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Abstract—In this paper, we consider nonlocal elliptic problems in dihedral and plane angles.
Such problems arise in the study of nonlocal problems in bounded domains for the case in
which the support of nonlocal terms intersects the boundary. We study the Fredholm and
unique solvability of this problem in the corresponding weighted spaces. Results are obtained
by means of a priori estimates of the solutions and of Green’s formula for nonlocal elliptic
problems.
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In the study of elliptic problems with nonlocal conditions, the case in which the support of
nonlocal terms intersects the boundary presents the greatest difficulty (see [1-4]). This leads to
the appearance of polynomial singularities of solutions near a certain set; therefore, nonlocal elliptic
problems are naturally studied in weighted spaces (see [5-7]). In deriving a priori estimates of
solutions and constructing the right-hand regularizer for nonlocal problems in a bounded domain,
we have to deal with model nonlocal boundary-value problems in dihedral angles (see [3, 4]). In
the present paper, we propose another approach to studying nonlocal problems based on the use of
Green’s formula and conjugate nonlocal problems. Such an approach allows us to remove additional
constraints (see [3]) on the corresponding “local” model problem and to obtain necessary and
sufficient conditions for the Fredholm solvability of nonlocal problems in plane angles and for the
unique solvability of such problems in dihedral angles. Simultaneously, certain conjugate problems
arise, such as nonlocal transmission problems studied in [8] (in the case of bounded domains with
smooth boundary) and in [9] (in the one-dimensional case).

In this paper, for clarity, we restrict ourselves to nonlocal perturbations of the Dirichlet problem
for the Laplace operator.

1. STATEMENT OF NONLOCAL ELLIPTIC BOUNDARY-VALUE PROBLEMS
1.1. Let us introduce the dihedral angle
Q={r=(y,2):r>0,b <p<by, z€R"?}

with the faces
Fj:{x:(y,z):r>0,gp:bj’zeRn—z}’ =12,

and the edge M = {z = (y,2): y =0, 2 € R"2}. Here z = (y,2) € R", y € R?, 2 € R"?;
and r, ¢ are polar coordinates of the point y; 0 < b; < by < 27. Consider the following nonlocal
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NONLOCAL ELLIPTIC PROBLEMS IN DIHEDRAL ANGLES 159

boundary-value problem in the dihedral angle €2,

AU(z) = f(x), z€Q,
U(w)‘rj + ajU(gjyv z)’Fj = gj(w)’ T € Fj‘ (1'2)
Here and further, the index j assumes the values j = 1,2; a; € C; G, is the operator of rotation
by the angle ¢; followed by a dilatation of x; times in the plane {y}; here by < by + 1 =

b2—1—902:b<b2,0<xj. _
Let us introduce the space H.(f2) as the completion of the set C5°(Q\ M) in the norm

1/2
> [ et ipzuP )
Q

| <I

oll gy = (

where C°(Q\ M) is the set of functions infinitely differentiable in Q with compact supports in

Q\M;, acR, >0 is an integer. By H(ll_l/z(I") for [ > 1 we denote the space of traces on
I'={x=(y,2):r>0, =0, z€ R" 2}, by <¥ < by, with the norm

‘|¢||H,1171/2(1"’) = inf ||w||Hé(Q)7 w e H(ZI(Q) w|1'v = Qp
Let us introduce the bounded operator

Lo: H(Q) = H)(Q,T) = HY(Q) x [[HJ?(Ty),  LoU ={AU,U(@)Ir, + a;U(Gy, 2)Ir,}
i

By W!(Q), where [ > 0 is an integer, denote the Sobolev space of generalized functions (distri-
butions) square-integrable together with all the generalized derivatives up to the [th-order inclusive
in Q, where Q C R™ is a domain with Lipschitzian boundary. By W!=%/2(T), 1 > 1, we denote
the space of traces on an (n — 1)-dimensional smooth manifold T C Q.

Lemma 1.1. For all w € WY(Q) and X € C, we have the estimate

N2 lwllws @) < ellwlweg) + M lwlz.@)- (1.3)

Here 0 < s <1; ¢ >0 is independent of w, .
Lemma 1.2. For all w € W1(Q) and X € C, we have the estimate

A2 [[wlell 2y < e(llwllw @) + AlwlLy@)- (1.4)

Here ¢ > 0 is independent of w, A.

The proof of Lemmas 1.1 and 1.2 is given in [10, Chap. 1]. Using Lemma 1.1 and the properties
of weighted spaces, the following result was obtained in [2, Sec. 1].

Lemma 1.3. For all w € H,(R)) and X € C, we have
WSHWHHQ-_SS(Q) < C(HwHHg(Q) + ’)\’leHHgJ(Q))' (1.5)

Here 0 < s <1l; ¢ >0 is independent of w, .
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160 P. L. GUREVICH

1.2. Consider the following auxiliary nonlocal boundary-value problem in a plane angle:

Au(y) —u(y) = fly), yeK, (1.6)
u(y)ly; + aju(Giy)ly; = 9;(), v €,

where K ={y e R?*:7>0,0<b; <p<by<2rm}, v, ={y €eR?:r >0, p =b;}.

1-1/2

As above, we introduce the function spaces H!(K) and H, ('), where

Y ={yecR*:r>0, o=V}, by <V < bs.
Let us introduce the space E'(K) as the completion of C§°(K \ {0}) in the norm

1/2
Z/Kr?a(ﬂ(al—l)+1)|D5w(y)|2dy) '

lal <l

ol aey = (

By EY? ("), 1 > 1, we denote the space of traces on the ray +" with the norm

el iy = i0f [l iy, w0 € BA(K): wly = .
For the constructive definitions of the spaces Hi '/*(I" ), H Y2y ), and ELY? (") equivalent
to the ones given above, see [6, Sec. 1]. Now we establish a property of weighted spaces that will
be needed later.

