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Abstract—In this paper, we consider nonlocal elliptic problems in dihedral and plane angles.
Such problems arise in the study of nonlocal problems in bounded domains for the case in
which the support of nonlocal terms intersects the boundary. We study the Fredholm and
unique solvability of this problem in the corresponding weighted spaces. Results are obtained
by means of a priori estimates of the solutions and of Green’s formula for nonlocal elliptic
problems.
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In the study of elliptic problems with nonlocal conditions, the case in which the support of
nonlocal terms intersects the boundary presents the greatest difficulty (see [1–4]). This leads to
the appearance of polynomial singularities of solutions near a certain set; therefore, nonlocal elliptic
problems are naturally studied in weighted spaces (see [5–7]). In deriving a priori estimates of
solutions and constructing the right-hand regularizer for nonlocal problems in a bounded domain,
we have to deal with model nonlocal boundary-value problems in dihedral angles (see [3, 4]). In
the present paper, we propose another approach to studying nonlocal problems based on the use of
Green’s formula and conjugate nonlocal problems. Such an approach allows us to remove additional
constraints (see [3]) on the corresponding “local” model problem and to obtain necessary and
sufficient conditions for the Fredholm solvability of nonlocal problems in plane angles and for the
unique solvability of such problems in dihedral angles. Simultaneously, certain conjugate problems
arise, such as nonlocal transmission problems studied in [8] (in the case of bounded domains with
smooth boundary) and in [9] (in the one-dimensional case).
In this paper, for clarity, we restrict ourselves to nonlocal perturbations of the Dirichlet problem

for the Laplace operator.

1. STATEMENT OF NONLOCAL ELLIPTIC BOUNDARY-VALUE PROBLEMS

1.1. Let us introduce the dihedral angle

Ω = {x = (y, z) : r > 0, b1 < ϕ < b2 , z ∈ Rn−2}

with the faces

Γj = {x = (y, z) : r > 0, ϕ = bj , z ∈ Rn−2}, j = 1, 2,

and the edge M = {x = (y, z) : y = 0, z ∈ Rn−2} . Here x = (y, z) ∈ Rn , y ∈ R2 , z ∈ Rn−2 ;
and r , ϕ are polar coordinates of the point y ; 0 < b1 < b2 < 2π . Consider the following nonlocal
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boundary-value problem in the dihedral angle Ω,

∆U(x) = f(x), x ∈ Ω, (1.1)

U(x)|Γj + ajU(Gjy, z)|Γj = gj(x), x ∈ Γj . (1.2)

Here and further, the index j assumes the values j = 1, 2; aj ∈ C ; Gj is the operator of rotation
by the angle ϕj followed by a dilatation of χj times in the plane {y} ; here b1 < b1 + ϕ1 =
b2 + ϕ2 = b < b2 , 0 < χj .

Let us introduce the space H l
a(Ω) as the completion of the set C

∞
0 (Ω \M) in the norm

‖w‖Hl
a(Ω)

=

( ∑
|α|≤l

∫
Ω

r2(a−l+|α|)|Dα
xw(x)|2 dx

)1/2
,

where C∞0 (Ω \M) is the set of functions infinitely differentiable in Ω with compact supports in

Ω \M ; , a ∈ R , l ≥ 0 is an integer. By H
l−1/2
a (Γ′) for l ≥ 1 we denote the space of traces on

Γ′ = {x = (y, z) : r > 0, ϕ = b′ , z ∈ Rn−2} , b1 ≤ b′ ≤ b2 , with the norm

‖ψ‖
H
l−1/2
a (Γ′) = inf ‖w‖Hl

a(Ω)
, w ∈ H l

a(Ω): w|Γ′ = ψ.

Let us introduce the bounded operator

LΩ : H2a(Ω)→ H0a(Ω, Γ) = H0a(Ω)×
∏
j

H3/2a (Γj), LΩU = {∆U , U(x)|Γj + ajU(Gjy, z)|Γj}.

By W l(Q) , where l ≥ 0 is an integer, denote the Sobolev space of generalized functions (distri-
butions) square-integrable together with all the generalized derivatives up to the lth-order inclusive
in Q , where Q ⊂ Rn is a domain with Lipschitzian boundary. By W l−1/2(Υ) , l ≥ 1, we denote
the space of traces on an (n − 1)-dimensional smooth manifold Υ ⊂ Q .

Lemma 1.1. For all w ∈W l(Q) and λ ∈ C , we have the estimate

|λ|l−s‖w‖W s(Q) ≤ c(‖w‖W l(Q) + |λ|l‖w‖L2(Q)). (1.3)

Here 0 < s < l ; c > 0 is independent of w , λ .

Lemma 1.2. For all w ∈W 1(Q) and λ ∈ C , we have the estimate

|λ|1/2‖w|Υ‖L2(Υ) ≤ c(‖w‖W 1(Q) + |λ|‖w‖L2(Q)). (1.4)

Here c > 0 is independent of w , λ .

The proof of Lemmas 1.1 and 1.2 is given in [10, Chap. 1]. Using Lemma 1.1 and the properties
of weighted spaces, the following result was obtained in [2, Sec. 1].

Lemma 1.3. For all w ∈ H l
a(Ω) and λ ∈ C , we have

|λ|s‖w‖Hl−s
a−s(Ω)

≤ c(‖w‖Hl
a(Ω)

+ |λ|l‖w‖H0
a−l(Ω)

). (1.5)

Here 0 < s < l ; c > 0 is independent of w , λ .
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1.2. Consider the following auxiliary nonlocal boundary-value problem in a plane angle:

∆u(y)− u(y) = f(y), y ∈ K, (1.6)

u(y)|γj + aju(Gjy)|γj = gj(y), y ∈ γj , (1.7)

where K = {y ∈ R2 : r > 0, 0 < b1 < ϕ < b2 < 2π} , γj = {y ∈ R2 : r > 0, ϕ = bj} .
As above, we introduce the function spaces H l

a(K) and H
l−1/2
a (γ′) , where

γ′ = {y ∈ R2 : r > 0, ϕ = b′}, b1 ≤ b′ ≤ b2.

Let us introduce the space El
a(K) as the completion of C

∞
0 (K \ {0}) in the norm

‖w‖Ela(K) =
( ∑
|α|≤l

∫
K

r2a(r2(|α|−l) + 1)|Dα
yw(y)|2 dy

)1/2
.

By E
l−1/2
a (γ′) , l ≥ 1, we denote the space of traces on the ray γ′ with the norm

‖ψ‖
E
l−1/2
a (γ′) = inf ‖w‖Ela(K) , w ∈ El

a(K) : w|γ′ = ψ.

For the constructive definitions of the spaces H
l−1/2
a (Γ′) , H l−1/2

a (γ′) , and E
l−1/2
a (γ′) equivalent

to the ones given above, see [6, Sec. 1]. Now we establish a property of weighted spaces that will
be needed later.

Lemma 1.4. For any ψ ∈ El−1/2
a (γ′) , we have the estimate(∫

γ′
r2(a−(l−1/2))|ψ|2 dγ

)1/2
≤ c‖ψ‖

E
l−1/2
a (γ′) ,

where c > 0 is independent of ψ .

Proof. It follows from [7, Chap. 6, Sec. 1.3] that the norm ‖u‖Ela(K) and the norm( l∑
k=0

∫ ∞
0

r2(a−(l−1/2))
l−k∑
j=0

(1 + r)2(l−k−j)‖(rDr)
ku(r, · )‖2W j (b1 ,b2)

dr

)1/2
(1.8)

are equivalent; here u(r, ϕ) is the function u(y) written in polar coordinates.
Let us choose a function u ∈ El

a(K) so that u|γ′ = ψ , ‖u‖Ela(K) ≤ 2‖ψ‖
E
l−1/2
a (γ′) . Since

u(r, ϕ)|ϕ=b′ = ψ(r) , by the continuity of the trace operation in Sobolev spaces we have

|ψ(r)|2 ≤ k1‖u(r, · )‖2W l(b1 ,b2)
.

