + e−i

πk
ω0
ω) of

the last equation into nonlocal conditions (2.9), we get

c1 + c2 = 2ω0,

((−1)k + b)c1 + ((−1)k + b)c2 = −2(−1)kω0.
(2.11)

Therefore, an associated vector ϕ(1)
1k (ω) exists if and only if

b = 2(−1)k+1.

If b = 2(−1)k+1, we can put
ϕ

(1)
1k (ω) = (ω + 2ω0)ei

πk
ω0
ω + ωe−i

πk
ω0
ω.

Analogously, using (2.5), we find the second associated vector

ϕ
(2)
1k (ω) =

(
ω2

2
+ 2ω0ω + 2ω2

0

)
e
i πk

ω0
ω − ω2

2
e
−iπk

ω0
ω
.

One can directly check that the third associated vector is absent.
(2) Let us have

eλω0 + e−λω0 + b = 0. (2.12)

Then we obtain the following series of eigenvalues:

λ±2n =
ln

(
− b

2 ±
√
b2−4
2

)
ω0

+ i
2πn
ω0

for b < −2;

λ±2n = i
± arctan

√
4−b2
b + 2πn

ω0
for − 2 < b < 0;

λ±2n = i
± arctan

√
4−b2
b + (2n + 1)π
ω0

for 0 < b < 2;

λ±2n =
ln

(
b
2 ±

√
b2−4
2

)
ω0

+ i
(2n + 1)π

ω0
for b > 2,

n ∈ Z. If |b| = 2, then we have eigenvalues from the series {λ1k}k∈Z\{0}, which is considered above. The eigenvector

ϕ
(0)±
2n (ω) = eλ

±
2nω − e−2λ±

2nω0e−λ
±
2nω

corresponds to the eigenvalue λ±2n. Let us show that there are no associated vectors if λ = λ±2n. Substitute the
general solution ϕ

(1)±
2n (ω) = c1e

λ±
2nω + c2e

−λ±
2nω + ω(eλ

±
2nω + e−2λ±

2nω0e−λ
±
2nω) for the equation

d2ϕ
(1)±
2n

dω2
− (λ±2n)2ϕ(1)±

2n − 2λ±2nϕ
(0)±
2n = 0 (|ω| < ω0)

into nonlocal conditions (2.9). Then we have

e−λ
±
2nω0c1 + eλ

±
2nω0c2 = 2ω0e

−λ±
2nω0 ,

(eλ
±
2nω0 + b)c1 + (eλ

±
2nω0 + b)c2 = −ω0(eλ

±
2nω0 + e−3λ±

2nω0).
(2.13)
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The rank of the matrix of system (2.13) is equal to 1. Therefore, system (2.13) is compatible if and only if

∣∣∣∣∣ e−λ
±
2nω0 2ω0e

−λ±
2nω0

eλ
±
2nω0 + b −ω0(eλ

±
2nω0 + e−3λ±

2nω0)

∣∣∣∣∣ = 0.

The last equality is equivalent to the following one:

3eλ
±
2nω0 + e−3λ±

2nω0 + 2b = 0.

From this, taking into account (2.12), it follows that either eλ
±
2nω0 = 1, b = −2 or eλ

±
2nω0 = −1, b = 2. But we now

consider the case |b| �= 2. Hence, there are no associated vectors if λ = λ±2n.
(II) The case λ = 0 is studied analogously. It turns out that λ = 0 is an eigenvalue of problem (2.8), (2.9) if

and only if b = −2. Moreover, if b = −2, then for the eigenvalue λ = 0, there exist one eigenvector ϕ(0)
0 (ω) = ω+ω0

and one associated vector ϕ(1)
0 (ω) = 0.

Thus, we have shown that problem (2.8), (2.9) has eigenvalues of multiplicity more than 1 if and only if
|b| = 2.

3. The following result on isomorphism follows from [6, Sect. 2].

Theorem 2.1. Suppose the line Imλ = a + 1− l − 2m contains no eigenvalues of the operator L̃(λ). Then
the nonlocal boundary-value problem (2.1), (2.2) has a unique solution u ∈ H l+2m

a (K) for any right-hand side
{f, gσµ} ∈ H l

a(K, γ). This solution is represented in the form

u(ω, r) = (2π)−1/2

+∞+ih∫
−∞+ih

riλL̃−1(λ){F̃ (ω, λ), G̃σµ(λ)} dλ.

Here h = a + 1 − l − 2m, and F̃ (ω, λ) and G̃σµ(λ) are the Mellin transformations of the functions r2mf(ω, r) and
rmσµgσµ(r) respectively.

Before we formulate a theorem concerning the asymptotic behavior of solutions for problem (2.1), (2.2), let
us prove two lemmas that describe solutions of the homogeneous problem.

Lemma 2.1. The function

u(ω, r) = riλ0

p∑
q=0

1
q!

(i ln r)qϕ(p−q)(ω), (2.14)

where ϕ(s) ∈ W l+2m(b1, b2), s = 0, . . . ,κ − 1, is a solution of homogeneous problem (2.1), (2.2) if and only if λ0

is an eigenvalue of the operator L̃(λ) and ϕ(0), . . . , ϕ(κ−1) is a Jordan chain corresponding to the eigenvalue λ0;
p � κ − 1.

Proof. Omitting as above the arguments ω and Dω in differential operators, write

P(Dy)u = r−2mP̃(rDr)u = r−2m+iλ0 P̃(λ0 + rDr)
p∑
q=0

1
q!

(i ln r)qϕ(p−q)

= r−2m+iλ0

p∑
ν=0

1
ν!
∂νλP̃(λ0)

p∑
q=ν

1
(q − ν)!

(i ln r)q−νϕ(p−q). (2.15)

Similarly,

Bσµ(Dy)u = r−mσµ+iλ0

p∑
ν=0

1
ν!
∂νλB̃σµ(λ0)

p∑
q=ν

1
(q − ν)!

(i ln r)q−νϕ(p−q). (2.16)
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Finally, consider the expression (BG
σµ(Dy)u)(Gy):

(BG
σµ(Dy)u)(Gy) = r−mσµ+iλ0β−mσµ+iλ0

σ

p∑
s=0

1
s!
∂sλB̃

G
σµ(λ0)

p∑
q=s

1
(q − s)!

(i ln r + i lnβσ)q−sϕ(p−q)(ω + ωσ). (2.17)

Applying the binomial formula to (i ln r + i lnβσ)q−s and using the relation

β−mσµ+iλ0
σ

ν∑
s=0

1
s!(ν − s)!

∂sλB̃
G
σµ(λ0)(i lnβσ)ν−s =

1
ν!
∂νλ(β−mσµ+iλ

σ B̃G
σµ(λ))|λ=λ0 ,

we obtain from (2.17)

(BG
σµ(Dy)u)(Gy) = r−mσµ+iλ0

p∑
ν=0

1
ν!
∂νλ(β−mσµ+iλ

σ B̃G
σµ(λ))

∣∣
λ=λ0

p∑
q=ν

1
(q − ν)!

(i ln r)q−νϕ(p−q)(ω + ωσ). (2.18)

Combining the summands at the same powers of i ln r in (2.15), (2.16), and (2.18), we see that the function u
satisfies homogeneous problem (2.1), (2.2) if and only if

k∑
h=0

1
h!
∂hλL̃(λ0)ϕ(k−h) = 0, k = 0, . . . , p.

