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Abstract

Parabolic initial boundary-value problems coupled (via the boundary condition)
with ordinary differential equations whose right-hand side contains the Preisach
hysteresis operator are considered. In particular, these problems model thermocon-
trol processes in chemical reactors, climate-control systems, biological cells, etc.
For the Preisach operator with and without time delay, solvability, periodicity of
solutions, and global B-attractors are studied.

Key words: Thermocontrol problem, hysteresis, Preisach operator, periodicity,
global attractor
1991 MSC: 35K15, 47J40, 45M15, 35B41

1 Introduction

We consider a parabolic initial boundary-value problem coupled with an ordi-
nary differential equation whose right-hand side contains the so-called Preisach
hysteresis operator. In particular, this problem models thermocontrol pro-
cesses in chemical reactors, climate-control systems, biological cells, etc. In
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these processes, the temperature inside a domain at a moment t is controlled
by a “thermostat” acting on the boundary. The feedback is based on temper-
ature measurements performed by thermal sensors inside the domain at the
moment t− τ (τ ≥ 0). The presence of the Preisach operator corresponds to
the fact that the power of the thermostat changes continuously, while the ordi-
nary differential equation means that the temperature of the thermostat also
changes continuously. We investigate existence, uniqueness, and periodicity of
solutions as well as their large-time behavior.

A thermocontrol model similar to ours (with τ = 0 and somewhat different
switching law) was originally proposed in [7,8]. By reducing the problem to an
equivalent set-valued integro-differential equation, the existence of a solution
was proved. Some questions related to optimal control for heat conduction
problems with hysteresis were considered, e.g., in [4].

The question whether periodic solutions exist turns out to be much more dif-
ficult. In [6], a one-dimensional thermocontrol problem with the hysteresis
operator on the boundary described by the rectangular hysteresis loop is con-
sidered under the assumption that the temperature of the thermostat changes
by jump. Thus, there is no coupling with an ordinary differential equation in
that case. The existence of a periodic solution is proved. Its uniqueness in a
class of the so-called “two-phase” periodic solutions is established.

Periodicity of solutions of a one-dimensional 2 problem, with the same hys-
teresis functional as in the previous references, in the case where a thermo-
stat changes its temperature continuously, was considered in [19]. The ex-
istence of a periodic solution was proved. The periodicity of solutions for a
one-dimensional Stefan problem with hysteresis-type boundary conditions was
investigated in [9].

Switching systems described by ordinary differential equations with hysteresis
were considered by many authors (see e.g., [1, 3, 14,17,20]).

In the multidimensional case, the periodicity of solutions for parabolic equa-
tions involving continuous hysteresis operators was studied in [12, 25] (see
also [24] and references therein).

The first investigation of periodicity of solutions for a multidimensional initial
boundary-value problem involving a hysteresis-type control on the boundary
and coupled with an ordinary differential equation was carried out in [10].

In the present work, we prove the existence of periodic solutions, provided that
the hysteresis phenomenon is modelled by the continuous Preisach operator.

2 When saying “one-” or “multidimensional” we mean that the space variable in
the parabolic equation is one- or multidimensional, respectively.
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The time delay τ between the temperature measurement moment and the
thermostat reaction is either positive (τ > 0) or absent (τ = 0). It is proved
that the solution for τ = 0 can be approximated by the solutions for τ > 0 as
τ → 0. In particular, this allows one to show that there is a periodic solution
in the case τ = 0 which is a limit of periodic solutions for τ > 0 as τ → 0.

Another important question concerns the behavior of solutions as t → +∞.
Until now, this question was studied in the case where the hysteresis operator
enters a parabolic equation itself [4, 11, 12, 24]. In our work, we prove the
existence of the so-called minimal global B-attractor , i.e., a minimal closed set
which attracts any bounded set of initial data (see Definition 8.3). We show
that this attractor is a compact connected set.

The paper is organized as follows. In Sec. 2, we formulate auxiliary results
concerning initial boundary-value problems for parabolic equations. In Sec. 3,
we define the Preisach operator, which is a continuous model of the hysteresis
phenomenon (see [13, 23]). The setting of the thermocontrol problem with
time delay τ > 0 is given in Sec. 4. In the same section, we prove the existence
and uniqueness of the solution. In Sec. 5, using properties of the Preisach
operator and the Schauder fixed-point theorem, we show that there exists a
T -periodic solution of the thermocontrol problem, provided that T > τ and
the right-hand side of the parabolic equation is T -periodic in time. In Sec. 6,
we prove the existence and uniqueness of the solution of the thermocontrol
problem without time delay (τ = 0). In Sec. 7, we obtain a periodic solution
in the case τ = 0 as a limit of periodic solutions for τ > 0 as τ → 0. In
the case where the right-hand side does not explicitly depend on t, we prove
the existence of a stationary solution. Sufficient conditions under which the
stationary solution is unique are given. In Sec. 8, using the technique developed
in [15] (see also [22]), we study the large-time behavior of solutions for the
problem in question. Namely, we prove the existence of a compact connected
minimal global B-attractor. Some open questions are formulated in Sec. 9.

2 Strong and Mild Solutions of Parabolic Problems

In this section, we recall some facts about solvability of linear parabolic prob-
lems and regularity of their solutions.

2.1 Setting of the problem

Let Q ⊂ R
n (n ≥ 1) be a bounded domain with boundary Γ of class C∞.
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We introduce the differential expression

Pu(x) = ∆ψ(x) − p(x)ψ(x) (x ∈ Q),

where p ∈ C∞(Rn), p(x) ≥ 0.

Let T > 0, QT = Q× (0, T ), and ΓT = Γ× (0, T ). In this section, we consider
the following parabolic initial boundary-value problem:

vt(x, t) = Pv(x, t) + f(x, t) ((x, t) ∈ QT ), (2.1)

v(x, 0) = ψ(x) (x ∈ Q), (2.2)

γ
∂v

∂ν
+ σ(x)v(x, t) = 0 ((x, t) ∈ ΓT ), (2.3)

where f ∈ L2(QT ), ν is the outward normal to ΓT at the point (x, t), γ ≥ 0,
σ ∈ C∞(Rn) is a real-valued function, σ(x) ≥ 0. We also assume that σ(x) ≥
σ0 > 0 if γ = 0 and p(x) �≡ 0 if σ(x) ≡ 0.

Denote by W k
2 (Q) (k ∈ N) the Sobolev space with the norm

‖ψ‖Wk
2 (Q) =


 ∑

|α|≤k

∫
Q
|Dαψ(x)|2 dx




1/2

.

By W̊ k
2 (Q) we denote the closure in W k

2 (Q) of the set C∞
0 (Q) consisting of

infinitely differentiable functions supported in Q.

We will throughout use the following equivalent norm in W 1
2 (Q) (which we

denote by the same symbol ‖ · ‖W 1
2 (Q) as the standard norm):

‖ψ‖W 1
2 (Q) =



(∫
Q(|∇ψ|2 + p̃(x)|ψ|2) dx

)1/2
if γ = 0,(∫

Q(|∇ψ|2 + p̃(x)|ψ|2) dx+
∫
Γ γ

−1σ(x)|ψ|2 dΓ
)1/2

if γ > 0,

(2.4)
where p̃(x) = p(x)− inf

y∈Q
p(y)+1 ≥ 1 in Q and γ is the same as in the boundary

condition (2.3)

Denote by W 2,1
2 (Q × (a, b)) (a < b) the anisotropic Sobolev space with the

norm

‖v‖W 2,1
2 (Q×(a,b)) =

(∫ b

a
‖v(·, t)‖2

W 2
2 (Q) dt+

∫ b

a
‖vt(·, t)‖2

L2(Q) dt

)1/2

and, for any Banach space B, by C([a, b], B) (a < b) the space of B-valued
functions continuous on the segment [a, b] with the norm

‖v‖C([a,b],B) = max
t∈[a,b]

‖v(·, t)‖B.
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If B = C or R, we will write C[a, b].

Definition 2.1 A function v ∈W 2,1
2 (QT )∩C([0, T ],W 1

2 (Q)) is called a strong
solution of problem (2.1)–(2.3) in QT if v satisfies Eq. (2.1) a.e. in QT and
conditions (2.2), (2.3) in the sense of traces.

In what follows, we omit the term “strong” whenever it leads to no confusion.

2.2 Solvability and a priori estimates

We introduce the unbounded linear operator P : D(P) ⊂ L2(Q) → L2(Q)
given by

Pψ = Pψ, D(P) =

{
ψ ∈ W 2

2 (Q) : γ
∂ψ(x)

∂ν
+ σ(x)ψ(x) = 0 (x ∈ Γ)

}
.

It is well known that the operator P is a generator of an analytic semigroup of
contractions St : L2(Q) → L2(Q), t ≥ 0. The following lemma yields the rep-
resentation of a solution of problem (2.1)–(2.3) by means of the semigroup St.

Lemma 2.1 For any

f ∈ L2(QT ), ψ ∈

W̊

1
2 (Q) if γ = 0,

W 1
2 (Q) if γ > 0,

there exists a unique solution v of problem (2.1)–(2.3) in QT . This solution is
represented as

v(·, t) = Stψ(·) +
∫ t

0
St−sf(·, s) ds (t ∈ [0, T ]), (2.5)

where the integral converges in the L2(Q) norm, and the following estimate
holds:

‖v‖W 2,1
2 (QT ) + ‖v‖C([0,T ],W 1

2 (Q)) ≤ c1(‖f‖L2(QT ) + ‖ψ‖W 1
2 (Q)), (2.6)

where c1 = c1(T ) > 0 does not depend on f and ψ and is bounded on any
segment [T1, T2] (0 < T1 < T2).

PROOF. The assertion of the lemma follows from Theorem 3.7 in [2, Chap.
1], inequality (3.9) in [2, Chap. 1], Theorem 1.14.5 in [21], and Theorem 4.3.3
in [21].
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Lemma 2.2 For f = 0 and any

ψ ∈

W̊

1
2 (Q) if γ = 0,

W 1
2 (Q) if γ > 0,

there exists a unique solution v of problem (2.1)–(2.3) in QT and

‖v(·, T )‖L2(Q) ≤ e−ωT‖ψ‖L2(Q), ‖v(·, T )‖W 1
2 (Q) ≤ e−ωT‖ψ‖W 1

2 (Q), (2.7)

where the norm ‖ · ‖W 1
2 (Q) is given by (2.4) and ω > 0 does not depend on ψ

and T .

PROOF. The existence and uniqueness of the solution v follows from Lem-
ma 2.1. It remains to prove the inequalities in (2.7).

Let {λk}∞k=1 and {ek}∞k=1 denote the sequence of eigenvalues and the corre-
sponding system of real-valued eigenfunctions (orthonormal in L2(Q)) of the
operator P.

It is well known that 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ . . . and the system of
eigenfunctions {ek}∞k=1 forms an orthonormal basis for L2(Q).

Furthermore, the functions ek/
√
λk − p0 + 1, where p0 = infx∈Q p(x), form an

orthonormal basis for W̊ 1
2 (Q) if γ = 0 and for W 1

2 (Q) if γ > 0 with respect to
the norm ‖ · ‖W 1

2 (Q) given by (2.4).

The function ψ can be expanded into the Fourier series

ψ(x) =
∞∑
k=1

ψkek(x),

where ψk =
∫
Q ψ(x)ek(x) dx, which converges in W 1

2 (Q).

Further, the function v(x, T ) is of the form

v(x, T ) =
∞∑
k=1

e−λkTψkek(x), (2.8)

where the series in (2.8) converges in W 1
2 (Q). Using (2.8), we obtain

‖v(·, T )‖2
L2(Q) ≤ e−2λ1T

∞∑
k=1

ψ2
k = e−2λ1T‖ψ‖2

L2(Q),

‖v(·, T )‖2
W 1

2 (Q) ≤ e−2λ1T
∞∑
k=1

(λk − p0 + 1)ψ2
k = e−2λ1T‖ψ‖2

W 1
2 (Q).