Combining this with the equivalence of the norm ‖u‖Ela(K) and of the norms (1.8), we obtain∫
γ′
r2(a−(l−1/2))|ψ|2 dγ ≤ k1

∫ ∞
0

r2(a−(l−1/2))‖u(r, · )‖2W l(b1 ,b2)
dr ≤ k2‖u‖2Ela(K). (1.9)

The assertion of the lemma follows from (1.9) and the inequality ‖u‖Ela(K) ≤ 2‖ψ‖El−1/2a (γ′) . �

Let us introduce the bounded operator

LK : E
2
a(K)→ E0a(K, γ) = E0a(K)×

∏
j

E3/2a (γj), LKu = {∆u− u, u(y)|γj + aju(Gjy)|γj}.
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1.3. Following [3], we consider the model analytic operator function

L̃(λ) : W 2(b1 , b2)→W 0[b1 , b2] = L2(b1 , b2)× C2 ,
defined by the formula

L̃(λ)Ũ =

{
d2

dϕ2
Ũ(ϕ)− λ2Ũ(ϕ), Ũ(ϕ)|ϕ=bj + aje

iλ lnχj Ũ(ϕ+ ϕj)|ϕ=bj

}
.

In the Hilbert spaces W 2(b1 , b2) and W 0[b1 , b2] , let us introduce the equivalent norms depending
on the parameter λ ∈ C ( |λ| ≥ 1):

|||Ũ |||W 2(b1 ,b2) = (‖Ũ‖2W 2(b1 ,b2)
+ |λ|4‖Ũ‖2L2(b1 ,b2))1/2 ,

|||{F̃ , G̃j}|||W 0[b1 ,b2] =

(
‖F̃‖2L2(b1 ,b2) +

∑
j

|λ|3|G̃j |2
)1/2

.

Lemma 1.5. For all λ ∈ C , the operator L̃(λ) is Fredholm, ind L̃(λ) = 0; for any h ∈ R there
exists a q0 > 1 such that for λ ∈ Jh,q0 = {λ ∈ C : Imλ = h, |Reλ| ≥ q0} the operator L̃(λ) has
a bounded inverse L̃−1(λ) : W 0[b1 , b2]→W 2(b1 , b2) and

|||L̃−1(λ)Φ̃|||W 2(b1 ,b2) ≤ c|||Φ̃|||W 0[b1 ,b2] (1.10)

for all Φ̃ ∈W 0[b1 , b2] , where c > 0 is independent of λ and Φ̃ ; the operator function

L̃−1(λ) : W 0[b1 , b2]→W 2(b1 , b2)

is finitely meromorphic.

Lemma 1.6. For any 0 < ε < 1/max | lnχj | , there exists a q > 1 such that the set

{λ ∈ C : | Im λ| ≤ ε ln |Reλ|, |Reλ| ≥ q}
does not contain any poles of the operator function L̃−1(λ) ; for each pole λ0 of the operator

function L̃−1(λ) there exists a δ > 0 such that the set

{λ ∈ C : 0 < | Imλ− Imλ0| < δ}
does not contain any poles of the operator function L̃−1(λ) .
Lemmas 1.5 and 1.6 were proved in [3, Sec. 2]. In [3, Sec. 3], the following result was also

obtained.

Theorem 1.1. Suppose that on the line Imλ = a− 1 there are no poles of the operator function
L̃−1(λ) . Then for all u ∈ E2a(K) we have the estimate

‖u‖E2a(K) ≤ c(‖LKu‖E0a(K,γ) + ‖u‖L2(K∩S)), (1.11)

where S = {y ∈ R2 : 0 < R1 < r < R2} and c > 0 is independent of u .
If for all u ∈ E2a(K) we have the estimate (1.11), then on the line Imλ = a − 1 there are no

poles of the operator function L̃−1(λ) .
It follows from Theorem 1.1 that the kernel is finite-dimensional and the image of the opera-

tor LK is closed. To prove that the cokernel of the operator LK is finite-dimensional, let us derive
Green formulas for nonlocal problems and study problems conjugate to nonlocal boundary-value
problems with respect to Green’s formula.
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2. GREEN FORMULAS FOR NONLOCAL ELLIPTIC PROBLEMS

2.1. Let us introduce the set γ = {y ∈ R2 : r > 0, ϕ = b} (recall that b = bj + ϕj). The set γ is
the support of nonlocal terms in problem (1.6), (1.7). Let

K1 = {y ∈ R2 : r > 0, b1 < ϕ < b}, K2 = {y ∈ R2 : r > 0, b < ϕ < b2}.
Suppose nj is the normal to γj directed outside the domain Kj and n is the normal to γ directed
outside the domain K2 . By ( · , · )Kj , ( · , · )γj , ( · , · )γ denote inner products in L2(Kj) , L2(γj) ,
L2(γ) , respectively.

Theorem 2.1. For u ∈ C∞0 (K \ {0}) , vj ∈ C∞(Kj \ {0}) , we have Green’s formula∑
j

(∆u− u, vj)Kj +
∑
j

(
u|γj + aju(Gjy)|γj ,

∂vj
∂nj

∣∣∣∣
γj

)
γj

+

(
u|γ , ∂v2

∂n

∣∣∣∣
γ

−∂v1
∂n

∣∣∣∣
γ

−
∑
k

ākχ
−1
k

∂vk
∂nk

(G−1k y)|γ
)

γ

=
∑
j

(u,∆vj − vj)Kj +
∑
j

(
∂u

∂nj

∣∣∣∣
γj

, vj |γj
)

γj

+

(
∂u

∂n

∣∣∣∣
γ

, v2|γ − v1|γ
)

γ

, (2.1)

where G−1k is the operator of rotation by the angle −ϕk followed by a dilatation of 1/χk times in
the plane {y} ; here and further, the index k assumes the values k = 1, 2 .
Proof. Let us multiply ∆u−u by v̄j , integrate over Kj , and twice integrate by parts; as a result,
we obtain ∫

K1

(∆u− u) · v̄1 dx+
∫
γ1

u|γ1 ·
∂v̄1
∂n1

∣∣∣∣
γ1

dγ −
∫
γ

u|γ · ∂v̄1
∂n

∣∣∣∣
γ

dγ

=

∫
K1

u · (∆v̄1 − v̄1) dy +

∫
γ1

∂u

∂n1

∣∣∣∣
γ1

·v̄1|γ1 dγ −
∫
γ

∂u

∂n

∣∣∣∣
γ

·v̄1|γ dγ ,∫
K2

(∆u− u) · v̄2 dx+
∫
γ

u|γ · ∂v̄2
∂n

∣∣∣∣
γ

dγ +

∫
γ2

u

∣∣∣∣
γ2

· ∂v̄2
∂n2

∣∣∣∣
γ2

dγ

=

∫
K2

u · (∆v̄2 − v̄2) dy +

∫
γ

∂u

∂n

∣∣∣∣
γ

·v̄2|γ dγ +
∫
γ2

∂u

∂n2

∣∣∣∣
γ2

·v̄2|γ2 dγ.

Let us add the last two relations:∑
j

∫
Kj

(∆u− u) · v̄j dx+
∑
j

∫
γj

u|γj ·
∂v̄j
∂nj

∣∣∣∣
γj

dγ +

∫
γ

u|γ ·
(
∂v̄2
∂n

∣∣∣∣
γ

−∂v̄1
∂n

∣∣∣∣
γ

)
dγ

=
∑
j

∫
Kj

u · (∆v̄j − v̄j) dx+
∑
j

∫
γj

∂u

∂nj

∣∣∣∣
γj

·v̄j |γj dγ +
∫
γ

∂u

∂n

∣∣∣∣
γ

·(v̄2|γ − v̄1|γ) dγ. (2.2)

But ∫
γj

u|γj ·
∂v̄j
∂nj

∣∣∣∣
γj

dγ =

∫
γj

(u|γj + aju(Gjy)|γj ) ·
∂v̄j
∂nj

∣∣∣∣
γj

dγ −
∫
γj

aju(Gjy)|γj ·
∂v̄j
∂nj

∣∣∣∣
γj

dγ

=

∫
γj

(u|γj + aju(Gjy)|γj ) ·
∂v̄j
∂nj

∣∣∣∣
γj

dγ −
∫
γ

u|γ · ajχ
−1
j

∂v̄j
∂nj

(G−1j y)|γ dγ ,

where G−1j is the operator of rotation by the angle −ϕj and dilatation of 1/χj times in the plane

{y} . Combining this with (2.2), we obtain relation (2.1). �
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Remark 2.1. Formula (2.1) can be extended by continuity to the case u ∈ E2a(K) , vj ∈
E2−a+2(K) . Indeed, C

∞
0 (K \ {0}) is dense in E2a(K) and C∞0 (Kj \ {0}) is dense in E2−a+2(Kj) ;

therefore, there exist sequences {up}∞p=1 ⊂ C∞0 (K \{0}) and {vjq}∞q=1 ⊂ C∞0 (Kj \{0}) converging
to u and v in E2a(K) and E2−a+2(Kj) , respectively. Moreover, for the functions up and vjq we
have Green’s formula (2.1). Passing to the limit as p, q → ∞ , we obtain Green’s formula for the
functions u and v (the passage to the limit is possible by the Cauchy–Bunyakovskii inequality
and Lemma 1.4).