Lemma 1.4. For any 9 € Ei_l/Q('y’) , we have the estimate

1/2
</ T2(a—(l—1/2))|¢|2 d/y) < CHIpHEl*l/z(W’)’
v )

where ¢ > 0 is independent of .
Proof. It follows from [7, Chap. 6, Sec. 1.3] that the norm |[u[|g: (k) and the norm

1 oo I—k 1/2
(Z/O r2@=U2DN Q4 r2EF D (D)o u(r, s oy by dr) (1.8)
k=0 i=0

are equivalent; here u(r, ¢) is the function u(y) written in polar coordinates.
Let us choose a function u € E}(K) so that ul, = ¥, |lullg k) < QHQ,Z)HEl—l/z(’y,). Since

u(r, ¢)|p=p = (r), by the continuity of the trace operation in Sobolev spaces we have

[B)* < kallu(r, )i, )

Combining this with the equivalence of the norm ||ul[g: (k) and of the norms (1.8), we obtain

/ r2em 2|2 dy < kl/o 22D (e, 1y 6y @ < Kallullz - (1.9)
,-y/

The assertion of the lemma follows from (1.9) and the inequality |ul|g (k) < 2H1/}||EL_1/2(7,) . O

Let us introduce the bounded operator

EK: ES(K) — Eg(Kv '7) = E((z)(K) X HES/Q(’YJ')a EKU = {Au - u, u(y)’%’ +aju(gjy)‘7j}‘

J
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NONLOCAL ELLIPTIC PROBLEMS IN DIHEDRAL ANGLES 161

1.3. Following [3], we consider the model analytic operator function
LO): W2(by, by) — WOby, by] = La(by, ba) x C2,
defined by the formula

L~ &2 ~ . _ N
ENT = {5000 = X0(). T@lloms, + e ™00 0+ 0o, |

In the Hilbert spaces W?2(by, by) and Wby, b, let us introduce the equivalent norms depending
on the parameter A\ € C (|A\| > 1):

N lw2o1,62) = 101020y 5y + N NTNZ 0 00) 2

o _ " 1/2
IEE, Gl = (HFHiQ(bl,bQ) Py \AP\GJ-P) .
7

Lemma 1.5. For all A € C, the operator L()\) is Fredholm, ind L(\) = 0; for any h € R there
exists a qo > 1 such that for X € Jp, 4o ={A € C: ImA =h, |[Re\| > qo} the operator L(X) has
a bounded inverse L71(\): WO[by, ba] — W2(by, by) and

L )@ llw(o4,2) < ell®llwores o (1.10)
for all d e WOby, by], where ¢ > 0 is independent of \ and d; the operator function
L7HN): WOlby, bo] — W2(by, ba)
is finitely meromorphic.
Lemma 1.6. For any 0 < e < 1/max |Inx;|, there exists a ¢ > 1 such that the set
{AeC: |ImA| <eln|Re)|, |ReA| > g}

does not contain any poles of the operator function Z‘l()\); for each pole Ao of the operator
function L7Y(X\) there exists a § > 0 such that the set

{AeC:0< |ImA—ImA| <3}

does not contain any poles of the operator function Z‘l()\).

Lemmas 1.5 and 1.6 were proved in [3, Sec. 2]. In [3, Sec. 3], the following result was also
obtained.

Theorem 1.1. Suppose that on the line ImA = a — 1 there are no poles of the operator function
L7Y(N\). Then for all u € E2(K) we have the estimate

lullg2(xy < cll|Lrullpox, ) + ullLyxns))s (1.11)

where S ={y € R?: 0 < Ry <r < Ry} and ¢ > 0 is independent of u.
If for all uw € E2(K) we have the estimate (1.11), then on the line In\ = a — 1 there are no

poles of the operator function Z‘l()\).
It follows from Theorem 1.1 that the kernel is finite-dimensional and the image of the opera-
tor L is closed. To prove that the cokernel of the operator L is finite-dimensional, let us derive

Green formulas for nonlocal problems and study problems conjugate to nonlocal boundary-value
problems with respect to Green’s formula.
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162 P. L. GUREVICH
2. GREEN FORMULAS FOR NONLOCAL ELLIPTIC PROBLEMS

2.1. Let us introduce the set v = {y € R?: 7 > 0, p = b} (recall that b =b; + ¢;). The set v is
the support of nonlocal terms in problem (1.6), (1.7). Let

Ki={yecR*® r>0,b <p<b}, Ky={ycR?>:r>0,b<p<b}.

Suppose n; is the normal to v; directed outside the domain K; and n is the normal to v directed
outside the domain K>. By (-, - )k, , (-, - ), (-, - )y denote inner products in Ly(Kj;), La(7;),
Lo(7y), respectively.

Theorem 2.1. For u € C°(K \ {0}), v; € C*(K; \ {0}), we have Green’s formula

0v; >
i’ Vi

Z(AU u, vj) K; "‘Z(UHJ +aju (gjy)|"rj on.
j
Zaka gk y)! )

J
81]2
+ (“’w —
on N
| ) . <8u
» Ul a9,
J 1y ;i On

_Z;(u,mj —v))K, +;<67 ]

where Qk_l is the operator of rotation by the angle —¢y, followed by a dilatation of 1/xy times in
the plane {y}; here and further, the index k assumes the values k =1,2.