Setting ω = λ1, we complete the proof.
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Remark 2.1 The solution v(x, t) from Lemma 2.2 is given by v(·, t) = Stψ(·)
(cf. (2.5)). On the other hand, the spaces W 1

2 (Q) and W̊ 1
2 (Q) are both dense

in L2(Q). Therefore, due to the first inequality in (2.7), we have

‖Stψ‖L2(Q) ≤ e−ωt‖ψ‖L2(Q) ∀t ≥ 0, ψ ∈ L2(Q). (2.9)

Lemmas 2.1 and 2.2 imply the following result.

Corollary 2.1 For any

f ∈ L2(QT ), ψ ∈

W̊

1
2 (Q) if γ = 0,

W 1
2 (Q) if γ > 0,

there exists a unique solution v of problem (2.1)–(2.3) in QT and

‖v(·, T )‖W 1
2 (Q) ≤ c1‖f‖L2(QT ) + e−ωT‖ψ‖W 1

2 (Q), (2.10)

where c1 > 0 is the same as in Lemma 2.1 and ω > 0 is the same as in
Lemma 2.2.

The next lemma allows one to estimate the norm ‖v(·, T )‖W 2
2 (Q) of the solution

of problem (2.1)–(2.3) in QT , provided that the right-hand side f is Hölder
continuous in t in a neighborhood of t = T .

Lemma 2.3 Let

f ∈ L2(QT ), ψ ∈

W̊

1
2 (Q) if γ = 0,

W 1
2 (Q) if γ > 0.

Suppose there are numbers T0 ∈ [0, T ), L > 0, and σ ∈ (0, 1] such that

‖f(·, t)‖L2(Q) ≤ L, ∀t ∈ [T0, T ],

‖f(·, t2) − f(·, t1)‖L2(Q) ≤ L|t2 − t1|σ ∀t1, t2 ∈ [T0, T ].

Then the solution v of problem (2.1)–(2.3) in QT satisfies the inequality

‖v(·, T )‖W 2
2 (Q) ≤ c2(‖f‖L2(QT0

) + ‖ψ‖L2(Q) + L),

where c2 = c2(T, T0) > 0 does not depend on f , ψ, and L and is bounded on
the set {T ∈ [T1, T2], T0 ∈ [0, T − ε]} for any 0 < ε < T1 < T2.

PROOF. It follows from the uniqueness of the solution (see Lemma 2.1) that
the function v(x, t + T0) is a solution of problem (2.1)–(2.3) in QT−T0 with
f(x, t) and ψ(x) replaced by f(x, t+ T0) and v(x, T0), respectively. Therefore,
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using Theorem 3.2 in [18, Chap. 4], we obtain

‖Pv(·, T )‖L2(Q) ≤ k1(L+ ‖v(·, T0)‖L2(Q)),

where k1, k2, . . . > 0 do not depend on f, ψ, v.

On the other hand, it is well known that the operator P has a bounded inverse
P−1, which is also bounded as the operator acting from L2(Q) into W 2

2 (Q).
Hence,

‖v(·, T )‖W 2
2 (Q) ≤ k2‖Pv(·, T )‖L2(Q) ≤ k3(L+ ‖v(·, T0)‖L2(Q)). (2.11)

Finally, using representation (2.5) and estimate (2.9), we have

‖v(·, T0)‖L2(Q) ≤ k4(‖ψ‖L2(Q) + ‖f‖L2(QT0
)). (2.12)

Combining (2.11) and (2.12), we complete the proof.

For any functions ψ(x) and v(x, t), we denote

ψm =
∫
Q
m(x)ψ(x) dx, vm(t) =

∫
Q
m(x)v(x, t) dx (t ≥ 0),

where m ∈ L∞(Q) is a given function.

Lemma 2.4 Let

f ∈ L2(QT ), ψ ∈

W̊

1
2 (Q) if γ = 0,

W 1
2 (Q) if γ > 0,

.

Let v be a solution of problem (2.1)–(2.3) in QT . Then

‖v(·, t2) − v(·, t1)‖L2(Q) ≤ c1(‖f‖L2(QT ) + ‖ψ‖W 1
2 (Q))(t2 − t1)

1/2, (2.13)

|vm(t2) − vm(t1)| ≤ c3(‖f‖L2(QT ) + ‖ψ‖W 1
2 (Q))(t2 − t1)

1/2 (2.14)

for all 0 ≤ t1 < t2 ≤ T , where c1 = c1(T ) > 0 is the constant occurring in
Lemma 2.1 and c3 = c3(T ) > 0 does not depend on f, ψ, t1, t2 and is bounded
on any segment [T1, T2] (0 < T1 < T2).

PROOF. Using the Schwartz inequality and Lemma 2.1, we obtain (2.13):

‖v(·, t2) − v(·, t1)‖2
L2(Q) =

∫
Q
dx

∣∣∣∣
∫ t2

t1
vt(x, t) dt

∣∣∣∣
2

≤ ‖vt‖2
L2(QT )(t2 − t1)

≤ ‖v‖2
W 2,1

2 (QT )
(t2 − t1) ≤ c21(‖f‖L2(QT ) + ‖ψ‖W 1

2 (Q))
2(t2 − t1).
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Inequality (2.14) follows by applying the Schwartz inequality.

3 The Preisach Hysteresis Operator

3.1 Preisach operator for continuous functions

In this section, we introduce the Preisach hysteresis operator having been thor-
oughly investigated by Preisach, Brokate, Krasnoselskii, Pokrovskii, Visintin,
and others (see, e.g., [13, 23] and references therein).

We denote by BV (t0, t1), t0 < t1, the Banach space of real-valued functions
having finite total variation on the segment [t0, t1] and by Cr[t0, t1) the linear
space of functions which are continuous on the right in [t0, t1). For any couple
ρ = (ρ1, ρ2) ∈ R

2 such that ρ1 < ρ2, we introduce the delayed relay operator

hρ : C[t0, t1] × {0, 1} → BV (t0, t1) ∩ Cr[t0, t1)

by the following rule. For any r ∈ C[t0, t1] and χ = 0 or 1, the function
z = hρ(r, χ, t0) : [t0, t1] → {0, 1} is defined as follows. Let Xt = {t′ ∈ (t0, t] :
r(t′) = ρ1 or ρ2}. Then we set

z(t0) =




1 if r(t0) ≤ ρ1,

χ if ρ1 < r(t0) < ρ2,

0 if r(t0) ≥ ρ2

and for t ∈ (t0, t1]

z(t) =



z(t0) if Xt = ∅,

1 if Xt �= ∅ and r(maxXt) = ρ1,

0 if Xt �= ∅ and r(maxXt) = ρ2.

We will say that χ is the initial configuration of the delayed relay operator hρ.

Thus, the function hρ(r, χ, t0)(t) equals 1 if r(t) ≤ ρ1, equals 0 if r(t) ≥ ρ2,
and equals either 1 or 0 if r(t) ∈ (ρ1, ρ2), depending on the value of r at the
“previous” moment (Fig. 3.1).

The following properties of the delayed relay operator are stated in Proposition
1.1 in [23, Chap. 4].

Lemma 3.1 For any couple ρ = (ρ1, ρ2) ∈ R
2 such that ρ1 < ρ2, the following

assertions hold:
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Fig. 3.1. The delayed relay operator hρ, ρ = (ρ1, ρ2)

(1) Semigroup property: if t0 ≤ τ0 < τ1 ≤ t1, then

[hρ(r, χ, t0)](τ1) = [hρ(r, z(τ0), τ0)](τ1),

where z(τ0) = [hρ(r, χ, t0)](τ0).
(2) Monotonicity with respect to r: if r1(t) ≥ r2(t) for t ∈ [t0, t1], then

[hρ(r1, χ, t0)](t) ≤ [hρ(r2, χ, t0)](t).

(3) The function [hρ(r, χ, t0)](t) is Borel measurable with respect to ρ.

Set
P = {ρ = (ρ1, ρ2) ∈ R

2 : ρ1 < ρ2}.

Denote by R the set of Borel measurable functions P → {0, 1} and by ξρ (or
simply ξ) a generic element of R, which is called a relay configuration. Let µ
be a fixed finite nonnegative Borel measure over P. Without loss of generality,
we assume that

µ(P) = 1.

We will consider R as a metric space with the distance

d(ξ1, ξ2) =
∫
P
|ξ1ρ − ξ2ρ| dµ(ρ) ∀ξ1, ξ2 ∈ R.

We introduce the Preisach operator

H : C[t0, t1] ×R → L∞(t0, t1) ∩ Cr[t0, t1),
[H(r, ξ, t0)](t) =

∫
P
[hρ(r, ξρ, t0)](t)dµ(ρ), t ∈ [t0, t1].

In this context, we will say that ξ is the initial configuration of the Preisach
operator H.

If the measure µ is supported at finitely many points ρ(i) = (ρ
(i)
1 , ρ

(i)
2 ), then

the operator H(r, ξ, t0) is a linear combination of finitely many discontinuous
delayed relay operators hρ(i)(r, ξρ(i) , t0).
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For the operator H to be continuous, we have to take a “linear combination”
of infinitely many delayed relay operators (see Condition 3.1 and Lemma 3.3
below).

The physical interpretation of the continuous Preisach operator in terms of
thermocontrol processes is as follows. The value of H(r, ξ, t0)(t) corresponds
to the power of the heating (cooling) elements on the boundary of a domain,
depending on some averaged temperature r(t) of the domain. The value 1
corresponds to the most powerful heating regime and the value 0 to the most
powerful cooling regime.

Fix some numbers ρ∗1 < ρ∗2 and δ > 0 such that

ρ∗1 + δ < ρ∗2 − δ.

Let the support of the measure µ be a subset of the set

P∗ = P ∩ [ρ∗1 − δ, ρ∗1 + δ] × [ρ∗2 − δ, ρ∗2 + δ].

If the value of r is less than ρ∗1 − δ, then the value of H equals 1 (maximum
heating), if the value of r is greater than ρ∗2 + δ, then the value of H equals
0 (maximum cooling). If r is between ρ∗1 − δ and ρ∗1 + δ and decreases then
H increases (gradual increase of heater’s power). If r is between ρ∗1 − δ and
ρ∗1 + δ and increases then H does not change. Similarly for r between ρ∗2 − δ
and ρ∗2 + δ (one should swap “increase” and “decrease”). The dependence of
H on r is schematically depicted in Fig. 3.2.

Fig. 3.2. The continuous Preisach operator H

The following properties of the Preisach operator result from the analogous
properties of the delayed relay operator hρ (see Lemma 3.1).

Lemma 3.2 (1) Semigroup property: if t0 ≤ τ0 < τ1 ≤ t1, then

[H(r, ξ, t0)](τ1) = [H(r, zρ(τ0), τ0)](τ1),

where zρ(τ0) = [hρ(r, ξρ, t0)](τ0).
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(2) Monotonicity with respect to r: if r1(t) ≥ r2(t) for t ∈ [t0, t1], then

[H(r1, ξ, t0)](t) ≤ [H(r2, ξ, t0)](t).

In what follows, we need continuity properties of the Preisach operator. To
ensure their validity, we impose a restriction on the measure µ. Denote by
Ψ the class of functions ψ(σ) (σ ≥ 0) that are Lipschitz continuous with
Lipschitz constant 1.

Condition 3.1 For any ψ ∈ Ψ, the µ-measure of the curve ρ1 + ρ2 = ψ(ρ2 −
ρ1), ρ ∈ P, equals zero.

Lemma 3.3 (see Sec. 38.6 in [13]) Condition 3.1 holds if and only if the
operator H : C[t0, t1] × R → C[t0, t1] is uniformly continuous, i.e., there is
a nonnegative function c(ε) (which does not depend on t0 and t1) such that
c(ε) → 0 as ε→ 0 and

‖H(r1, ξ1, t0) −H(r2, ξ2, t0)‖C[t0,t1] ≤ c(ε)

whenever

‖r1 − r2‖C[t0,t1] +
∫
P
|ξ1ρ − ξ2ρ| dµ(ρ) ≤ ε.