2.2. By ( · , · )β1 , ( · , · )β2 , ( · , · )C we denote inner products in L2(b1 , b) , L2(b, b2) , C , respec-
tively. The proof of the following theorem is similar to that of Theorem 2.1.

Theorem 2.2. For all Ũ ∈ C∞([b1 , b2]) , Ṽ1 ∈ C∞([b1 , b]) , Ṽ2 ∈ C∞([b, b2]) , and λ ∈ C we
have Green’s formula with parameter λ :∑

j

(
d2

dϕ2
Ũ − λ2Ũ , Ṽj

)
βj

+
∑
j

(
Ũ |ϕ=bj + aje

iλ lnχj Ũ(ϕ+ ϕj)|ϕ=bj , (−1)j
dṼj

dϕ

∣∣∣∣
ϕ=bj

)
C

+

(
Ũ |ϕ=b ,

dṼ1
dϕ

∣∣∣∣
ϕ=b

−dṼ2
dϕ

∣∣∣∣
ϕ=b

−
∑
k

(−1)kāke
−iλ̄ lnχk

dṼk

dϕ
(ϕ− ϕk)|ϕ=b

)
C

=
∑
j

(
Ũ ,

d2

dϕ2
Ṽj − λ

2
Ṽj

)
βj

+
∑
j

(
(−1)j dŨ

dϕ

∣∣∣∣
ϕ=bj

, Ṽj |ϕ=bj

)
C

+

(
−dŨ
dϕ

∣∣∣∣
ϕ=b

, Ṽ2|ϕ=b − Ṽ1|ϕ=b

)
C

. (2.3)

Remark 2.2. Formula (2.3) can be extended by continuity to the case Ũ ∈ W 2(b1 , b2) , Ṽ1 ∈
W 2(b1 , b) , Ṽ2 ∈W 2(b, b2) (see Remark 2.2 [11, Chap. 2]).

3. STATEMENT OF NONLOCAL ELLIPTIC TRANSMISSION PROBLEMS

3.1. Formula (2.1) generates the following problem conjugate to problem (1.6), (1.7):

∆vj(y)− vj(y) = fj(y), y ∈ Kj , vj |γj = gj(y), y ∈ γj , (3.1)

v2|γ − v1|γ = h1(y),
∂v2
∂n

∣∣∣∣
γ

−∂v1
∂n

∣∣∣∣
γ

−
∑
k

ākχ
−1
k

∂vk
∂nk

(G−1k y)|γ = h2(y), y ∈ γ. (3.2)

Problem (3.1), (3.2) is called a nonlocal transmission problem in the plane angle K .
Set

E0−a+2(K, γ) = E0−a+2(K)×
∏
j

E
3/2
−a+2(γj)×

∏
ν

E
3/2−ν
−a+2 (γ) ;

here and further, ν = 0, 1. We also denote

E2−a+2(K) =
⊕
j

E2−a+2(Kj).

Consider the bounded operator MK : E2−a+2(K)→ E0−a+2(K, γ) , acting by the formula

MKv =

{
w − v, vj |γj , v2|γ − v1|γ , ∂v2

∂n

∣∣∣∣
γ

−∂v1
∂n

∣∣∣∣
γ

−
∑
k

ākχ
−1
k

∂vk
∂nk

(G−1k y)|γ
}
.

Here and further, vj is the restriction of v ∈ E2−a+2(K) to Kj and w ≡ ∆vj for y ∈ Kj .

(Note that we cannot assume w ≡ ∆v for y ∈ K , since the function v ∈ E2−a+2(K) may have a
“discontinuity” on γ .)

MATHEMATICAL NOTES Vol. 72 No. 2 2002



164 P. L. GUREVICH

Lemma 3.1. For all gj ∈ E3/2−a+2(γj) and hν ∈ E3/2−ν
−a+2 (γ) , there exists a function v ∈ E2−a+2(K)

satisfying conditions (3.2) and such that

‖v‖E2−a+2(K) ≤ c

(∑
j

‖gj‖E3/2−a+2(γj) +
∑
ν

‖hν‖E3/2−ν−a+2 (γ)

)
,

where c > 0 is independent of gj and hν .

Proof. By Lemma 3.1′ [6], there exist wj ∈ E2−a+2(Kj) such that

wj |γj = gj(y), y ∈ γj , (3.3)

‖wj‖E2−a+2(Kj) ≤ k1‖gj‖E3/2−a+2(γj). (3.4)

Repeating the proof of Lemma 3.1′ [6], we construct a ŵ2 ∈ E2−a+2(K2) such that

ŵ2|γ = h1(y),
∂ŵ2
∂n

∣∣∣∣
γ

= h2(y) +
∑
k

ākχ
−1
k

∂wk

∂nk
(G−1k y)|γ , y ∈ γ , (3.5)

‖ŵ2‖E2−a+2(K2) ≤ k2

(
‖h1‖E3/2−a+2(γ) +

∥∥∥∥h2 +∑
k

ākχ
−1
k

∂vk
∂nk

(G−1k y)|γ
∥∥∥∥
E
1/2
−a+2(γ)

)
. (3.6)

Let us introduce the functions ζ , ζj ∈ C∞0 (R) , ζj(ϕ) = 1 for |bj − ϕ| < ε/2, ζj(ϕ) = 1 for
|bj −ϕ| > ε and ζ(ϕ) = 1 for |b−ϕ| < ε/2, ζ(ϕ) = 1 for |b−ϕ| > ε . Here ε = minj{|b− bj |}/4.
The functions ζ , ζj are multipliers in the spaces E

2−a+2(Kj) . Combining this with (3.3)–(3.6), we
see that the function v satisfies v = v1 = ζ1w1 for y ∈ K1 and v = v2 = ζ2w2 + ζŵ2 for y ∈ K2 ,
satisfies the assumptions of the lemma. �

3.2. Let
W2(b1 , b2) =W 2(b1 , b)⊕W 2(b, b2).

As in Sec. 1 for problem (3.1), (3.2), consider the model operator function

M̃(λ) : W2(b1 , b2)→W0[b1 , b2] = L2(b1 , b2)× C2 ×C2 ,
defined by the formula

M̃(λ)Ṽ =

{
W̃ (ϕ) − λ2Ṽ (ϕ), Ṽj(ϕ)|ϕ=bj , Ṽ2(ϕ)|ϕ=b − Ṽ1(ϕ)|ϕ=b ,

dṼ1
dϕ

∣∣∣∣
ϕ=b

−dṼ2
dϕ

∣∣∣∣
ϕ=b

−
∑
k

(−1)kāke
−iλ lnχk

dṼk

dϕ
(ϕ− ϕk)|ϕ=b

}
.