81]1

ol

) UQH - Ul’v) ) (2.1)
¥ v

Proof. Let us multiply Au—u by 9, integrate over K, and twice integrate by parts; as a result,
we obtain

01 0ty
(Au—u)-ﬁldw—i-/u\ C dfy—/u\ c—| dy
/I<1 ot Om L On

ol

Y1

ou ou
— . A_ — d - D d — —| . d
/I<1u (AT — 77) y+/%8n1 Wl”1|71 Y /yan'yvlh o
/ (Au—u)-ﬁgdm+/u|ﬂ,-% d7+/ 00z dry
K2 v On v Y2 g 8722 Y2
ou ou
—/ u- (A, —172)dy+/ on V2 d’H‘/ 2—| Va2ly. d-
K> v OT ]y Y2 Ong Y2
Let us add the last two relations:
~ 0v; 00y 81}1
Z/K'(Au—u)-vjdm—kz:/.uhj-a—ré 'd7+ uly - <8 —— >d7
j Vi
_Z/ - (AD; — 75) dm—l—Z/ vj\%. dy + / Ug\w—vl\ Ydy.  (2.2)

But
31;]

0v;
/ gJy "YJ 873
J

dv‘/“l -a-x*l—j(g-_ly)l dy,
\ N i JN\g anj 7 i

dry

Vi

v,
uly, - oL
/v~ von;

J

dy = / (uln, + aju(Gin)hy) - 5
vYj Vi

a_.
= [ (b, +agutgh,) - 5

J

where G ! is the operator of rotation by the angle —, and dilatation of 1/x; times in the plane
{y}. Combining this with (2.2), we obtain relation (2.1). O
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NONLOCAL ELLIPTIC PROBLEMS IN DIHEDRAL ANGLES 163

Remark 2.1. Formula (2.1) can be extended by continuity to the case u € E2(K), v; €
E?, . ,(K). Indeed, C§°(K \ {0}) is dense in E2(K) and C§°(K; \ {0}) is dense in E?  ,(Kj);
therefore, there exist sequences {u,}22; € C5°(K\{0}) and {v;q}o2; € C5°(K;\{0}) converging
to uw and v in E2(K) and E?_ ,(K;), respectively. Moreover, for the functions u, and v;, we
have Green’s formula (2.1). Passing to the limit as p, ¢ — 0o, we obtain Green’s formula for the
functions u and v (the passage to the limit is possible by the Cauchy-Bunyakovskii inequality
and Lemma 1.4).

2.2. By (-, *)gs (+, *)gs» (-, -)c we denote inner products in Ly (b1, b), La(b, b2), C, respec-
tively. The proof of the following theorem is similar to that of Theorem 2.1.

Theorem 2.2. For all U € C™®([by, by]), Vi € C®([by,b]), Vo € C®([b, ba]), and A € C we
have Green’s formula with parameter X:

d ~ , o~ dV;
S (250 -20.7) + 3Tl + X500 + s, -1/ )
] dSD Bj ,7 dSD gD:bj (C
~ d‘71 d‘72 k— ix1 de
+ | Ulpzp, — ——= — —1)*a,e Xk © — ©k)| o=
(o0 2L S S e,
- 42 -
= U,w=Vj— + ( s Vile= )
%:( dg? '’ ) Z dgo ot J|so bj c
dU ~ ~
+ | —— Valp=p — V1 =b> : (2.3
(-% T =Tl )

Remark 2.2. Formula (2.3) can be extended by continuity to the case U e W2(by,by), Vi €
W2(by,b), Vo € W2(b, ba) (see Remark 2.2 [11, Chap. 2]).
3. STATEMENT OF NONLOCAL ELLIPTIC TRANSMISSION PROBLEMS
3.1. Formula (2.1) generates the following problem conjugate to problem (1.6), (1.7):
Avi(y) —vi(y) = fiw), yeK;,  wily =9i(y), Yy <, (3.1)

ov ov (%k
6—57 o Zaka G b =y, yer (32)

U2”y _Ull'y = h1(y),

Problem (3.1), (3.2) is called a nonlocal transmission problem in the plane angle K .
Set
3/2 3/2—v
E fia(K ) = B2 5 (K) % HE /a+2 () % HE /(z+2
here and further, v = 0, 1. We also denote

a+2 @ E—a+2

Consider the bounded operator Mg : 2, 5(K) — €2, ,(K,7), acting by the formula

ov 61}
2 - Zaka 1 )‘7}
k

on
Here and further, v; is the restriction of v € 5_a+2(K) to K; and w = Av; for y € Kj.
(Note that we cannot assume w = Av for y € K, since the function v € £2, ,(K) may have a
“discontinuity” on -.)

Mico={w = v, vyl valy il
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164 P. L. GUREVICH

Lemma 3.1. For all g; € E3/a+2 (v5) and h, € E3/(12+2V( ), there ezists a function v € 2, ,(K)
satisfying conditions (3.2) and such that

oz, 0 < o Slallzre, )+ 5 Wl )
7 14

where ¢ > 0 is independent of g; and h,, .
Proof. By Lemma 3.1’ [6], there exist w; € B2, ,(K;) such that

wily, =95(Y), Y€, (3.3)

ij||E2_a+z(Kj) < k1‘|gj||Ei/a2+2(w)'

Repeating the proof of Lemma 3.1" [6], we construct a @, € E2_,,(K>) such that

—~ ow

w2|’Y:h1(y)7 8—722 +Zakxk any gk y)|’y7 yey, (35)
T _ 10V,
szupmm)SkQ(thuEw;Hm+‘h2+§kjakxk gty i/:m)) (3.6)

Let us introduce the functions (,(; € C§°(R), (j(¢) =1 for |b; —¢| < €/2, (;(p) =1 for
|bj — | >¢€ and ((¢) =1 for [b—¢| <e/2, ((¢ )— 1 for |b—¢| > . Here ¢ = min;{|b—b;|}/4.
The functions ¢, ¢; are multipliers in the spaces E2 ,(K;). Combining this with (3.3)—(3.6), we
see that the function v satisfies v = vy = (w; for y € Ky and v = vy = {owy + Wy for y € Ko,
satisfies the assumptions of the lemma. [OJ

3.2. Let
W2(by, by) = W2(by, b) @ W2(b, by).

As in Sec. 1 for problem (3.1), (3.2), consider the model operator function
M) : W2(by, ba) = WO[by, by] = La(by, by) x C2 x C2,

defined by the formula
M7 = {’W«o) (), () oty s Ta(@)los — T2 () s,

dp

A
p=b dgp

We (0 o)

o (—1)kdk —iA1n xx

p=b

Here V is the restriction of V € W2(by, by) to K, and W () = (d2/de*)Vi(y) for ¢ € (b1, b),
W () = (d2/dp?)Va(p) for ¢ € (b, by). Let us establish certain properties of the operator function

M()). In the Hilbert spaces W?(by, by) and WPO[by, by], we introduce the following equivalent
norms depending on the parameter A € C, || > 1:

IVIweos,62) = IV B2 by 00y + AV, ) 0)) 2

1/2
IEF, Gy B oy 0 = (\|F||L2(bl,62>+Z|A| G+ 3 A A, |2) .
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Lemma 3.2. For all X € C, the operator M()\) is Fredholm, inde(A) = 0; for any h € R,
there exists a qo > 1 such that for X € Jp 40 = {A € C: ImA = h, |Re)| > qo} the operator

M()) has a bounded inverse M=1(X): WO[by, by] — W2(b1, by) and
I Bl ) < ellBllwogos (3.7)
for all d WO [b1, ba], where ¢ > 0 is independent of A and 5; the operator function
MY : WOLby, o] — W2 (by, by)

is finitely meromorphic.