Any solution of the form (2.14) for homogeneous problem (2.1), (2.2) is called a power solution of order p
corresponding to the eigenvalue λ0.

Repeating the proof of Lemma 1.2 of [15], from Lemma 2.1 of the present work, we derive the following
statement.

Lemma 2.2. Let {ϕ(0,j), . . . , ϕ(κj−1,j) : j = 1, . . . , J} be a canonical system of Jordan chains of the operator
L̃(λ) corresponding to an eigenvalue λ0. Then the functions

u(k,j)(ω, r) = riλ0

k∑
q=0

1
q!

(i ln r)qϕ(k−q,j)(ω), k = 0, . . . ,κj − 1, j = 1, . . . , J, (2.19)

form a basis for the space of power solutions to homogeneous problem (2.1), (2.2) corresponding to the eigenvalue λ0.

Similarly to Theorem 1.2 of [15], using Theorem 2.1 and Lemma 2.2 of this work, one can prove the following
statement concerning the asymptotic representation of solutions for nonlocal problem (2.1), (2.2).

Theorem 2.2. Let us have {f, gσµ} ∈ H l
a(K, γ) ∩ H l

a1
(K, γ), where a > a1. Suppose the lines Imλ =

a1 + 1− l−2m and Imλ = a+ 1− l−2m contain no eigenvalues of the operator L̃(λ). If u is a solution for problem
(2.1), (2.2) from the space H l+2m

a (K), then

u(ω, r) =
N∑
n=1

Jn∑
j=1

κj,n−1∑
k=0

c(k,j)n u(k,j)
n (ω, r) + u1(ω, r). (2.20)

Here λ1, . . . , λN are eigenvalues of L̃(λ) located in the strip a1 + 1− l− 2m < Imλ < a + 1− l − 2m;

u(k,j)
n (ω, r) = riλn

k∑
q=0

1
q!

(i ln r)qϕ(k−q,j)
n (ω) (2.21)

are power solutions (of order k) for homogeneous problem (2.1), (2.2);

{ϕ(0,j)
n , . . . , ϕ(κj,n−1,j)

n : j = 1, . . . , Jn}

is a canonical system of Jordan chains of the operator L̃(λ) corresponding to the eigenvalue λn, n = 1, . . . , N ; c
(k,j)
n

are some constants; u1 is a solution for problem (2.1), (2.2) from the space H l+2m
a1

(K).

Remark 2.2. One can show that the formula (2.20) is valid even if the line Imλ = a + 1 − l − 2m contains
eigenvalues of the operator L̃(λ). We demand that the line Imλ = a + 1 − l − 2m have no eigenvalues, since this
condition will also be used for studying asymptotics of solutions for the adjoint problem (Theorem 4.2).

Remark 2.3. If the conditions of Theorem 2.2 are fulfilled and the strip a1 +1− l−2m � Imλ < a+1− l−2m
contains no eigenvalues of the operator L̃(λ), then the solution u from Theorem 2.2 belongs to the space H l+2m

a1
(K).
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3 ADJOINT NONLOCAL PROBLEMS IN ANGLES

1. In order to calculate the coefficients c(k,j)ν in asymptotic formula (2.20), we shall need operators that are
adjoint to the operators of nonlocal problems.

Denote W l[b1, b2]∗ = W l(b1, b2)∗ × C2m. Consider the operator L̃∗(λ) : W l[b1, b2]∗ →W l+2m(b1, b2)∗, which
is adjoint to the operator L̃(λ̄) with regard to the extension of the inner product in L2(b1, b2)×C2m. The operator
L̃∗(λ) takes {ψ, χσµ} ∈ W l[b1, b2]∗ to L̃∗(λ){ψ, χσµ} by the rule

〈ϕ, L̃∗(λ){ψ, χσµ}〉 = 〈P̃(λ̄)ϕ, ψ〉+
∑
σ=1,2

m∑
µ=1

B̃σµ(λ̄)ϕ · χσµ for all ϕ ∈W l+2m(b1, b2).

Here and further 〈·, ·〉 is a sesquilinear form on the corresponding couple of adjoint spaces.
First of all we give a remark analogous to Remark 2.1.

Remark 3.1. An eigenvector and associated vectors {ψ(0), χ
(0)
σµ}, . . . , {ψ(κ−1), χ

(κ−1)
σµ } of the operator L̃∗(λ)

corresponding to an eigenvalue λ̄0 satisfy the equalities

ν∑
q=0

1
q!
∂qλL̃∗(λ̄0){ψ(ν−q), χ(ν−q)

σµ } = 0, ν = 0, . . . ,κ − 1. (3.1)

From equalities (3.1) and Lemma A.2, it follows that the components ψ(0), . . . , ψ(κ−1) of an eigenvector and
associated vectors of the operator L̃∗(λ) are infinitely differentiable functions in the intervals [b1, b] and [b, b2].

Denote H l
a(K, γ)∗ = H l

a(K)∗ ×
∏

σ=1,2

m∏
µ=1

H
l+2m−mσµ−1/2
a (γσ)∗. Let L∗ : H l

a(K, γ)∗ → H l+2m
a (K)∗ be the

operator adjoint to the operator L with regard to the extension of the inner product in L2(K)×
∏

σ=1,2

m∏
µ=1

L2(γσ).
The operator L∗ takes {v, wσµ} ∈ H l

a(K, γ)∗ to L̃∗{v, wσµ} by the rule

〈u,L∗{v, wσµ}〉 = 〈P(Dy)u, v〉+
∑
σ=1,2

m∑
µ=1

〈Bσµ(Dy)u,wσµ〉 for all u ∈ H l+2m
a (K). (3.2)

Consider the homogeneous equation
L∗{v, wσµ} = 0. (3.3)

Lemma 3.1. The function

{v, wσµ} =
{
riλ̄0+2m−2

p∑
q=0

1
q!

(i ln r)qψ(p−q), riλ̄0+mσµ−1

p∑
q=0

1
q!

(i ln r)qχ(p−q)
σµ

}
, (3.4)

where {ψ(s), χ(s)} ∈ W l[b1, b2]∗, s = 0, . . . ,κ − 1, is a solution for homogeneous equation (3.3) if and only if λ̄0 is

an eigenvalue of the operator L̃∗(λ) and {ψ(0), χ
(0)
σµ}, . . . , {ψ(κ−1), χ

(κ−1)
σµ } is a Jordan chain corresponding to the

eigenvalue λ̄0; p � κ − 1.

Proof. By Remark 3.1 the functions ψ(s), s = 0, . . . ,κ − 1, belong to L2(b1, b2). Therefore, for any u ∈
C∞

0 (K̄ \ {0}), the following identity holds:

〈u,L∗{v, wσµ}〉 =

b2∫
b1

∞∫
0

r−1P̃(rDr)u · riλ̄0

p∑
q=0

1
q!

(i ln r)qψ(p−q) dr dω

+

∞∫
0

∑
σ=1,2

m∑
µ=1

r−1B̃σµ(rDr)u
∣∣
ω=bσ

· riλ̄0

p∑
q=0

1
q!

(i ln r)qχ(p−q)
σµ dr
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+

∞∫
0

∑
σ=1,2

m∑
µ=1

r−1B̃G
σµ(rDr)u

∣∣
ω=b

riλ̄0β
−mσµ−iλ̄0
σ

p∑
q=0

1
q!