Here Ṽj is the restriction of Ṽ ∈ W2(b1 , b2) to Kj and W̃ (ϕ) ≡ (d2/dϕ2)Ṽ1(ϕ) for ϕ ∈ (b1 , b) ,
W̃ (ϕ) ≡ (d2/dϕ2)Ṽ2(ϕ) for ϕ ∈ (b, b2) . Let us establish certain properties of the operator function
M̃(λ) . In the Hilbert spaces W2(b1 , b2) and W0[b1 , b2] , we introduce the following equivalent
norms depending on the parameter λ ∈ C , |λ| ≥ 1:

|||Ṽ |||W2(b1 ,b2) = (‖Ṽ ‖2W2(b1 ,b2)
+ |λ|4‖Ṽ ‖2L2(b1 ,b2))1/2 ,

|||{F̃ , G̃j , H̃ν}|||W0[b1 ,b2] =

(
‖F̃‖2L2(b1 ,b2) +

∑
j

|λ|3|G̃j |2 +
∑
ν

|λ|3−2ν |H̃ν |2
)1/2

.
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Lemma 3.2. For all λ ∈ C , the operator M̃(λ) is Fredholm, indM̃(λ) = 0; for any h ∈ R ,
there exists a q0 > 1 such that for λ ∈ Jh,q0 = {λ ∈ C : Imλ = h , |Reλ| ≥ q0} the operator
M̃(λ) has a bounded inverse M̃−1(λ) : W0[b1 , b2]→W2(b1 , b2) and

|||M̃−1(λ)Φ̃|||W2(b1 ,b2) ≤ c|||Φ̃|||W0[b1 ,b2] (3.7)

for all Φ̃ ∈ W0[b1 , b2] , where c > 0 is independent of λ and Φ̃ ; the operator function

M̃−1(λ) : W0[b1 , b2]→W2(b1 , b2)
is finitely meromorphic.

Proof. In the case aj = 0, i.e., when there are no operators corresponding to nonlocal terms, we

denote M̃(λ) by M̃0(λ) . Following the scheme developed by Agranovich and Vishik in [10], we
can show that there exist an 0 < ε1 < π/2 and a q1 > 1 such that for

λ ∈ Qε1 ,q1 = {λ : |λ| ≥ q1 , | arg λ| ≤ ε1} ∪ {λ : |λ| ≥ q1 , | arg λ− π| ≤ ε1}
there exists an inverse operator M̃−1

0 (λ) for which we have the estimate

|||M̃−1
0 (λ)Φ̃|||W2(b1 ,b2) ≤ k1|||Φ̃|||W0[b1 ,b2] (3.8)

for all Φ̃ ∈ W0[b1 , b2] , where k1 > 0 is independent of λ and Φ̃ .

Let us introduce the operator M̃t(λ) = M̃0(λ) + t(M̃(λ) − M̃0(λ)) , 0 ≤ t ≤ 1. Let us prove
that for any h ∈ R there exists a q0 > 0 such that for λ ∈ Jh,q0 and 0 ≤ t ≤ 1 we have

k2|||M̃t(λ)Ṽ |||W0[b1 ,b2] ≤ |||Ṽ |||W2(b1 ,b2) ≤ k3|||M̃t(λ)Ṽ |||W0[b1 ,b2] (3.9)

for all Ṽ ∈ W2(b1 , b2) , where k2 , k3 > 0 are independent of λ , t , and V .

Let M̃t(λ)Ṽ = Φ̃. Then M̃0(λ)Ṽ = Φ̃ + Ψ̃ , where

Ψ̃ =

(
0, 0, 0, 0, t

∑
k

(−1)k āke
−iλ lnχk

dṼk

dϕ
(ϕ− ϕk)|ϕ=b

)
.

By (3.8), we have

|||Ṽ |||W2(b1 ,b2) ≤ k1|||Φ̃ + Ψ̃|||W0[b1 ,b2]. (3.10)

Set ε = minj{|b − bj |}/4 and choose a q0 ≥ q1 so that Jh,q0 ⊂ Qε1 ,q1 . Then, using inequali-
ties (1.3), (1.4), we obtain

I1 = |λ|1/2
∣∣∣∣ā1e−iλ lnχ1

dṼ1
dϕ

(ϕ− ϕ1)|ϕ=b

∣∣∣∣
≤ k4

{∥∥∥∥dṼ1dϕ

∥∥∥∥
W 1(b1 ,b1+ε/2)

+ |λ|
∥∥∥∥dṼ1dϕ

∥∥∥∥
L2(b1 ,b1+ε/2)

}
≤ k5|||Ṽ1|||W 2(b1 ,b1+ε/2).

(3.11)

Suppose that q1 is so large that in the domain Qε1 ,q1 Theorem 4.1 [10, Chap. 1] is valid. Then
using the Leibniz formula and the interpolation inequality (1.3), from inequality (3.11) and Theo-
rem 4.1 [10, Chap. 1], we obtain

I1 ≤ k5|||ζ1Ṽ1|||W 2(b1 ,b1+ε/2) ≤ k6

(∣∣∣∣∣∣∣∣∣∣∣∣( d2

dϕ2
− λ2

)
(ζ1Ṽ1)

∣∣∣∣∣∣∣∣∣∣∣∣
L2(b1 ,b)

+ |λ|3/2|Ṽ1(ϕ)|ϕ=b1

)
≤ k7

(∣∣∣∣∣∣∣∣∣∣∣∣( d2

dϕ2
− λ2

)
Ṽ1

∣∣∣∣∣∣∣∣∣∣∣∣
L2(b1 ,b)

+ |λ|−1|||Ṽ1|||W 2(b1 ,b) + |λ|3/2|Ṽ1(ϕ)|ϕ=b1

)
, (3.12)
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where ζ1 the same as in the proof of Lemma 3.1. The estimate of

I2 = |λ|1/2
∣∣ā2e−iλ lnχ2(dṼ2/dϕ)(ϕ − ϕ2)|ϕ=b

∣∣
is similar to the estimates (3.11), (3.12):

I2 ≤ k8

(∣∣∣∣∣∣∣∣∣∣∣∣( d2

dϕ2
− λ2

)
Ṽ2

∣∣∣∣∣∣∣∣∣∣∣∣
L2(b,b2)

+ |λ|−1|||Ṽ2|||W 2(b,b2) + |λ|3/2|Ṽ2(ϕ)|ϕ=b2

)
. (3.13)

Assuming that q0 is sufficiently large, from (3.10), (3.12), (3.13) we obtain the second one of the
inequalities (3.9). The first one of the inequalities (3.9) is obvious. Using the standard method
of continuation with respect to the parameter t (see the proof of Theorem 7.1 in [12, Chap. 2,

Sec. 7]), inequality (3.9), and the existence of the inverse operator M̃−1
0 (λ) for λ ∈ Qε1 ,q1 , we

see that for λ ∈ Jh,q0 the operator M̃(λ) also has a bounded inverse satisfying inequality (3.7).
Using Theorem 16.4 [13] on the stability of the index of the Fredholm operator with respect to

compact perturbations, we can easily verify that the operator M̃(λ) is Fredholm for all λ ∈ C
and indM̃(λ) = 0. Hence from the existence of M̃−1(λ) for λ ∈ Jh,q0 and from Theorem 1 given

in [14], we find that the operator function M̃−1(λ) is finitely meromorphic. �
Using (3.10)–(3.13), we can carry out the proof of the following lemma, which is similar to that

of Lemma 2.2 [3].

Lemma 3.3. For any 0 < ε < 1/max | lnχj | , there exists a q > 1 such that the set

{λ ∈ C : | Im λ| ≤ ε ln |Reλ|, |Reλ| ≥ q}
does not contain any poles of the operator function M̃−1(λ) ; for each pole λ0 of the operator

function M̃−1(λ) there exists a δ > 0 such that the set

{λ ∈ C : 0 < | Imλ− Imλ0| < δ}
does not contain any poles of the operator function M̃−1(λ) .

3.3. For the functions vj , consider the auxiliary system of two equations

∆vj(y) = f̂j(y), y ∈ Kj , (3.14)

with the boundary conditions and nonlocal transmission conditions (3.2). Let us introduce the
space

H0−a+2(K, γ) = H0−a+2(K)×
∏
j

H
3/2
−a+2(γj)×

∏
ν

H
3/2−ν
−a+2 (γ).

We also denote H2−a+2(K) =
⊕

j H
2−a+2(Kj) .