Proof. In the case a; =0, i.e., when there are no operators corresponding to nonlocal terms, we

denote M(A) by Mo()). Following the scheme developed by Agranovich and Vishik in [10], we
can show that there exist an 0 < e; < 7/2 and a ¢; > 1 such that for

ANE Qe .o ={N AN >aqu, |argA| < e JU{A: A > @1, |arg A — 7| <1}
there exists an inverse operator Ma L(\) for which we have the estimate
MG N @lIw2(6,62) < kil @lllwops, b (3.8)

for all & € WO [b1, ba], where k; > 0 is independent of A\ and &3

Let us introduce the operator M;(A) = Mo(A) + t(M(X) — Mo(N)), 0 < ¢ < 1. Let us prove
that for any h € R there exists a go > 0 such that for A € Jj, 4, and 0 <¢ <1 we have
kol M)V lllwo oy by < MV Iw2 o152y < FsllMe NV [lwore, s (3.9)

for all V € WQ(bl, bg) where ks, k3 >0 are 1ndependent of A\, t,and V.
Let M;(A)V = ®&. Then Mo(A)V =& + ¥, where

—AIn dV
= <o,o,o,o,t2(—1)k— A d;(@_ﬁok”g&:b)-
k

y (3.8), we have
IVIlw2 01 ,62) < Falll® 4 Tllhors, by (3.10)

Set ¢ = min;{|b — b;|}/4 and choose a g9 > g1 so that Jj, 40 C Q4 - Then, using inequali-
ties (1.3), (1.4), we obtain

- —Z n 1dV
I = |)‘|1/2 Anx dgpl (90—801)|go:b
dV dV ~
{H 1 +WH 1 }s a7l or o0
Wl(bl,b1+£/2) Lz(b17b1+6/2)

(3.11)

Suppose that g; is so large that in the domain Q., , Theorem 4.1 [10, Chap. 1] is valid. Then
using the Leibniz formula and the interpolation inequality (1.3), from inequality (3.11) and Theo-

rem 4.1 [10, Chap. 1], we obtain
d? ~
rc i )‘2) (¢1V1)
(dSDz La(by,b)

+ I Vi llwz e, ) + |A|3/2|‘71(90)|¢:b1) : (3.12)

I < koGPl o ppae2) < k( ; |A|3/2|ﬁ<so>|¢:bl)

(e
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166 P. L. GUREVICH

where (; the same as in the proof of Lemma 3.1. The estimate of
I = |\[Y2|Gge ™A 10X2 AV /d) (0 — 92)|pmb]
is similar to the estimates (3.11), (3.12):

\Kaﬁ‘A>”

Assuming that ¢g is sufficiently large, from (3.10), (3.12), (3.13) we obtain the second one of the
inequalities (3.9). The first one of the inequalities (3.9) is obvious. Using the standard method
of continuation with respect to the parameter ¢ (see the proof of Theorem 7.1 in [12, Chap. 2,

IQSks(

Y A I \AP/%%(@)\@:M). (3.13)

L2(b7b2)

Sec. 7]), inequality (3.9), and the existence of the inverse operator ./\/lo (A) for A € Q¢ ,q, 5 We

see that for A\ € Jj, 4, the operator M()) also has a bounded inverse satisfying inequality (3.7).
Using Theorem 16.4 [13] on the stability of the index of the Fredholm operator with respect to

compact perturbations, we can easily verify that the operator MV(A) is Fredholm for all A € C
and ind M(X) = 0. Hence from the existence of M~1()) for A € Jj, 4, and from Theorem 1 given
n [14], we find that the operator function M~1(\) is finitely meromorphic. [J

Using (3.10)—(3.13), we can carry out the proof of the following lemma, which is similar to that
of Lemma 2.2 [3].

Lemma 3.3. For any 0 < e < 1/max |Inx;|, there exists a ¢ > 1 such that the set
{AeC:|ImA| <eln|Re)|, |[Re)| > q}

does not contain any poles of the operator function Mv_l()\); for each pole Ao of the operator
function M~Y(X) there exists a § > 0 such that the set

{AeC:0< |ImA—Im)\| < d}
does not contain any poles of the operator function M‘l()\).

3.3. For the functions v;, consider the auxiliary system of two equations

Avi(y) = fiy),  yeEK;, (3.14)

with the boundary conditions and nonlocal transmission conditions (3.2). Let us introduce the

space
3/2 1/

/H—a—‘rQ( 77) —a+2 X HH—a+2 ’YJ X HH—a+2

We also denote H2,»(K) = @; H2 . »(K;).
By analogy with Theorem 2.1 from [3]|, Lemma 3.2 yields the following result.

Lemma 3.4. Suppose that the line InA = —a + 1 does not contain any poles of the operator
function M~Y(X). Then the nonlocal transmission problem (3.14), (3.2) has a unique solution
v € H2, o(K) for any right-hand side of {f,gj,h} € H% o 2(K,v) and the following estimate
is satisfied:

[ollz ) < cl{Fs 955 btz k)

where ¢ > 0 is independent of {f, gj, b} v(y) =v;(y), fly) = fj(y) for y e K;.