(i lnβ−1
σ + i ln r)qχ(p−q)

σµ dr (3.5)

(if we put r′ = rβ−1
σ in the last integral, then we obtain exactly formula (3.2)).

Denote by δb′ = δb′(ω) the delta-function with support at the point b′ (b1 � b′ � b2). Let P̃∗(λ), B̃∗
σµ(λ),

and (B̃G
σµ)∗(λ) be the operators formally adjoint to P̃(λ̄), B̃σµ(λ̄), and B̃G

σµ(λ̄) respectively.
Note that identities of the form

b2∫
b1

Dωϕ · ψ(p−q) dω = 〈ϕ,Dωψ(p−q)〉, Dωϕ
∣∣
ω=b′ · χ(p−q) = 〈ϕ,Dω(χ(p−q) ⊗ δb′)〉

(for ϕ ∈ W l(b1, b2)) generate the distributions Dωψ(p−q) and Dω(χ(p−q)⊗δb′) from the space W l(b1, b2)∗. Therefore,
integrating in (3.5) by parts (for fixed ω) and using the relations

P̃∗(rDr)
(
riλ̄0

p∑
q=0

1
q!

(i ln r)qψ(p−q)
)

= riλ̄0

p∑
ν=0

1
ν!
∂νλP̃∗(λ̄0)

p∑
q=ν

1
(q − ν)!

(i ln r)q−νψ(p−q),

B̃∗
σµ(rDr)

(
riλ̄0

p∑
q=0

1
q!

(i ln r)qχ(p−q)
σµ ⊗ δbσ

)
= riλ̄0

p∑
ν=0

1
ν!
∂νλB̃

∗
σµ(λ̄0)

( p∑
q=ν

1
(q − ν)!

(i ln r)q−νχ(p−q)
σµ ⊗ δbσ

)
,

(B̃G
σµ)∗(rDr)

(
riλ̄0β−mσµ−iλ̄0

σ

p∑
q=0

1
q!

(i lnβ−1
σ + i ln r)qχ(p−q)

σµ ⊗ δb

)

= riλ̄0

p∑
ν=0

1
ν!
∂νλ(β−mσµ−iλ

σ (B̃G
σµ)∗(λ))

∣∣
λ=λ̄0

( p∑
q=ν

1
(q − ν)!

(i ln r)q−νχ(p−q)
σµ ⊗ δb

)

(which are proved similarly to equalities (2.15), (2.16), and (2.18)), we conclude that the function {v, wσµ} satisfies
homogeneous equation (3.3) if and only if

k∑
h=0

1
h!
∂hλL̃∗(λ̄0){ψ(k−h), χ(k−h)

σµ } = 0, k = 0, . . . , p

(cf. the proof of Lemma 2.1).
Any solution of the form (3.4) for homogeneous equation (3.3) is called a power solution of order p corre-

sponding to the eigenvalue λ̄0.
2. Further we need a special choice of Jordan chains satisfying the conditions of biorthogonality and nor-

malization. Such chains are described in the following lemma.

Lemma 3.2. Suppose a canonical system of Jordan chains

{ϕ(0,j), . . . , ϕ(κj−1,j) : j = 1, . . . , J}
corresponds to an eigenvalue λ0 of the operator L̃(λ). Then there exists a canonical system of Jordan chains

{{ψ(0,j), χ(0,j)
σµ }, . . . , {ψ(κj−1,j), χ(κj−1,j)

σµ } : j = 1, . . . , J}

of the operator L̃∗(λ) corresponding to the eigenvalue λ̄0 such that the following relations hold:

ν∑
p=0

k∑
q=0

1
(ν + k + 1− p− q)!

{
(∂ν+k+1−p−q
λ P̃(λ0)ϕ(q,ξ), ψ(p,ζ))L2(b1,b2)

+
∑
σ=1,2

m∑
µ=1

(∂ν+k+1−p−q
λ B̃σµ(λ0)ϕ(q,ξ), χ(p,ζ)

σµ )C

}
= δξ,ζδκξ−k−1,ν . (3.6)

Here ζ, ξ = 1, . . . , J ; ν = 0, . . . ,κζ − 1; k = 0, . . . ,κξ − 1; δp,q is the Kronecker symbol.

Proof. By Lemma 2.1 of [6], λ0 is a normal eigenvalue of the operator L̃(λ), that is, dim ker L̃(λ0) < ∞,
codimR(L̃(λ0)) < ∞, and all points of the deleted neighborhood 0 < |λ − λ0| < ρ (for sufficiently small ρ) are
regular ones for L̃(λ). Thus, the necessary result follows from Lemma 2.1 of [15].
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4 CALCULATION OF THE COEFFICIENTS IN THE ASYMPTOTICS OF SOLUTIONS
FOR NONLOCAL PROBLEMS IN ANGLES

1. In this section, we obtain explicit formulas for the coefficients c(k,j)n in asymptotic formula (2.20). First
we shall calculate the coefficients with the help of power solutions {v, wσµ} for homogeneous equation (3.3), and
then we shall obtain a representation of the coefficients in terms of the Green formula.

Let λ̄n be an eigenvalue of the operator L̃∗(λ), and let{
{ψ(0,j)

n , χ(0,j)
σµ,n}, . . . , {ψ(κj,n−1,j)

n , χ(κj,n−1,j)
σµ,n } : j = 1, . . . , Jn

}
be Jordan chains of L̃∗(λ) corresponding to the eigenvalue λ̄n and forming a canonical system. Consider the power
solutions (of order ν) for Eq. (3.3)

{v(ν,j)
n , w(ν,j)

σµ,n} =
{
riλ̄n+2m−2

ν∑
q=0

1
q!

(i ln r)qψ(ν−q,j)
n , riλ̄n+mσµ−1

ν∑
q=0

1
q!

(i ln r)qχ(ν−q,j)
σµ,n

}
, (4.1)

where ν = 0, . . . ,κj,n − 1.

Theorem 4.1. Let the conditions of Theorem 2.2 hold; then the coefficients c
(k,j)
n from (2.20) are calculated

by the formulas

c(k,j)n = (f, iv(κj,n−k−1,j)
n )L2(K) +

∑
σ=1,2

m∑
µ=1

(gσµ, iw(κj,n−k−1,j)
σµ,n )L2(γσ), (4.2)

where {v(ν,j)
n , w

(ν,j)
σµ,n} is the vector defined by equality (4.1), and the Jordan chains

{ϕ(0,j)
n , . . . , ϕ(κj,n−1,j)

n : j = 1, . . . , Jn},{
{ψ(0,j)

n , χ(0,j)
σµ,n}, . . . , {ψ(κj,n−1,j)

n , χ(κj,n−1,j)
σµ,n } : j = 1, . . . , Jn

}
,

appearing in (2.21) and (4.1), satisfy conditions (3.6) of biorthogonality and normalization.

Theorem 4.1 is proved similarly to Theorem 3.1 of [15].

Remark 4.1. By Remark 3.1, the functions ψ(ν,j)
n belong to the space L2(b1, b2). From this and from equalities

(4.1) and (4.2), it follows that

|c(k,j)n | � c(‖{f, gσµ}‖Hl
a(K,γ) + ‖{f, gσµ}‖Hl

a1
(K,γ))

if {f, gσµ} ∈ H l
a(K, γ) ∩H l

a1
(K, γ) and a1 + 1− l − 2m < Imλn < a + 1− l − 2m.

