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Non-local elliptic problems with non-linear argument
transformations near the points of conjugation

P. L. Gurevich

Abstract. We consider elliptic equations of order 2m in a domain G C R" with
non-local conditions that connect the values of the unknown function and its deriva-
tives on (n — 1)-dimensional submanifolds Y; (where |J, T; = 0G) with the values
on wjg (Tz) C G. Non-local elliptic problems in dihedral angles arise as model prob-
lems near the conjugation points g € Y; N Tj # I, 1 # j. We study the case when
the transformations w;s correspond to non-linear transformations in the model prob-
lems. It is proved that the operator of the problem remains Fredholm and its index
does not change as we pass from linear argument transformations to non-linear ones.

Introduction

The first mathematicians who studied ordinary differential equations with non-
local conditions were Sommerfeld [1], Tamarkin [2], Picone [3]. In 1932, Carle-
man [4] considered the problem of finding a holomorphic function in a bounded
domain G satisfying the following condition: the value of the unknown function
at each point z of the boundary is connected with the value at w(z), where
w(w(z)) = z, w(0G) = 0G. Such a statement of the problem led to further
investigations of non-local elliptic problems with shifts that map the boundary of
the domain onto itself. In 1969 Bitsadze and Samarskii [5] considered an essen-
tially different type of non-local problems. They studied the Laplace equation
in a bounded domain G with a boundary condition connecting the values of the
unknown function on a manifold Y; C 0G with its values on some manifold lying
inside G, assuming that a Dirichlet condition is imposed on dG'\ T;. In the general
case, this problem was stated as an unsolved one.

The most difficult situation appears when the support of non-local terms inter-
sects the boundary of the domain. We consider the following example. Let G C R”
(n > 2) be a bounded domain with boundary G = Y1 U Y5 U Ky, where Y; are
connected open (in the topology of dG) (n — 1)-dimensional C°°-manifolds, and
Ky =7";NYyis an (n — 2)-dimensional connected C'* manifold without boundary.
(If n = 2, then X; = {g1,92}, where g;,g> are the ends of the curves T{, T5.)
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Suppose that, in a neighbourhood of each point g € K, the domain G is diffeo-
morphic to an n-dimensional dihedral angle (a planar angle if n = 2). Consider the
following non-local problem in G:

Au = fo(y), y € G, (0.1)
uly;, = biu(wi(y))|r, =0,  i=1,2. (0.2)
Here b1,b; € R, and w; is an infinitely differentiable non-degenerate transformation

that maps a neighbourhood O; of Y; onto the set w(O;) such that w;(Y;) C G
and w;(Y;) NOG # & (See Fig. 0.1,a, b).

TQ T2
w1(Y1y)
wa(T2)
g1 g 91 g2
Tl Tl
a b

FIGURE 0.1. The domain G with boundary 8G = Y; U Yy for n = 2. Here g;
and g9 are points of conjugation of non-local conditions.

Problems of type (0.1), (0.2) were considered by many mathematicians (see [6]—
[8] and others). The most complete theory of such problems is developed by
Skubachevskii and his pupils [9]-[14]. In particular, they proved Fredholm solubil-
ity of higher-order elliptic equations with general non-local conditions, determined
asymptotic behaviour of solutions near the points of conjugation of non-local con-
ditions, and studied the smoothness of generalized solutions. It is shown [15] that
the index of a non-local problem is equal to that of the corresponding local problem
if the support of non-local terms contains no points of conjugation (see Fig. 0.1, a).
This is not generally true in the opposite case (see Fig. 0.1,b).

Properties of non-local problems in bounded domains are essentially determined
by the properties of model non-local problems in dihedral (or planar if n = 2) angles
Q={z=(y,2) e R": ¥/ < p <" 2 € R*"2} (with (¢, r) being the polar coordi-
nates of y) corresponding to the points of conjugation of non-local conditions. The
previous works [9]-[11] considered only the case when the transformations w;s cor-
respond to linear transformations (that is, compositions of rotations and dilations)
in the y-plane. This restriction is quite unnatural in many applications. Let us
explain this on examples. Problems of type (0.1), (0.2) arise as mathematical mod-
els of some plasma processes in a bounded domain [16]. The non-local conditions
connect the plasma temperature on the boundary with the temperature inside the
domain and at other points of the boundary.

Another important application arises in the theory of diffusion processes. Such
processes describe, for example, the Brownian motion of a particle in a membrane
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G C R*. It is known [17]-[19] that every diffusion process generates some Feller
semigroup. By the Hille-Tosida theorem, investigation of this semigroup is reduced
to the study of an elliptic operator with boundary conditions that contain an inte-
gral over G with respect to a non-negative Borel measure [20]. In the most difficult
case when the measure is atomic, the non-local conditions take the form (0.2).
Their probabilistic meaning is as follows: once the particle gets to a point y € 15,
it either jumps to the point w;(y) with probability b;, 0 < b; < 1, or “dies” with
probability 1 — b; (and then the process terminates). Thus the argument trans-
formations are generally non-linear in both the plasma theory and the theory of
diffusion processes.

Let us mention one more application of non-local problems. As shown in [21], one
can reduce some boundary-value problems for elliptic differential-difference equa-
tions (in particular, those arising in the modern aircraft technology as models of
sandwich shells and plates [22], [21]) to elliptic equations with non-local conditions
on some shifts of the boundary. Thus we again obtain non-linear argument trans-
formations in the non-local terms. (These transformations happen to be linear only
when the boundary of the domain coincides with (n — 1)-dimensional hyperplanes
on certain sets.) One can consult [21] for other applications and references to papers
devoted to non-local problems.

In this paper we consider an elliptic equation of order 2m in a domain G C R”
with non-local conditions that connect the values of the unknown function and its
derivatives on (n — 1)-dimensional submanifolds T; (where |J, T; = 0G) with the
vales on w;s(Y;) C G. As mentioned before, essential difficulties arise when the
the support |J is Wis (Y;) of non-local terms intersects the boundary of the domain.
Then generalized solutions may have power singularities near some set [9]. (For
example, in the case of the problem (0.1), (0.2), such singularities may appear near
the points g1, g2.) Therefore it is natural to consider such problems in weighted
spaces. This enables us to investigate higher-order elliptic equations with general
non-local conditions. We study the case when the transformations w;s correspond
to non-linear transformations in the model problems. The problem with non-linear
transformations turns out to be neither small nor compact perturbation of the
corresponding local problem. Nevertheless, we shall show that the operator of the
problem remains Fredholm and its index does not change as we pass from linear
transformations to non-linear ones.

We note that a more general structure of the conjugation point set and non-local
terms was considered in [8] in the case of second-order elliptic equations with non-
local perturbations of the Dirichlet conditions. This also justifies the importance of
studying non-linear transformations w;;. From our viewpoint, the advantage of our
approach is that it enables us to study equations of order 2m with general boundary
conditions, whose non-local perturbations may be arbitrarily large. On the other
hand, this approach also enables us to investigate the asymptotic behaviour of
solutions near the conjugation points [9], [14].

The paper is organized as follows. In §1 we consider the statement of the prob-
lem and discuss conditions that are imposed on the argument transformations in the
non-local terms. We also introduce the main functional spaces (weighted Sobolev
spaces) and obtain the model problems in dihedral and planar angles. In §2 we give
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an example of a non-local problem with a non-linear argument transformation and
show that the operator corresponding to this problem is neither small nor compact
perturbation of the operator corresponding to the problem with linearized transfor-
mations. In § 3 we study properties of non-linear transformations near the points of
conjugation of non-linear conditions and prove several lemmas, which are used in § 4
to get a priori estimates of solutions. In § 5 we construct a right regularizer which,
along with a priori estimates, guarantees the Fredholm solubility of the non-local
problem. Finally, in § 6 we show that the index of the problem with non-linear argu-
ment transformation is equal to that of the problem with transformations linearized
near the points of conjugation of non-local conditions.

§ 1. Statement of the problem in a bounded domain

1. Let G C R* (n > 2) be a bounded domain with boundary 0G = Uf\i’l T;,
where Y, are connected open (in the topology of dG) (n — 1)-dimensional C°°-
manifolds. We assume that, in a neighbourhood of each point g € 9G \ Ui\i)l T,
the domain G is diffeomorphic to some n-dimensional dihedral (or planar if n = 2)
angle Q = {z = (y,2) ER*: 0 < b < p < b" < 2m, 2 € R" 2}, where (p,r) are the
polar coordinates of y.

We denote by P(z,D) and B;,s(z, D) differential operators of order 2m and
mi,, respectively with complex-valued C*-coefficients (i = 1,..., Ny, p=1,...,m,
s=0,...,5;). Suppose that P(z, D) and B;,o(z, D) satisfy the following conditions
(see, for example, [23], Ch. 2, §1).

Condition 1.1. The operator P(x, D) is properly elliptic for all z € G.

Condition 1.2. The system {B;,o(z, D)} covers the operator P(z, D) for all
i=1,...,Ny and z € T;.

Let wis (1 =1,...,Ng, s =1,...,5;) be an infinitely differentiable transfor-
mation that maps some neighbourhood O; of the manifold Y'; onto the set w;s(0;)
such that w;s(T;) C G. We assume that the set

K = {U(Ti\n)} U {pswis(i.\r,-)} u{Uijp(wis(Ti\Ti) ﬂTj)}

i 5P 1,8
can be represented as K = U?’:1 X;, where
N1 NO Nz NO N3
Ki=JKp=0G\|JTi, Ko=|JKpc|JTi, Ks=[]XsCG.
p=1 =1 p=1 =1 p=1

(1.1)

Here X, are disjoint (n—2)-dimensional connected C'*°-manifold without boundary
(points if n = 2).
We consider the non-local boundary-value problem

P(z,D)u = fo(z), z€Qq, (1.2)
S;
B (7, D)u = Y (Bius (D)) s (0)) 1, = (o), w

xeY;, 1=1,..., N, w=1,...,m,
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where (B (z, D)u)(wis(z)) = Biys(2', Do )u(2')| g/ —w;. (), wiolz) = .

Example 1.1. Let us consider problem (0.1), (0.2) in the two-dimensional case
with the transformations w; corresponding to Fig. 1.1. Then we have X; = {g1, g2},

Ko = {wi(g2)}, Kz = {wa(g2),w1(wi(g2))}.