Lemma 3.4 will be needed in Sec. 4 to derive a priori estimates for the solutions of prob-
lem (3.1), (3.2).
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4. A PRIORI ESTIMATES FOR THE SOLUTIONS
OF NONLOCAL ELLIPTIC PROBLEMS

4.1. Let us introduce the set
F={z=(y,2):7>0, p=0b, z€ R"?},
The set I' is the support of nonlocal terms in problem (1.1), (1.2). We denote

QG ={z=(y,2):7>0,by<p<b, zcR" 2}
Q={r=(y,2):r>0,b<p<by, z€ R" 2},

Suppose that n; is the normal to I'; directed outside the domain €}; and n is the normal to I'
directed outside the domain Qs. Set dy = min{1, Xj_l}/Q, dy = 2max{1, Xj_l};

Q' =Q;n{z=(y,2): rdy P < <rods P |2 < 27P7LY,

QP =Qn{z=(y,2): md P <r<rydy?, |z| <2777},

where p=0,...,3; 0<r; <rsg.
Denote

2(qp) = @ W2(QF).

Suppose that V; is the restriction of V € W?(QF) to QI; .
Lemma 4.1. For all V € W?(Q°) and |\| > 1, the following inequality is valid:

Vw29 < C(Z 1AV w209y + Z IVile; llwar20;na0) + IValr = Vilrllwerzongo)

8V1

oV: _10V;
H 2 Z%X ! k gk Y,z )

W1/2(PNQo)

A IV ey + rAr|rvuL2mo>), (4.1)

where ¢ > 0 is independent of A and V .
Proof. Theorem 1 [15] yields the a priori estimate

[V Ilwz(@s) < ka1 (Z [AV; llw2(02) + Z 1Vilr; lwsre @, na2y + IValr — Valrllws/zona2)

H Vs 6V1

. HV|1L2<92>)- (42)

r rllw1/2(rnG2)

Let

W= Zak _laCka)(gk Y, )a

where (j, is the same as in the proof of Lemma 3.1. Obviously,
8Vk
W’FQQ Zakxk gk; Y, )’pr@?' (4.3)
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Using Theorem 5.1 [11, Chap. 2|, the Leibniz formula, and inequality (1.3), we obtain
HW’prﬁ? ”Wl/z(rmﬁf_) < ko Z HCka”WZ(Qi)
k

<ks > {IAVkl L) + IVielre sz o oy + I Vi llwz gy + NIVl 2o 9) -
k
(4.4)

From (4.2)—(4.4) we obtain inequality (4.1). O

Lemma 4.2. Suppose that v; € W2 (K \{0}) is a solution of the nonlocal transmission prob-
lem (3.14), (3.2) such that v € H° (K) and {f,g;,h,} € HO o o(K,y). Then v e H?, 5(K)
and

Iollsez ) < (LS 95 P Ml

where ¢ > 0 is independent of v.

(&) T vllEe, (x)), (4.5)

a+2 —a—+2

Proof. As in the proof of Lemma 3.2 [3], the proof of Lemma 4.2 follows from Lemma 3.1 and
the analog of Lemma 4.1 for n=2. 0O

4.2. Suppose that

KV = K;jn{rid; P 2° <r<mrdsy P27}, KM =Kn{rd; 2" <r<rydy " 2°},
where 0 <7y <rg; s>1; p=0,...,3.
Let

KPS @ W2 KPS

Suppose that v; is the restriction of v € WQ(K”S) to K°.
Lemma 4.3. Let s > 1. Suppose that v € W?(K?),

—0s s

Vily =0, 'y €y N K valy —v1ly =0, yeyNK®,
O0va 61}1 1 Ovg 0s
%7 kak— 'Y)l, =0, yeynK®™.

Then for |A| > 1 we have
22242 o]y e
< c(25<—a+2> 1805 — vyl aeory + A2 o o) + \A@S(—@Hvuh(ms)) . (46)
J
where ¢ > 0 is independent of v, A, and s.

Proof. As in the proof of Lemma 3.3 [3], Lemma 4.3 is proved by substituting the function
V(y,2) = e20:2y(y), § € R*2, |9| = 1, into inequality (4.1), by making the change of
variables v’ = 2%y, and by multiplying both sides of the resulting inequality by 25(-%) . O

Theorem 4.1. Suppose that v; € W2 (K, \ {0}) is a solution of problem (3.1), (3.2) such that
ve B (K) and {f,g;, hv} € €2 o(K,~). Then v e 2, ,(K) and

wa®) S5 950 b tlleo i) + I0llB0 (1) (4.7)

where ¢ > 0 is independent of v; v(y) =v,(y), fly) = f;(y) for y e K;.

]2
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Proof. 1) By Lemma 3.1, it suffices to consider the case {g;, h,} = 0. Suppose that r; = d;,
T9 = dg . Then

KPP =K;n{dy?-2°<r<dy ?-2°}, K" =Kn{d? 2°<r<dy? 2°},

where s > 1; p = 0,...,3. We also denote K;’O = K; N {r < d2}. Let us introduce the
functions ¢, 1 € C®(R), (r) =1 for r < dy, ¥(r) =0 for r > 2dy; ¢(r) = 1 for r < 2d3,

P(r) =0 for r > 3d3.
By Lemma 4.2, we have

[ollez,,, (xc20) < Ralldwllaz L) < kz(Z [A@vi) e, ;) + ||¢U||H0a(K)>~ (4.8)
J

Let us estimate [[A(¢v;)|| o, (x,)- Using the Leibniz formula and the constraints on the supports

of the functions ¢ and 1[1, we obtain

[A®@v)lme, ;) < 1AW;) = Yvillae o) + 1bvillme, ;)
< k(| Av; = vjllmo,,,(rc;) + ||¢Uj\|H1a+1(Kj))- (4.9)

Inequalities (4.8), (4.9) and the interpolation inequality (1.5) yield

lollez . cxeoo) < k4(2 Willes, ey + MM lolez, ey + |A|||v||Ega<K)>. (4.10)
J

2) By Lemma 4.3, for s > 1 we have

lollsz, oy < ks (Z Willgo.,cacoey + INH ollez, oy + |A|||v||an<Kos>>. (4.11)
J

Adding (4.10) and (4.11) for s > 1, in the case of a sufficiently large |A| we obtain (4.7). O
By analogy with Theorem 3.1 [3.1], from Lemmas 3.1, 3.4, and 4.3 we obtain the following result.