From Theorems 2.2, 4.1, and the duality conception, one can obtain the following result concerning the
asymptotics of solutions for the adjoint problem:

L∗{v, wσµ} = Ψ. (4.3)

Theorem 4.2. Suppose Ψ ∈ H l+2m
a (K)∗ ∩H l+2m

a1
(K)∗, where a > a1, and the lines Imλ = a1 + 1− l− 2m

and Imλ = a + 1− l − 2m contain no eigenvalues of the operator L̃(λ). If {v, wσµ} is a solution for problem (4.3)
from the space H l

a1
(K, γ)∗, then

{v, wσµ} =
N∑
n=1

Jn∑
j=1

κj,n−1∑
k=0

d(k,j)
n {v(k,j)

n , w(k,j)
σµ,n}+ {V,Wσµ}. (4.4)

Here λ1, . . . , λN are eigenvalues of the operator L̃(λ) located in the strip a1 + 1 − l − 2m < Imλ < a + 1 −
l − 2m; {v(k,j)

n , w
(k,j)
σµ,n} are the vectors defined by formula (4.1); d(k,j)

n are some constants; {V,Wσµ} is a solution
for problem (4.3) from the space H l

a(K, γ)∗.
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2. Consider the Green formula for nonlocal elliptic problems. For this, we introduce the set γ = {y : ϕ = b},
which is the support of nonlocal data in problem (2.1), (2.2). Denote K1 = {y : b1 < ϕ < b} and K2 =
{y : b < ϕ < b2}. For functions v(y) given in K we denote by vσ(y) their restrictions on Kσ, σ = 1, 2. We say
that v belongs to C∞(K̄ \ {0}) if vσ belongs to C∞(K̄σ \ {0}), σ = 1, 2.

When considering the Green formula in the angle K, for short we shall omit the argument Dy in differential
operators. Denote by P∗ the operator formally adjoint to P . By virtue of Theorem 4.1 of [12] (see also Theorem 1
of [13]), there exist (not unique) (1) a system {B′

σµ}mµ=1 of normal on γσ operators of order 2m − 1 −m′
σµ with

constant coefficients such that the system {Bσµ, B′
σµ}mµ=1 is a Dirichlet system on γσ

(1) of order 2m; (2) a Dirichlet
system {Bµ, B′

µ}mµ=1 on γ of order 2m such that the operators Bµ and B′
µ are of order 2m−µ and m−µ respectively.

Whenever the choice has been made, there exist differential operators Cσµ, C′
σµ, Tν , and T G

σν (σ = 1, 2;
µ = 1, . . . ,m; ν = 1, . . . , 2m) with constant coefficients such that (I) the operators Cσµ, C′

σµ, Tν , and T G
σν are of

order m′
σµ, 2m− 1 −mσµ, ν − 1, and ν − 1 respectively; (II) the system {Cσµ}mµ=1 covers the operator P∗ on γσ

and supplements {C′
σµ}mµ=1 to a Dirichlet system on γσ of order 2m; the system {Tν}2mν=1 is a Dirichlet system on γ

of order 2m; (III) for all u ∈ C∞
0 (K̄ \ {0}), v ∈ C∞(K̄σ \ {0}), the following Green formula is valid:

(Pu, v)L2(Kσ) +
∑
σ=1,2

m∑
µ=1

(
Bσµu,C′

σµvσ
∣∣
γσ

)
L2(γσ)

+
m∑
µ=1

(
Bµu

∣∣
γ
, Tµv

)
L2(γ)

=
∑
σ=1,2

(u,P∗vσ)Kσ +
∑
σ=1,2

m∑
µ=1

(
B′
σµu

∣∣
γσ
, Cσµvσ

∣∣
γσ

)
L2(γσ)

+
m∑
µ=1

(
B′
µu

∣∣
γ
, Tm+µv

)
L2(γ)

. (4.5)

Here
Tνv ≡ Tνv1

∣∣
γ
− Tνv2

∣∣
γ

+
∑
k=1,2

(T G
kνvk)(G−1

k y)
∣∣
γ
,

where G−1
k is the operator of rotation by the angle −ωk and expansion by 1/βk times in the plane {y} (k = 1, 2;

ν = 1, . . . , 2m).
Formula (4.5) generates the problem formally adjoint to problem (2.1), (2.2):

P∗(Dy)vσ = fσ(y) (y ∈ Kσ; σ = 1, 2), (4.6)

Cσµ(Dy)v ≡ Cσµ(Dy)vσ
∣∣
γσ

= gσµ(y) (y ∈ γσ; σ = 1, 2; µ = 1, . . . ,m), (4.7)

Tν(Dy)v ≡ Tν(Dy)v1
∣∣
γ
− Tν(Dy)v2

∣∣
γ

+
∑
k=1,2

(T G
kν(Dy)vk)(G−1

k y)
∣∣
γ

= hν(y) (y ∈ γ; ν = 1, . . . , 2m). (4.8)

Problem (4.6)–(4.8) is called a nonlocal transmission problem in the angle K [12, 13].
For functions ṽ(ω) given in the interval (b1, b2), we denote by ṽ1(ω) and ṽ2(ω) their restrictions on the

intervals (b1, b) and (b, b2) respectively. We say that ṽ belongs to C∞([b1, b2]) if ṽ1 belongs to C∞([b1, b]) and
ṽ2 belongs to C∞([b, b2]).

Write all the differential operators appearing in (4.5) in polar coordinates (omitting ω and Dω): P(Dy) =
r−2mP̃(rDr), Bσµ(Dy) = r−mσµB̃σµ(rDr), etc. By Theorem 4.3 of [12], the following Green formula with the
parameter λ is valid for any functions ũ ∈ C∞([b1, b2]) and ṽ ∈ C∞([b1, b2]):

(P̃(λ)ũ, ṽ)L2(b1,b2) +
∑
σ=1,2

m∑
µ=1

B̃σµ(λ)ũ · C̃′
σµ(λ′)ṽσ

∣∣
ω=bσ

+
m∑
µ=1

B̃µ(λ)ũ
∣∣
ω=b

· T̃µ(λ′)ṽ = (ũ, P̃∗(λ′)ṽ1)L2(b1,b)

+ (ũ, P̃∗(λ′)ṽ2)L2(b,b2) +
∑
σ=1,2

m∑
µ=1

B̃′
σµ(λ)ũ

∣∣
ω=bσ

· C̃σµ(λ′)ṽσ
∣∣
ω=bσ

+
m∑
µ=1

B̃′
µ(λ)ũ

∣∣
ω=b

· T̃m+µ(λ′)ṽ. (4.9)

Here λ′ = λ̄− 2i(m− 1);

T̃ν(λ′)ṽ = T̃ν(λ′)ṽ1(ω)
∣∣
ω=b

− T̃ν(λ′)ṽ2(ω)
∣∣
ω=b

+
∑
k=1,2

β
−iλ′+(ν−1)
k T̃ G

kν(λ′)ṽk(ω − ωk)
∣∣
ω=b

.