By analogy with Theorem 2.1 from [3], Lemma 3.2 yields the following result.

Lemma 3.4. Suppose that the line Imλ = −a + 1 does not contain any poles of the operator
function M̃−1(λ) . Then the nonlocal transmission problem (3.14), (3.2) has a unique solution

v ∈ H2−a+2(K) for any right-hand side of {f̂ , gj , hν} ∈ H0−a+2(K, γ) and the following estimate
is satisfied :

‖v‖H2−a+2(K) ≤ c‖{f̂ , gj , hν}‖H0−a+2(K,γ) ,

where c > 0 is independent of {f̂ , gj , hν} ; v(y) ≡ vj(y) , f̂(y) ≡ f̂j(y) for y ∈ Kj .

Lemma 3.4 will be needed in Sec. 4 to derive a priori estimates for the solutions of prob-
lem (3.1), (3.2).
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4. A PRIORI ESTIMATES FOR THE SOLUTIONS
OF NONLOCAL ELLIPTIC PROBLEMS

4.1. Let us introduce the set

Γ = {x = (y, z) : r > 0, ϕ = b, z ∈ Rn−2}.
The set Γ is the support of nonlocal terms in problem (1.1), (1.2). We denote

Ω1 = {x = (y, z) : r > 0, b1 < ϕ < b, z ∈ Rn−2},
Ω2 = {x = (y, z) : r > 0, b < ϕ < b2 , z ∈ Rn−2}.

Suppose that nj is the normal to Γj directed outside the domain Ωj and n is the normal to Γ

directed outside the domain Ω2 . Set d1 = min{1, χ−1j }/2, d2 = 2max{1, χ−1j } ;

Ωp
j = Ωj ∩ {x = (y, z) : r1d3−p

1 < r < r2d
3−p
2 , |z| < 2−p−1},

Ωp = Ω ∩ {x = (y, z) : r1d3−p
1 < r < r2d

3−p
2 , |z| < 2−p−1},

where p = 0, . . . , 3; 0 < r1 < r2 .
Denote

W2(Ωp) =
⊕
j

W 2(Ωp
j ).

Suppose that Vj is the restriction of V ∈ W2(Ωp) to Ωp
j .

Lemma 4.1. For all V ∈ W2(Ω0) and |λ| ≥ 1 , the following inequality is valid :

‖V ‖W2(Ω3) ≤ c

(∑
j

‖∆Vj‖W 2(Ω0j )
+
∑
j

‖Vj |Γj‖W 3/2(Γj∩Ω̄0) + ‖V2|Γ − V1|Γ‖W 3/2(Γ∩Ω̄0)

+

∥∥∥∥∂V2∂n

∣∣∣∣
Γ

− ∂V1
∂n

∣∣∣∣
Γ

−
∑
k

ākχ
−1
k

∂Vk

∂nk
(G−1k y, z)|Γ

∥∥∥∥
W 1/2(Γ∩Ω̄0)

+ |λ|−1‖V ‖W2(Ω0) + |λ|‖V ‖L2(Ω0)
)
, (4.1)

where c > 0 is independent of λ and V .

Proof. Theorem 1 [15] yields the a priori estimate

‖V ‖W2(Ω3) ≤ k1

(∑
j

‖∆Vj‖W 2(Ω2j )
+
∑
j

‖Vj |Γj‖W 3/2(Γj∩Ω̄2) + ‖V2|Γ − V1|Γ‖W 3/2(Γ∩Ω̄2)

+

∥∥∥∥∂V2∂n

∣∣∣∣
Γ

−∂V1
∂n

∣∣∣∣
Γ

∥∥∥∥
W 1/2(Γ∩Ω̄2)

+ ‖V ‖L2(Ω2)
)
. (4.2)

Let

W =
∑
k

ākχ
−1
k

∂(ζkVk)

∂nk
(G−1k y, z),

where ζk is the same as in the proof of Lemma 3.1. Obviously,

W |
Γ∩Ω2 =

∑
k

ākχ
−1
k

∂Vk

∂nk
(G−1k y, z)|

Γ∩Ω2 . (4.3)
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Using Theorem 5.1 [11, Chap. 2], the Leibniz formula, and inequality (1.3), we obtain

‖W |
Γ∩Ω2‖W 1/2(Γ∩Ω2j ) ≤ k2

∑
k

‖ζkVk‖W 2(Ω1k)

≤ k3
∑
k

{‖∆Vk‖L2(Ω0k) + ‖Vk|Γk‖W 3/2(Γk∩Ω0k) + |λ|
−1‖Vk‖W 2(Ω0k)

+ |λ|‖Vk‖L2(Ω0k)}.
(4.4)

From (4.2)–(4.4) we obtain inequality (4.1). �
Lemma 4.2. Suppose that vj ∈ W 2

loc(Kj \ {0}) is a solution of the nonlocal transmission prob-
lem (3.14), (3.2) such that v ∈ H0−a(K) and {f̂ , gj , hν} ∈ H0−a+2(K, γ) . Then v ∈ H2−a+2(K)
and

‖v‖H2−a+2(K) ≤ c(‖{f̂ , gj , hν}‖H0−a+2(K,γ) + ‖v‖H0
−a(K)

), (4.5)

where c > 0 is independent of v .

Proof. As in the proof of Lemma 3.2 [3], the proof of Lemma 4.2 follows from Lemma 3.1 and
the analog of Lemma 4.1 for n = 2. �

4.2. Suppose that

Kps
j = Kj ∩ {r1d3−p

1 · 2s < r < r2d
3−p
2 · 2s}, Kps = K ∩ {r1d3−p

1 · 2s < r < r2d
3−p
2 · 2s},

where 0 < r1 < r2 ; s ≥ 1; p = 0, . . . , 3.
Let

W2(Kps) =
⊕
j

W 2(Kps
j ).

Suppose that vj is the restriction of v ∈ W2(Kps) to Kps
j .

Lemma 4.3. Let s ≥ 1. Suppose that v ∈ W2(K0s) ,

vj |γj = 0, y ∈ γj ∩K0sj , v2|γ − v1|γ = 0, y ∈ γ ∩K0s ,
∂v2
∂n

∣∣∣∣
γ

−∂v1
∂n

∣∣∣∣
γ

−
∑
k

ākχ
−1
k

∂vk
∂nk

(G−1k y)|γ = 0, y ∈ γ ∩K0s.

Then for |λ| ≥ 1 we have

2s(−a+2)‖v‖W2(K3s)

≤ c

(
2s(−a+2)

∑
j

‖∆vj − vj‖L2(K0s
j )
+ |λ|−12s(−a+2)‖v‖W2(K0s) + |λ|2s(−a)‖v‖L2(K0s)

)
, (4.6)

where c > 0 is independent of v , λ , and s .

Proof. As in the proof of Lemma 3.3 [3], Lemma 4.3 is proved by substituting the function
V (y, z) = ei·2

s(θ,z)v(y) , θ ∈ Rn−2 , |θ| = 1, into inequality (4.1), by making the change of
variables y′ = 2sy , and by multiplying both sides of the resulting inequality by 2s(−a) . �
Theorem 4.1. Suppose that vj ∈ W 2

loc(Kj \ {0}) is a solution of problem (3.1), (3.2) such that
v ∈ E0−a(K) and {f , gj , hν} ∈ E0−a+2(K, γ) . Then v ∈ E2−a+2(K) and

‖v‖E2−a+2(K) ≤ c(‖{f , gj , hν}‖E0−a+2(K,γ) + ‖v‖E0−a(K)), (4.7)

where c > 0 is independent of v ; v(y) ≡ vj(y) , f(y) ≡ fj(y) for y ∈ Kj .
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Proof. 1) By Lemma 3.1, it suffices to consider the case {gj , hν} = 0. Suppose that r1 = d1 ,
r2 = d2 . Then

Kps
j = Kj ∩ {d4−p

1 · 2s < r < d4−p
2 · 2s}, Kps = K ∩ {d4−p

1 · 2s < r < d4−p
2 · 2s},

where s ≥ 1; p = 0, . . . , 3. We also denote K30j = Kj ∩ {r < d2} . Let us introduce the

functions ψ , ψ̂ ∈ C∞(R) , ψ(r) = 1 for r < d2 , ψ(r) = 0 for r > 2d2 ; ψ̂(r) = 1 for r < 2d22 ,