FIGURE 1.1. The domain G with boundary G = Y1 U Yy for n = 2

It is shown in [9] that solutions of the problem (1.2), (1.3) may have power
singularities near the points of K. Therefore it is natural to consider (1.2), (1.3) in
weighted spaces. We introduce the space H}(Q) as the completion of C§°(Q \ M)

with respect to the norm
1/2
/ pAb=I+laD) | pay |2 da:) .
Q

lullye = (2
1N

Here @ is either the domain G, the angle Q, or R*; M = X, if Q = G, and
M={z=(y,2) ER*:y=0,2 € RR2}ifQ = Qor Q =R*; C(Q\ M)
is the set of infinitely differentiable functions with compact supports contained in
Q\ M;1>0is an integer; b € R; p = p(z) € C®°(R"™ \ K;) is a function! satisfying
cpdist(z, K1) < p(z) < codist(z, K1) (x € G, e¢1,c2 > 0, and dist(z, K;) is the
distance from z to K1) if @ = G, and p(z) = |y| if Q = Q or @ =R™. Forl > 1, we
denote by H, ,i_l/ ?(T) the space of traces on a smooth (n — 1)-dimensional manifold
YT C @ with the norm

1l g2y = i [l gy € HYQ): ulr = v,

We assume that [ + 2m — m;, — 1 > 0 for all ¢, 4 and introduce the following
bounded operator corresponding to the non-local problem (1.2), (1.3):

L ={P(z, D), B;,(z,D)}:
NO m
HIP™(G) - 374G, 1) = HY(G) = [] [T B, 2(10).

i=1p=1

! The existence of p(z) follows from Theorem 2 in [24], Ch. 6, §2.
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From now on we suppose that b > [ 4+ 2m — 1 unless otherwise specified.

Let us explain the restriction on the exponent b. Suppose that the transforma-
tion w;, takes a point g € T; N K, to the point w;s(g) such that w;s(g) € Ky
or w;s(g) € XKs. Since the function u belongs to the Sobolev space W2l+2m
near wis(g), we see that the function u(w;,(x)) belongs to W.T>™ near g. How-
ever, if b < [+ 2m — 1, then u(w;s(x)) does not generally belong to the weighted
space H.T?™. Therefore the trace (B;.s(z, D)u)(wis(z))|y, may not belong to
Hé“m_mi“_lﬂ(’ri), so the operator L is not well defined. But if b > [+ 2m — 1,
then we have WiT>™(G) C HT*™(G) by Lemma 5.2 of [12], and thus L is well
defined.

We note that in the two-dimensional case one can consider (1.2), (1.3) in weighted
spaces with arbitrary exponent b (see [9]). To do this, one should impose some con-
sistency conditions generated by the transformations w;s. Namely, one must assume
that the solution v and the right-hand side {fo, gi,} belong to the corresponding
weighted spaces not only near X; but also near X5 and X3. On the one hand, this
situation is thoroughly studied in [9] for transformations that are linear near X;.
On the other hand, the changes described have nothing to do with the transforma-
tions w;s near X;. Therefore we omit the proofs of the results for arbitrary b in the
two-dimensional case (see the end of §5).

2. We now consider the structure of wls near Xy in more detail. We denote the
transformation w;s: O; — w;s(0;) by wzs , and let w;, L:wis(05) — O; be the inverse
transformation. Consider a point g € K. The set of all points wiipip(. : .wiilil (9)) €
K1 with 1 < s; < Sy, j=1,...,p (that is, all points which are obtained from g
by successive transformatlons w“J or w;. : taking points of K; to Xy) is called the
orbit of g and is denoted by Orb(g).

We introduce the set 8;; = {0 < s < S;: wis(T;) N Ky # ). Clearly, 0 € 8;;.
Suppose that the following conditions hold.

Condition 1.3. For each g € X1,
a) the set Orb(g) consists of finitely many points g7, j =1,...,N = N(g);
b) the points g’ have neighbourhoods

\/7\( )CV ) CR™\ {Uw,s UngLJng} s ¢ 8in

such that V(g?) N V(g*) = @ for j # k, and if g7 € T; and w;s(g?) = g*, then
V(g?) C O; and w;s(V(g7)) C V(g*).

Condition 1.4. For each g € X; and each j = 1,...,N(g) there is a non-
degenerate smooth transformation x — z'(g, j) mapping V(g?) (\7(93)) onto a neigh-
bourhood V;(0) (\/7\] (0)) of the origin such that the following properties hold.

a) The images of GNV(g?) (GN \7(97)) and T; NV(g?) (T; N \7(97)) are given
respectively by the intersection of the dihedral angle Q; = {z = (y,2) € R*:0 < b <
p < b <2m, z € R} with V;(0) (\7](0)) and the intersection of the side of €1,
with V;(0) (V,(0)).
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b) For z € \/7\(gj) the transformation w;s(x) with s € 8;1 \ {0} is given in the
new coordinates by (y',2') — (wi,(v',2'),2"), where wl (y',2") = G..y" + o(|z'|)
with G., being the operator of rotation by an angle ¢}, followed by a dilation with
coefficient xi, > 0 in the y'-plane. We also assume that w} (0,z) = 0.

c) In the new coordinate system, the operator G.. maps the side of the corre-
sponding angle Q; (j = j(i)) onto an (n — 1)-dimensional half-plane lying strictly
inside an angle Qi (where k = k(i,s) may be different from j).

Conditions 1.3 and 1.4 are analogous to those in [9], [11], where one studied
transformations that are linear near X; (and arbitrary outside a neighbourhood
of K 1) .

Condition 1.3,a) is in a sense equivalent to Carleman’s condition [4], which is
used in the theory of non-local problems with transformations mapping the bound-
ary of the domain onto itself.

Condition 1.4 means in particular that if g € w;s(T; \ T;) N T; N Ky # &, then

the surfaces w;,(Y;) and Tj have different tangent planes at g. The requirement
w!,(0,2) = 0 is necessary for (1.1) to be possible. If w;s(T; \ ¥;) C G\ Xy,
then (similarly to [9], [11]) there are no restrictions on the geometrical structure of
w;s(YT;) near 0G.
Remark 1.1. One can consider the more general case when, for z € v(gj ), the
transformation w;s(z) with s € 8;1 \ {0} is given in the new coordinates by
(v, 2") = (wi,(y,2"),wl(y’,2")), where wi,(y',2") is the same as before while
wit(y', 2") = 2'+o(]2'|) and w}. (0, 2") = 2’ (the latter condition guarantees that Con-
dition 1.3 a) holds). However, for simplicity we study the transformations described
by Condition 1.4.

3. Let us write model problems corresponding to the points of K.
We fix a point g € X;. Suppose that supp u C (U;V:(f) V(gj)) NG. We denote the

function u(z) for x € V(¢?)NG by u;j(z). If g € T, z € V(g7), and wy, (z) € V(gF),
then we denote u(w;s(z)) by ug(wis(z)). Clearly, u(wio(x)) = u(z) = u;(z). The
non-local problem (1.2), (1.3) takes the form

A~ .

P(z, D)u; = fo(x), zeV(g’)NG,
Y (Bius(z, D)ug)(wis(2))

SE8;1

1, = gin(T),
zeV(g)NY;, ie{l<i<Ny: V(¢)NT; # o),
j:l,,N:N(g), /‘l’:]-;---,m-

By Condition 1.4, in the new coordinates, the linear part G, of the transforma-
tion w], maps one of the sides of Q; (where j = j(i)) onto an (n — 1)-dimensional
half-plane that lies strictly inside Q, where k = k(i, s) may be different from j. We
denote all these (n — 1)-dimensional half-planes by T'xo,...,T'x r, C Q. (If none
of the sides of the angles 4,...,Qy is mapped inside Q, then we put Ry = 1.)
We also put bg1 = b}, bg r,+1 = bj. Then the sets

Tio = {z = (y,2) € R*: @zbka,zeR"_Q}, c=1,R; +1,
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are the sides of €2 while the half-planes I'y, are given by
Trg = {z=(y,2) ER": ¢ =by,, 2 € R*?}, q=2,..., Ry,

where 0 < b1 < -+ < bk7Rk+1 < 2m.
Let us introduce the function Uj(z') = u;(z(z')) and denote =’ again by z. By
Conditions 1.3 and 1.4, the problem (1.2), (1.3) takes the following final form:

ﬂ)j(fE,Dy,Dz)Uj = fj(."l?), xr € Qj, (1.4)
Bjou(r, Dy, D,)U = Bjgu(x, Dy, D,)Ujr,,

+ Z jaukqs x DyaDZ)Uk)(w;'a'kqs(yaZ)az)|Fja

)q)
= gjau( )a ZAS Fja- (15)
Here and in what follows (unless otherwise stated) we have j,k = 1,..., N,

o —= I,Rj + 1, qQ = 2,...,Rk, o = 1,...,m, s = 1,---7Sjokq, ij(x,Dy,Dz),
Bjou(z,Dy,D,), and Bjsukqs(z, Dy, D,) are operators of orders 2m, mjq,, and
Moy Tespectively with variable C*-coefficients, wj,4.¢(Y,2) = Gjoresy + o(|z])
with G ,rqs being the operator of rotation by an angle ¢Yjokq and dilation by a
number Xjokgs > 0 in the y-plane. Furthermore, W’ (0,2) = 0 and by <
bjo + Qjokq = bkqg < br,R,+1-

We define the following spaces of vector-valued functions:

jokgs

l+2m N H Hl+2m ’ g_(:l N Q F H J‘Cl

I+2m—ms,—1/2
be(QﬁI‘J) () x [ [ H, on / (Tjo)-

oK
We introduce bounded operators
= {P;(Dy, D), B%,,(Dy, D)} : HPP™N(Q) — 3,V (Q,T),
+2m,N LN
= {?;(D,,D BfaN(Dy D,)}: HPPN(Q) — 1N (Q,T).

Here?
‘B‘J"a“(Dy, D.)U = Bjou(Dy, D )U'|F~
+ Z joukqs Dya DZ)Uk)(w;'okqs(y’ Z)’ Z)|Fjo"

7q7

BI_(Dy,D,)U = Bjou(Dy, D) Ujlr,,

jou
+ Z joukas(Dys D2)Uk)(Sjokgsy, 2) |1,
,q,

2In what follows we consider functions Uy that are compactly supported in a neighbourhood
of the origin and we assume that (w;gkqs(y, z),z) € Qi for x € supp Ug. This guarantees that the

operators BY  (Dy, D) are well defined.

jou
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with P;(Dy, D;), Bjou(Dy, D), and Bjsukqes(Dy, D) being the principal homoge-
neous parts of the operators P;(0, Dy, D), Bjs.(0,Dy, D), and Bjs,kqs(0, Dy, D)
respectively.

In what follows we use Pj, Bjou, Bjoukgs: By, and ngou as a short notation
for P;(Dy, D), Bjou(Dy, D), Bjoukqs(Dy, D), ijaﬂ(Dy,D ), and B D,,D,)
respectively.

We note that the non-local terms of the operator Bjau contain the non-linear

Jou(

iokqs While the non-local terms of BJSU ,, contain the linear trans-
formations G;sxqs. Thus L and LS5 correspond to model problems with non-linear
and linearized transformations respectively.