(1)See [16, Chap. 2, Sect. 2.2] for the definition of a Dirichlet system.
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Formula (4.9) generates a problem formally adjoint to problem (2.3), (2.4):

P̃∗(λ)ṽ1(ω) = 0 (ω ∈ (b1, b)), P̃∗(λ)ṽ2(ω) = 0 (ω ∈ (b, b2)), (4.10)

C̃σµ(λ)ṽ(ω) ≡ C̃σµ(λ)ṽσ(ω)
∣∣
ω=ωσ

= 0 (σ = 1, 2; µ = 1, . . . ,m), (4.11)

T̃ν(λ)ṽ(ω) ≡ T̃ν(λ)ṽ1(ω)
∣∣
ω=b

− T̃ν(λ)ṽ2(ω)
∣∣
ω=b

+
∑
k=1,2

β
−iλ+(ν−1)
k T̃ G

kν(λ)ṽk(ω − ωk)
∣∣
ω=b

= 0 (ν = 1, . . . , 2m).
(4.12)

Problem (4.10)–(4.12) is called a nonlocal transmission problem on the arc (b1, b2) [12, 13].
Note that problem (4.10)–(4.12) can also be derived from problem (4.6)–(4.8) if in the latter we put fσ = 0,

gσµ = 0, and hν = 0 and formally perform the Mellin transformation.
The operator

M̃(λ) : W l+2m(b1, b)⊕W l+2m(b, b2) → (W l(b1, b)⊕W l(b, b2))× C
2m × C

2m,

acting by the formula
M̃(λ)ṽ = {z̃, C̃σµ(λ)ṽ, T̃ν(λ)ṽ},

corresponds to problem (4.10)–(4.12). Here z̃(ω) = P̃∗(λ)ṽ1(ω) for ω ∈ (b1, b) and z̃(ω) = P̃∗(λ)ṽ2(ω) for ω ∈ (b, b2).
Note that we cannot define z̃ by the formula z̃(ω) = P̃∗(λ)ṽ(ω) for ω ∈ (b1, b2), since the function ṽ ∈ W l+2m(b1, b)⊕
W l+2m(b, b2) may be discontinuous at the point ω = b.

3. Now we shall establish a connection between Jordan chains of the operators L̃∗(λ) and M̃(λ). Put

C̃′σµ(λ)ṽ = C̃′
σµ(λ)ṽσ(ω)|ω=bσ .

Repeating the proof of Proposition 2.5 [14, Chap. 1] and using Green formula (4.9) and Remark 3.1, we obtain the
following result.

Lemma 4.1. The vectors {ψ(0), χ
(0)
σµ}, . . . , {ψ(κ−1), χ

(κ−1)
σµ } form a Jordan chain of the operator L̃∗(λ) cor-

responding to an eigenvalue λ̄0 if and only if the vectors ψ(0), . . . , ψ(κ−1) form a Jordan chain of the operator M̃(λ)
corresponding to the eigenvalue λ̄0 − 2i(m− 1) and the vectors ψ(k) and χ

(k)
σµ are connected by the relation

χ(k)
σµ =

k∑
r=0

1
r!
∂rλC̃′σµ(λ̄0 − 2i(m− 1))ψ(k−r).

Combining Lemmas 3.2 and 4.1, we get the following condition of biorthogonality and normalization of
Jordan chains in terms of the Green formula.

Lemma 4.2. Suppose a canonical system

{ϕ(0,j), . . . , ϕ(κj−1,j) : j = 1, . . . , J}

corresponds to an eigenvalue λ0 of the operator L̃(λ). Then there exist a canonical system of Jordan chains

{ψ(0,j), . . . , ψ(κj−1,j) : j = 1, . . . , J}

of the operator M̃(λ) corresponding to the eigenvalue λ̄0 − 2i(m− 1) such that the following relations are valid:

ν∑
p=0

k∑
q=0

1
(ν + k + 1− p− q)!

{
(∂ν+k+1−p−q
λ P̃(λ0)ϕ(q,ξ), ψ(p,ζ))L2(b1,b2)

+
∑
σ=1,2

m∑
µ=1

(
∂ν+k+1−p−q
λ B̃σµ(λ0)ϕ(q,ξ),

p∑
r=0

1
r!
∂rλC̃′σµ(λ̄0 − 2i(m− 1))ψ(p−r,ζ)

)
C

}
= δξ,ζδκξ−k−1,ν . (4.13)
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Put
C′σµ(Dy)v = C′

σµ(Dy)vσ(y)|γσ .

Let us formulate the main result on a representation of the coefficients c
(k,j)
n from asymptotic formula (2.20) in

terms of the Green formula.

Theorem 4.3. Let conditions of Theorem 2.2 be fulfilled. Then the coefficients c
(k,j)
n from (2.20) are

calculated by the formulas

c(k,j)n = (f, iv(κj,n−k−1,j)
n )L2(K) +

∑
σ=1,2

m∑
µ=1

(gσµ, iC′σµ(Dy)v(κj,n−k−1,j)
n )L2(γσ). (4.14)

Here v
(ν,j)
n is a power solution for the homogeneous nonlocal transmission problem (4.6)–(4.8) given by

v(ν,j)
n = riλ̄n+2m−2

ν∑
q=0

1
q!

(i ln r)qψ(ν−q,j)
n ,

where {ψ(0,j)
n , . . . , ψ

(κj,n−1,j)
n : j = 1, . . . , Jn} is a canonical system of Jordan chains of the operator M̃(λ) cor-

responding to the eigenvalue λ̄n − 2i(m − 1), and the chains {ϕ(0,j)
n , . . . , ϕ

(κj,n−1,j)
n : j = 1, . . . , Jn} (appearing

in (2.21)) and {ψ(0,j)
n , . . . , ψ

(κj,n−1,j)
n : j = 1, . . . , Jn} satisfy conditions (4.13) of biorthogonality and normalization.

Proof. Similarly to the proof of Lemma 2.1, one can show that v
(ν,j)
n is a solution of the homogeneous

problem (4.6)–(4.8) if and only if ψ(0,j)
n , . . . , ψ

(κj,n−1,j)
n is a Jordan chain of the operator M̃(λ) corresponding to

the eigenvalue λ̄n − 2i(m− 1).
Further, we have

C′σµ(Dy)v(ν,j)
n = riλ̄n+mσµ−1C̃′σµ(λ̄n − 2i(m− 1) + rDr)

ν∑
q=0

1
q!

(i ln r)qψ(ν−q,j)
n

= riλ̄n+mσµ−1
ν∑
s=0

1
s!
∂sλC̃′σµ(λ̄n − 2i(m− 1))

ν∑
q=s

1
(q − s)!

(i ln r)q−sψ(ν−q,j)
n .

Changing the order of summation and applying Lemma 4.1, we get

C′σµ(Dy)v(ν,j)
n = riλ̄n+mσµ−1

ν∑
s=0

1
s!
∂sλC̃′σµ(λ̄n − 2i(m− 1))

ν−s∑
q=0

1
q!

(i ln r)qψ(ν−q−s,j)
n .

Now the necessary result follows from Theorem 4.1 and Lemma 4.2.
3. Concluding this section, we consider the asymptotics of solutions for nonlocal problems in the angle with

a special right-hand side. Put

F (ω, r) =
M∑
q=0

1
q!

(i ln r)qf (q)(ω), Gσµ(r) =
M∑
q=0

1
q!

(i ln r)qg(q)
σµ , {f (q), g(q)

σµ} ∈ W l(b1, b2)× C
2m.