ψ̂(r) = 0 for r > 3d22 .
By Lemma 4.2, we have

‖v‖E2−a+2(K30
j )
≤ k1‖ψv‖H2−a+2(K) ≤ k2

(∑
j

‖∆(ψvj)‖H0
−a+2(Kj)

+ ‖ψv‖H0
−a(K)

)
. (4.8)

Let us estimate ‖∆(ψvj)‖H0
−a+2(Kj)

. Using the Leibniz formula and the constraints on the supports

of the functions ψ and ψ̂ , we obtain

‖∆(ψvj)‖H0
−a+2(Kj)

≤ ‖∆(ψvj)− ψvj‖H0
−a+2(Kj)

+ ‖ψvj‖H0
−a+2(Kj)

≤ k3(‖∆vj − vj‖E0−a+2(Kj) + ‖ψ̂vj‖H1
−a+1(Kj)

). (4.9)

Inequalities (4.8), (4.9) and the interpolation inequality (1.5) yield

‖v‖E2−a+2(K30) ≤ k4

(∑
j

‖fj‖E0−a+2(Kj) + |λ|−1‖v‖E2−a+2(K) + |λ|‖v‖E0−a(K)
)
. (4.10)

2) By Lemma 4.3, for s ≥ 1 we have

‖v‖E2−a+2(K3s) ≤ k5

(∑
j

‖fj‖E0−a+2(K0s
j )
+ |λ|−1‖v‖E2−a+2(K0s) + |λ|‖v‖E0−a(K0s)

)
. (4.11)

Adding (4.10) and (4.11) for s ≥ 1, in the case of a sufficiently large |λ| we obtain (4.7). �
By analogy with Theorem 3.1 [3.1], from Lemmas 3.1, 3.4, and 4.3 we obtain the following result.

Theorem 4.2. Suppose that on the line Imλ = −a+1 there are no poles of the operator function
M̃−1(λ) . Then for v ∈ E2−a+2(K) we have the estimate

‖v‖E2−a+2(K) ≤ c(‖MKv‖E0−a+2(K,γ) + ‖v‖L2(K∩S′)), (4.12)

where S′ = {y ∈ R2 : 0 < R′1 < r < R′2} ; c > 0 is independent of v .
Conversely, if for all v ∈ E2−a+2(K) we have the estimate (4.12), then on the line Imλ = −a+1

there are no poles of the operator function M̃−1(λ) .

It follows from Theorem 4.2 that MK has a finite-dimensional kernel and a closed image. Note

that this assertion does not follow from the estimate (4.7) (valid even if there are poles of M̃−1(λ)
on the line Imλ = −a + 1), since the embedding E2−a+2(K) ⊂ E0−a(K) is continuous, but not
compact.
In what follows, we shall establish the connection between the kernels of the operators MK

and L∗K (L∗K is the operator adjoint to LK). To study the operator L∗K , we need an assertion
on the a priori estimates and smoothness of the solutions of an auxiliary problem. We shall state
this assertion in the following section.
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4.3. Consider the bounded operator

L : W 2(R2)→ L2(R
2)×

∏
j

W 3/2(R1), LU = (∆U , U |x2=0 , U |x2=0).

Note that the problem corresponding to the operator L is artificial: this is neither a boundary-
value problem (since the solution U is sought in the whole space R2) nor a transmission problem
(since on the line {x2 = 0} we are not given the conjugation conditions but rather the trace
of the function U , and in fact twice). However, in deriving a priori estimates for the solutions
of conjugate nonlocal problems, we encounter a problem of exactly such type (in the following
section), which can be explained by the specific character of the applied method consisting in the
“separation of nonlocal terms.”
Let us introduce the bounded operator

L∗ : L2(R2)×
∏
j

W−3/2(R1)→ W−2(R2)

adjoint to L . The operator L∗ acts on {f , gj} ∈ L2(R2)×
∏

j W
−3/2(R1) by the formula

〈U , L∗{f , gj}〉 = (∆U , f)R2 +
∑
j

〈U |x2=0 , gj〉R1 for any U ∈W 2(R2),

where ( · , · )R2 denotes the inner product in L2(R
2) , 〈 · , · 〉R1 denotes the sesquilinear form on

the pair of spaces W 3/2(R1) , W−3/2(R1) .
Denote R2+ = {x ∈ R2 : x2 > 0} , R2− = {x ∈ R2 : x2 < 0} . For integers l ≥ 0, let us introduce

the space
W l(R2) =W l(R2+)⊕W l(R2−).

Lemma 4.4. For any fixed integer l ≥ 0 , if

{f , gj} ∈ L2(R2)×
∏
j

W−3/2+l(R1), L∗{f , gj} ∈
{
W−2+l(R2) for l < 2,

W−2+l(R2) for l ≥ 2,

then f ∈ W l(R2) and

‖f‖Wl(R2) ≤ cl

(
‖L∗{f , gj}‖−2+l + ‖f‖W−1(R2) +

∑
j

‖gj‖W−3/2+l(R1)

)
, (4.13)

where

‖ · ‖−2+l =

{ ‖ · ‖W−2+l(R2) for l < 2,

‖ · ‖W−2+l(R2) for l ≥ 2,
and the cl > 0 are independent of {f , gj} .
Proof. The proof is carried out according to the scheme [11, Chap. 2] (see Theorems 4.1, 4.3 [11,
Chap. 2]).
Note that in contrast to model problems in the whole space (see [11, Chap. 2, Sec. 3]), in our

case the operator L∗ contains distributions with supports on the line {x2 = 0} . In this connection,
note that smoothness of the function f can fail to hold on the line {x2 = 0} , even if L∗{f , gj} is
infinitely smooth in R2 . Moreover, Lemma 4.4 means that to increase smoothness of the function f
in R2+ and R2− , it is necessary to require additional smoothness not only for L∗{f , gj} , but also
for the distributions gj . �
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4.4. Now let us study the operator adjoint to LK . For integers l ≥ 0, by

(El
a(K))

∗ , (El+1/2
a (γj))

∗ , and (El+1/2
a (γ))∗

we denote the spaces adjoint to El
a(K) , E

l+1/2
a (γj) , and E

l+1/2
a (γ) with respect to the inner

products in L2(K) , L2(γj) , and L2(γ) , respectively. Obviously, (E
0
a(K))

∗ = E0−a(K) .
Set γ̂j = {y : ϕ = bj or ϕ = bj +π} , γ̂ = {y : ϕ = b or ϕ = b+π} . Obviously, γj ⊂ γ̂j , γ ⊂ γ̂ .

For integers l ≥ 0, by W−l

K
(R2) , W−l−1/2(γ̂j) , and W−l−1/2(γ̂) we denote the spaces adjoint to

W l(K) , W l+1/2(γ̂j) , and W l+1/2(γ̂) , respectively.

Let us introduce functions ψp ∈ C∞0 (R2) such that ψp(y) = 1 for r1d
3−p
1 < r < r2d

3−p
2 ,

ψp(y) = 0 for r < 2r1d
3−p
1 /3 and r > 3r2d

3−p
2 /2. Here 0 < r1 < r2 ; p = 0, . . . , 3.

For gj ∈ (El+1/2
a (γj))

∗ , by ψpgj we denote the distribution W−l−1/2(γ̂j) defined by the relation
〈uγ̂j , ψpgj〉γ̂j = 〈ψpuγ̂j , gj〉γj for all uγ̂j ∈ W l+1/2(γ̂j) . Here 〈 · , · 〉γ̂j , 〈 · , · 〉γj are sesquilinear
forms on the dual pairs W l+1/2(γ̂j) , W

−l−1/2(γ̂j) and El+1/2(γj) , E
−l−1/2(γj) , respectively.

Similarly, for g ∈ (El+1/2
a (γ))∗ we introduce the distribution ψpgj ∈W−l−1/2(γ̂) .