Theorem 4.2. Suppose that on the line In A = —a+1 there are no poles of the operator function
MTY(N). Then for v e €2, ,(K) we have the estimate
vllez . (k) < cllIMrvllgo (k) + 1VllLoxns)s (4.12)

a+2 a+2

where S = {y € R?: 0 < R} <r < Ry}; ¢ >0 is independent of v.
Conversely, if for all v € 2, ,(K) we have the estimate (4.12), then on the line In A = —a+1

there are mo poles of the operator function Mv_l(A).

It follows from Theorem 4.2 that Mg has a finite-dimensional kernel and a closed image. Note
that this assertion does not follow from the estimate (4.7) (valid even if there are poles of MV_I(A)
on the line ImX\ = —a + 1), since the embedding £2,,,(K) C E°,(K) is continuous, but not
compact.

In what follows, we shall establish the connection between the kernels of the operators My
and L3 (L} is the operator adjoint to Lx). To study the operator L}, we need an assertion
on the a priori estimates and smoothness of the solutions of an auxiliary problem. We shall state
this assertion in the following section.
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4.3. Consider the bounded operator

L: W(R?) — Ly(R?) x [[W?2(RY), LU = (AU, U|zy—0, Ulzy—0)-
J

Note that the problem corresponding to the operator L is artificial: this is neither a boundary-
value problem (since the solution U is sought in the whole space R?) nor a transmission problem
(since on the line {zo = 0} we are not given the conjugation conditions but rather the trace
of the function U, and in fact twice). However, in deriving a priori estimates for the solutions
of conjugate nonlocal problems, we encounter a problem of exactly such type (in the following
section), which can be explained by the specific character of the applied method consisting in the
“separation of nonlocal terms.”
Let us introduce the bounded operator

L*: LyR?) x [[W 2R » W2 (R?)

adjoint to £. The operator £* acts on {f, g;} € L2(R?) x I1; W—3/2(R) by the formula

(U, L{f,9;}) = (AU, f)r= + Z<U’w2=0a gj)re  forany U e W?(R?),

J

where (-, -)gz denotes the inner product in Ly(R?), (-, -)g:1 denotes the sesquilinear form on
the pair of spaces W3/2(R'), W—3/2(R!).
Denote R2 = {z € R*: z5 > 0}, R% = {z € R?: 25 < 0}. For integers | > 0, let us introduce
the space
WHR?) = WH(R2) & W(R2).
Lemma 4.4. For any fized integer | > 0, if

W—2+H(R?)  for 1< 2,

{f,g9;} € LQ(RZ) X Hw—3/2+l(R1)’ L{f, g;} € { W—Q“(RQ) for 1>2,

J

then f € WHR?) and

1wy < 0 ( 1E L7 g}z + [l ey + 3 ngHw—S/2+l(R1)> L @)

J

where
I _{ I - Hw—szL(RZ) for 1 <2,
oy =

|- w-2+1g2y  for 1>2,
and the ¢; > 0 are independent of {f,g;}.

Proof. The proof is carried out according to the scheme [11, Chap. 2] (see Theorems 4.1, 4.3 [11,
Chap. 2]).

Note that in contrast to model problems in the whole space (see [11, Chap. 2, Sec. 3]), in our
case the operator £* contains distributions with supports on the line {z3 = 0}. In this connection,
note that smoothness of the function f can fail to hold on the line {zy = 0}, even if L*{f, g;} is
infinitely smooth in R? . Moreover, Lemma 4.4 means that to increase smoothness of the function f
in R%r and R?Z | it is necessary to require additional smoothness not only for £*{f, g;}, but also
for the distributions g;. [0
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4.4. Now let us study the operator adjoint to L . For integers { > 0, by
(BL(K)",  (B(), and  (BFV2(y)

we denote the spaces adjoint to E'(K), EéH/Q(’yj), and Efl+1/2(’y) with respect to the inner
products in Ly(K), La(7;), and La(7y), respectively. Obviously, (E2(K))* = E° (K).

Set 4 ={y: ¢ =bj or p=bj+7}, y={y: ¢p=0bor ¢ =b+n}. Obviously, v; C4;, v C 7.
For integers [ > 0, by W%l(IW), W—1=1/2(%;), and W~=1/2(%) we denote the spaces adjoint to
WYK), W*1/2(3;), and W*1/2(%), respectively.

Let us introduce functions v, € C§°(R?) such that v,(y) = 1 for rds ¥ < r < rody *,
Yp(y) =0 for r < 2r1di’_p/3 and r > 3r2d§_p/2. Here 0 <7y <rg; p=0,...,3.

For g; € (E(ll+1/2(’yj))* , by 9,9; we denote the distribution W~=/2(4;) defined by the relation
(us,, ¥pgj)a, = (Ypus,, gj)y, for all us, € WHY2(8;). Here (-, -)5,, (-, -),, are sesquilinear
forms on the dual pairs W!T1/2(4;), W=I=1/2(3,) and E'TY/2(y;), E7'"1/2(y;), respectively.
Similarly, for g € (Ef;rl/2 (7))* we introduce the distribution v,g; € W==1/2(5).

For the operator Lx: E2(K) — E%(K, ) introduced in Sec. 1, consider the adjoint operator

Lic: (B(K, 7)) = (BEJ(K))*,  where (EJ(K,7))" = E?,(K) x H(E§/2(%))*-

The operator L} acts on {f, g;} € (E2(K,~))* for all u € E2(K) by the formula

(u, L3A S5 953) = (Au =, fr + ZWM +a;u(G5Y) ;5 Gi)vs-

J

Here (-, -)x denotes the inner product in Lp(K) and (-, -) and (-, -),, denote sesquilinear
forms on the corresponding dual pairs of spaces.
For integers [ > 0, set W!(K) = D, WH(K;).