As mentioned above, the problem with transformations linear near X; was stud-
ied in [9]-[11]. In particular, its Fredholm solubility was proved. In §2 of the
present paper we shall show that the operator L is neither small nor compact
perturbation of L9 even if we consider functions U with arbitrarily small supports.
Therefore, to prove the Fredholm solubility of the problem (1.2), (1.3) with non-
linear transformations, we shall obtain new a priori estimates and construct a right

regularizer. This will be done in §4, 5.

transformations w’

4. The proof of a priori estimates and the construction of the right regularizer is
based on invertibility of the model operator £9. Let us formulate the conditions
under which £9 is an isomorphism. Along with the model operator in dihedral
angles for n > 3, we also consider a model operator with a parameter 6 in planar
angles. For any angle K = {y € R?: 0 < b’ < ¢ < b’ < 27} we define a space
E!(K) as the completion of C§°(K \ {0}) with respect to the norm

1/2
[l g (re) = < Z/ yI?*(Jy 1D + 1) Dou(y )|2dy> :

|| <1
For [ > 1 we denote by El 1/2( ) the space of traces on a ray v C K with the norm
Wil 12y = 0 lull gy € BY(K): uly = .

(Equivalent constructive definitions of the trace spaces Hll,_l/ ?(T) and Ell,_l/ ’(v)
are given in [25], §1.)
We introduce the following spaces of vector-valued functions:

+2m,N . m hN
12A+2 (l()'_:I];E%+2 (1{5), 8b I]:E JaWﬁ
J
I+2m—-—m;s,—1/2
E4(Kj,75) = By(K;) < [[ B, /wja),

oy
where K; = {y € R?: bj1 < ¢ <bjr,41} and vjo = {y € R*: p = bj,}.

We consider the bounded operator

= {P;(Dy,0), B, (Dy,0)}: B;FP™N(K) — YN (K, ),

jou

where @ is an arbitrary point of the unit sphere S"73 = {# ¢ R*~2: || = 1}.
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5. Let us write the operators P;(D,,0), Bjs.(Dy,0), and Bjsukqes(Dy,0) in the
polar coordinates:

:Pj (Dy7 0) = T_2m§j(907 an, T‘Dr),
Bjap(Dya 0) = r_ij“Bja'p,(QOa Dcpa TDT),
Bjaukqs (Dya 0)

where D, = —i%, D, = —iz.. We consider an operator-valued function

L(A): Wt by, by) — W5N[by, by] given by

r_mjauéjcrukqs(@a Dcpa TDT),

Q@

LS()‘)@: = {g)j(QOaDcpa )‘)UJ Bjau(goaDcpa )‘)Uj(@)hp:bja

+ Z e(i)\—mjau) InXjokqs Ejgukqs(go, an; )\)ﬁk(go + @jgkqs)|¢:bja },
k.,q,s

where

Wy 2N (b, by) = [ Wat>™ (b1, bj,41)s
i
W™ [b1,bs] = [ [ Whlbjn, bj,, 41,
i
Whlbji, bj,r,+1] = Wi (bji, bj r41) X C™.

By Lemmas 2.1, 2.2 of [10], there is a finite-meromorphic operator-valued
function (£5)~1(\) such that (£5)~1()) is inverse to L9()\) if A is not a pole
of (L9)~1(\) and, furthermore, for every pole Ao there is § > 0 such that the set
{A€C: 0< |ImA—ImAo| < 8} contains no poles of (L9)~1(}).

If n = 2, then Theorem 2.1 of [10] shows that £ is an isomorphism if and only
if the line ImA = b+ 1 — [ — 2m contains no poles of (L9)~().

Suppose that n > 3 and assume that the system { Bj,,(Dy, D;)}}/~; is normal on
I'jo and the orders mj,, of the operators Bjy,(Dy,D.), Bjsukqes(Dy, D,) are less
than or equal to 2m — 1. Then Theorem 9.1 of [13] shows that the operator £ (6) is
Fredholm if and only if the line Im A = b+1— —2m contains no poles of (£5)~1(}).
By Theorem 3.3 of [10], if we also have dim ker(£9(8)) = codim R(£7 ()) = 0 for b
replaced by b —1[, [ replaced by 0, and for all # € S”~3, then the operator LY is an
isomorphism for any [ (see the corresponding example in [13], § 10). We notice that
if L9 is not an isomorphism, then £9(f) is not Fredholm (see [13], Theorem 9.3).

Since the operators L, L9, £9(f), and L9 (M) corresponding to the prob-
lem (1.4), (1.5) depend on the choice of g € X, we denote them by L¢, Lg,

S S :
L7 (8), and L7 (X) respectively.

§ 2. An example of non-local problem
with non-linear argument transformation

In this section we show on a simple example that a problem having a transfor-
mation which is non-linear in a neighbourhood of X is neither small nor compact
perturbation of the problem with the linearized transformation.
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1. For simplicity we consider the problem (1.2), (1.3) in a planar domain. Let the
model problem (1.4), (1.5) corresponding to some point of X; have the form

Au = f(y), yeK,
u|’71 + u(wl(y))|’71 = gl(y)7 Yy €,
uly, = 92(y), Y€ 7.

Here K = {y € R2: r > 0, |p| < 7/2} is a planar angle (of opening 7) with the sides
vi={y € R?:r > 0,9 = (—1)'n/2}, i = 1,2. We suppose that w'(y) = u(Gy),
where G is the operator of rotation by 7/2 mapping v, onto aray v = {y € R?: r >
0, ¢ =0}, and

2
Y1 Y1
p (Y1, y2) — (7,y2+ >
V1+yl V1t
is an infinitely differentiable transformation mapping v onto the curve (), which
is tangent to y at the origin (see Fig. 2.1).

Yo
Y2 K
L0 W) = p()
----------- g
0 ==
Y1
4!

FIGURE 2.1. The angle K of opening =«

The operators L%, L5 : HV2(K) — HL(K) x [[2_, H'T®?(v;) corresponding to
the model problems with non-linear and linearized transformations have the form

L = {Au, uly, +u(w'(¥)) |y, uly )
qu = {Au’ u|’71 + u(9y)|71, u|’72}'

Clearly, the non-zero component of the difference L5u — L¥u is
u(Y) by — uw(@' (W) = u(y)ly — wlwy))ly.

We introduce the operator A.: HT?(K) — H£+3/2 (v) with domain D(A.) =
{ue H(K): suppu C {r <e}NK} by the formula

Acu(y) = u(y)|y — w(p(y))ly-
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Let us prove that one cannot make the operator A. small or compact by choosing
¢ sufficiently small. We shall do this in the case when A. acts from H}(K) to

Hb1 / 2(’y). The general case can be considered in the same way. We shall construct
a sequence u. € D(A.), € — 0 such that

Hu5|7—u5( (+) |'YHH1/2( ) 7 CHUSHHl(K)a

where ¢ > 0 is independent of €.
We write the restriction of y onto 7 in the polar coordinates (¢, ) as

ply: (0,7) = (@(r),7),

where ®(r) = arctgr. Clearly, ®(0) =0, ®(1) =
Let us consider the transformation

p: (o,r) = (o + @(r),r).

We see that u(u(y))|, = u((y))|y since ply = f|,. Therefore we may assume
without loss of generality that u is given by

p: (o,r) = (o + @(r),7).

Notice that the the norm of any function u € H}(K) written in the polar coor-
dinates is equivalent to

1/2
(Z/ / 2b_l‘(rDr)"‘lfo,‘zu(c,o,7‘)‘2dc,odr) .
—7/2

|| <1

Set 7 = e~*. Then p is given in the new coordinates (¢, t) by

p: (p,t) = (@ +®(e™),1).

Putting v(p,t) = u(p,et), we see that the norm |ull 2 (k) is equivalent to the
norm

1/2
lvllwg, @) = <Z/ //2 _2bt|D?1Dgzv(<p,t)|2dgodt> : (2.1)

|| <1

where Q = {t € R, |¢| < m/2} and W3 ,(Q) is the space with norm (2.1). Clearly,
W3 (Q) coincides with the Sobolev space W3 (Q).
Since the norms ||v||W21,b(Q) and ||e_btv||W21(Q) are equivalent, it suffices to study

the case when b = 0. In what follows we consider functions v(p,t) whose support
is contained in the strip {|¢| < 7/2}. Putting v = 0 for |p| > 7/2, we obtain

1ollwz @) = lollwg m2)-
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Our task is thus reduced to constructing a sequence vy € W3 (R?) such that
supp vs C {t > 2s,|¢| < 7/2} and
1vs(0,8) = va(@(e™), D)llyy /2y > cllvslling ),

where ¢ > 0 is independent of s.
To this end, we pass from the variables (¢, t) to (¢, 7): we introduce the sets

Qs:{|9|<%,28<7’<28+1}, s=0,1,2,...,

and put
p=F(,1), t=r. (2.2)
Here F(0,7) = 0e?®(e™ ") for (0,7) € Qs, s =10,1,2,..., and F(,7) is extended
onto R?\ |2, @5 in such a way that the transformation (2.2) remains continuously
oF

differentiable and the Jacobian 56 satisfies

0<er <

oF
— 1< 2 .
89‘\02 on R (2.3)

Such an extension does exist. Indeed,
8_F a_F — _96—T+2Sd_¢
00 or dr
Therefore the properties of ® above show that the function F(6, 7) is continuously
differentiable on (J5 , @s with respect to § and 7 and inequalities (2.3) hold.
One easily sees that the change of variables (2.2) represents the interval QsN{f =
0} by an interval of the line {¢ = 0}. Furthermore, the transformation p has the
following form on @),:
w: (0,7)— (0 +e2,7), 0,7) € Qs. (2.4)

We consider functions f,g € C*°(R) such that supp f C {|0| < 5}, f(0) # f(1),
suppg C {0 < 7 < 1}, g(7) #Z 0 and define a sequence w, (6, 7) = fs(0)gs(7), where

fs(0) = f(6€*°), gs(7) = g((7 — 25)e?), s=0,1,2,....
Clearly, supp ws C Q5 (see Fig. 2.2).

= eXP(eT), , 0,7) € Qs.

r=e- T

0

/2 Qo Q1 Qs
. 1 2 @ 3 4lN 5
.
L % i
W \ \
supp w supp wq supp wy

FIGURE 2.2. The supports of ws are contained in the hatched domains
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We have
df, ||” dg. ||”
il sy = 1ol ol oy + H ol ey 1l | 22
L2 (R) L2 (R)
_4s dg
Ul + | S ol 11| 2 (25)
L2 (R) L2 (R)
Since the norm is W, / *(R) is given by
* Jg(r) — g(r)? v
||9||W21/2(R) = <||g||L2(R) +/ / i — 7_2|2 dry dry
(see [26]) and p takes the form (2.4) in the coordinates (6, 7), we get
—23 2
H’U]s|0=0_ws( ( ) |0 0HW1/2(R) ‘fs ‘ ||gs|| 21/2(]1%)
2 Oo |g 1) — g( 7'2)|2
dri dTs. 2.6
> I Dl / / |71 — 2|2 e (2:6)

It follows from (2.5) and (2.6) that

st|9:0—ws( (-))le= OHWI/Z(R) C||ws||W1(R2)

2. Using the sequence wg, one can easily show that, for any e, the operator A,
is not compact. Indeed, the sequence ws is bounded in W (R?). However the
sequence ws|g=op — Ws(1(-))|p=0 contains no subsequences convergent in W, 1/ ’(R)
because (2.6) shows that the expression

[ [wslo=0 = ws(p(-))lo=0] — [wnlo=o — wn (- ))lo=o] [l 172z,

= st|0=0 — ws(p(- ))|0:0HW21/2(R) + Hwh|9=0 — wp(p( ))|0:0HW21/2(R)
is bounded from below by a positive constant for all positive integers s # h.