Let Λ be some complex number. If Λ is an eigenvalue of the operator L̃(λ), then denote by κ(Λ) the greatest of
partial multiplicities of this eigenvalue; otherwise put κ(Λ) = 0.

Lemma 4.3. For problem (2.1), (2.2) with right-hand side {riΛ−2mF, riΛ−mσµGσµ}, there exists a solution

u(ω, r) = riΛ
M+κ(Λ)∑
q=0

1
q!

(i ln r)qu(q)(ω), (4.15)

where u(q) ∈ W l+2m(b1, b2). A solution of such a form is unique if κ(Λ) = 0 (that is, if Λ is not an eigenvalue
of L̃(λ)). If κ(Λ) > 0, solution (4.15) is defined accurate to an arbitrary linear combination of power solutions (2.19)
corresponding to the eigenvalue Λ.

The proof is analogous to the proof of Lemma 3.1 [14, Chap. 3].

Remark 4.2. The results of Sects. 2–4 are generalized for the case of a system of equations as well as for the
case of an arbitrary number of nonlocal terms with supports on different rays.
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5 ASYMPTOTICS OF SOLUTIONS FOR LOCAL PROBLEMS IN R2 \ {0}

1. In investigating nonlocal elliptic problems in plane domains, one should consider solutions not in a whole
domain G but in G\K, where K is a finite set of points (see [5,7]). And solutions may have power singularities near
the set K which corresponds to some conditions of coherence. To study asymptotics of solutions for such problems,
we need the results of Sects. 2–4 and of this section as well.

Let P(Dy) be a homogeneous properly elliptic differential operator of order 2m with constant coefficients.
Introduce the bounded operator P = P(Dy) : H l+2m

a (R2) → H l
a(R

2). We shall study the asymptotics of
solutions u ∈ H l+2m

a (R2) for the equation
Pu = f, (5.1)

supposing that f ∈ H l
a(R2) ∩H l

a1
(R2).

Write the operator P(Dy) in polar coordinates: P(Dy) = r−2mP̃(ω,Dω, rDr). The coefficients of the
operator P̃(ω,Dω, rDr) as functions of ω belong to the set C∞

2π[0, 2π] of 2π-periodic infinitely differentiable functions.
Introduce the bounded operator P̃(λ) = P̃(ω,Dω, λ) : W l+2m

2π (0, 2π) → W l
2π(0, 2π), where W l

2π(0, 2π) is
a completion of the set C∞

2π [0, 2π] in W l(0, 2π).
From [5, Sect. 1], it follows that there exists a finite-meromorphic operator-valued function P̃−1(λ) such that

its poles coinciding with eigenvalues of P̃(λ) are located (except, perhaps, for a finite number) inside a double angle
less than π containing the imaginary axis. If λ is not a pole, then P̃−1(λ) is a bounded inverse operator for P̃(λ).
If the line Imλ = a+ 1− l− 2m contains no poles of the operator P̃−1(λ) (or no eigenvalues of the operator P̃(λ),
which is the same), then by [5, Sect. 1] the operator P is an isomorphism.

Using the formulated results and repeating the considerations of [14, Chap. 3], we shall obtain most of the
statements of this section.

Theorem 5.1. Suppose f ∈ H l
a(R

2) ∩ H l
a1

(R2), where a > a1, and the lines Imλ = a1 + 1 − l − 2m and

Imλ = a + 1 − l − 2m contain no eigenvalues of the operator P̃(λ). If u is a solution of problem (5.1) from the
space H l+2m

a (R2), then

u(ω, r) =
N∑
n=1

Jn∑
j=1

κj,n−1∑
k=0

c(k,j)n u(k,j)
n (ω, r) + u1(ω, r). (5.2)

Here λ1, . . . , λN are eigenvalues of P̃(λ) located in the strip a1 + 1− l − 2m < Imλ < a + 1− l − 2m;

u(k,j)
n (ω, r) = riλn

k∑
q=0

1
q!

(i ln r)qϕ(k−q,j)
n (ω) (5.3)

are power (of order k) solutions for homogeneous problem (5.1);

{ϕ(0,j)
n , . . . , ϕ(κj,n−1,j)

n : j = 1, . . . , Jn}

is a canonical system of Jordan chains of the operator P̃(λ) corresponding to the eigenvalue λn, n = 1, . . . , N ; c
(k,j)
n

are some constants; u1 is a solution of problem (5.1) from the space H l+2m
a1

(R2).

Remark 5.1. Similarly to the case of plane angles, one can show that formula (5.2) is valid even if the line
Imλ = a+1− l−2m contains eigenvalues of the operator P̃(λ). We demand that the line Imλ = a+1− l−2m have
no eigenvalues, since this condition will also be used for studying asymptotics of solutions for the adjoint problem
(Theorem 5.3).

2. Further we shall obtain explicit formulas for the coefficients c(k,j)n in asymptotic formula (5.2). First we
shall calculate the coefficients with the help of power solutions for a homogeneous adjoint equation and then we
shall obtain a representation of the coefficients in terms of the Green formula.

Consider the operator P∗ : H l
a(R2)∗ → H l+2m

a (R2)∗ adjoint to P with respect to the extension of the inner
product in L2(R2) and the operator P̃∗(λ) : W l

2π(0, 2π)∗ → W l+2m
2π (0, 2π)∗ adjoint to P̃(λ̄) with respect to the

extension of the inner product in L2(0, 2π).
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Let λ̄n be an eigenvalue of the operator P̃∗(λ). Let

{ψ(0,j)
n , . . . , ψ(κj,n−1,j)

n : j = 1, . . . , Jn}

be Jordan chains of P̃∗(λ) corresponding to the eigenvalue λ̄n and forming a canonical system. Using the ellipticity
of the operator P̃∗(ω,Dω, λ), the method of “frozen” coefficients, expansion of the functions ψ(ν,j)

n in the Fourier
series by the functions eikω/

√
2π,(2) and equalities of the type (3.1), one can show that ψ

(ν,j)
n are 2π-periodic

infinitely differentiable functions in the interval [0, 2π].
Consider the power solution (of order ν)

v(ν,j)
n = riλ̄n+2m−2

ν∑
q=0

1
q!

(i ln r)qψ(ν−q,j)
n , ν = 0, . . . ,κj,n − 1, (5.4)

for the equation P∗v = 0 corresponding to the eigenvalue λ̄n of the operator P̃∗(λ).

Theorem 5.2. Let the conditions of Theorem 5.1 be fulfilled. Then the coefficients c
(k,j)
n from (5.2) are

calculated by the formulas

c(k,j)n = (f, iv(κj,n−k−1,j)
n )L2(R2), (5.5)

where v
(ν,j)
n are defined by equalities (5.4); the Jordan chains {ϕ(0,j)

n , . . . , ϕ
(κj,n−1,j)
n : j = 1, . . . , Jn} and

{ψ(0,j)
n , . . . , ψ

(κj,n−1,j)
n : j = 1, . . . , Jn} appearing in (5.3) and (5.4) satisfy conditions of biorthogonality and nor-

malization analogous to (3.6).

Remark 5.2. Since the functions ψ(ν,j)
n are infinitely differentiable, from Eqs. (5.4) and (5.5) it follows that

|c(k,j)n | � c(‖f‖Hl
a(R2) + ‖f‖Hl

a1
(R2))

if f ∈ H l
a(R2) ∩H l

a1
(R2) and a1 + 1− l − 2m < Imλn < a + 1− l − 2m.