Denote

Ri(λ1, λ2) = {ρ ∈ P : λ1 ≤ ρi ≤ λ2}, λ1 ≤ λ2, i = 1, 2,

k(λ) = sup
0≤λ2−λ1≤λ,

i=1,2

2µ(Ri(λ1, λ2)), λ > 0.

Condition 3.2 There is a constant C > 0 such that k(λ) ≤ Cλ for λ > 0.

Lemma 3.4 (see Theorem 3.9 in Chap. 3 in [23]) Let Conditions 3.1 and 3.2
hold. Suppose that ξ ∈ R, r ∈ C[t0, t1], and

‖r‖1/2 = sup
s0,s1∈[t0,t1], s0 �=s1

|r(s1) − r(s0)|
|s1 − s0|1/2 <∞.

Then

|H(r, ξ, t0)(s1) −H(r, ξ, t0)(s0)| ≤ C‖r‖1/2(s1 − s0)
1/2,

where C is the same as in Condition 3.2 and t0 ≤ s0 ≤ s1 ≤ t1.
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3.2 Preisach operator for piecewise continuous functions

Now we define the Preisach operator for piecewise continuous functions. Fix
some points

t0 < t1 < t2.

Denote by C̃[t0, t2] the Banach space of functions r(t) continuous on the right
and such that their restrictions on the intervals (tj−1, tj), j = 1, 2 (which we
denote by rj(t)), belong to C[tj−1, tj]. The norm in C̃[t0, t2] is given by

‖r‖C̃[t0,t2] = max
j=1,2

‖rj‖C[tj−1,tj ].

We define the operators

hρ : C̃[t0, t2] × {0, 1} → BV (t0, t2) ∩ Cr[t0, t2),

H : C̃[t0, t2] ×R → L∞(t0, t1) ∩ Cr[t0, t2)
by using the semigroup property:

[hρ(r, ξρ, t0)](t) =


[hρ(r1, ξρ, t0)](t), t ∈ [t0, t1),

[hρ(r2, zρ(t1), t1)](t), t ∈ [t1, t2];

[H(r, ξ, t0)](t) =


[H(r1, ξ, t0)](t), t ∈ [t0, t1),

[H(r2, z(t1), t1)](t), t ∈ [t1, t2],

where zρ(t1) = [hρ(r1, ξρ, t0)](t1).

Lemma 3.5 Let Condition 3.1 hold. Then the operator H maps C̃[t0, t2]×R
to C̃[t0, t2]. Moreover, for any fixed ξ ∈ R, the operator H : C̃[t0, t2] → C̃[t0, t2]
is continuous (uniformly with respect to t0, t1, and t2).

PROOF. We fix ξ ∈ R. Due to Lemma 3.3, H(r, ξ, t0) ∈ C[tj−1, tj], j = 1, 2.
This implies that H(r, ξ, t0) ∈ C̃[t0, t2].

Suppose that r, q ∈ C̃[t0, t2] and ‖r − q‖C̃[t0,t1] ≤ ε, where ε > 0.

By Lemma 3.3, we have

|H(r, ξ, t0)(t) −H(q, ξ, t0)(t)| ≤ c(ε), t ∈ [t0, t1). (3.1)

Denote

zrρ(t1) = [hρ(r1, ξρ, t0)](t1), zqρ(t1) = [hρ(q1, ξρ, t0)](t1).
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Using the monotonicity property of the operator hρ (see Lemma 3.1) and
Lemma 3.3, we obtain

∫
P
|zrρ(t1) − zqρ(t1)| dµ(ρ)

≤
∫
P
[hρ(r1 − ε, ξρ, t0)](t1) dµ(ρ) −

∫
P
[hρ(r1 + ε, ξρ, t0)](t1) dµ(ρ)

= H(r1 − ε, ξ, t0)(t1) −H(r1 + ε, ξ, t0)(t1) ≤ c(2ε).

(3.2)

It follows from inequalities (3.2) and Lemma 3.3 that

|H(r, ξ, t0)(t) −H(q, ξ, t0)(t)|
= |H(r2, z

r
ρ(t1), t1)(t) −H(q2, z

q
ρ(t1), t1)(t)| ≤ c(ε+ c(2ε)), t ∈ [t1, t2].

(3.3)
Combining (3.1) and (3.3), we complete the proof.

4 Thermocontrol Problems with Time Delay: Existence and Unique-
ness of Solutions

4.1 Setting of the problem

Let w(x, t) be the temperature at the point x ∈ Q at the moment t ≥ 0
satisfying the heat equation

wt(x, t) = Pw(x, t) + F (x, t, w(x, t), u(t)) ((x, t) ∈ QT ), (4.1)

where F (x, t, w, u) and the control function u(t) are specified below.

The initial condition is given by

w(x, 0) = ϕ(x) (x ∈ Q). (4.2)

The boundary condition also contains the control function u(t) which regulates
the temperature on the boundary, the heat flux through the boundary, or the
ambient temperature:

−γ ∂w
∂ν

= σ(x)w(x, t) + k0(x)u(t) + k1(x) ((x, t) ∈ ΓT ), (4.3)

where γ and σ are the same as above, and k0, k1 ∈ C∞(Rn) are real-valued
functions.
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As before, for any functions ψ(x) and v(x, t), we denote

ψm =
∫
Q
m(x)ψ(x) dx, vm(t) =

∫
Q
m(x)v(x, t) dx (t ≥ 0),

where m ∈ L∞(Q) is a given function, m(x) �≡ 0.

To define the control function u(t), we fix an arbitrary ξ ∈ R and introduce
the Preisach operator H : C[0, T ] → L∞(0, T ) ∩ Cr[0, T ) given by

H(r)(t) = H(r, ξ, 0)(t), r ∈ C[0, T ], t ∈ [0, T ].

We assume that the control function u(t) satisfies the following Cauchy prob-
lem:

au′(t) + u(t) = H(wm(· − τ))(t) (t ∈ (0, T )), (4.4)

u(0) = u0, (4.5)

wm(t) = g(t) (t ∈ [−τ, 0)), (4.6)

where a > 0, u0 ∈ R, g ∈ C[−τ, 0], and w is the function satisfying rela-
tions (4.1)–(4.3).

We assume that the consistency condition

g(0) = ϕm (4.7)

holds for the initial data g(t) and ϕ(x) (which will ensure the continuity of
the “mean” temperature at t = 0).

Further, we assume that




F (·, t, ψ(·), u) ∈ L2(Q) ∀t ∈ [0, T ], ψ ∈ L2(Q), u ∈ R,

‖F (·, t2, ψ2(·), u2, ) − F (·, t1, ψ1(·), u1)‖L2(Q)

≤ L
(
|t2 − t1|1/2 + ‖ψ2 − ψ1‖L2(Q) + |u2 − u1|

)
∀t ∈ [0, T ], ψj ∈ L2(Q), uj ∈ R, j = 1, 2,

(4.8)

‖F (·, t, ψ(·), u)‖L2(Q) ≤ F̂ (u) (4.9)

∀t ∈ [0, T ], ψ ∈ L2(Q), u ∈ R,

where L > 0 does not depend on the arguments of F and F̂ (u) is bounded on
bounded intervals.

Definition 4.1 A pair of functions (w, u) is called a (strong) solution of
problem (4.1)–(4.6) (in QT with the initial configuration ξ ∈ R) if w ∈
W 2,1

2 (QT )∩C([0, T ],W 1
2 (Q)) satisfies Eq. (4.1) a.e. in QT and conditions (4.2),

(4.3) in the sense of traces and u ∈ C1[0, T ] satisfies Eq. (4.4) in (0, T ) and
condition (4.5), whereas the function wm(t) for t ∈ [−τ, 0) is given by (4.6).
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4.2 Solvability and a priori estimates

In this subsection, we prove the existence and uniqueness of the solution for
problem (4.1)–(4.6).

First, we reduce the problem to that with the homogeneous boundary condi-
tion and prove the existence and uniqueness of the so-called mild solution (see
Definition 4.2 below).

Consider a function U ∈W 2
2 (Q) such that

−γ ∂U
∂ν

= σ(x)U(x) + 1 (x ∈ Γ). (4.10)

We assume that
U(x) = 0 (x ∈ Γ) if γ > 0. (4.11)

The existence of such a function U follows from Lemma 2.2 in [16, Chap. 2].

Set
v0(x, t) = [k0(x)u(t) + k1(x)]U(x). (4.12)

It follows from (4.1)–(4.3), (4.10), and (4.11) that the function v = w − v0

satisfies the relations

vt(x, t) = Pv(x, t) + f(x, t, v) ((x, t) ∈ QT ), (4.13)

v(x, 0) = ϕ(x) + ϕ0(x) (x ∈ Q), (4.14)

γ
∂v

∂ν
+ σ(x)v(x, t) = 0 ((x, t) ∈ ΓT ), (4.15)

where

f(x, t, v) = P [k0(x)U(x)]u(t) + P [k1(x)U(x)] − k0(x)U(x)u′(t) + F (x, t, v + v0(x, t), u(t)),

ϕ0(x) = −(k0(x)u0 + k1(x))U(x).
(4.16)

We introduce the analytic semigroup of contraction Tt : L2(Q)×R → L2(Q)×
R, t ≥ 0, defined as follows: for any (ψ0, u0) ∈ L2(Q) × R

Tt(ψ0, u0) = (Stψ0, e
−t/au0). (4.17)

Definition 4.2 A pair of functions w ∈ C([0, T ], L2(Q)), u ∈ C1[0, T ] is
called a mild solution of problem (4.1)–(4.6) (in QT with the initial configu-
ration ξ ∈ R) if w = v0 + v, where v0 is given by (4.12),

(v(·, t), u(t)) = Tt(ϕ+ϕ0, u0)+
∫ t

0
Tt−s

(
f(·, s, v(·, s)), a−1H(wm(· − τ))(s)

)
ds,

(4.18)
and wm(t) = g(t) for t ∈ [−τ, 0); here f and ϕ0 are given by (4.16).
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Theorem 4.1 Let Condition 3.1 hold. Suppose that F satisfies conditions (4.8).
Then, for any initial data (ϕ, u0, g) ∈ L2(Q)×R×C[−τ, 0] such that the con-
sistency condition (4.7) holds, there exists a unique mild solution (w, u) of
problem (4.1)–(4.6) in QT .

PROOF. I. Let t ∈ [0, τ ]. Then u(t) is given by

u(t) = u0e
−t/a + a−1

∫ t

0
e−(t−s)/aH(g(· − τ))(s) ds (t ≥ 0) (4.19)

Since g(· − τ) ∈ C[0, τ ], we have H(g(· − τ)) ∈ C[0, τ ]. Thus, it follows
from (4.19) that u ∈ C1[0, τ ]. Hence, using (4.8), we see that f(·, t, ψ(·)) as
a function from [0, τ ] × L2(Q) into L2(Q), is continuous in t and uniformly
Lipschitz in ψ. Therefore, applying Theorem 1.2 in [18, Chap. 6], we obtain
that there exists a unique mild solution of problem (4.1)–(4.6) in Qτ .

II. Let t ∈ [0, 2τ ]. Then we can represent u(t) as follows:

u(t) = u0e
−t/a + a−1

∫ t

0
e−(t−s)/aH(wm(· − τ))(s) ds (t ∈ [0, 2τ ]),

where wm(t) = g(t) for t ∈ [−τ, 0) and wm(t) is uniquely defined for t ∈ [0, τ ]
in part I of the proof. It follows from the consistency condition (4.7) that
wm(·− τ) ∈ C[0, 2τ ]. Therefore, H(wm(·− τ)) ∈ C[0, 2τ ], and, similarly to the
above, we see that there exists a unique mild solution of problem (4.1)–(4.6)
in Q2τ .

Repeating the above procedure finitely many times, we prove that there exists
a unique mild solution of problem (4.1)–(4.6) in QT .