§3. Argument transformations near the set K,

The results of §2 show that proving the Fredholm solubility of problems with
transformations non-linear near X; requires obtaining new a priori estimates and
constructing the right regularizer. To do this, we start by studying some properties
of the transformations w;s near the set X;.

We fix a point g € K;, make the changes of variables =z — z'(g,j) for each
j=1,...,N, N = N(g), and consider the transformations w;_, . (v, 2) for (y,2) €
Ve, (0) = {z € R": |z| < €9}. The number ¢y is supposed to be small so that
Ve, (0) C \7j(0), j=1,...,N. Some additional conditions on &y will be imposed
below.
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1. Before we proceed to study the transformations w;s, let us establish an auxiliary
result which will be used to prove the lemma on representation of w;s in the polar
coordinates (see Lemma 3.2).

Lemma 3.1. Let h = h(r,2) be a function such that |DED%h| < cpo forr > 0,
z € R2 (r2 4 [2|?)Y/2 < eg. Set f(r,2) = r~'h(r,2) for somel € N and assume
that |f| < c. Then |DFf| < cp forr >0, 2 € R*2, (r2 4+ |2]2)Y/2 < g¢ and for
alk=1,2,....

Proof. 1) Consider the case when [ = 1, that is, f(r,2) = r='h(r, 2). By Leibnitz’
formula,

Expanding 22 by the Taylor formula near r = 0 and using the boundedness of

Ork—s
the derivatives of h, we obtain
OF f(r, z) k (—1)°k! _._, 5.1 gk—s+pp, ) ok+1p, "
—5h = ; (i s r Z:;) o BrRetr (0, 2)r? + W(Kmr, 2)r
k
)5kl gk—stpp 14
B Z—:0 Z_: — s)lp! Ork—s+p (0, 2)r P+ 0(1),

where s, € (0,1).
Putting p’ = s — p in the last sum and denoting p’ again by p, we get

ok f(r, 2) sk! ok—Ph o
o ZZ 7l 9 (0, 2)r "1 + 0(1).

sOpO

Consider the coefficient a,(z) at r~?~! on the right-hand side of the last identity:

ap(z) = %(o,z) Z C (—1')sk!

— %(O’Z)(_l)pz_:ok(k —1)---(k—(s+p) + 1)5(_1)3,
p=0,...,k.

Since |r~!h(r, z)| < c by assumption, we have h(0,2) = 0, whence ax(z) = 0. On
the other hand, notice that, for 0 < p < k, we have

k

( k(k k—(s—i—p)-}-l)l. >

k—p

|
=

dP

1
0= dtp(+)

t=—1 t=—1

Bk — 1) (k— (s+p) + 1)%(—1)8.

s=0
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Thus ap(z) =0 for all p=0,...,k, and the lemma is proved for [ = 1.

2) If | > 2, we use the induction. Let the lemma be true for/ =1,...,l; —1. We
claim that it is true for [ = I1. Indeed, we have f = r—'f;, where f; = r—(1=Dp,
Since |f| < ¢, it follows that |fi| < ¢ and, therefore, the estimate |D¥D2 f;| <
Cko holds by the inductive assumption (for [ = I3 — 1). Applying the inductive
assumption once more (now with [ = 1), we get the conclusion of the lemma for
r~1f1, that is, for f = r~'*h. The lemma is proved.

We now proceed to study the transformations w. The following lemma describes
the structure of W'’ okqs in the cylindrical coordinates. This representation turns out
to be convenient when we study non-local problems in weighted spaces.

Lemma 3.2. For sufficiently small ¢y, the transformation
w;'akqs(y, z) |1“jgm7s0 (0)
can be represented in the polar coordinates as
(bjos ) > (brg + Rjokgs(Ts 2), XjokgsT + Rjokes(r,2)),  (r* + 2] )12 <L eo, (3.1)
where ®jokqs(7, 2) and Ry kqs(r, 2) are infinitely differentiable functions such that
®jokgs| < cco,  |Rjongs| < ceor, (3.2)
|D7’fD?cI)jcrk:qS| < Ckas |D7,~CD?(RJquS/7")| Ckor- (3.3)

Here k + |a| > 1, and ¢, ckxo > 0 are independent of €.

Proof Write wjakqs(y, z) = ( Jl-gkqs(y, z),wfakqs(y, z)) By Condition 1.4, we have
(0,2) =0, i =1,2. Therefore the Taylor formula near » = 0 implies that

jakqs
w;akqs(r cosbjq, rsinbjq, 2)
ow ow
jokgs jokgs
= 7Ozcosb~g+70zsmbg>r+0 3.4
<3y1()3 3y2() (r%). (3.4)

Here O(r?) is a function whose absolute value is majorized by cr?, where c is
independent of r and 2. (To verify this, one should write the remamder of the
Taylor formula in Lagrange s form and use the smoothness of w? .) Expanding

Bw?

—35:(0,z) and J#’“‘S(O z) by the Taylor formula near z = 0, we see from (3.4)

jokgs*

that
i Ow okqs ow zok s .
Wkgs = (#(m cosbyo + a2 0 smbja)r+0(|z|>r+0(r2>. (3.5)
Notice that
Ow! Ow! Ow? Ow?
jokgs Jokqs . jokgs JO’qu .
——=—(0)cosb;j+———(0)sinb;, and ———(0)cosb;,+——"—(0)sinb;,
528 (0)cosbjo-+ 2o (0)sinb, 528 (0)cosbjg-+ 5o (0)sinb,
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are not simultaneously equal to zero. (This follows from the non-degeneracy of
the Jacobian of the transformation (y, z) — (W, .y, 2), 2) at the origin.) To be
definite, we assume that

Ow? ow
jokgs Jokqs .
——(0) cosbj, + ———(0) sinb,, # 0. 3.6
2298 (0) costyy + 370 (0)sinby 3:5)
Hence, by (3.5), we have
Shopgs £0 for (124 [2)1V2 < <6 (57)

with €9 small enough, and the transformation w
coordinates by

Ja_kqs|r‘jgmv£0(0) is given in the polar

2 2
(bjo,T) — (arctg e LLLIIY Z(w;-a_kqs)2 ), (3.8)

w]a’kqs i=1
where [ = 0 if wjgkqs > 0 and wjakqs >0, I=1if wjakqs <0, I=2if wjakqs >0
and wjakqs < 0.
It follows from (3.5) and the Taylor formula that
2 8ch'kqs 8w‘12'akqs :
w3 —2242(0) cos bj, + —5=2=(0) sin b,
arctg —27%9% — arctg awalyl © d Oy2 © d O(|z]) + O(r),
Wiokas —55:(0) cos bjo + J7?‘;2’“”(0) sinbj,

Ow' ow' 2
jokgs jokgs .
———(0)cosb;; + ———(0 smb-g>
S22 (0) cos by + 3722 (0)sinb,
)r 4+ O(r?).
Setting
2
b arctg awéqus (0) cosbjo + J;;qs (0) sinbjo + ml
kq — » 1 )
8(;7;’“”(0) cosbj, + 57;:”(0) sinbj,

8wjakqs Ow ;okqs . 2
Xjokgs = E <7B (0) cos b, + T (0)sinbj, | ,
i=1 Y1 Y2

we get formula (3.1) and inequalities (3.2).
Let us prove the first inequality in (3.3). Using (3.7), we have

2

Yjokas
1

wjakqs

<ec for (r2+ 2122 < ep.
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Therefore, by (3.1) and (3.8), it suffices to prove that the derivatives D¥ D2 "””S

z w]a’kqs
are bounded. Clearly, we have

2 -1,.2
wjakqs o r wjokqs

1 T oe—1,,1
wja'k:qs r wjakqs

It follows from (3.5) and (3.6) that r—lw!

tokgs 7 0 for (7% + 12?)1/? < eo. Hence it
suffices to prove that

‘DkDa -1 z ‘_‘Dk —lDa

Wiskgs < Cka 1=1,2.

jakqs)‘

But the function D¢w ;qus

a, i
W kqs(0,2) = 0, we have DYw? = =

the conclusion of the lemma follows from Lemma 3.1.
One can similarly prove the second inequality in (3.3). It follows from (3.1) and
(3.8) that

is infinitely differentiable for (r2 4 |2|2)/2 < go. Since

= O(r). Therefore [r~'D2w ;| < co. Now

5 .
Rja'k:qs(ra Z) _ Z (w;akqs)2 o

r = 7“2 onkqs-
1=

Using (3.5) and (3.6), we see that Z?Zl(w’

fokgs) /2 # 0 for (r? + [2*)1/2 < eo.
Therefore it suffices to prove that

7 2
DkDa Z (wjakqs)

r2

2
‘ < Cko-

=1

But the function D¢ Z 1 (w qus) is infinitely differentiable for (r? + |z|2)'/2 <

' 0,2z) = 0, we get D“Z (wjgkqs)2 = O(r?). Hence
|De >0 1( S okgs )?/r?| < cq, and the conclusion of the lemma follows from
Lemma 3.1. The lemma is proved.

£0. Slnce w]akqs(

2. We put 0 = min{bj7q+1—qu}/2, j = 1,...,N, q = 1,...,Rj, d1 =
min{1, X;okqs}/2, and dy = 2max{l, X;jokqes}. Let €9 be small such that

[@jorasl < 6/2,  [Rjokasl < Xjongst/2 for  (r® +[2])/2 <eofdr. (3.9)

The existence of such an g follows from Lemma 3.2.
We introduce infinitely differentiable functions (jsi(¢), Ckq,i(¢) such that

Cja,i(@) =1 for |bJU _ | < /21—{—1
Cioilp) =0 for |bj, — | > 8/21, (3.10)
qu,l((p) = Cjaﬂ((p_(pjakq)’ Z — 0)-.-,4.

Clearly, Ckq,i(¢) = 1 for |brg — | < 6/2°+1, and (rq,i(9) = 0 for |brg — ¢| > 6/2%.
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We consider the transformations w wwk 45y, 2) that are given in the polar coordi-
nates by

(Qoa T) = (QO + Piokq + q)jakqs (Ta Z)a XjokqsT + Rja'k:qs (T, Z)) . (311)

Lemma 3.2 implies that

~1

Wickgs (y’ Z) |Fjo' NV, (0) — w}a’kqs (y’ Z) |Fjo' NVeq (0)

Hence we can assume in what follows that the transformation w; . . (v, 2) is given
by (3.11). We notice that wwkqs(y, z) may now have a singularity at the origin
since the new transformation w_; .(¥,2) coincides with the old one w; ;. . (¥, %)
only on I'j; NV, (0).