Theorem 4.3. Suppose that {f, g;} € (EX(K,v))*, LiA{f,9;} € (E2(K))*. Then for any fized
integer 1 >0, if

WY R?)  for 1< 2,

* . K
Yol {f,9;} € { W™2HY(K)  for 1> 2,

then ¥s{f, g;} € WH(K) x [[; W—3/2(%;) and

[s{f, gj}HWl(K)xHj W=3/2%1(5;)
< cul(loLicAf gi}l-2e1 + [0{F s g5 = oy ey, w-s/203,)) (4.14)

where
| - HW;2+1(R2) for 1 <2,
| M2 = K
I+ lby—2tixy for 1>2,
and the ¢; > 0 are independent of {f,g;}.

Proof. 1) Let us introduce the operator
Lg: B (K) x [ LB ()" x (B2 ()"} = (EL(K))",
J
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acting on {f, g;, g} € B, (K) x T {(E/?(7;))* x (Ea/*(7))*} for all u € E2(K) by the formula

(w, LG{f, 95, 9;}) = (Au—u, flx + ZUUIW  9i)y; T (asulys g5)y )

For g; € (E; 3/2 (7)), we define the distribution g € (ES/ *(y))* by the relation

(U gjg>'y = (uy(G;), gj>’Yj for all wu, € Eg/z('y)'

Note that Q,Z)pgJ € W=3/2+1(%) if and only if v¥,(G;-)g; € W™3/2+!(4;); moreover, there exist
constants k1, k2 > 0 (depending on [) such that

k1 llp (G5 )95 lw-sr21 5,y < 1pgs lw—s/2105) < kallvp(G-)gsllw—sr2+i(5,- (4.15)
It follows from the definitions of the operators L} and L7 that
L5 95,95} = LiAS, 9;)- (4.16)

2) Suppose that €, ¢, (; denote the same as in the proof of Lemma 3.1. Let us introduce
functions ¢;, ¢, ¢;, ¢ € C§°(R) such that ;(p) = 1 for |bj—¢| < 3¢/2, {;(p) = 0 for |b;—¢| > 2¢;
((p) =1 for [b— | <3¢/2, ((p) =0 for [b— | > 2e; (j(p) =1 for [b; —p| <e/8, (;(p) =0
for |b; — | >¢e/4; ((¢p) =1 for |b—¢| <e/8, ((p) =0 for |b—¢|>ce/4.

The support of the function (; does not intersect v and +; for k # %; hence ¥,(igr = 0,
prig]g = 0; therefore,

(uv ‘C?j(d}pgz{fa gj, g]g})> = (I/JpCzAu - ¢p<iu7 f)K + ((¢p<lu)|% ; gi>’7¢'

Since the change of variables of rotation type takes the Laplace operator to the Laplace operator
and preserves the property of functions to belong to the corresponding Sobolev spaces, we can use
Theorem 4.3 [11, Chap. 2].} Hence it follows from relations (4.16) and the Leibniz formula that

Ui1C{f, 95,99 € WHE xH{W B (55) x W3/2H (3)},

11¢i{ £ 955 95 Hliw (K) < TT;{W =3/2+1 (3;) x W=3/2+1 ()}
< k3(lo LA S, g5} —240 + Wofz‘fHW;(Rz) + [[Pogillw-s/2(5,))- (4.17)

Hence, in particular, using (4.15), we find that pgY € W=3/2+!(4) and

1295 llw—s/241(5) < ka(Yo L3 AL, g} 241 + WoszHW 12y T [Yogillw-s/25,))- (4.18)

3) The support of the function ¢ does not intersect «;; hence 1¥,(;g; = 0; therefore,

(w, LE(WpC{f 97,97 ) = (WpCAu — pCu, fic + > ((WpCu)ly, g8+
k

'In Theorem 4.3 [11, Chap. 2], operators with variable coefficients were studied; this led to the imposition of
additional constraints on the supports of the functions under consideration. However, it is readily seen that in the
case of operators with constant coefficients these constraints can be removed.
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Thus, taking into account the properties of the supports of the functions %, and ¢, we can regard
the operator Lf, acting on ¥,({f, g;, g]g}, as adjoint to the problem

Au—u=fy), yeR?:  ulsy=a®), uls=20d{), ye?,

which (after the corresponding change of variables of rotation type) coincides up to the lowest
term u with the problem discussed in Sec. 4.3. As proved above, 1ngk € W3/2+1(4); therefore,
we can use Lemma 4.4. Then from relation (4.16) and the Leibniz formula we obtain

UsC{f, 95,97} € WK xH{W 3L (55) x W3/2H(4)1,

l3C{f, 9js g]g}”wl (K)x T {W —3/2+1(5; ) x W —3/2+1 ()}

Sk5<”¢2 *K{f’gj}”—Q-i-l+H¢2€f”Wll(R2)+Z”¢29§;”W—3/2+l(’y)>' (w19)
® i 4.19

Note that the space W!(K) is now relevant, i.e., the smoothness of the function f fails to hold on
the ray . This is due to the presence of nonlocal terms in the boundary condition (1.7) and, as
a consequence, in the adjoint operator L} .

From inequalities (4.19) and (4.18) we obtain

[s¢{f s 955 95 Hiwe () XTI, {W =3/2+1(5;) x W=3/2+1(3)}
< o (05l g}z + 100G s + 3 Wosslhw-os ). (420
J

4) The support of the function (o = 1 — ) . (; — ¢ does not intersect 7; and +y; therefore,
Pplog; =0, Pplogy = 0; therefore,

(u, L&WpCo{f, 9597 1) = (WpCoAu — ¥plou, fk

From Theorem 3.1 [11, Chap. 2|, relation (4.16), and the Leibniz formula, we obtain
¥16o{f, 95,97} € W(K) x H{W Y Gy) x W),

11Co{f 97+ 95 Hiw (x0y <1, tw-s/2 41 5y w3241 (53
< kr(10oL3AS s 93l -241 + oo lw— (m2)), (4.21)
where C_LO = 1—2151—5
Now the a priori estimate (4.14) follows from inequalities (4.17), (4.20), and (4.21). O

5. SOLVABILITY OF NONLOCAL ELLIPTIC BOUNDARY-VALUE PROBLEMS

In this section, we present the main results concerning the solvability of nonlocal problems in
plane and dihedral angles (Theorems 5.1-5.3).