For the operator LK : E
2
a(K)→ E0a(K, γ) introduced in Sec. 1, consider the adjoint operator

L∗K : (E0a(K, γ))∗ → (E2a(K))
∗ , where (E0a(K, γ))∗ = E0−a(K)×

∏
j

(E3/2a (γj))
∗.

The operator L∗K acts on {f , gj} ∈ (E0a(K, γ))∗ for all u ∈ E2a(K) by the formula

〈u, L∗K{f , gj}〉 = (∆u− u, f)K +
∑
j

〈u|γj + aju(Gjy)|γj , gj〉γj .

Here ( · , · )K denotes the inner product in L2(K) and 〈 · , · 〉 and 〈 · , · 〉γj denote sesquilinear
forms on the corresponding dual pairs of spaces.
For integers l ≥ 0, set W l(K) =

⊕
j W

l(Kj) .

Theorem 4.3. Suppose that {f , gj} ∈ (E0a(K, γ))∗ , L∗K{f , gj} ∈ (E2a(K))∗ . Then for any fixed
integer l ≥ 0 , if

ψ0L∗K{f , gj} ∈
{
W−2+l

K
(R2) for l < 2,

W−2+l(K) for l ≥ 2,
then ψ3{f , gj} ∈ W l(K)×∏j W

−3/2+l(γ̂j) and

‖ψ3{f , gj}‖Wl(K)×∏j W−3/2+l(γ̂j)

≤ cl(‖ψ0L∗K{f , gj}‖−2+l + ‖ψ0{f , gj}‖W−1
K
(R2)×∏j W−5/2(γ̂j)), (4.14)

where

‖ · ‖−2+l =

{ ‖ · ‖W−2+l
K

(R2) for l < 2,

‖ · ‖W−2+l(K) for l ≥ 2,
and the cl > 0 are independent of {f , gj} .
Proof. 1) Let us introduce the operator

L∗G : E0−a(K)×
∏
j

{(E3/2a (γj))
∗ × (E3/2a (γ))∗} → (E2a(K))

∗ ,
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acting on {f , gj , g′j} ∈ E0−a(K)×
∏

j{(E3/2a (γj))
∗× (E3/2a (γ))∗} for all u ∈ E2a(K) by the formula

〈u, L∗G{f , gj , g′j}〉 = (∆u− u, f)K +
∑
j

{〈u|γj , gj〉γj + 〈aju|γ , g′j〉γ}.

For gj ∈ (E3/2a (γj))
∗ , we define the distribution gGj ∈ (E3/2a (γ))∗ by the relation

〈uγ , g
G
j 〉γ = 〈uγ(Gj ·), gj〉γj for all uγ ∈ E3/2a (γ).

Note that ψpg
G
j ∈ W−3/2+l(γ̂) if and only if ψp(Gj ·)gj ∈ W−3/2+l(γ̂j) ; moreover, there exist

constants k1 , k2 > 0 (depending on l) such that

k1‖ψp(Gj ·)gj‖W−3/2+l(γ̂j) ≤ ‖ψpg
G
j ‖W−3/2+l(γ̂) ≤ k2‖ψp(Gj ·)gj‖W−3/2+l(γ̂j). (4.15)

It follows from the definitions of the operators L∗K and L∗G that

L∗G{f , gj , gGj } = L∗K{f , gj}. (4.16)

2) Suppose that ε , ζ , ζj denote the same as in the proof of Lemma 3.1. Let us introduce

functions ζ̂j , ζ̂ , ζ̄j , ζ̄ ∈ C∞0 (R) such that ζ̂j(ϕ) = 1 for |bj−ϕ| < 3ε/2, ζ̂j(ϕ) = 0 for |bj−ϕ| > 2ε ;

ζ̂(ϕ) = 1 for |b − ϕ| < 3ε/2, ζ̂(ϕ) = 0 for |b− ϕ| > 2ε ; ζ̄j(ϕ) = 1 for |bj − ϕ| < ε/8, ζ̄j(ϕ) = 0
for |bj − ϕ| > ε/4; ζ̄(ϕ) = 1 for |b− ϕ| < ε/8, ζ̄(ϕ) = 0 for |b− ϕ| > ε/4.
The support of the function ζi does not intersect γ and γk for k �= i ; hence ψpζigk = 0,

ψpζig
G
j = 0; therefore,

〈u, L∗G(ψpζi{f , gj , gGj })〉 = (ψpζi∆u− ψpζiu, f)K + 〈(ψpζiu)|γi , gi〉γi .

Since the change of variables of rotation type takes the Laplace operator to the Laplace operator
and preserves the property of functions to belong to the corresponding Sobolev spaces, we can use
Theorem 4.3 [11, Chap. 2].1 Hence it follows from relations (4.16) and the Leibniz formula that

ψ1ζi{f , gj , gGj } ∈W l(K)×
∏
j

{W−3/2+l(γ̂j)×W−3/2+l(γ̂)},

‖ψ1ζi{f , gj , gGj }‖W l(K)×∏j{W−3/2+l(γ̂j)×W−3/2+l(γ̂)}

≤ k3(‖ψ0L∗K{f , gj}‖−2+l + ‖ψ0ζ̂if‖W−1
K
(R2) + ‖ψ0gi‖W−5/2(γ̂i)). (4.17)

Hence, in particular, using (4.15), we find that ψ2g
G
i ∈W−3/2+l(γ̂) and

‖ψ2gGi ‖W−3/2+l(γ̂) ≤ k4(‖ψ0L∗K{f , gj}‖−2+l + ‖ψ0ζ̂if‖W−1
K
(R2) + ‖ψ0gi‖W−5/2(γ̂i)). (4.18)

3) The support of the function ζ does not intersect γj ; hence ψpζigj = 0; therefore,

〈u, L∗G(ψpζ{f , gj , gGj })〉 = (ψpζ∆u− ψpζu, f)K +
∑
k

〈(ψpζu)|γ , gGk 〉γ .

1In Theorem 4.3 [11, Chap. 2], operators with variable coefficients were studied; this led to the imposition of

additional constraints on the supports of the functions under consideration. However, it is readily seen that in the

case of operators with constant coefficients these constraints can be removed.
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Thus, taking into account the properties of the supports of the functions ψp and ζ , we can regard

the operator L∗G , acting on ψpζ{f , gj , gGj } , as adjoint to the problem

∆u− u = f̂(y), y ∈ R2 , u|γ̂ = ĝ1(y), u|γ̂ = ĝ2(y), y ∈ γ̂ ,
which (after the corresponding change of variables of rotation type) coincides up to the lowest
term u with the problem discussed in Sec. 4.3. As proved above, ψ2g

G
k ∈ W−3/2+l(γ̂) ; therefore,

we can use Lemma 4.4. Then from relation (4.16) and the Leibniz formula we obtain

ψ3ζ{f , gj , gGj } ∈ W l(K)×
∏
j

{W−3/2+l(γ̂j)×W−3/2+l(γ̂)},

‖ψ3ζ{f , gj , gGj }‖Wl(K)×∏j{W−3/2+l(γ̂j)×W−3/2+l(γ̂)}

≤ k5

(
‖ψ2L∗K{f , gj}‖−2+l + ‖ψ2ζ̂f‖W−1

K
(R2) +

∑
j

‖ψ2gGj ‖W−3/2+l(γ̂)

)
.

(4.19)

Note that the space W l(K) is now relevant, i.e., the smoothness of the function f fails to hold on
the ray γ . This is due to the presence of nonlocal terms in the boundary condition (1.7) and, as
a consequence, in the adjoint operator L∗K .
From inequalities (4.19) and (4.18) we obtain

‖ψ3ζ{f , gj , gGj }‖Wl(K)×∏j{W−3/2+l(γ̂j)×W−3/2+l(γ̂)}

≤ k6

(
‖ψ0L∗K{f , gj}‖−2+l + ‖ψ0ζ̂f‖W−1

K
(R2) +

∑
j

‖ψ0gj‖W−5/2(γ̂j)

)
. (4.20)

4) The support of the function ζ0 = 1 −∑i ζi − ζ does not intersect γj and γ ; therefore,

ψpζ0gj = 0, ψpζ0g
G
j = 0; therefore,

〈u, L∗G(ψpζ0{f , gj , gGj })〉 = (ψpζ0∆u− ψpζ0u, f)K .