From Theorems 5.1, 5.2, and the duality conception, one can get the following result concerning the asymp-
totics of solutions for the adjoint problem:

P∗v = Ψ. (5.6)

Theorem 5.3. Suppose Ψ ∈ H l+2m
a (R2)∗ ∩H l+2m

a1
(R2)∗, where a > a1, and the lines Imλ = a1 + 1− l− 2m

and Imλ = a+ 1− l− 2m contain no eigenvalues of the operator P̃(λ). If v is a solution of problem (4.3) from the
space H l

a1
(R2)∗, then

v =
N∑
n=1

Jn∑
j=1

κj,n−1∑
k=0

d(k,j)
n v(k,j)

n + V. (5.7)

Here λ1, . . . , λN are eigenvalues of P̃(λ) located in the strip a1 + 1− l− 2m < Imλ < a+ 1− l− 2m; v
(k,j)
n are the

vectors given by (5.4); d(k,j)
n are some constants; V is a solution for problem (5.6) from the space H l

a(R2)∗.

3. Consider the Green formula for local elliptic problems in R2 \ {0}. It is easy to see that, for any functions
u ∈ C∞

0 (R2 \ {0}), v ∈ C∞(R2 \ {0}), the following Green formula is valid:

(P(Dy)u, v)L2(R2) = (u,P∗(Dy)v)L2(R2). (5.8)

Formula (5.8) generates a problem formally adjoint to problem (5.1):

P∗(Dy)v = f(y) (y ∈ R
2 \ {0}). (5.9)

(2)The possibility of expansion of a distribution ψ ∈ W l
2π(0, 2π)∗ in the Fourier series by the functions ek(ω) = eikω/

√
2π is

justified by the following equalities: 〈u, ψ〉 =
DP

k
(u, ek)L2(0,2π)ek, ψ

E
=
�
u,
P
k
ψkek

�
L2(0,2π)

, where u ∈ W l
2π(0, 2π) and vk = 〈ek, v〉.
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Further, it is not hard to prove that, for any functions ũ ∈ C∞
2π[0, 2π] and ṽ ∈ C∞

2π[0, 2π], the following Green
formula with the parameter λ is valid:

(P̃(ω,Dω, λ)ũ, ṽ)L2(0,2π) = (ũ, P̃∗(ω,Dω, λ′)ṽ)L2(0,2π), (5.10)

where λ′ = λ̄− 2i(m− 1).
Formula (5.10) generates the operator

Q̃(λ) = P̃∗(ω,Dω, λ) : W l+2m
2π (0, 2π)→W l

2π(0, 2π).

Using Green formula (5.10) and relations of the type (3.1), one can establish a connection between Jordan
chains of the operators P̃∗(λ) and Q̃(λ).

Lemma 5.1. The vectors ψ(0), . . . , ψ(κ−1) form a Jordan chain of the operator P̃∗(λ) corresponding to
an eigenvalue λ̄0 if and only if they form a Jordan chain of the operator Q̃(λ) corresponding to the eigenvalue
λ̄0 − 2i(m− 1).

Finally, using Lemma 5.1, we shall formulate the main result concerning a representation of the coeffi-
cients c(k,j)n from asymptotic formula (5.2) in terms of the Green formula.

Theorem 5.4. Let the conditions of Theorem 5.1 be fulfilled. Then the coefficients c
(k,j)
n from (5.2) are

calculated by the formula
c(k,j)n = (f, iv(κj,n−k−1,j)

n )L2(R2). (5.11)

Here v
(ν,j)
n is a power solution for homogeneous problem (5.9) given by formula (5.4); {ψ(0,j)

n , . . . , ψ
(κj,n−1,j)
n : j =

1, . . . , Jn} is a canonical system of Jordan chains of the operator Q̃(λ) corresponding to the eigenvalue λ̄n−2i(m−1);
the chains {ϕ(0,j)

n , . . . , ϕ
(κj,n−1,j)
n : j = 1, . . . , Jn} (appearing in (5.3)) and {ψ(0,j)

n , . . . , ψ
(κj,n−1,j)
n : j = 1, . . . , Jn}

satisfy the conditions of biorthogonality and normalization analogous to (4.13).

4. In investigating asymptotics of solutions for nonlocal problems in bounded domains, we need a result on
the asymptotics of solutions for adjoint local problems in R2 \ {0} with a special right-hand side. We focus our
attention on the distinct from the model problem in the angle, where we needed a result on the asymptotics of
solutions for the original (but not adjoint) problem with a special right-hand side.

Let Λ be some complex number. If Λ̄ is an eigenvalue of the operator P̃∗(λ), then we denote by κ(Λ̄) the
greatest of partial multiplicities of this eigenvalue. Otherwise we put κ(Λ̄) = 0.

Lemma 5.2. For problem (5.9) with right-hand side Ψ = riΛ̄−2
M∑
q=0

1
q! (i ln r)qΨ(q), Ψ(q) ∈ W l+2m

2π (0, 2π)∗,
there exists a solution

v = riΛ̄+2m−2

M+κ(Λ̄)∑
q=0

1
q!

(i ln r)qv(q), (5.12)

where v(q) ∈W l
2π(0, 2π)∗. A solution of such a form is unique if κ(Λ̄) = 0 (that is, if Λ̄ is not an eigenvalue of P̃∗(λ)).

If κ(Λ̄) > 0, then solution (5.12) is defined accurate to an arbitrary linear combination of power solutions (5.4)
corresponding to the eigenvalue Λ̄.

Proof. The idea of the proof is analogous to that of the proof of Lemma 3.1 of [14, Chap. 3]. To complete
the picture we shall give a plan of the proof. One should substitute formula (5.12) of the solution into the equation

P∗v = riΛ̄−2
M∑
q=0

1
q!

(i ln r)qΨ(q),

reduce the factor riΛ̄−2, and gather the coefficients of the same powers of i ln r. As a result, one obtains a system
of M + κ(Λ̄) equations, from which one finds unknown v(q). The statement that a solution of the form (5.12) is
unique (for κ(Λ̄) = 0) or defined accurate to an arbitrary linear combination of power solutions (5.4) corresponding
to the eigenvalue Λ̄ (for κ(Λ̄) > 0) follows from the result analogous to Lemma 1.3 [14, Chap. 3], which restricts
the freedom in choosing power solutions for the equation P∗v = 0.
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A SMOOTHNESS OF SOLUTIONS TO NONLOCAL PROBLEMS
FOR ORDINARY DIFFERENTIAL EQUATIONS

In this Appendix, we establish two auxiliary lemmas concerning the smoothness of the above-mentioned
problems. These lemmas are necessary to prove the smoothness of eigenvectors and associated vectors of nonlocal
elliptic problems.

Let P̃(λ), B̃σµ(λ), B̃G
σµ(λ), and B̃σµ(λ) be the differential operators defined in Sect. 2.

Consider the operator

L̃(l)(λ) = {P̃(λ), B̃σµ(λ)} : W l+2m(b1, b2) →W l[b1, b2] = W l(b1, b2)× C
2m.

We study the smoothness of solutions for the nonlocal problem

L̃(l)(λ)u = {f, gσµ}. (A.1)

Lemma A.1. Let u ∈ W l+2m(b1, b2) be a solution for problem (A.1) with right-hand side {f, gσµ} ∈
W l+k(b1, b2). Then u ∈W l+2m+k(b1, b2).