Now we introduce the set of initial data for which strong solutions of prob-
lem (4.1)–(4.6) exist. Let

Vτ =
{
(ϕ, u0, g) ∈ W 1

2 (Q) × R × C[−τ, 0] : consistency condition (4.7) holds
}

if γ > 0 and

Vτ =
{
(ϕ, u0, g) ∈W 1

2 (Q) × R × C[−τ, 0] :

σ(x)ϕ(x) + k0(x)u0 + k1(x) = 0 (x ∈ Γ)

and consistency condition (4.7) holds
}

if γ = 0.

Thus, if (ϕ, u0, g) ∈ Vτ and γ = 0, then ϕ+ ϕ0 ∈ W̊ 1
2 (Q) (cf. (4.14)).
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Theorem 4.2 (1) Let Condition 3.1 hold. Suppose that F satisfies condi-
tions (4.8) and (4.9) and (ϕ, u0, g) ∈ Vτ . Then there exists a unique
solution (w, u) of problem (4.1)–(4.6) in QT and

‖w(·, T )‖W 1
2 (Q) ≤ c4A(u0) + e−ωT‖ϕ‖W 1

2 (Q), (4.20)

‖w‖W 2,1
2 (QT ) + ‖w‖C([0,T ],W 1

2 (Q)) ≤ c5B(ϕ, u0), (4.21)

‖u‖C[0,T ] ≤ max(1, |u0|), (4.22)

|wm(t2) − wm(t1)| ≤ c6B(ϕ, u0)|t2 − t1|1/2 ∀t1, t2 ∈ [0, T ], (4.23)

where

A(u0) =

[
max

(
1, 2a−1, |u0|, a−1(1 + |u0|)

)
+ max

|u1|≤max(1,|u0|)
F̂ (u1)

]
,

(4.24)
B(ϕ, u0) = A(u0) + ‖ϕ‖W 1

2 (Q). (4.25)

(2) If we additionally assume that Condition 3.2 holds and T > τ , then

‖w(·, T )‖W 2
2 (Q) ≤ c7B(ϕ, u0). (4.26)

Here c4, . . . , c7 > 0 depend on T , do not depend on ϕ, u0, g, ξ, and are bounded
on any segment [T1, T2] (0 < T1 < T2).

PROOF. I. Due to Theorem 4.1, there exists a unique mild solution (w, u) of
problem (4.1)–(4.6) in QT . Since u ∈ C1[0, T ], the function v0 given by (4.12)
belongs to W 2,1

2 (QT ) ∩ C([0, T ],W 1
2 (Q)).

Using (4.8), we see that the function f(x, t, v(x, t)) given by (4.16) belongs
to L2(QT ). Therefore, due to Lemma 2.1, problem (4.13)–(4.15) has a unique
solution v ∈ W 2,1

2 (QT ) ∩ C([0, T ],W 1
2 (Q)) and the pair (v, u) satisfies (4.18).

Thus, the mild solution (w, u) is also a (strong) solution of problem (4.1)–(4.6).

II. Since
0 ≤ H(r) ≤ 1 ∀r ∈ C[0, T ] (4.27)

due to the assumption µ(P) = 1, it follows from (4.27) and from the repre-
sentation

u(t) = u0e
−t/a + a−1

∫ t

0
e−(t−s)/aH(wm(· − τ))(s) ds (t ≥ 0) (4.28)

that

|u(t)| ≤ max(1, |u0|), |u′(t)| ≤ a−1(1+|u(t)|) ≤ a−1 max(2, 1+|u0|) ∀t ≥ 0,
(4.29)

which, in particular, yields (4.22).
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It follows from relations (4.12) and (4.16), Corollary 2.1, and inequalities (4.29)
that

‖w(·, T )‖W 1
2 (Q) ≤ ‖v0(·, T )‖W 1

2 (Q) + ‖v(·, T )‖W 1
2 (Q)

≤ k1 max(1, |u0|) + c1‖f‖L2(QT ) + ‖ϕ0‖W 1
2 (Q) + e−ωT‖ϕ‖W 1

2 (Q)

≤ c4A(u0) + e−ωT‖ϕ‖W 1
2 (Q),

where A(u0) is given by (4.24) and k1, k2, . . . > 0 do not depend on ϕ, u0, g, ξ.
Inequality (4.20) is proved.

Inequality (4.21) can be proved analogously by using Lemma 2.1.

III. To prove inequality (4.23), we note that, due to (4.29),

|u(t2) − u(t1)| ≤ A(u0)|t2 − t1| ∀t1, t2 ≥ 0. (4.30)

It follows from (4.12) and (4.30) that

‖v0(·, t2) − v0(·, t1)‖L2(Q) + |v0m(t2) − v0m(t1)| ≤ k2A(u0)|t2 − t1|1/2 (4.31)

for all t1, t2 ∈ [0, T ].

By Lemma 2.4 and inequalities (4.29), we have

‖v(·, t2) − v(·, t1)‖L2(Q) + |vm(t2) − vm(t1)|
≤ k3(‖f‖L2(QT ) + ‖ϕ‖W 1

2 (Q) + ‖ϕ0‖W 1
2 (Q))|t2 − t1|1/2

≤ k4B(ϕ, u0)|t2 − t1|1/2 ∀t1, t2 ∈ [0, T ],

(4.32)

where B(ϕ, u0) is given by (4.25).

Combining (4.31) and (4.32), we obtain (4.23):

|wm(t2) − wm(t1)| ≤ k5B(ϕ, u0)|t2 − t1|1/2 ∀t1, t2 ∈ [0, T ]. (4.33)

IV. It remains to prove inequality (4.26). Let T = kτ + τ1, where k ⊂ N and
0 < τ1 ≤ τ .

Let t1, t2 ∈ [T − τ1, T ]. Then tj − τ ∈ [T − τ − τ1, T − τ ] ⊂ [0, T ], j =
1, 2. Therefore, using the continuity of the function wm(t− τ) on [T − τ1, T ],
Lemma 3.4, and estimate (4.33), we have

|H(wm(· − τ))(t2) −H(wm(· − τ))(t1)| ≤ Ck5B(ϕ, u0)|t2 − t1|1/2 (4.34)

for all t1, t2 ∈ [T − τ1, T ].
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By virtue of (4.4), (4.30), and (4.34), we have

|u′(t2) − u′(t1)| ≤ k6B(ϕ, u0)|t2 − t1|1/2 ∀t1, t2 ∈ [T − τ1, T ].

Therefore, taking also (4.8), (4.9) (4.29)–(4.33) into account, we see that

‖f(·, t, v(·, t))‖L2(Q) ≤ k7B(ϕ, u0),

‖f(·, t2, v(·, t2)) − f(·, t1, v(·, t1))‖L2(Q) ≤ k7B(ϕ, u0)|t2 − t1|1/2
(4.35)

for all t, t1, t2 ∈ [T − τ1, T ].

Due to (4.35), we can apply Lemma 2.3; then, using relations (4.12), (4.16),
and (4.29), we obtain

‖w(·, T )‖W 2
2 (Q) ≤ ‖v0(·, T )‖W 2

2 (Q) + ‖v(·, T )‖W 2
2 (Q)

≤ k8(A(u0) + ‖f‖L2(QT−τ1
) + ‖ϕ0‖L2(Q) + ‖ϕ‖L2(Q) +B(u0, ϕ))

≤ k9B(u0, ϕ),

which completes the proof of (4.26).

5 Periodic Solutions of Thermocontrol Problems with Time Delay

In this section, we assume that the right-hand side F (x, t, ψ, u) is T -periodic
in t and prove the existence of a T -periodic solution (w, u) of problem (4.1),
(4.3), (4.4).

Definition 5.1 A pair (w, u) is called a T -periodic solution of problem (4.1),
(4.3), (4.4) (with an initial configuration ξ ∈ R) if there is a triple (ϕ, u0, g) ∈
Vτ such that the following holds:

(1) (w, u) is a solution of problem (4.1)–(4.6) in QT with the initial data
(ϕ, u0, g) and the initial configuration ξ,

(2) u(T ) = u(0), w(x, T ) = ϕ(x), wm(t) = wm(t− T ) for t ∈ [T − τ, T ), and

hρ(wm(· − τ), ξρ, 0)(T ) = ξρ ∀ρ ∈ P.
The last equality in Definition 5.1 means that, along with the control function
u and the temperature w, the configuration of the Preisach operator at the
moment t = T is the same as at the moment t = 0. Only in this case, the
solution will be T -periodic for all t > 0.

Lemma 5.1 Let Condition 3.1 hold, F satisfy condition (4.8), (ϕ, u0, g) ∈
Vτ , and the corresponding solution (w, u) of problem (4.1)–(4.6) be T -periodic
(T > 0). Then the function wm(t) is Hölder-continuous (with exponent 1/2)
on the segment [−τ, T ].
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PROOF. Consider a number l ∈ N such that lT ≥ τ . Let (w̃, ũ) ∈ W(Q(l+1)T )
be a solution of problem (4.1)–(4.6) in Q(l+1)T with the same initial data
(ϕ, u0, g). It follows from Theorem 4.2 and Definition 5.1 that (w̃, ũ) = (w, u)
in QT and w̃m(t) = w̃m(t + lT ) for t ∈ [−τ, T ]. Since w̃m(t + lT ) is Hölder-
continuous for t ∈ [−τ, T ] (due to Theorem 4.2 and the fact that t + lT ∈
[lT − τ, (l + 1)T ] ⊂ [0, (l + 1)T ]), it follows that wm(t) = w̃m(t) = w̃m(t+ lT )
is also Hölder-continuous on the segment [−τ, T ].

Theorem 5.1 Let Conditions 3.1 and 3.2 hold. Suppose that the function
F (x, t, ψ, u) is T -periodic in t with some T > τ and satisfies conditions (4.8)
and (4.9). Then the following assertions are true.

(1) There is an initial configuration ξ ∈ R such that there exists a T -periodic
solution (w, u) of problem (4.1), (4.3), (4.4) with the initial configuration
ξ.

(2) For any T -periodic solution (w, u) of problem (4.1), (4.3), (4.4), we have
u(t) ∈ [0, 1] (t ≥ 0).

The proof will be based on the Schauder fixed-point theorem. One of the
main difficulties here is that the configuration of the Preisach operator at
the moment T may differ from its initial configuration even if the value of
the control function u and the temperature w at the moment T coincide with
their values at the initial moment. To overcome this difficulty, we will introduce
another hysteresis operator with a longer “pre-history,” prove the existence of
a periodic solution in this case, and show that it coincides with a periodic
solution of the problem with the original Preisach operator.

From now on, we assume that T > τ . Introduce the space (cf. Sec. 3.2)

C̃τ [−T, T ] = C̃[t0, t2], where t0 = −T, t1 = −T + τ, t2 = T.

Fix an arbitrary ζ ∈ R and consider the Preisach operator H̃ : C̃τ [−T, T ] →
C̃τ [−T, T ] given by

H̃(r)(t) = H(r, ζ,−T )(t), r ∈ C̃τ [−T, T ].

To prove Theorem 5.1, we consider an auxiliary problem, namely, we replace
relations (4.4)–(4.6) by the following ones:

au′(t) + u(t) = H̃(wm(· − τ))(t) (t ∈ (0, T )), (5.1)

u(0) = u0, (5.2)

wm(t) = g(t) (t ∈ [−T − τ, 0)); (5.3)

here

g ∈ C̃[−T − τ, 0] = C̃[t0, t2], where t0 = −T − τ, t1 = −T, t2 = 0.
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In other words, we consider the “pre-history” functions g(t) on the larger
interval [−T − τ, 0] and allow them to be discontinuous at t = −T .

As before (cf. (4.7)), we assume that

g(0) = ϕm. (5.4)

Similarly to Definition 4.1, one can define a (strong) solution (w, u) of prob-
lem (4.1)–(4.3), (5.1)–(5.3).