For any function W(y,z) we put W(y, z) = W(w qus(gj—;kqsy,z),z). By
Lemma 3.2, the transformation w} qS(S iokqsY> #) 1s given in the polar coordinates
by

(Qoa T) = (QO + q);'okqs(ra Z)a T+ R;'akqs(ra Z))a (312)

where q);okqs(r Z) = q)JquS(XJ_alkqsr’ Z) and R;okqs( Z) = Rjakqs(Xj_UlquT, Z)‘ It is

easy to see that @’ and R/ also satisfy (3.2), (3.3).

jokgs jokgs

Lemma 3.3. For all sufficiently small eg and any W € H}(Qx) with supp W C
Q. N Ve, (0) we have (g1 W € HL(Qx) and

||qu,1W||Hl(m) Wil a .y

where ¢ = 2,...,Ri. Here c > 0 is independent of W and &g.

Proof. We shall use the following obvious assertion:
W € Hi(Q) = D*W € Hy\ 1oj1(Q), e <. (3.13)

We see from formula (3.12) and inequalities (3.9) that the transformation (3.12)
maps Ve, (0) N {z: [¢ — brq| < 6} Ny into Q for ¢ = 2,..., R;. Furthermore,
inequalities (3.2) and (3.3) imply that, for small £q, the absolute value of the Jaco-
bian of (3.12) is bounded and does not vanish in V., (0) N {z: |p — brge| < I} N Q.
This proves the lemma for [ = 0 and with (4,1 replaced by (iq,0-

Let us consider functions (g, , € C&°(R) (p =0,...,1) such that Chg0 = Cka,0;
qu o = Ckq,1, and qu 0( ) =1 for ¢ € supp C,’c’q,o, p= 1 ,[. We assume that the
lemma holds for I = p — 1 with (jq,1 replaced by (- . 0 We claim that it holds for
[ = p with kg1 replaced by (,fq’o, p> 1.
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Indeed, suppose that W € H} (). Then

10w oW ow

- HPH(Q =1,...,n—2.
r@go’ Br’ 8Z§€ b (k)a f 3 y 1

Hence the induction assumption yields that

Tow oW oW .
Eos (350 ) oo had g © M2\

Combining this with the formulas

1 BAWk 1/(9-\[/5 R;aqks
SR (22 (14 ,
r Oy r Jp r

oW, [(1OW R pos\ 0P, oW OR’. .
_ 1 jokgs jokgs 1 jokgs .
or (r Dy > < + r 4 or + or + or ’ (3.14)

oWy (1 (9W> <1 + R_;gkqs) aq);okqs + 8W aI%Jokqs + ow

Oz¢ —\r o5, r Oz¢ or Oz Oz¢’

inequalities (3.2), (3.3) and Lemma 2.1 of [27] , we get®

) llaW p— 13W ) IBW

— e H 7' (). 3.15
qu, r 8 ) Skq,0 ) qu,O 32’5 € ( k) ( )

Using the inclusion W € Hy(Q4), the embedding Hy (Qx) C Hy ,(Q%), and the
conclusion of the lemma for [ = 0, we see that (- OW € H,?_p(Qk). Together
with (3.13) and (3.15), this implies that DO‘(QI:%OW) Hl?+|a| (), fof < p
Using (3.13) again, we prove the lemma.

Thus we have proved that the operator W — §kq,1/l/l7 is bounded in H} ().
Lemma 3.4. The following inequality holds for cmy W € H}(Q) with supp W C
Qr NV, (0) and all multi-indices v with 1 < |y| <

Ckq.2DTW = G, 2D7WHHZ ) S oWl ), (3.16)

where ¢ = 2, ..., Rk, and ¢ > 0 is independent of W and €.

Proof. We introduce functions ¢y, € C°(R) (p=1,...,1) such that Crg1 = Cha,1s
Chg = Cka,2, and Cha. H(p)=1forpec SUppP Cpy 1, P = 2.+, 1.
3Lemma 2.1 of [27] and Lemmas 2.2, 3.5, 3.6 of [27], which are used below, are proved by

Kondrat’ev for domains with angular or conical points. However, it is easy to see that they
remain valid for domains with edges that are considered here.
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Suppose that |y| = 1. Then it suffices to prove (3.16) with D7 replaced by any

of the operators i 8‘1, 591,, oz We consider the operator 1 ;% (The other choices

are treated in the same way.) Combining the first formula (3.14) with Leibnitz’
formula, we get
ka1 \ 3g0 r

LYY / 2(blal— (1~ 1))‘D°‘ 5 Bjoas
.

|a|<l EIN Y
oW\
1
26 (355))]

Using this along with the last inequalities of (3.2) and (3.3), we obtain

qu, kq,1

1aw . <ﬁW)2

T 3g0 Hl—l(Qk) Hll)_l(ﬂk)

1 07 o | oW |?
- < k 2 1 [ 317
‘qu, r Oy = G <7" 3@) HL™ () . qu’1<7° a“’) Hy ™ () .

Then (3.17) and Lemma 3.3 prove the lemma for |y| = 1 with (x4, 2 replaced by C,iq .

Assume that the lemma holds for 1 < |y| < p — 1 with (k4,2 replaced by qu 1
We claim that it holds for |y| = p with (k4,2 replaced by ¢? 410 P = 2. Indeed, we
have

s \DW — Chq 1D7WHH’ ()

< |6 DHDW) = ¢, DD i

/\
n HCP ph-1Diw — Cp Dlvl—l(D W)HHZ:M(Qk)

ks(HCII:q iD W -G 1D1WHH’ (%)

//\
+ HC,quDWHDlW - Clzc)q,1D|7|_1(D1W)HH;—\vI(Qk))’ (3.18)
where DI"I=1 and D' are some derivatives of order |v] — 1 and 1 respectively. By

the inductive assumption, the following estimate holds for each of the two norms
in the right-hand side of (3.18):

|GEA D' = i DI 11 < Baol W g cc),

— /\
¢t . D='DW — 2 DM=Y(D'W)|, kseo | D'W | i1 o,

(@) S
< k650||W||H{,(Qk)-

This and (3.18) yield the conclusion of the lemma.
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We note that €y appears in (3.16) because both terms in the left-hand side contain
the same transformation w}ak qs(Sj_alk sY> z), but the first term is the derivative D7

of the transformed function W while the second term is the transformation of the
derivative D"W.

Lemma 3.5. The following inequality holds for any function U € Hé+2m(Qk)
with supp Uy, C Q N Ve, (0):

H (ngukquk)(gjokqsya Z) |Fj0'

- (BjaliquUk)(w;'okqs(y’ Z)’ Z) |Fja' “Hll)+2m_mj"”_1/2(1"j(,)

< (ol Ukll gri+2m (g, ) + 11<kq,3Uk — qu,sﬁkHH;Hm(Qk)), (3.19)

where ¢ > 0 is independent of U and €.

Proof. Since the trace operator is bounded in weighted spaces, we get

H (Bqukquk) (gjakqsy, Z) |Fjo'

- (BjauquUk)(w;'okqs(y’ Z)’ Z)|ch' HH:)Jﬂm*mjauflm(Fja)

A
< kl“quABjaukquk - qu,4Bja',u,kquk||Hll)+2m*mjau ()

< k1 (|Ceq,aBjoukqs Uk — CgaBioukqsUkl| , i+2m—m;,,,
Hb (Qk)

~ /\
+ ICkq,4Bjoukas Uk — ChaaBioukasUsll ieom—mion o ). (3:20)
Hb (Qk)

We estimate the first norm in the right-hand side of (3.20) as

1Ska.4BjoutasUs — Ceq.aBjoukqsUll yrvem=mian g |

< k2| Crq,sUk — qu,sﬁk||le)+zm(Qk). (3.21)

The second norm in the right-hand side of (3.20) is estimated with the help of
Lemma 3.4:

A /\
||qu,4Bja',u,kquk - qu,4Bj0'quSUk||H[l)+2m_mjo'u () < k380||Uk||HIl)+2m ()" (322)

The lemma follows from (3.20)—(3.22).

We note that the right-hand side of (3.19) contains the norm of the difference
between a function and its transform. We use the following result to estimate such
differences.

Lemma 3.6. The following inequality holds for all W € Hy | (Q) with suppW C
ﬁk N Ve, (0):
1Cka, 1 W = Chq, i W llm9 (00 < ceollWllaz, , (2)s (3.23)
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where ¢ > 0 is independent of W and €.
Proof. Writing the arguments of W and W in the cylindrical coordinates, we get

|Cg, 1 W — qu,lWHHg(Qk)
< Hqu 1W(p,r,2) = Ceg 1 W(p + (I)Jakqs(r’ 2); 1 Z)HHg(Qk)
+ Hqu 1W(p+ @qus(r 2),T,2)
Gt W (0 + a1 )7+ Ropga(1 ) D oy (3:2)

Using the Schwartz inequality, we estimate the square of the first norm in the
right-hand side of (3.24):

|Ceq W (0,7, 2) = Crg i W (@ + @5 (7, 2

) br2
:/ dz/ r2bp dr/ Chq,1
Rn—2 0 br1
0o b2
g/ dz/ r2p dr/ |qu,1|2|‘1)}gkqs(7'a z)|
Rn—2 0 br1

/‘§0+¢;~qu5(7',2) BW 2
)

op'
Taking the conditions on the supports of W, (4,1 into account and using (3.9), we
can change the order of integration with respect to ¢ and ¢’. As a result, using
(3.2), we get

g an)

z),r
/ ]a’k:qs(7~ z) BW
©

g dy'’ dso

X " dep.

2
Hqu,lW(QD) r, Z) - qu,lW(QO + q);'gkqs (Ta Z)a r, Z) HH{?(QI@)

2b 2 ok
kl/ / r r|Q>J0kqs(r,z)| dr/
Rn—2 bkl
br2 2
< kQS%/ dz/ P2+, dr/
Rn—2 0 br1

< k35(2)||W||%1;+1(9k)-

2

ow dy

Do

d
r Op 14

One can similarly estimate the square of the second norm in the right-hand side
of (3.24). The lemma is proved.

Thus the factor £y appears in (3.23) when the order of differentiation is increased
by 1. (There is an Hy (Q)-norm in the left-hand side of (3.23) and an H; ,(Q)-
norm in the right-hand side.) This can be explained as follows. In contrast to (3.16),
we now estimate the difference of functions one of which does not contain a trans-
formation while the second does.