Proof. The function u(ω) is a solution of the problem

P̃(λ)u(ω) = f(ω) (ω ∈ (b1, b2)),

B̃σµ(λ)u(ω)
∣∣
ω=bσ

= gσµ − β−mσµ+iλ
σ B̃G

σµ(λ)u(ω + ωσ, λ)
∣∣
ω=bσ

, σ = 1, 2; µ = 1, . . . ,m,

Therefore, applying Theorem 5.1 [16, Chap. 2], we obtain u ∈ W l+2m+k(b1, b2).
Consider the operator L̃∗

(l)(λ) : W l[b1, b2]∗ → W l+2m(b1, b2)∗, adjoint to the operator L̃(l)(λ̄) with regard to
extension of the inner product in L2(b1, b2)× C2m (see Sect. 3).

We shall investigate the smoothness of solutions for the adjoint nonlocal problem

L̃∗
(l)(λ){v, wσµ} = Ψ. (A.2)

Lemma A.2. Let {v, wσµ} ∈ W l[b1, b2]∗ be a solution of problem (A.2) with right-hand side

Ψ ∈
{
W 2m−k(b1, b2)∗, if 0 < k < 2m,
W−2m+k(b1, b)⊕W−2m+k(b, b2), if k � 2m.

Then v ∈W k(b1, b)⊕W k(b, b2).

Proof.
(1) First, let us have l = 0. Denote L̃(λ) = L̃(0)(λ) and L̃∗(λ) = L̃∗

(0)(λ).
Introduce the auxiliary operator L̃∗

G(λ) : L2(b1, b2) × C2m × C2m → W 2m(b1, b2)∗, taking {v, wσµ, w′
σµ} to

L̃∗
G(λ){v, wσµ, w′

σµ} by the rule

〈u, L̃∗
G(λ){v, wσµ, w′

σµ}〉 = (P̃(λ)u, v)L2(b1,b2) +
∑
σ=1,2

m∑
µ=1

B̃σµ(λ)u
∣∣
ω=bσ

· wσµ

+
∑
σ=1,2

m∑
µ=1

β−mσµ+iλ
σ B̃G

σµ(λ)u
∣∣
ω=b

· w′
σµ for all u ∈W 2m(b1, b2).

Clearly,
L̃∗
G(λ){v, wσµ, wσµ} = L̃∗(λ){v, wσµ}.

Introduce infinitely differentiable functions ζσ(ω) (σ = 1, 2), ζ(ω),

ζσ(ω) = 1 for |bσ − ω| < |bσ − b|
4

, ζσ(ω) = 0 for |bσ − ω| > |bσ − b|
2

; ζ(ω) = 1− ζ1(ω)− ζ2(ω).
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(2) Consider the expression L̃∗
G(λ)(ζ1{v, wσµ, wσµ}). Then we have

〈u, L̃∗
G(λ)(ζ1{v, wσµ, wσµ})〉 = (P̃(λ)u, ζ1v)L2(b1,b2) +

m∑
µ=1

B̃1µ(λ)u
∣∣
ω=b1

· w1µ for all u ∈ W 2m(b1, b2).

Moreover, from Leibniz’s formula, it follows that L̃∗
G(λ)(ζ1{v, wσµ, wσµ}) ∈ W 2m−1(b1, b2)∗, since

ζ1L̃∗
G(λ){v, wσµ, wσµ} = ζ1L̃∗(λ){v, wσµ} ∈W 2m−1(b1, b2)∗

and v ∈ L2(b1, b2). Therefore we can use Theorem 5.1 [16, Chap. 2], which yields ζ1v ∈W 1(b1, b2).
Similarly, we get ζ2v ∈ W 1(b1, b2).
(3) Consider the expression L̃∗

G(λ)(ζ{v, wσµ, wσµ}). Then we have

〈u, L̃∗
G(λ)(ζ{v, wσµ, wσµ})〉 = (P̃(λ)u, ζv)L2(−∞,b) for all u ∈ C∞

0 (−∞, b),

where v(ω) is extended by zero for ω � b1. Analogously to the above, we have L̃∗
G(λ)(ζ{v, wσµ, wσµ}) ∈

W−2m+1(−∞, b).(3) From this, the ellipticity of the operator P̃(λ), and the relation v ∈ L2(−∞, b), it follows that
the generalized derivative d2m(ζv)

dω2m belongs to the space W−2m+1(−∞, b). Therefore, by Lemma 12.3 [16, Chap. 1],
we have ζv ∈ W 1(−∞, b). Similarly, one can prove that ζv ∈ W 1(b,+∞). Combining this with item (2) of the
proof, we obtain v ∈ W 1(b1, b)⊕W 1(b, b2).

Repeating the described procedure, after a finite number of steps we shall get v ∈W k(b1, b)⊕W k(b, b2).
(4) Finally, consider the case of an arbitrary l � 0. From Lemma A.1, it follows that

R(L̃(l)(λ)) = R(L̃(0)(λ)) ∩W l[b1, b2]. (A.3)

Moreover, by Lemma 2.1 of [6], R(L̃(l)(λ)) is closed and codimR(L̃(l)(λ)) is finite. From this and from (A.3),
it follows that the embedding W l[b1, b2] into W 0[b1, b2] induces the isomorphism between the coset spaces
W l[b1, b2]/R(L̃(l)(λ)) and W 0[b1, b2]/R(L̃(0)(λ)).

Thus, we have codimR(L̃(l)(λ)) = codimR(L̃(0)(λ)), and hence dim ker(L̃∗
(l)(λ)) = dim ker(L̃∗

(0)(λ)). From
this and from the obvious embedding ker(L̃∗

(0)(λ)) ⊂ ker(L̃∗
(l)(λ)), we obtain ker(L̃∗

(l)(λ)) = ker(L̃∗
(0)(λ)).

Further, since Ψ ∈ R(L̃∗
(l)(λ)), we have

〈u,Ψ〉 = 0 for all u ∈ ker(L̃(l)(λ)).

But from Lemma A.1, it follows that ker(L̃(l)(λ)) = ker(L̃(0)(λ)). Therefore,

〈u,Ψ〉 = 0 for all u ∈ ker(L̃(0)(λ)).

Hence, we have Ψ ∈ R(L̃∗
(0)(λ)) since Ψ ∈ W 2m(b1, b2)∗ by assumption. Let {f, gσµ} ∈ W 0[b1, b2]∗ = W 0[b1, b2] be

some solution of the problem L̃∗
(0)(λ){f, gσµ} = Ψ. By what has been proved, we have f ∈W k(b1, b)⊕W k(b, b2).

Clearly, {f, gσµ} is also a solution of the problem L̃∗
(l)(λ){f, gσµ} = Ψ; therefore,

{v, wσµ} − {f, gσµ} ∈ ker(L̃∗
(l)(λ)) = ker(L̃∗

(0)(λ)).

Hence, v also belongs to W k(b1, b)⊕W k(b, b2).
The author is profoundly grateful to A. L. Skubachevskii for his attention to this work.
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(3)W−s(−∞, b), s > 0, is the space adjoint to W̊ s(−∞, b), where W̊ s(−∞, b) is a completion of the set C∞
0 (−∞, b) in the norm

‖u‖ =
� sP

j=0

bR
−∞

�� dju
dωj

��2 dω
�1/2

.
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