Remark 5.1 If (w, u) is a solution of problem (4.1)–(4.3), (5.1)–(5.3) and
consistency condition (5.4) holds, then the function wm(t) is continuous at the
point t = 0 due to condition (5.4). This ensures that wm(· − τ) ∈ C̃τ [−T, T ]
and the Preisach operator H̃ is well defined.

Set

Ṽτ =
{
(ϕ, u0, g) ∈ W 1

2 (Q) × R × C̃[−T − τ, 0] : condition (5.4) holds
}

if γ > 0 and

Ṽτ =
{
(ϕ, u0, g) ∈W 1

2 (Q) × R × C̃[−T − τ, 0] :

σ(x)ϕ(x) + k0(x)u0 + k1(x) = 0 (x ∈ Γ) and condition (5.4) holds
}

if γ = 0.

Definition 5.2 A pair (w, u) is called a T -periodic solution of problem (4.1),
(4.3), (5.1) (with the initial configuration ζ ∈ R) if there is a triple (ϕ, u0, g) ∈
Ṽτ such that the following holds:

(1) (w, u) is a solution of problem (4.1)–(4.3), (5.1)–(5.3) in QT with the
initial data (ϕ, u0, g) and the initial configuration ζ,

(2) u(T ) = u(0), w(x, T ) = ϕ(x), wm(t) = wm(·, t− T ) for t ∈ [−τ, T ).

Remark 5.2 Unlike Definition 5.1, we do not require in Definition 5.2 that

hρ(wm(· − τ), ζρ,−T )(T ) = hρ(wm(· − τ), ζρ,−T )(0) ∀ρ ∈ P (5.5)

because this relation is automatically fulfilled for wm(·−τ) that is T -periodic on
[−T, T ]. This is basically the main reason why we have introduced the operator
H̃.

Remark 5.3 It follows from the definition of the operator H̃ that

hρ(wm(· − τ), ζρ,−T )(t) = hρ(wm(· − τ), ξρ, 0)(t), t ≥ 0,
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H̃(wm(· − τ), ζ,−T )(t) = H(wm(· − τ), ξ, 0)(t), t ≥ 0,

where ξρ = hρ(wm(· − τ), ζρ,−T )(0).

Therefore, the solution of problem (4.1)–(4.3), (5.1)–(5.3) with the initial data
(ϕ, u0, g) and the initial configuration ζ coincides with the solution of prob-
lem (4.1)–(4.6) with the initial data (ϕ, u0, g|[−τ,0]) and the initial configura-
tion ξ.

Similarly, taking into account Remark 5.2, we see that a T -periodic solution
of problem (4.1), (4.3), (5.1) with the initial configuration ζ is a T -periodic
solution of problem (4.1), (4.3), (4.4) with the initial configuration ξ.

Thus, assertion 1 of Theorem 5.1 is a consequence of the following result,
which will be proved in this section.

Theorem 5.2 Let the hypothesis of Theorem 5.1 hold. Then, for any ζ ∈ R,
there is a T -periodic solution (w, u) of problem (4.1), (4.3), (5.1).

We introduce the operator G : Ṽτ → Ṽτ given by

G(ϕ, u0, g) = (w(·, T ), u(T ), r) , (5.6)

where (w, u) is the solution of problem (4.1)–(4.3), (5.1)–(5.3) with the initial
data (ϕ, u0, g) ∈ Ṽτ and the initial configuration ζ and (see Fig. 5.1)

r(t) =


wm(t+ 2T ), t ∈ [−T − τ,−T ),

wm(t+ T ), t ∈ [−T, 0].
(5.7)

It follows from Theorem 4.2 that w(·, T ) ∈ W 1
2 (Q), r ∈ C̃[−T − τ, 0], and

∫
Q
m(x)w(x, T ) dx = wm(T ) = r(0).

Therefore, the image of the operatorG indeed lies in Ṽτ ; thus,G is well defined.

Remark 5.4 If (ϕ, u0, g) ∈ Ṽτ is a fixed point of the operator G, then the
function wm(·−τ) is continuous and T -periodic on [−T, T ] (Fig. 5.1.b). Hence,
the corresponding solution (w, u) of problem (4.1)–(4.3), (5.1)–(5.3) is a T -
periodic solution of problem (4.1), (4.3), (5.1). By Remark 5.3, it is a T -
periodic solution of problem (4.1), (4.3), (4.4).

Lemma 5.2 Let the hypothesis of Theorem 5.1 hold. Then the operator G :
Ṽτ → Ṽτ is continuous.
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Fig. 5.1. The map C̃[−T − τ, 0] � g �→ r ∈ C̃[−T − τ, 0].

PROOF. I. We fix an arbitrary 0 < ε < 1 and consider two initial-data
triples (ϕ, u0, g) and (ϕ̃, ũ0, g̃) from Ṽτ such that

‖ϕ̃− ϕ‖W 1
2 (Q) + |ũ0 − u0| + ‖g̃ − g‖C̃[−T−τ,0] ≤ ε. (5.8)

Let (w, u) and (w̃, ũ) be the corresponding solutions of problem (4.1)–(4.3),
(5.1)–(5.3) in QT1 , where T1 = Nτ ≥ T , N ∈ N.

We represent the functions w and w̃ as follows:

w = v + v0, w̃ = ṽ + ṽ0;

here v is a solution of problem (4.13)–(4.15) in QT1 , v0 is given by (4.12), ṽ is
a solution of the problem

ṽt(x, t) = P ṽ(x, t) + f̃(x, t, ṽ) ((x, t) ∈ QT1), (5.9)

ṽ(x, 0) = ϕ̃(x) + ϕ̃0(x) (x ∈ Q), (5.10)

γ
∂ṽ

∂ν
+ σ(x)ṽ(x, t) = 0 ((x, t) ∈ ΓT1), (5.11)

where

f̃(x, t, ṽ) = P [k0(x)U(x)]ũ(t) + P [k1(x)U(x)] − k0(x)U(x)ũ′(t)
+ F (x, t, ṽ + ṽ0(x, t), ũ(t)),

ϕ̃0(x) = −(k0(x)ũ(0) + k1(x))U(x),

(5.12)

and
ṽ0(x, t) = [k0(x)ũ(t) + k1(x)]U(x).
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II. Let t ∈ [0, τ ]. Using (4.4), (5.8), and Lemma 3.5, we obtain

|ũ(t) − u(t)|
=
∣∣∣∣(ũ0 − u0)e

−t/a + a−1
∫ t

0
e−(t−s)/a[H̃(g̃(· − τ))(s) − H̃(g(· − τ))(s)] ds

∣∣∣∣
≤ k1C1(ε),

(5.13)
|ũ′(t) − u′(t)| ≤ a|ũ(t) − u(t)| + |H̃(g̃(· − τ))(t) − H̃(g(· − τ))(t)| ≤ k2C1(ε),

where k1, k2, . . . > 0 and C1(ε) > 0 do not depend on (ϕ, u0, g), (ϕ̃, ũ0, g̃), and
t and C1(ε) → 0 as ε→ 0. Therefore, taking (4.8) into account, we have

‖ṽ0(·, t) − v0(·, t)‖W 1
2 (Q) ≤ k3C1(ε), (5.14)

‖f̃ − f‖L2(Qτ ) + ‖ϕ̃0 − ϕ0‖W 1
2 (Q) ≤ k4

(
C1(ε) + ‖ṽ − v‖C([0,τ ],L2(Q))

)
. (5.15)

Using the representation

ṽ(·, t)−v(·, t) = St(ϕ̃+ϕ̃0−ϕ−ϕ0)+
∫ t

0
St−s

(
f̃(·, s, ṽ(·, s)) − f(·, s, v(·, s))

)
ds,

the estimates

‖ϕ̃− ϕ‖L2(Q) + ‖ϕ̃0 − ϕ0‖L2(Q) ≤ k5C1(ε),

‖f̃(·, s) − f(·, s)‖L2(Q) ≤ k6

(
C1(ε) + ‖ṽ(·, s) − v(·, s)‖L2(Q)

)
,

and the Gronwall inequality, one obtains (cf. the proof of Theorem 1.2 in [18,
Chap. 6])

‖ṽ − v‖C([0,τ ],L2(Q)) ≤ k7C1(ε).

Combining this inequality with (5.15), we have

‖f̃ − f‖L2(Qτ ) + ‖ϕ̃0 − ϕ0‖W 1
2 (Q) ≤ k8C1(ε). (5.16)

Further, due to Lemma 2.1 and inequalities (5.14), (5.15), and (5.8), we obtain

‖w̃(·, t) − w(·, t)‖W 1
2 (Q) ≤ ‖ṽ0(·, t) − v0(·, t)‖W 1

2 (Q) + ‖ṽ(·, t) − v(·, t)‖W 1
2 (Q)

≤ k3C1(ε) + k9

(
‖f̃ − f‖L2(Qτ ) + ‖ϕ̃0 − ϕ0‖W 1

2 (Q) + ‖ϕ̃− ϕ‖W 1
2 (Q)

)
≤ k10C1(ε).

(5.17)

The latter estimate implies that

‖w̃m − wm‖C[0,τ ] ≤ k11C1(ε). (5.18)

III. Now assume that t ∈ [τ, 2τ ]. Replacing the triples

(ϕ, u0, g), (ϕ̃, ũ0, g̃)
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by
(w(·, τ), u(τ), wm(· + τ)), (w̃(·, τ), ũ(τ), w̃m(· + τ)),

respectively, and using inequalities (5.13), (5.17) for t = τ , and (5.18) instead
of (5.8), we obtain similarly to the above that

‖w̃(·, t) − w(·, t)‖W 1
2 (Q) + |ũ(t) − u(t)| + ‖w̃m − wm‖C[τ,2τ ] ≤ C2(ε),

where C2(ε) → 0 as ε→ 0.

Continuing this procedure, we see that if t ∈ [(k−1)τ, kτ ], k = 1, . . . , N , then

‖w̃(·, t)−w(·, t)‖W 1
2 (Q) + |ũ(t)−u(t)|+ ‖w̃m−wm‖C[(k−1)τ,kτ ] ≤ Ck(ε), (5.19)

where Ck(ε) → 0 as ε → 0. This proves the continuity of the operator G :
Ṽτ → Ṽτ .

Lemma 5.3 Let the hypothesis of Theorem 5.1 hold. Then the operator G :
Ṽτ → Ṽτ is compact.

PROOF. Let B denote a bounded set in Ṽτ . Due to (4.26), we have

‖w(·, T )‖W 2
2 (Q) ≤ k1 ∀(ϕ, u0, g) ∈ B, (5.20)

where k1 = k1(B) > 0 does not depend on (ϕ, u0, g) ∈ B.

It follows from (4.23) that

|wm(t2) − wm(t1)| ≤ k2|t2 − t1|1/2 ∀(ϕ, u0, g) ∈ B, t1, t2 ∈ [0, T ], (5.21)

where k2 = k2(B) > 0 does not depend on (ϕ, u0, g) ∈ B.

Using inequalities (5.20) and (5.21), the uniform boundedness of the functions
wm(t) on [0, T ] (cf. (4.21)), the Ascoli–Arzelà theorem, and the compactness
of the embedding W 2

2 (Q) ⊂ W 1
2 (Q), we see that the operator G : Ṽτ → Ṽτ is

compact.

Now we will find a bounded closed convex set in Ṽτ which is mapped by the
operator G into itself. Consider the set

ṼτT = {(ϕ, u0, g) ∈ Ṽτ : ‖ϕ‖W 1
2 (Q) ≤M1, u0 ∈ [0, 1], ‖g‖C̃[−T−τ,0] ≤M2},

where M1 = M1(T ) > 0 and M2 = M2(T ) > 0 are specified below.