§4. A priori estimates of solutions

In this section we prove an a priori estimate for the operator L, which implies
that its kernel is finite-dimensional and its range is closed.
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1. We first prove an a priori estimate for functions supported in a neighbourhood
of K. To do this, we use the invertibility of the model operators Lg (9 € K1) with
linear transformations as well as Lemmas 3.3-3.6. In subsection 2 we use the results
of [11] and Lemma 5.2 of [12] to obtain a priori estimates for functions supported
in the closure of G.

We put 0. (K1) = {z € R*: dist(z, K1) < €}.

Lemma 4.1. Suppose that Conditions 1.1-1.4 hold, and the operators Qg are 150-
morphisms* for all g € X. Then there is ¢ with 0 < ¢ < dist(Ky, Ko U K3)/2 such
that the following estimate holds for allu € {u € H/™™(G): suppu C GNO. (K1)}

[ull grem ) < e([Lullse @y + lullmg,, . @)

where ¢ > 0 is independent of u.

Using partitions of unity, Leibnitz’ formula, Lemma 2.1 of [27] and Lemma 1.2
of [9], we reduce the proof of Lemma 4.1 to the proof of the following result.

Lemma 4.2. Suppose that the hypotheses of Lemma 4.1 hold. Then for each g €
XKy there is €9 = €o(g) > 0 such that the following inequality holds for allU € {U €

Hli+2m,N(Q): supp Uj C ﬁj N ng(o)a .7 = 1a .. 'aNa N = N(g)}

||U||Hl’)+2m7N(Q) < CHU;U“H})*N(Q)a

where Ve, (0) = {z € R*: |z| < &0}, and ¢ > 0 is independent of U.

Proof. Using the invertibility of Lg and Lemma 3.5, we get the following inequality
for all U € H, ™™™ (Q) with supp U; C Q; NV, (0):

9
||U||Hll)+2m,N(Q) < ks ||J:;g U||HIIJ,N(Q)

< ko (”QZU“HIIJ,N(Q) + 60||U||Hll)+2m,N(Q)

N Ry
+ 3 [ICqr,3Uk — qu,sUk||H£+zm(Qk)>. (4.1)
k=1 q=2

Let us estimate the last norm in (4.1). By Theorem 4.1 of [25], we have

1Cqk,3Uk — qu,3fjk||HIl)+2m(Qk) < ks (1P (CrasUk — Cra,sU) |t )
+ 1Cha,3Un — CasUkllan |, n)-  (42)

Using Lemma 3.6 and the continuity of the embedding H, ™ (Qy) C Hy_ omi (),
we get

1Ckaq,3Uk — qu,3Uk||H{j () S k480||Uk||H£+2m(Qk)' (4.3)

—l—2m

4Subsection 5 of § 1 contains a necessary and sufficient condition for ng to be an isomorphism.
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To estimate the first norm in the right-hand side of (4.2), we apply Leibnitz’ formula
and Lemmas 3.3, 3.4:

1Pk (Cra,3Uk — Cra,aUn) a1 0

< ks <||qu,3TkUk||H},(Qk) + [[Cea,3PkUskll 11 ()

+ ) S |ID7Ckg3DPU — Dngq,SDﬁ(AJkHHé(Qk))
18]<2m~—1 |y|=2m~—|B|

< ko (12400 + <ol yson e

+ Y Y ID7CqsD°Us — D7§kq,3D3(7k||Hé(Qk)>. (4.4)
18I<2m—1 |y|=2m—|8|

Since | D7 (rq 3| < k71| Crg,2], it follows that

Z Z /D7 Crq,sDP Uy — D’kaq,3DﬂﬁkHH,’)(Qk)
|B|<2m—1 |y|=2m—|B|

<ks Y ICka 2D Uk = Chg,2 DUkl

b+|a|—l—2m (Qk)

la|<I4+2m—1
o Palr
ke Y {lI6ka2D*Uk = Cha2DUkllme, ., (o)
la|<I4+2m—1

+ ||<kq,2DaUk - qu’2DaUk||H£+\a\7172m(9k)}' (45)
Using Lemma 3.6 and the continuity of the embedding

Hy ™™ () © Hb+1|+||a|—l—2m(Qk)

for |a| <1+ 2m — 1, we obtain

1¢kq2D* U, — qu,?Do‘Uk||H,?+‘a‘_,_2m(9k) < k1080||DaUk||Hl}+1+|a|_l_2m(gk)
Lemma 3.4 similarly yields that
1Cka,2 DUk = Cra,2DUkllmo, ., (an) < F1280l|Ukl| grizm q,)- (4.7)

Now the lemma follows from (4.1)—(4.7) if ¢ is sufficiently small.

2. Repeating the proof of Theorem 2.1 of [11] and using Lemma 5.2 of [12],
we deduce the following result from Lemma 4.1 of the present paper and Lem-
mas 2.4, 2.5 of [11].
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Theorem 4.1. Suppose that the hypotheses of Lemma 4.1 hold and b > [+2m — 1.
Then the following estimate holds for all u € H£+2m(G):
[ull gr+2m gy < e[ Tullse vy + [lullmp @) (4.8)

b+1—I—2m
where ¢ > 0 is independent of u.

Since the embedding H,™™(G) C HY | _5m(G) is compact (see [27],
Lemma 3.5), Theorem 4.1 implies that the operator L has finite-dimensional kernel
and closed range.

§ 5. Construction of the right regularizer

In this section we construct a right regularizer for L. Along with Theorem 4.1,
this enables us to prove the Fredholm solubility of (1.2), (1.3).

1. To begin with, we consider the case of functions supported in a neighbourhood
of K;. We shall use the invertibility of the operators LJ (g € K1) with linear
transformations as well as some special constructions that “compensate” the non-
linearity of the argument transformations. In subsection 2 we use the results of [11]
and Lemma 5.2 of [12] to construct the right regularizer on the whole of G.

We first prove the following auxiliary result.

Lemma 5.1. Let H, Hy, Hy be Hilbert spaces, A: H — H; a bounded linear
operator, and To: H — Hy a compact linear operator. Suppose that the following
inequality holds for some €,c¢ > 0 and for all f € H:

[Af ey < ellflla + cllTofl|a,- (5.1)
Then there are bounded operators M, F: H — Hy such that
A=M+7F,

where [|M|| < 2e and the operator F is finite-dimensional.

Proof. Tt is well known that each compact operator is the limit of a uniformly
convergent sequence of finite-dimensional operators (see, for example, [28], Ch. 5,
§ 85). Hence there are bounded operators Mg, Fo: H — Hj such that Ty = Mo+F,
|IMo]| < ¢ e, and Fy is finite-dimensional. Using this and (5.1), we see that

[Af | < 2el|flla + cl|Fofllm, forall feH. (5.2)

We denote by ker(JF,)+ the orthogonal complement in H to the kernel of J.
Since the finite-dimensional operator o maps ker(Jp)~+ onto its range in a one-to-
one manner, it follows that the subspace ker(JFo)~ is finite-dimensional. Let J be
the identity operator in H, and let Py be the orthogonal projection onto ker(J)=.
The operator APy:H — Hj is clearly finite-dimensional. Furthermore, since J — Py
is the orthogonal projection onto ker(Jy), it follows that Fo(J — Pp) = 0. Replacing
f by (J—Pp)f in (5.2), we get

AT = Po) fllm, < 2¢el|(0 = Po)flle < 2| fllg forall feH.
Putting M = A(J — Py) and F = APy, we prove the lemma.

We now proceed to construct the right regularizer.
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Lemma 5.2. Suppose that the hypotheses of Lemma 4.1 hold. Then, for all suffi-
ciently small ¢ with 0 < e < dist(XKy, Ko U K3)/2, there are bounded operators Ry,
M, and a compact operator Ty acting from {f € H,(G,Y):supp f C G N O (K1)}
to HP*™(G), HL(G,Y), and H(G,Y) respectively such that

LR:f=f+M:if +Tif,

where ||My f([50(q,vy < cellflls (@ ) and ¢> 0 is independent of & and f.

Using partitions of unity, Leibnitz’ formula, and Lemma 2.1 of [27], we reduce
the proof of Lemma 5.2 to the proof of the following result.

Lemma 5.3. Suppose that the hypotheses of Lemma 4.1 hold. Then, for each
g € X1 and all sufficiently small €1 = €1(g) > 0 there are bounded operators Ry,

My and a compact operator T, acting from {f € fHé’N(Q,I‘): supp f C V., (0)} to
H£+2m’N(Q), sz’N(Q, '), and sz’N(Q, ') respectively such that

LyRof = F+Myf +T4f, (5.3)

where [[Mg | g1 a,ry < ce1llfllmia,ry and ¢ > 0 is independent of €1 and f.

Proof. 1) As above, we put

1 .
dl - 5 mln{lano'kQS}a d2 = 2ma‘X{1’Xj0'kq5}'

We choose 1 < d1g¢/4, where & is defined in Lemma 4.2. We introduce a function
Ve, (z) = Y¥(x/e1), where ¢ € C®°(R™), ¢(x) =1 for |z| < 1, and ¢(z) = 0 for
|z| > 2. It is obvious that ¢., € C°(R"), 9., (z) =1 for |z| < 1, and ¢, (x) =0
for |z| > 2¢1. Since | D%, | < cor™ 1l we see from Lemma 2.1 of [27] that

||¢61v||Hll)+2m(Qk) < C||U||Hll7+2m(9k) forall ve Hll)+2m(Qk), (5.4)

where ¢ > 0 is independent of £;. Moreover, we assume that 1., being written in
the cylindrical coordinates, is independent of ¢.

Put fO - {f]}) g = {gjau}a {f07g} = {fjagjou}-
By assumption, the operator Lg: H£+2m’N(Q) — sz’N(Q,F) has a bounded

inverse (LJ)~1: %Z’N(Q, r)— Hé”m’N(Q). Therefore we can introduce the oper-
ators

Ri: HY(Q) — HIPP™N(Q),
Ry: HON (D) — HPP™N(Q)

given by

:leo = wel (Lg)_l{anO}a
:R2g = ¢61 (Lg)_l{oag}a
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where sz’N(I‘) =] Hé+2m_m"””_1/2(f‘jg). Thus the supports of R; fy and

Jrop
R2g are contained in the ball of radius 2e; centered at the origin.

Let us introduce the operators

P: HT*™N(Q) - HY(Q),
B, BY: HPPN(Q) — HON(T),

given by

PU = {P;U;},  BU={BJ U},  B“U={BY U}

jou jou

We now establish a relation between the operators P, B9, B and R;, Ro. We
use the following well-known property of weighted spaces (see [27], Lemma 3.5):

() the embedding operator from {v € H, ' (Q;): suppv C V4(0), d > 0} to
HL(Q;) is compact.
Using Leibnitz’ formula, the boundedness of supp 1., , and property (%), we get

PR1fo = Ve, fo + T1fo, PRag = Tag. (5.5)

Here T;: Hé’N(Q) — Hll)’N(Q) and Ty: J{é’N(F) — Hll,’N(Q) are compact operators.
We similarly have

BS5R2g =Y, 9+ { Z (¢51 (Xjakqsx) — Yey (x))

k,q,s

< (Byopeas[(23) 10, 9110 Ssokast z)|rja} T (56)

where T3 is a compact operator in J{é’N(I‘). Here and in what follows we denote by
[ ]k the k-th component of an N-dimensional vector, and by { ...} a vector whose
components are defined by the indices j, o, .