From Theorem 3.1 [11, Chap. 2], relation (4.16), and the Leibniz formula, we obtain

ψ1ζ0{f , gj , gGj } ∈W l(K)×
∏
j

{W−3/2+l(γ̂j)×W−3/2+l(γ̂)},

‖ψ1ζ0{f , gj , gGj }‖W l(K)×∏j{W−3/2+l(γ̂j)×W−3/2+l(γ̂)}

≤ k7(‖ψ0L∗K{f , gj}‖−2+l + ‖ψ0ζ̄0f‖W−1
K
(R2)), (4.21)

where ζ̄0 = 1−
∑

i ζ̄i − ζ̄ .
Now the a priori estimate (4.14) follows from inequalities (4.17), (4.20), and (4.21). �

5. SOLVABILITY OF NONLOCAL ELLIPTIC BOUNDARY-VALUE PROBLEMS

In this section, we present the main results concerning the solvability of nonlocal problems in
plane and dihedral angles (Theorems 5.1–5.3).

5.1. First, we establish the connection between the kernels of the operators L∗K and MK .

Lemma 5.1. The kernel ker(L∗K) of the operator L∗K coincides with the set over which the el-
ement {v, (∂vj/∂nj)|γj} ranges whenever v ∈ E2−a+2(K) and vj ∈ C∞(Kj \ {0}) satisfies prob-
lem (3.1), (3.2) for {f , gj , hν} = 0 . Here v(y) ≡ vj(y) , f(y) ≡ fj(y) for y ∈ Kj .
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Proof. 1) Suppose that v ∈ E2−a+2(K) and vj ∈ C∞(Kj \ {0}) satisfies problem (3.1), (3.2) for

{f , gj , hν} = 0. Then, by Theorem 2.1, for any u ∈ C∞0 (Kj \ {0}) we have
∑
j=1

(∆u− u, vj)Kj +
∑
j

(
u|γj + aju(Gjy)|γj ,

∂vj
∂nj

∣∣∣∣
γj

)
γj

= 0. (5.1)

It follows from the continuity of the operator of embedding of E2−a+2(K) in E0−a(K) that
v ∈ E0−a(K) . In addition, by the Cauchy–Bunyakovskii inequality and Theorem 1.4, we have∣∣∣∣(uγj ,

∂vj
∂nj

∣∣∣∣
γj

)
γj

∣∣∣∣2 ≤ k1

∫
γj

r2(a−3/2)|uγj |2 dγ ·
∫
γj

r2(−a+3/2)

∣∣∣∣ ∂vj∂nj

∣∣∣∣
γj

∣∣∣∣2 dγ
≤ k2‖uγj‖2E3/2a (γj)

·
∥∥∥∥ ∂vj∂nj

∣∣∣∣
γj

∥∥∥∥2
E
1/2
−a+2(γj)

for all uγj ∈ E3/2a (γj) . Therefore, (∂vj/∂nj)|γj ∈ (E3/2a (γj))
∗ .

Thus {
v,

∂vj
∂nj

∣∣∣∣
γj

}
∈ E0−a(K)×

∏
j

(E3/2a (γj))
∗

and by the definition of the operator L∗K and identity (5.1) we have〈
u, L∗K

{
v,

∂vj
∂nj

∣∣∣∣
γj

}〉
= 0 for all u ∈ C∞0 (K \ {0}).

But C∞0 (K \ {0}) is dense in E2a(K) ; therefore, {v, (∂vj/∂nj)|γj} ∈ ker(L∗K) .
2) Now suppose that, conversely, {v, ψj} ∈ ker(L∗K) . It follows from Theorem 4.3 that

vj ∈ C∞(Kj \ {0}), ψj ∈ C∞(γj).

Then the definition of the operator L∗K implies that for any u ∈ C∞0 (K \ {0})

(∆u− u, v)K = −
∑
j

(u|γj + aju(Gjy)|γj , ψj)γj ,

which, together with Green’s formula (2.1), yields

∑
j

(
u|γj + aju(Gjy)|γj ,

∂vj
∂nj

∣∣∣∣
γj

−ψj

)
γj

+

(
u|γ , ∂v2

∂n

∣∣∣∣
γ

−∂v1
∂n

∣∣∣∣
γ

−
∑
k

ākχ
−1
k

∂vk
∂nk

(G−1k y)|γ
)

γ

=
∑
j

(u,∆vj − vj)Kj +
∑
j

(
∂u

∂nj

∣∣∣∣
γj

, vj |γj
)

γj

+

(
∂u

∂n

∣∣∣∣
γ

, v2|γ − v1|γ
)

γ

. (5.2)

Setting suppu ∈ Kj , from (5.2) we find that ∆vj − vj = 0.
By Lemma 2.2 [11, Chap. 2], for any system of functions {Θjµ}2µ=1 there exists a function

u ∈ C∞0 (K \ {0}) in C∞0 (γj) such that

u|γj = Θj1 ,
∂u

∂nj

∣∣∣∣
γj

= Θj2 , u = 0 in the neighborhood of γ .
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Hence, from (5.2) and the fact that ∆vj − vj = 0, we obtain

∂vj
∂nj

∣∣∣∣
γj

− ψj = 0 and vj |γj = 0.

Similarly,

v2|γ − v1|γ = 0, ∂v2
∂n

∣∣∣∣
γ

−∂v1
∂n

∣∣∣∣
γ

−
∑
k

ākχ
−1
k

∂vk
∂nk

(G−1k y)|γ = 0.

Finally, the fact that v ∈ E0−a(K) , vj ∈ C∞(Kj \ {0}) and Theorem 4.1 imply that the
function v belongs to the space E2−a+2(K) . �

Theorem 5.1. The operator LK is Fredholm if and only if there are no poles of the operator

function L̃−1(λ) on the line Imλ = a− 1 .
Proof. Suppose that the operator LK is Fredholm; then, by Theorem 7.1 [13], we have the

estimate (1.11) and hence, by Theorem 1.1, there are no poles of the operator function L̃−1(λ) on
the line Imλ = a− 1.
Suppose that, conversely, the operator function L̃−1(λ) has no poles on the line Imλ = a− 1.

Then, by Theorem 1.1, the operator LK has a finite-dimensional kernel and a closed image.

Let us prove that the kernel of the operator L∗K is finite-dimensional. Green’s formula (2.3),

Remark 2.2 and Lemmas 1.5, 3.2 imply that λ0 is a pole of the operator L̃−1(λ) if and only if λ̄0 is
a pole of the operator M̃−1(λ) . Hence there are no poles of the operator function M̃−1(λ) on the
line Imλ = −a+1. Therefore, by Theorem 4.2, the operator MK has a finite-dimensional kernel
whose dimension coincides, by Lemma 5.1, with the dimension of the kernel of the operator L∗K . �

5.2. Let us proceed with the study of the solvability of the nonlocal boundary-value problem (1.1),
(1.2) in a dihedral angle. As in the proof of Lemma 7.3 [6], we can reduce problem (1.1), (1.2)

to problem (1.6), (1.7) by using the Fourier transform with respect to z : U(y, z) → Û(y, η) and
make the change of variables y′ = |η| · y , thus obtaining the following result.
Theorem 5.2. Suppose there are no poles of the operator function L̃−1(λ) on the line Imλ = a−1
and dimkerLK = codimR(LK) = 0 . Then the operator LΩ is an isomorphism.
Using Green’s formula for the nonlocal problem (1.1), (1.2) in the dihedral angle Ω, which is

similar to Green’s formula (2.1) for problem (1.6), (1.7) in the plane angle K , and repeating the
arguments from [6, Sec. 8], we obtain the following necessary condition for the Fredholm property
of the operator LΩ .
Theorem 5.3. If the operator LΩ is Fredholm, then the operator LK is an isomorphism.

It follows from Theorems 1.1, 5.2, and 5.3 that if the operator LΩ is Fredholm, then it an
isomorphism.
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