5.1. First, we establish the connection between the kernels of the operators L} and Mg .

Lemma 5.1. The kernel ker(L3.) of the operator L3}, coincides with the set over which the el-
ement {v, (Ov;/On;)|,,} ranges whenever v € E2,,,(K) and v; € C*(K; \ {0}) satisfies prob-
lem (3.1), (3.2) for {f,gj,h,} =0. Here v(y) =v;(y), fly) = fi(y) for y e K;.
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Proof. 1) Suppose that v € £2, ,(K) and v; € C°( j_\{ }) satisfies problem (3.1), (3.2) for
{f,gj,h} =0. Then, by Theorem 2.1, for any u € C5°(K; \ {0}) we have

) =0 (5.1)

It follows from the continuity of the operator of embedding of £2, ,(K) in E°,(K) that
v € E? (K). In addition, by the Cauchy—Bunyakovskii inequality and Theorem 1.4, we have

o0v;
E (Au u, v] K +§ :<u|'YJ +a] (g]y)|’YJ an
J

j=1

(9 2 a 2
' (u’Yj ) ke ] ) <k / r2(a=3/2) |u7j |2 dry - / 2(—a+3/2) | 9Y5 dvy
anj Yi’ Vi Vi Yi an] Yi
ov; 2
<l g |
REALY O (v4) 6nj v 1/!127L2 (7)

for all u,, € Eg/Q(vj). Therefore, (Ov;/0n;)l,, € (E 3/2(7])) .
Thus 5

or .
{o.52] }era=TIE 00

n;l,. :

J J
and by the definition of the operator L}  and identity (5.1) we have
. 0v;
(5

But C5°(K \ {0}) is dense in E2(K); therefore, {v, (Ov;/0n;)|,,} € ker(L).
2) Now suppose that, conversely, {v,1;} € ker(L}). It follows from Theorem 4.3 that

}> =0 forall we CP(R\{0}).

v; € C®(K;\{0}), ¢; € C®(v;).

Then the definition of the operator L% implies that for any u € C§°(K \ {0})

(Au—u,v)g = =Y (uly, + au(G5y)ly; , ¥5)n,
i

which, together with Green’s formula (2.1), yields

8’1)1

8 87)2
> by +a u(Giy)ly s 5~ —¢-> +<UI A
- < . J J . n. . J y Y on 9

J J
Oou
S ICEURIIED B¢ IR I (%
i " Vi Yi
Setting suppu € K, from (5.2) we find that Av; —v; =0.
By Lemma 2.2 [11, Chap. 2], for any system of functions {©;,}2_; there exists a function
u € C§°(K \ {0}) in C§°(v;) such that

(9
j: X_l ’Uk 1)|>
Y

s valy — Ul‘v) : (5.2)
g g

ou
6’”]‘

ul,, = 0;1, = 02, u =0 in the neighborhood of 7.

Vi
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Hence, from (5.2) and the fact that Av; —v; = 0, we obtain

ov;
8—112 ) — ;=0 and vjly; = 0.
Similarly,
B 61}2 (%1 _ 1 87)k 1 -
v2|’y v1|'y - 07 872 ., an , gaka (9nk (gk y)|’Y =0.

Finally, the fact that v € E° (K), v; € C®°(K; \ {0}) and Theorem 4.1 imply that the
function v belongs to the space €2, ,(K). O

Theorem 5.1. The operator Lk is Fredholm if and only if there are no poles of the operator
function L7Y()\) on the line Im\ =a — 1.

Proof. Suppose that the operator Ly is Fredholm; then, by Theorem 7.1 [13], we have the
estimate (1.11) and hence, by Theorem 1.1, there are no poles of the operator function £71()) on
the line ImA=a—1.

Suppose that, conversely, the operator function Z‘l(k) has no poles on the line ImA =a — 1.
Then, by Theorem 1.1, the operator Lx has a finite-dimensional kernel and a closed image.

Let us prove that the kernel of the operator L}, is finite-dimensional. Green’s formula (2.3),
Remark 2.2 and Lemmas 1.5, 3.2 imply that \g is a pole of the operator Z_I(A) if and only if Ao is
a pole of the operator M ~1()\). Hence there are no poles of the operator function M ~1()\) on the
line Im A = —a+ 1. Therefore, by Theorem 4.2, the operator Mg has a finite-dimensional kernel
whose dimension coincides, by Lemma 5.1, with the dimension of the kernel of the operator £7,. U

5.2. Let us proceed with the study of the solvability of the nonlocal boundary-value problem (1.1),
(1.2) in a dihedral angle. As in the proof of Lemma 7.3 [6], we can reduce problem (1.1), (1.2)

to problem (1.6), (1.7) by using the Fourier transform with respect to z: U(y, z) — U(y,n) and
make the change of variables y’ = |n| - y, thus obtaining the following result.

Theorem 5.2. Suppose there are no poles of the operator function E‘l()\) on the line Im A =a—1
and dimker L = codimR(Lk) = 0. Then the operator Lq is an isomorphism.

Using Green’s formula for the nonlocal problem (1.1), (1.2) in the dihedral angle 2, which is
similar to Green’s formula (2.1) for problem (1.6), (1.7) in the plane angle K, and repeating the
arguments from [6, Sec. 8|, we obtain the following necessary condition for the Fredholm property
of the operator Lg.

Theorem 5.3. If the operator Lq is Fredholm, then the operator Li is an isomorphism.

It follows from Theorems 1.1, 5.2, and 5.3 that if the operator Lq is Fredholm, then it an
isomorphism.
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