Let us show that each term of the sum in (5.6) is a compact operator. Let (xq,; be

the functions defined by (3.10). We also introduce the functions o, 11 € C§°(R™)
such that

$1($) =1 for 2d181 g |$| < d281, ’l/ﬁ\l($) =0 outside d181 < |3§‘| g 2d281,
$0($) =1 for d181 g |$| < 2d281, ’l/ﬁ\o($) =0 outside d181/2 g |3§‘| g 4d281.
Since the trace operator is bounded in weighted spaces, we have
[ (Wes (Xjongsz) — e, ()
gy—1
X (Bjaukqs[('ﬁ’g) {O’ g}]k)(gjakqsya Z) |Fj0 HHll)Jr2m7mj““71/2 (Tje)
< k2 “qu72(¢81 ($) - ¢61 (Xj_alkqsx))Bjaﬂkqs[(Lg)_1{0’ g}]kHH:ﬂm*mjau ()

< k3Hqu,1{b\1[(’£‘g)_1{0a g}]kHHll,'Hm(Qk)' (57)
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The support of 1, is bounded and disjoint from the origin, and (4,1 vanishes near

the sides of the angle Q. Hence we can apply Theorem 5.1 of Ch. 2 in [23]. Using
the relation Px[(LF)~'{0,g}]x = 0, we see from (5.7) that

| s Oiokast) = e ()
% (Bjaurasl(2) 0, 0110) Sinastts 2l [ oo s,

< Ral[90[(£5) 70, 9 el ggs21

Since the support of {ﬁ\o is bounded, this inequality and property (*) imply that

{ S (W, (tiokas®) — s (2) Bioasl(69) 0, 0116 Sirkast z)|rja}

k,q,s
is a compact operator in J{é’N(I‘). Combining this with (5.6) yields that
BS:RZQ = ¢Elg + (‘T4ga (58)

where T, is a compact operator in J{é’N(F).
Finally, we use (5.8) to get the following formula for the composition B“Ry:

‘Bwjzlg = ¢81g + 749 + { Z ((Bja'ﬂkqs[fR?g]k)(w;akqs(ya Z)a Z)|Pjo'
k,q,s

- (BjousarBagh) G ) | (69
2) We introduce an operator R, : ﬂ{é’N(Q, r)— H£+2m’N(Q) by
Rg{fo, 9} = Rifo — RyB Ry fo + Rag.
Here Rb: HoN(T) — Hi?™N(Q) is a bounded operator given by
Rhyg = e, (diz/2)(L5)71{0, g}

Similarly to (5.5) and (5.9), we see that

PRy = Tho, (5.10)
BRhg — o, (dy/2)g + Thg + { S (Bonias Ro 1) @hns (1 2), 2,
k,q,s
— (Byoons | Ro10) Syonasts 2) 1) } (5.11)

where T}, T} are compact operators acting in the same spaces as Ta, T4 do.
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Let us show that the operator R, satisfies (5.3). It follows from (5.5) and (5.10)
that

:P:Rg{fo,g}:¢51f0+75{f0,g}, (512)

where T5: sz’N(Q, r)— Hé’N(Q) is a compact operator.
Taking into account that ., (d12/2)B“R,fo = BYR1fo and using (5.11), we
derive that

B“’ng{fO,g} = B“Rifo — BwiRIQ‘Bwjhfo + B“Rog

= —T,BRufo — { > ((Bjourqs REB R folk) (Wongs ¥, 2), 2) I,

k,q,s

- (Bjaukqs [:RlzgwileO]k)(ngkqsy’ Z)|Fjg') } + ‘BMCRZQ-

Using this and (5.9), we get

‘Bw:Rgg - 77[)619 + TG{fO: g} + { Z ((Bjauqu[:R2g]k)(wéakqs(y) Z)a Z)|ch'

k,q,s

- (Bjaukqs [:Rzg]k)(gjokqsy; Z) |Fj0') }

- Z ((Bjaﬂkqs[jzéBwjzlfO]k)(w;akqs(ya Z)az)|Pja

k,q,s

- (Bjcrp,kqs [:Rlz‘Bw:RIfO]k)(gjakqsya Z)|Pjo-) }a (513)

where Tg: %Z’N(Q, r)— J—Cé’N(I‘) is a compact operator.
Consider the terms of the first sum in the right-hand side of (5.13). By
Lemma 3.5, we have

H (Bjaﬂkqs[jz2g]k)(w90kqs (y’ Z)) Z) |Fj,,

— (Bjoukqs[R291k)(Sjorasy, 2)Ir;, HH;)Hm—mm—w(Fja)

——

< ks (oLl Raglill 15 gy + CeqalRogle — GrasRaglellgisomgy) - (5.14)

Using inequalities (4.2)—(4.7) for the function Uy = [Rag]k, inequality (5.14),
and the second formula in (5.5), we get

H (Bja',u,kqs [fRQg]k)(w;'akqs(ya Z)a Z)|Pjo'

- (ngukqs [Rzg]k)(gjakqsy’ Z)|Fja H

I+2m—
Hb m m

jaufl/z(lﬂ. )
< k6(81||[:R2g]k||Hll)+2m(Qk) + ||?k[jz29]k||H,§(Qk))
= o (e 8, [(55) 0, Ml gzson oy + 018l )
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Combining this with inequality (5.4) and using the boundedness of the operator
(Lg)_li %Q’N(Q, r)— H£+2m’N(Q), we finally obtain

H (Bjtfukqs [fRQg]k) (w;'okqs (y’ Z)a Z) |1"j0

- (Bjcrp,k:qs [RQQ]k)(gja'kqsya Z)|Pjo- H I+2m—mjg ) —1/2
b

H (Pja)

S k7(51||9||3{§;’v(r) + ||[729]k||H,l,(Qk))- (5.15)
Therefore, by Lemma 5.1, we have

(Bjoukgs|R29]k) (Wiokgs (¥, 2), 2)Ir;, — (Bjoukqs(R29lk) (Sjokqsy, 2)Ir;,
= Mja',uk:qsg + Stja',u,k:qsg

with operators
I,N I+2m—m, —1/2
Mjoukgss Fjougs: H o () = Hy ~" "o / (Tj0)

such that || M;sukgsl| < 2k7e1 and Fjgpukgs is finite-dimensional.

One can similarly prove that each term of the second sum in the right-hand side of
(5.13) can be represented as the sum of an operator with small norm and a compact
operator. Combining this with (5.13), (5.12) and choosing supp{fo,9} C V., (0),
we prove the lemma.

2. Let us prove that the operator L: H.™™(G) — 3 (G, T) is Fredholm under
certain conditions.

Theorem 5.1. Suppose that the hypotheses of Lemma 4.1 hold and b > [+2m —1.
Then the operator L: HI™™(G) — H! (G, Y) is Fredholm.

Proof. By Theorem 4.1 above and Theorems 7.1, 15.2 of [29], it suffices to construct
a right regularizer R for L.

Repeating the argument of § 3 in [11] and taking Lemma 5.2 of [12] into account,
we deduce from Lemma 5.2 of the present paper that there are bounded operators

R': 3 (G,Y) — H.7>™(G),
M, T: 5, (G,Y) — Hi (G, )

such that
LR ' =I+M+ T,

where |[M|| < 1 and T is compact. Since |[M|| < 1, it follows that the operator
I+ M has a bounded inverse. Clearly, R = R’(I + M)~! is a right regularizer for
L. The theorem is proved.

3. Until now, we assumed that b > [ +2m — 1. In this subsection we use the results
of [9] to study the case when b is arbitrary but n = 2. As mentioned before, we
have to consider solutions and right-hand sides of the non-local problem as functions
with power singularities not only near the set K; but also near X5 and X3. This
corresponds to the consistency conditions (see §1).
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Thus, let n = 2. We introduce the space I:jll,(G’) as the completion of C$° (G \ K)
with respect to the norm

1/2
||u||H,z,(G)=(Z [ e )

al<l

where p = p(y) = dist(y, X) (compare with §1). For [ > 1, we denote by Hl Yz (1)
the space of traces on a smooth curve ¥ C G with the norm

||¢||ﬁ,l)_1/2('r) — inf ||u||P~Ié(G), u € Hé(G) U|T = ¢

We assume that the following condition holds.
Condition 5.1. If g € K3 Nw;s(Y;) # @, then w;,'(g9) € X.

This condition guarantees that the set of points where the consistency condition
must be imposed is finite. If Condition 5.1 fails, then consecutive shifts of the set
K1 (under the transformations w;s and their inverses) may form an infinite set,
which should be used instead of X in the definition of weighted spaces.

In this subsection we consider the following bounded operator corresponding to
problem® (1.2), (1.3):

No m
L= {P(y, D), Biuly, D)} HL77(C) — L) x [[ [ A1),
=1 pu=1
beR.

Since solutions and right-hand sides of the non-local problem may now have
power singularities near the points of Ky and K3, we have to consider the model
problems corresponding to these points in weighted spaces but not in the Sobolev
spaces.

We fix a point g € Ky U K3. Let y — 3'(g9) be a non-degenerate infinitely
differentiable argument transformation that maps some neighbourhood V(g) of the
point g onto a neighbourhood V,(0) of the origin such that g is mapped to the
origin. We denote by P(D,), Biuo(Dy) the principal homogeneous parts of the
operators P(g, D), B;,o0(g, D) written in the new coordinates y' = y'(g) (with y’
subsequently redenoted by y). Now we write the operators P(Dy), Bi,o(Dy) in the
polar coordinates:

P(D,) = r=2"P(p, Dy, 7D,),  Biuo(Dy) = r~ ™ Bio(p, Dy, rDy).
If g € Ky, then g € Y; for some i = i(g). Since Y; is smooth, any sufficiently
small neighbourhood V(g) of g admits a non-degenerate infinitely differentiable

argument transformation y — y’ = y’(g) that maps V(g) N G onto the intersection

5Notice that equation (1.2) is now considered in G \ X3 but not on the whole of G.
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of the half-plane R? = {y: |¢| < m/2} and a neighbourhood of V,(0). We introduce
a bounded operator

2 m
Lot H{P™ (K o) = Hy(Kqps) > [T TT #7772 ()
j=1p=1
given by
LoU = {?(Dy)U’ BiMO(Dy)U|’Yj }7
where Ko = {y: |p| < 7/2}, v, = {y: ¢ = (-1)’n/2}, j = 1,2. We also
introduce a bounded operator

Z;g()\): W2l+2m(—7r/2,7r/2) — Wg[—ﬁ/2,7r/2] = WQl(—ﬂ/2,7r/2) x C2m
given by

zg(A)fj = {%((,0, Dtpa )‘)fj(@)a %i,u,O(QOa Dcpa )‘)ﬁ(go)|<p:(—1)j7r/2}a J=12.
If g € K3, we introduce the bounded operators
Ly = P(Dy): HEP™(R) - HY(R?),

Lg(A) = P(p, Dy, A): WiHI™(0,27) — W3 5,.(0,27),

where W2l,27r(0, 27) is the closure of the set of infinitely differentiable 27-periodic
functions in W}(0, 27).