Lemma 5.4 Let the hypothesis of Theorem 5.1 hold. Then there exist positive
numbers M1 = M1(T ) and M2 = M2(T ) such that the operator G maps ṼτT
into itself.
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PROOF. It follows from (4.22) that

u(T ) ∈ [0, 1] ∀(ϕ, u0, g) ∈ ṼτT . (5.22)

Denote

A0 =

[
max

(
1, 2a−1

)
+ max

|u1|≤1
F̂ (u1)

]
. (5.23)

Clearly, A(u0) = A0 for u0 ∈ [0, 1], where A(u0) is given by (4.24). Set

M1 =
c4A0

1 − e−ωT
,

where c4 = c4(T ) is the constant occurring in (4.20). Then, using (4.20), we
obtain

‖w(·, T )‖W 1
2 (Q) ≤ c4A0 + e−ωTM1 = M1 ∀(ϕ, u0, g) ∈ ṼτT . (5.24)

It remains to choose M2 > 0 such that

‖r‖C̃[−T−τ,0] ≤M2 ∀(ϕ, u0, g) ∈ ṼτT , (5.25)

where r(t) is given by (5.7). Using the Schwartz inequality and estimate (4.21),
we have

‖r‖C̃[−T−τ,0] = ‖wm‖C[0,T ] ≤ c5‖m‖L2(Q)‖w‖C([0,T ],L2(Q))

≤ Kc5‖m‖L2(Q)‖w‖C([0,T ],W 1
2 (Q)) ≤ Kc5‖m‖L2(Q)(A0 +M1),

where c5 is the constant occurring in (4.21) and K is the norm of the embed-
ding operator W 1

2 (Q) → L2(Q) (the norm in W 1
2 (Q) is given by (2.4)). By

setting
M2 = Kc5‖m‖L2(Q)(A0 +M1),

we obtain (5.25).

PROOF. [Proof of Theorems 5.1 and 5.2] I. It follows from Lemmas 5.2–
5.4 that the operator G maps a bounded closed convex set ṼτT into itself
and is compact. By the Schauder fixed-point theorem, the operator G has a
fixed point (ϕ, u0, g) ∈ ṼτT . Therefore, due to Remark 5.4, the corresponding
solution (w, u) of problem (4.1)–(4.3), (5.1)–(5.3) is a T -periodic solution of
problem (4.1), (4.3), (5.1). Theorem 5.2 and assertion 1 of Theorem 5.1 are
proved.

II. Let (w, u) be an arbitrary T -periodic solution of problem (4.1), (4.3), (4.4).
It follows from (4.27) and from the representation (4.28) that

u0e
−t/a ≤ u(t) ≤ (u0 − 1)e−t/a + 1 ∀t ≥ 0.
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Since u0e
−t/a → 0 and (u0 − 1)e−t/a + 1 → 1 as t → +∞, it follows that the

image of the periodic function u(t) lies in the segment [0, 1].

Remark 5.5 Let F not depend on w(x, t). Then any periodic solution (w, u)
of problem (4.1), (4.3), (4.4) is uniquely determined by the initial configuration
ξ ∈ R, the “mean” temperature wm(t), and the control function u(t). Namely,
using the Banach fixed-point theorem, similarly to [10, Sec. 4], one can show
the following. Let (w, u) be a T -periodic solution of problem (4.1), (4.3), (4.4)
and (w̃, u) be a solution of problem (4.1)–(4.6) in QT for all T > 0 such that
w̃m(t) = wm(t) for all t ≥ 0. Then either w̃ = w or w̃ is not periodic in t and

‖w̃(·, t) − w(·, t)‖W 1
2 (Q) → 0 as t→ ∞.

6 Thermocontrol Problems Without Time Delay: Existence and
Uniqueness of Solutions

6.1 Setting of the problem

Now we consider a thermocontrol problem without time delay. Let w(x, t) be
the temperature at the point x ∈ Q at the moment t ≥ 0 obeying the heat
equation

wt(x, t) = Pw(x, t) + F (x, t, w(x, t), u(t)) ((x, t) ∈ QT ), (6.1)

where F (x, t, w, u) satisfies (4.8) and the control function u(t) is to be defined
below.

The initial condition has the form

w(x, 0) = ϕ(x) (x ∈ Q). (6.2)

The boundary condition is given by:

−γ ∂w
∂ν

= σ(x)w(x, t) + k0(x)u(t) + k1(x) ((x, t) ∈ ΓT ), (6.3)

where γ, σ, k0, k1 are the same as above.

Fix an arbitrary ξ ∈ R and consider the Preisach operator H : C[0, T ] →
L∞(0, T ) ∩ Cr[0, T ) given by

H(r)(t) = H(r, ξ, 0)(t), r ∈ C[0, T ], t ∈ [0, T ].
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We assume that the control function u(t) satisfies the following Cauchy prob-
lem:

au′(t) + u(t) = H(wm)(t) (t ∈ (0, T )), (6.4)

u(0) = u0, (6.5)

where a > 0, u0 ∈ R, and w is the function satisfying relations (6.1)–(6.3).

Definition 6.1 A pair of functions (w, u) is called a solution of problem (6.1)–
(6.5) (in QT with the initial configuration ξ ∈ R) if

w ∈ W 2,1
2 (QT ) ∩ C([0, T ],W 1

2 (Q))

satisfies Eq. (6.1) a.e. in QT and conditions (6.2), (6.3) in the sense of traces
and u ∈ C1[0, T ] satisfies Eq. (6.4) in (0, T ) and condition (6.5).

6.2 Solvability and a priori estimates

In this subsection, we prove the existence and uniqueness of the solution for
problem (4.1)–(4.6). As before, we reduce the problem to that with the homo-
geneous boundary condition. Consider a function U ∈ W 2

2 (Q) satisfying (4.10)
and (4.11). Set

v0(x, t) = [k0(x)u(t) + k1(x)]U(x). (6.6)

Similarly to (4.13)–(4.15), we obtain that the function v = w− v0 satisfies the
relations

vt(x, t) = Pv(x, t) + f(x, t, v) ((x, t) ∈ QT ), (6.7)

v(x, 0) = ϕ(x) + ϕ0(x) (x ∈ Q), (6.8)

γ
∂v

∂ν
+ σ(x)v(x, t) = 0 ((x, t) ∈ ΓT ), (6.9)

where

f(x, t, v) = P [k0(x)U(x)]u(t) + P [k1(x)U(x)] − k0(x)U(x)u1(t)

+ F (x, t, v + v0(x, t), u(t)),

u1(t) = a−1(H(wm)(t) − u(t)),

ϕ0(x) = −(k0(x)u0 + k1(x))U(x).

(6.10)

Remark 6.1 We shall now define a mild solution (w, u), where u is a priori
not supposed to be differentiable. That is why we have introduced u1(t) in (6.10)
instead of writing u′(t). Then we shall prove that u is differentiable and u′(t) ≡
u1(t).

Consider the analytic semigroup of contraction Tt : L2(Q)×R → L2(Q)×R,
t ≥ 0, given by (4.17).
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Definition 6.2 A pair of functions (w, u) ∈ C ([0, T ], L2(Q) × R) is called
a mild solution of problem (6.1)–(6.5) (in QT with the initial configuration
ξ ∈ R) if w = v0 + v, where v0 is given by (6.6) and

(v(·, t), u(t)) = Tt(ϕ+ ϕ0, u0) +
∫ t

0
Tt−s

(
f(·, s, v(·, s)), a−1H(wm)(s)

)
ds;

(6.11)
here f and ϕ0 are given by (6.10).

First, we prove the existence and uniqueness of a mild solution. We replace
Condition 3.1 by a stronger one which ensures the Lipschitz continuity of the
Preisach operator.

For any function ψ ∈ Ψ (the class Ψ is described in Sec. 3) and any ε > 0, we
define the set

G(ψ, ε) = {(ρ1, ρ2) : ψ(ρ2 − ρ1) − ε ≤ ρ1 + ρ2 ≤ ψ(ρ2 − ρ1)}.

Condition 6.1 There is a constant L1 > 0 such that

sup
ψ∈Ψ

µ(G(ψ, ε)) ≤ L1ε ∀ε > 0.

Lemma 6.1 (see Sec. 38.6 in [13]) Condition 6.1 holds if and only if the
operator H : C[t0, t1] → C[t0, t1] is uniformly Lipschitz continuous, i.e., there
is a constant L2 > 0 (which does not depend on t0, t1, and ξj ∈ R, rj ∈
C[t0, t1]) such that

‖H(r1, ξ1, t0)−H(r2, ξ2, t0)‖C[t0,t1] ≤ L2

(
‖r1 − r2‖C[t0,t1] +

∫
P
|ξ1ρ − ξ2ρ| dµ(ρ)

)
.

Theorem 6.1 Let Condition 6.1 hold. Suppose that F satisfies condition (4.8).
Then, for any initial data (ϕ, u0) ∈ L2(Q) × R there exists a unique mild so-
lution (w, u) of problem (6.1)–(6.5) in QT .

PROOF. For a given pair (ϕ, u0) ∈ L2(Q) × R, we define the mapping

F : C ([0, T ], L2(Q) × R) → C ([0, T ], L2(Q) × R)

by the formula

(Fx)(t) = Tt(ϕ+ ϕ0, u0) +
∫ t

0
Tt−s

(
f(·, s, v(·, s))a−1H(wm)(s)

)
ds, (6.12)

for all x = (v, u) ∈ C ([0, T ], L2(Q) × R) such that x(0) = (ϕ+ ϕ0, u0), f and
ϕ0 are given by (6.10), w = v + v0, and v0 is defined in (6.6).

Denote by ‖x‖[0,s] the norm of x in C([0, s], L2(Q) × R), 0 < s ≤ T .

30



Let x̃ = (ṽ, ũ) ∈ C ([0, T ], L2(Q) × R), x̃(0) = (ϕ+ ϕ0, u0).

We set w̃ = ṽ + ṽ0, ṽ0 = (k0(x)ũ(t) + k1(x))U(x) (cf. (6.6)),

f̃(x, t, v) = P [k0(x)U(x)]ũ(t) + P [k1(x)U(x)] − k0(x)U(x)ũ1(t)

+ F (x, t, ṽ + ṽ0(x, t), ũ(t)),

ũ1(t) = a−1(H(w̃m)(t) − ũ(t)).

By using (4.8) and Lemma 6.1, we obtain

∥∥∥(f(·, s, v(·, s)), a−1H(wm)(s)
)
−
(
f̃(·, s, ṽ(·, s)), a−1H(w̃m)(s)

)∥∥∥
L2(Q)×R

≤ k1‖x − x̃‖[0,s],
(6.13)

where k1 > 0 does not depend on s, x, x̃.

It follows from (6.12) and (6.13) that

‖(Fx)(t) − (Fx̃)(t)‖L2(Q)×R ≤ k1Mt‖x − x̃‖[0,t], (6.14)

where M is a bound of ‖Tt‖ on [0, T ] and k1, k2, . . . > 0 do not depend on
t ∈ [0, T ]. Using (6.12)–(6.14), we obtain by induction

‖(Flx) − (Flx̃)‖[0,T ] ≤ (k1MT )l

l!
‖x − x̃‖[0,T ].

For a sufficiently large l, we have (k1MT )l/l! < 1. Therefore, by the generalized
contraction principle, F has a unique fixed point x = (v, u). Clearly, the
function (w, u) = (v + v0, u), where v0 is given by (6.6), is a mild solution of
problem (6.1)–(6.5).

Remark 6.2 For any mild solution (w, u) of problem (6.1)–(6.5), we have

u(t) = u0e
−t/a + a−1

∫ t

0
e−(t−s)/aH(wm)(s) ds,

which implies that u ∈ C1[0, T ] and satisfies the Cauchy problem (6.4), (6.5).