By §1 of [27] and §1 of [9], it follows that for each g € Ky U K3 there is a
finite-meromorphic operator-valued function E;l()\) with the following properties:
(i) its poles, possibly expect finitely many of them, belong to a double angle of
opening < 7 containing the imaginary axis, and (ii) Z,g_l()\) is the bounded inverse
to Eg()\) for all A which are not poles of z;l()\).

Using Theorem 1.1 of [27] and the results of §1 of [9], we see that L, is an
isomorphism if and only if the line ImA = b+ 1 — [ — 2m contains no poles of

LH(N).

Theorem 5.2. Assume that Conditions 1.1-1.4, 5.1 hold. Let b € R be such that
Lg s an isomorphism {OT all g € Ky :md L4 is an isomorphism for all g € Ko UK.
Then the operator L: HIT*™(G) — (G, T) is Fredholm.

Proof. Note that Lemmas 4.1, 5.2 are true for all b € R such that Lg are isomor-
phisms for all ¢ € K. Hence, using Lemmas 4.1 and 5.2, we can obtain an a priori

estimate (4.8) (in spaces H, +(+)) and construct the right regularizer similarly to the
proof of Theorem 3.4 in [9].

§ 6. Stability of the index of non-local elliptic problems

In this section we study the influence of the transformations w;s; upon the index
of non-local elliptic problems. We show that the index of the problem is determined
by the linear part of w;s in a neighbourhood of K;. We note that the stability of the
index was established in [15] in the case when the support |J; wis(T;) of non-local
terms is disjoint from the set Ky consisting of all points of conjugation of non-local

conditions.
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1. Along with (1.2), (1.3), we consider the following problem:

P(z,D)u = fo(z), z € G, (6.1)

~

Biu(¢, D)u= Y (Bius(, D)u)(@is(w))

T — gill(‘r)7 (62)
x €Yy, i=1,..., Ny, p=1...,m.

Here P(z, D) and Ewo(x, D) = B;,o(z, D) are the same differential operators® as
in §1, Eius (z,D), s =1,..., S, are some differential operators of orders m;, with
complex-valued C'*°-coefficients, and @;s (i =1,...,Ng, s=1,..., :S’\l) are infin-
itely differentiable non-degenerate transformations that map some neighbourhood
O; of the manifold Y; onto &;5(0;) such that &;s(1;) C G, wio(x) = z. We assume
that the set

X = {U(Ti\ri)} U {psais(i-\ri)} U {UUajp(ais(Ti\Ti) mrj)}

i Jp 1,8

~ 3 ]’\7- ~
can be represented as X = {J;_; U,21 X;p, where

R N No R N> No R Ns
Ki=JXKp=06\JTi, Ko=JXKppc|JYTi, Ks=[JKspcCG
p=1 =1 p=1 =1 p=1

(compare with (1.1)). Here ﬂAij are disjoint (n — 2)-dimensional C'°°-manifolds
without boundary (points if n = 2). Moreover, N, = N; and J%lp = Kip, p =
]_, cey Nl-

Let the transformations @;,; satisfy Conditions 1.3, 1.4. We also assume the
operators Eius (z, D) and the transformations ;s (s = 1,..., §,) to be such that,
for each point g € 9/%1 = Xy, the operator Lg (which is defined similarly to Ly
of §1) is equal to the operator Lg defined in §1.

Thus @;, is the linear part of w;, in a neighbourhood of K.

We introduce the bounded operator corresponding to the non-local problem
(6.1), (6.2),

L = {P(z,D), B;,(z,D)}: HF*™(G) — 3 (G, ).

Theorem 6.1. Suppose that the hypotheses of Lemma 4.1 hold and b > [+2m — 1.
Then the operators L, L: HI™™(G) — 3 (G, Y) are Fredholm and ind L = ind L.

Proof. We define an operator L;: H. ™2™ (G) — 3¢ (G, T) by
L = {P(z, D)u, Biy(w, D) + t(Biu(w, D) — Biu(, D))}
61t suffices to require that the principal homogeneous parts of the operators P(z,D) and

Emo(ﬂf, D) coincide with those in § 1. We assume for simplicity that the non-leading terms coincide
as well.
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Clearly, Ly = L and L; = L.

In a neighbourhood of X, the transformations w;s and @;, coincide up to
infinitesimals. Therefore the operators L; are Fredholm for all ¢ by Theorem 5.1.
Furthermore, for all 5 and ¢, we have

[T~ Tayullag vy < et = tol 10l gsor

where k¢, > 0 is independent of ¢ € [0, 1]. Hence Theorem 16.2 of [29] yields that
ind L; = ind Ly, for all ¢ in some small neighbourhood of ¢5. These neighbourhoods
cover the interval [0,1]. Choosing a finite subcovering, we get ind L = ind Ly =
ind L; = ind L. The theorem is proved.

An analogous argument, which uses Theorem 5.2 instead of Theorem 5.1, proves
the index stability for non-local problem (1.2), (1.3) in the case whenn =2, b € R.

Let us suppose that N N;, ij =XKjp, 7=1,2,3, p=1,...,Nj.

Theorem 6.2. Suppose that the hypotheses of Theorem 5.2 hold. Then the opera-
tors L, L: HP*™(G) — HL(G,T) are Fredholm and ind L = ind L.

2. In this subsection we give another proof of Theorem 6.2, based upon ideas of
[15]. (Using Lemma 5.2 of [12], one can similarly prove Theorem 6.1.) Although this
proof is more complicated, it makes the situation clear by answering why is the index
of the operator completely determined by the linear part of the transformations w;,
in a neighbourhood of K;. We show that if the operators L and L are Fredholm,
then the restriction of their difference to the kernel ker(P) C I;T,iJrzm(G) of the
operator P = P(y, D) (we recall that z = y if n = 2) can be “reduced” to the sum
of an operator with arbitrarily small norm and an operator whose square is compact.
The first operator accounts for the non-linear part of the transformations w;; near
X1, and the second operator accounts for the transformations that generate the
sets Ko and K3 (see §1). This “reduction” does not contradict the example in §2
because the reduction procedure involves projections onto the subspace ker(P) of
infinite codimension. By the same reason, this argument does not prove that the
operator L is Fredholm whenever L is Fredholm (or vice versa). It only proves that

indL = ind L provided that both operators are Fredholm.

1) We introduce the operators

No m
B,B: H*>™(G) — H.(0G) H H Hl+2m min=1/2 ()

=1 p=1

given by B = {B;,(y, D)}, B = {ﬁi“(y, D)}. We denote by C, C the restrictions
of B, B to the subspace ker(P) C Iﬂ”m(G). The operators L, L are Fredholm by
Theorem 5.1. Hence Lemma 1.1 of [15] implies that C, C are also Fredholm. Now,
to prove Theorem 6.2, it suffices to show that ind C = ind C.

2) We denote by C!, C! the restrictions of C, C to the subspace ker(C)+ C
ker(P). It is obvious that C! = CI, and C! = CI,, where I: ker(C)* — ker(P)
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is the embedding of ker(C)= to ker(P). Clearly, dim ker(Iy) = 0 and codim R(Iy) =
dim ker(C) = mg < oo. Therefore Theorem 12.2 of [29] yields that
ind C! = ind C + ind Iy = ind C — my,
ind C! = ind C +ind Iy = ind C — mg.
Thus it suffices to prove that ind C! = ind C1.

3) We denote by P, the operator that orthogonally projects JTCf,(ﬁG) onto
R(C1)L. Since codim R(C') < oo, it follows that P is finite-dimensional. Hence,

ind C* = ind(C* + (I - P, )(C! — CY)).
Therefore it suffices to prove that
ind C! = ind(C' + (I - P, )(C' — C)).

Since Clu, Clu+ (I— P, )(C! — CY)u € R(C) for u € ker(C)*, we may regard
C!, C! + (I-P_)(C! — C!) as operators from ker(C)+ to R(C?). This increases
the indices of these operators by the same number m; = codim R(C?).

It is clear that the operator C!: ker(C): — R(C!) has a bounded inverse
R; = (C!)7!: R(C!) — ker(C)t and ind C! = 0. By Theorem 12.2 of [29], we
have

ind(C' + (I-P)(C' — C") = ind(I + Ry (I - P)(C' — CY)).

It remains to show that ind(I +R,(I- PL)(al — Cl)) —0.
4) We introduce a function 1. € C§°(R?) such that ¢.(y) =1 for y € O, /2(X),
Ye(y) =0 for y ¢ O.(K), and

1D (y)] < ka(p(y) 1™, y € 0(K), (6.3)

where k, > 0 is independent of . We consider the operators A, Ay: ker(C)+ —
ker(C)= given by

Clearly, I+ Ay + Ay = I+ Ry(I— P)(C* — C1). Since the support of (1 — 1. )u
is disjoint from X, the proof of Theorem 3.1 in [15] shows that (Aj)? is compact.
Let us study A;. Since the operator R;(I — P ) is bounded, we have

[ Avllgzsom gy < el (B = Byéeullzy o
Using partitions of unity and estimates (4.2)—(4.7) and (6.3), we obtain
||A.]_u||ﬁ—ll)+2m(G) <c (€||w5U||ﬁ£+2m(G)
+ [Pl 1 ) + Fr @l grams g

< C2 (8||U||1;~Ill>+2m(G)

T IPveul gy o) + B @l granr gy (64)
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Since u € ker(P), we see from (6.4) and Leibnitz’ formula that
||A1u||ﬁ,l)+2m(G) < Cz&‘Hu“fIIl)—»—Zm(G) + k2(6)||u||ﬁll)+2m—1(G), (65)

where ¢y is independent of . Using (6.5), the compactness of the embedding
fIll)“m(G) C I:jll,“m_l(G), and Lemma 5.1, we conclude that A; = M; + Fy,
where ||M;]|| < 2¢2e and Fy is finite-dimensional.

Thus, we have R;(I — P,)(C' — C!) = M; + F; + A,. Choosing ¢ to be
sufficiently small, we see from Theorems 15.4 and 16.2 of [29] that

ind(I+R,(I-P,)(C'—Ch) =0.

Theorem 6.2 is proved.

The author is very grateful to Professor A. L. Skubachevskii for posing the
problem and for his constant attention to this work.
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