Let

V0 = W 1
2 (Q) × R

if γ > 0 and

V0 =
{
(ϕ, u0) ∈ W 1

2 (Q) × R : σ(x)ϕ(x) + k0(x)u0 + k1(x) = 0 (x ∈ Γ)
}

if γ = 0.
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Theorem 6.2 (1) Let Condition 6.1 hold. Suppose that F satisfies condi-
tions (4.8) and (4.9) and (ϕ, u0) ∈ V0. Then there exists a unique solution
(w, u) of problem (6.1)–(6.5) in QT and

‖w(·, T )‖W 1
2 (Q) ≤ c4A(u0) + e−ωT‖ϕ‖W 1

2 (Q), (6.15)

‖w‖C([0,T ],W 1
2 (Q)) ≤ c5B(ϕ, u0), (6.16)

‖u‖C[0,T ] ≤ max(1, |u0|), (6.17)

|wm(t2) − wm(t1)| ≤ c6B(ϕ, u0)|t2 − t1|1/2 ∀t1, t2 ∈ [0, T ], (6.18)

where A(u0) is given by (4.24) and B(ϕ, u0) by (4.25).
(2) If we additionally assume that Condition 3.2 holds, then

‖w(·, T )‖W 2
2 (Q) ≤ c7B(ϕ, u0). (6.19)

Here c4, . . . , c7 > 0 depend on T , do not depend on ϕ, u0, g, ξ, and are bounded
on any segment [T1, T2] (0 < T1 < T2).

PROOF. I. Due to Theorem 6.1, there is a unique mild solution (w, u) ∈
C([0, T ], L2(Q) × R) of problem (6.1)–(6.5) in QT . Since

u(t) = u0e
−t/a + a−1

∫ t

0
e−(t−s)/aH(wm)(s) ds (t ≥ 0),

it follows that u ∈ C1[0, T ] and satisfies (6.4), (6.5). Moreover, v0 ∈ W 2,1
2 (QT )

and f(x, t, v(x, t)) belongs to L2(QT ). Therefore, due to Lemma 2.1, prob-
lem (6.7)–(6.9) has a unique solution v ∈ W 2,1

2 (QT ) ∩ C([0, T ],W 1
2 (Q)) and

the pair (v, u) satisfies (6.11). Thus, the mild solution (w, u) is also a (strong)
solution of problem (6.1)–(6.5).

The proof of inequalities (6.15)–(6.19) is similar to the proof of inequali-
ties (4.20)–(4.23) and (4.26) in Theorem 4.2.

Remark 6.3 If the numbers τ0 < T are fixed, then, for any τ ∈ (0, τ0),
one can take the constants c4, . . . , c7 in Theorem 4.2 equal to the respective
constants in Theorem 6.2.

6.3 Continuous dependence of solutions upon the initial data and the delay τ

Now we investigate the dependence of solutions of problem (4.1)–(4.6) (with
τ > 0) and problem (6.1)–(6.5) (with τ = 0) upon the initial data and the
delay τ . In what follows, the phrase “(w, u) is a (mild) solution of the thermo-
control problem” means that (w, u) is a (mild) solution for problem (4.1)–(4.6)
if τ > 0 and problem (6.1)–(6.5) if τ = 0.
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Theorem 6.3 Let Condition 6.1 hold. Suppose that F satisfies condition (4.8).
Let (wj, uj), j = 1, 2, be a mild solution of the thermocontrol problem with ini-
tial configurations ξj ∈ R, delay τj ≥ 0, and initial data

vj =


(ϕj, uj0, gj) ∈ L2(Q) × R × C[−τj, 0] if τj > 0,

(ϕj, uj0) ∈ L2(Q) × R if τj = 0.

We additionally assume that the following compatibility condition holds for
τj > 0:

gj(0) = ϕjm, j = 1, 2. (6.20)

Then

‖(w1, u1) − (w2, u2)‖[0,T ]

≤ c8

(∫
P
|ξ1ρ − ξ2ρ| dµ(ρ) + ‖ϕ1 − ϕ2‖L2(Q) + |u10 − u20| + C(v1,v2, τ1, τ2)

)
,

(6.21)
where

C(v1,v2, τ1, τ2) =



∑
j=1,2

(
‖gj(·) − gj(0)‖C[−τj ,0] +B(ϕj, uj0)τ

1/2
j

)
if τ1 �= τ2,

‖g1 − g2‖C[−τ1,0] if τ1 = τ2,

(6.22)
B(ϕj, uj0) is given by (4.25), and c8 = c8(T ) > 0 does not depend on vj, ξj, τj
(if τj = 0, we formally set gj = 0 in (6.22)).

PROOF. I. Denote ξ = ξ1 − ξ2, w = w1 − w2, u = u1 − u2, u0 = u10 − u20,
ϕ = ϕ1 − ϕ2. We represent the function w as follows: w = v + v0. Here

v0(x, t) = k0(x)u(t) (6.23)

and v is the solution of the problem

vt(x, t) = Pv(x, t) + f(x, t) ((x, t) ∈ QT ), (6.24)

v(x, 0) = ϕ(x) + ϕ0(x) (x ∈ Q), (6.25)

γ
∂v

∂ν
+ σ(x)v(x, t) = 0 ((x, t) ∈ ΓT ), (6.26)

where

f(x, t) = P [k0(x)U(x)]u(t) − k0(x)U(x)u′(t)
+ F1(x, t, w1(x, t), u1(t)) − F2(x, t, w2(x, t), u2(t)),

ϕ0(x) = −k0(x)U(x)u0.

(6.27)

The function u belongs to C1[0, T ] (by Remark 6.2) and satisfies

u′(t) = a−1
(
H(ξ1, w1m(· − τ1), 0)(t) −H(ξ2, w2m(· − τ2), 0)(t) − u(t)

)
(6.28)
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u(0) = u0. (6.29)

Denote x(t) = (v(·, t), u(t)).

It follows from (6.27), (4.8), and (6.28) that

‖f(·, s)‖L2(Q) ≤ k1(‖x(s)‖L2(Q)×R + |u′(s)|) ≤ k2(‖x(s)‖L2(Q)×R

+ |H(ξ1, w1m(· − τ1), 0)(s) −H(ξ2, w2m(· − τ2), 0)(s)|), (6.30)

where k1, k2, . . . > 0 depend on T but do not depend on vj, ξj, τj.

Due to the compatibility condition (6.20), the Preisach operator H is con-
sidered for functions continuous on [0, T ]. Therefore, using Lemma 6.1, we
obtain

|H(ξ1, w1m(· − τ1), 0)(s) −H(ξ2, w2m(· − τ2), 0)(s)|
≤ L2

(∫
P
|ξρ| dµ(ρ) + ‖w1m(· − τ1) − w2m(· − τ2)‖C[0,s]

)
.

(6.31)

Assume that s > τj, j = 1, 2 (the case where s ≤ τj is analogous but simpler).

If τ1 �= τ2, then

‖w1m(· − τ1) − w2m(· − τ2)‖C[0,s]

≤ ∑
j=1,2

‖wjm(· − τj) − wjm(·)‖C[0,s] + ‖w1m − w2m‖C[0,s]

≤ ∑
j=1,2

(
‖gj(· − τj) − gj(0)‖C[0,τj ] + ‖wjm(·) − wjm(0)‖C[0,τj ]

+ ‖wjm(· − τj) − wjm(·)‖C[τj ,s]

)
+ ‖w1m − w2m‖C[0,s].

(6.32)

If τ1 = τ2, then

‖w1m(·−τ1)−w2m(·−τ2)‖C[0,s] ≤ ‖g1−g2‖C[−τ1,0] +‖w1m−w2m‖C[0,s]. (6.33)

Clearly, estimates (6.32) and (6.33) remain true for s ≤ τj. If τj = 0, they are
also valid with gj = 0.

Using the Schwartz inequality and Theorems 4.2 and 6.2, we have

‖wjm(·) − wjm(0)‖C[0,τj ] + ‖wjm(· − τj) − wjm(·)‖C[τj ,s] ≤ k3B(ϕj, uj0)τ
1/2
j ,
(6.34)

‖w1m−w2m‖C[0,s] ≤ k4(‖v0‖C([0,s],L2(Q)) + ‖v‖C([0,s],L2(Q))) ≤ k5‖x‖[0,s]. (6.35)
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Combining inequalities (6.31)–(6.35), we obtain

|H(ξ1, w1m(· − τ1), 0)(s) −H(ξ2, w2m(· − τ2), 0)(s)|
≤ k6

(∫
P
|ξρ| dµ(ρ) + C + ‖x‖[0,s]

)
,

(6.36)

where C = C(v1,v2, τ1, τ2) is given by (6.22).

Now we can estimate the solution v of problem (6.24)–(6.26) and the solution
u of problem (6.28), (6.29). Using representations (2.5) and

u(t) = u0e
−t/a

+ a−1
∫ t

0
e−(t−s)/a(H(ξ1, w1m(· − τ1), 0)(s) −H(ξ2, w2m(· − τ2), 0)(s)

)
ds

and inequalities (6.30) and (6.36), we obtain

‖x(·, t)‖L2(Q)×R ≤ k7

(∫
P
|ξρ| dµ(ρ) + ‖ϕ‖L2(Q) + |u0| + C +

∫ t

0
‖x‖[0,s] ds

)
.

(6.37)

Using (6.37) and the Gronwall inequality, we obtain

‖x‖[0,t] ≤ k7e
k7t
(∫

P
|ξρ| dµ(ρ) + ‖ϕ‖L2(Q) + |u0| + C

)
. (6.38)

In particular, it follows from (6.38) that

‖v0(·, t)‖L2(Q) ≤ k8e
k7t
(∫

P
|ξρ| dµ(ρ) + ‖ϕ‖L2(Q) + |u0| + C

)
. (6.39)

Combining (6.38) and (6.39), we derive the desired estimate.

Theorem 6.4 Let Condition 6.1 hold. Suppose that F satisfies condition (4.8).
Let (wj, uj), j = 1, 2, be a solution of the thermocontrol problem with initial
configurations ξj ∈ R, delay τj ≥ 0, and initial data

vj =


(ϕj, uj0, gj) ∈ Vτj if τj > 0,

(ϕj, uj0) ∈ V0 if τj = 0.

Then

‖w1 − w2‖W 2,1
2 (QT ) + ‖w1 − w2‖C([0,T ],W 1

2 (Q)) + ‖u1 − u2‖C1[0,T ]

≤ c9

(∫
P
|ξ1ρ − ξ2ρ| dµ(ρ) + ‖ϕ1 − ϕ2‖W 1

2 (Q) + |u10 − u20|

+ C(v1,v2, τ1, τ2)

)
,

(6.40)
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where C(v1,v2, τ1, τ2) is given by (6.22) and c9 = c9(T ) > 0 does not depend
on vj, ξj, τj.

PROOF. We keep the notation of the proof of Theorem 6.3. Due to this
theorem, it suffices to estimate the solution v of problem (6.24)–(6.26) and
the first derivative of the solution u of problem (6.28), (6.29).

It follows from (6.28) that

|u′1(t) − u′2(t)| ≤ a−1(|u1(t) − u2(t)|
+ |H(ξ1, w1m(· − τ1), 0)(t) −H(ξ2, w2m(· − τ2), 0)(t)|).

Using Lemma 2.1, we have

‖v‖W 2,1
2 (QT ) + ‖v‖C([0,T ],W 1

2 (Q)) ≤ k1(‖f‖L2(QT ) + ‖ϕ‖W 1
2 (Q) + ‖ϕ0‖W 1

2 (Q)).

Combining these two inequalities with estimates (6.30), (6.36), and (6.38), we
obtain (6.40).

In particular, Theorems 6.3 and 6.4 ensure the Lipschitz dependence of the
corresponding solution of the thermocontrol problem on initial configuration
ξ ∈ R and initial data v, provided that τ ≥ 0 is fixed.

Another consequence of Theorem 6.4 is the following result about the relation
between the solutions of the thermocontrol problem for τ > 0 and τ = 0
respectively.

Corollary 6.1 Let Condition 6.1 hold. Suppose that F satisfies condition (4.8).
Let (wτ , uτ ) be a solution of the thermocontrol problem with initial configura-
tion ξτ ∈ R, delay τ ∈ [0, 1], and initial data

vτ =


(ϕτ , uτ0, gτ ) ∈ Vτ if τ > 0,

(ϕ0, u00) ∈ V0 if τ = 0.

Assume that ∫
P
|ξτρ − ξ0ρ| dµ(ρ) → 0, ‖ϕτ − ϕ0‖W 1

2 (Q) → 0,

|uτ0 − u00| → 0, ‖gτ (·) − gτ (0)‖C[−τ,0] → 0

as τ → 0. Then

‖wτ −w0‖W 2,1
2 (QT ) + ‖wτ −w0‖C([0,T ],W 1

2 (Q)) + ‖uτ − u0‖C1[0,T ] → 0 as τ → 0.
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Remark 6.4 The condition

‖gτ (·) − gτ (0)‖C[−τ,0] → 0 as τ → 0

holds if, e.g., there is a function g ∈ C[−1, 0] such that

gτ (t) = g(t) (t ∈ [−τ, 0]).

Another situation in which this condition holds is described in Sec. 7 (see the
proof of Theorem 7.1).

7 Periodic Solutions of Thermocontrol Problems Without Time
Delay

7.1 Existence of periodic solutions

In this section, we will prove the existence of a periodic solution of the ther-
mocontrol problem with τ = 0. Moreover, we will show that this solution is
a limit (as τ → 0) of periodic solutions of the thermocontrol problems with
τ > 0.

We assume that the right-hand side F (x, t, ψ, u) is T -periodic in t with some
T > 0 and prove the existence of a T -periodic solution (w, u) of problem (6.1),
(6.3), (6.4).

Definition 7.1 A pair (w, u) is called a T -periodic solution of problem (6.1),
(6.3), (6.4) (with an initial configuration ξ ∈ R) if there is a couple (ϕ, u0) ∈
V0 such that the following holds:

(1) (w, u) is a solution of problem (6.1)–(6.5) in QT with the initial data
(ϕ, u0) and the initial configuration ξ,

(2) u(T ) = u0, w(x, T ) = ϕ(x), and hρ(wm, ξρ, 0)(T ) = ξρ for ρ ∈ P.

Theorem 7.1 Let Conditions 6.1 and 3.2 hold. Suppose that the function
F (x, t, ψ, u) is T -periodic in t with some T > 0 and satisfies conditions (4.8)
and (4.9). Then the following assertions are true.

(1) There exists a T -periodic solution (w0, u0) of problem (6.1), (6.3), (6.4),
which is the limit in W 2,1

2 (QT ) × C1[0, T ] and C ([0, T ],W 1
2 (Q) × R) (as

τ → 0) of T -periodic solutions of problems (4.1), (4.3), (4.4).
(2) For any T -periodic solution (w, u) of problem (6.1), (6.3), (6.4), we have

u(t) ∈ [0, 1] (t ≥ 0).
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PROOF. I. Fix an arbitrary ζ ∈ R and consider the operator G : Ṽτ → Ṽτ ,
τ ∈ (0, T ), given by (5.6). Due to Lemmas 5.2–5.4 and the Schauder fixed-
point theorem, for any τ ∈ (0, T ) it has a fixed point (ϕτ , uτ0, gτ ) ∈ ṼτT
and gτ (t) is continuous on [−T − τ, 0]. Due to Remark 5.4, the corresponding
solution (wτ , uτ ) of problem (4.1)–(4.3), (5.1)–(5.3) is a T -periodic solution of
problem (4.1), (4.3), (5.1).

Further, due to Remark 5.3, the pair (wτ , uτ ) is a periodic solution of prob-
lem (4.1), (4.3), (4.4) with the initial configuration

ξτρ = hρ(gτ (· − τ), ζρ,−T )(0).

By Lemma 5.4, we have

‖ϕτ‖W 1
2 (Q) ≤ k1, uτ0 ∈ [0, 1], ‖gτ‖C[−T−τ,0] ≤ k2, (7.1)

where k1, k2, . . . > 0 do not depend on τ .

Therefore, applying Theorem 4.2 and taking into account the uniform bound-
edness of B(ϕτ , uτ0), we obtain

‖ϕτ‖W 2
2 (Q) = ‖wτ (·, T )‖W 2

2 (Q) ≤ k3, (7.2)

|gτ (t1) − gτ (t2)| = |wτm(2T + t1) − wτm(2T + t2)| ≤ k4|t1 − t2|1/2 (7.3)

for all t1, t2 ∈ [−T − τ, 0].

It follows from estimates (7.1)–(7.3), from the compactness of the embedding
W 2

2 (Q) ⊂ W 1
2 (Q), and from the Ascoli–Arzelà theorem that there exist func-

tions ϕ ∈W 1
2 (Q) and g ∈ C[−T, 0] and a number u00 ∈ [0, 1] such that

‖ϕτ − ϕ0‖W 1
2 (Q) → 0, ‖gτ − g0‖C[−T,0] → 0, |uτ0 − u00| → 0 as τ → 0.

(7.4)

We set

ξ0ρ = hρ(g0, ζρ,−T )(0).

Let us show that ∫
P
|ξτρ − ξ0ρ| dµ(ρ) → 0 as τ → 0. (7.5)

By using (7.3), we have

‖gτ (· − τ) − g0(·)‖C[−T,0] ≤ ‖gτ (· − τ) − gτ (·)‖C[−T,0] + ‖gτ − g0‖C[−T,0]

≤ k4τ
1/2 + ‖gτ − g0‖C[−T,0].
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Combining this estimate with (7.4), we see that

‖gτ (· − τ) − g0(·)‖C[−T,0] → 0 as τ → 0.

This implies (7.5) (cf. (3.2)).

II. Due to (7.4), we have (ϕ0, u00) ∈ V0. Therefore, by Theorem 6.2, there is a
unique solution (w0, u0) of problem (6.1)–(6.4) with the initial configuration
ξ0 and the initial data (ϕ0, u00).

We claim that (w0, u0) is the desired T -periodic solution of problem (6.1),
(6.3), (6.4). Indeed, it follows from (7.3)–(7.5) and from Corollary 6.1 that

‖wτ −w0‖W 2,1
2 (QT ) + ‖wτ −w0‖C([0,T ],W 1

2 (Q)) + ‖uτ − u0‖C1[0,T ] → 0 as τ → 0,

(7.6)
which proves that (w0, u0) is the limit of T -periodic solutions of problems (4.1),
(4.3), (4.4) for τ > 0.

Further, using (7.4) and (7.6), we obtain

u0(T ) = u00, w0(x, T ) = ϕ0.

Thus, to show that (w0, u0) is a T -periodic solution of problem (6.1), (6.3),
(6.4), it remains to prove that

hρ(w0m, ξρ, 0)(T ) = ξρ (ρ ∈ P). (7.7)

Denote

ŵ0m =


g0(t), t ∈ [−T, 0),

w0m(t), t ∈ [0, T ].

Due to (7.4) and (7.6), the function ŵ0m is continuous and T -periodic on
[−T, T ]. By Lemma 3.1 (the semigroup property), we have

hρ(w0m, ξρ, 0)(t) = hρ(ŵ0m, ζρ,−T )(t) ∀t ∈ [0, T ]. (7.8)

Using (7.8) and Remark 5.2, we obtain (7.7):

hρ(w0m, ξρ, 0)(T ) = hρ(ŵ0m, ζρ,−T )(T ) = hρ(ŵ0m, ζρ,−T )(0)

= hρ(ŵ0m, ξρ, 0)(0) = ξρ.

Statement 2 of the theorem is proved similarly to that in Theorem 5.1.

Remark 7.1 Let F not depend on w(x, t). Then any periodic solution (w, u)
of problem (6.1), (6.3), (6.4) is uniquely determined by the initial configura-
tion ξ ∈ R, the “mean” temperature wm(t), and the control function u(t) (cf.
Remark 5.5).
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7.2 Existence of stationary solutions

In this subsection, we consider the particular case F (x, t, ψ, u) ≡ f(x, u) and
prove that the thermocontrol problem has a stationary solution. The stability
of the stationary solution as well as the case where f depends on ψ will not
be studied in this paper.

Fix some initial configuration ξ ∈ R of the operator H.

Definition 7.2 We say that a pair (ψ, u0) ∈ W 2
2 (Q) × R is a stationary

solution of the thermocontrol problem with the right-hand side F (x, t, ψ, u) ≡
f(x, u) (f ∈ C(Q× R)) if it satisfies the relations

−Pψ = f(x, u0) (x ∈ Q),

−γ ∂ψ
∂ν

= σ(x)ψ(x) + k0(x)u0 + k1(x) (x ∈ Γ),

u0 = H(ψm).

Theorem 7.2 (1) Let Condition 3.1 hold, and let F (x, t, ψ(x), u) ≡ f(x, u),
where f ∈ C(Q × R). Then the thermocontrol problem has a stationary
solution (ψ, u0). Moreover, u0 ∈ [0, 1].

(2) If we additionally assume that m(x) ≥ 0, k0(x) ≤ 0, the function f(x, u)
is nondecreasing in u on the segment [0, 1], and

f(·, u0) ∈ C∞(Q) (u0 ∈ [0, 1]),

then the above stationary solution is unique.

PROOF. I. We construct a function U(u0) in the following way. For any
u0 ∈ R, denote by ψ ∈ W 2

2 (Q) the solution of the problem

−Pψ = f(x, u0) (x ∈ Q),

−γ ∂ψ
∂ν

= σ(x)ψ(x) + k0(x)u0 + k1(x) (x ∈ Γ)
(7.9)

(which exists and is unique due to the assumptions about the elliptic operator
P and the boundary conditions). Set

U(u0) = H(ψm).

It follows from the continuity of the function f and from the continuity of
the operator H (see Lemma 3.3) that the function U(u0) is continuous. Due
to (4.27), it maps R into [0, 1] and, therefore, has a fixed point (which belongs
to the segment [0, 1]).
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Let u0 be the above fixed point and ψ the corresponding solution of prob-
lem (7.9). Clearly, the pair (ψ, u0) is a stationary solution of the thermocontrol
problem.

II. Let us prove the uniqueness of the stationary solution under the additional
assumptions about m, k0, and f . To do so, it suffices to show that the function
U(u0) is nonincreasing for u0 ∈ [0, 1].

Let 0 ≤ u0 ≤ ũ0 ≤ 1. Denote by ψ the solution of problem (7.9) and by ψ̃ the
solution of the problem

−Pψ̃ = f(x, ũ0) (x ∈ Q),

−γ ∂ψ̃
∂ν

= σ(x)ψ̃(x) + k0(x)ũ0 + k1(x) (x ∈ Γ).

Clearly, the function v = ψ̃ − ψ satisfies the relations

−Pv = f(x, ũ0) − f(x, u0) ≥ 0 (x ∈ Q),

γ
∂v

∂ν
+ σ(x)v(x) = −k0(x)(ũ0 − u0) ≥ 0 (x ∈ Γ).

It follows from the theorem on the regularity of solutions of elliptic problems,
from the maximum principle, and from the Hopf lemma (if γ > 0) that v(x) ≥
0 for x ∈ Q. Since m(x) ≥ 0, we have ψ̃m ≥ ψm. Using the monotonicity of
the operator H (see Lemma 3.2), we obtain U(ũ0) ≤ U(u0).

Consider problem (4.1)–(4.3) with F = 0 and particular boundary conditions
(cf. [5, 10]):

wt(x, t) = Pw(x, t) ((x, t) ∈ QT ) (7.10)

w(x, 0) = ϕ(x) (x ∈ Q), (7.11)

γ
∂w

∂ν
+ σ(x)(w(x, t) − we(x)) = K(x)(u(t) − uc) ((x, t) ∈ ΓT ), (7.12)

where γ and σ(x) are the same as above, we ∈ C∞(Γ) is the ambient temper-
ature, uc ∈ R is a “critical” value of the control function u(t), K ∈ C∞(Γ) is
an amplification coefficient.

The following corollary directly results from Theorem 7.2.

Corollary 7.1 Let Condition 3.1 hold. Then problem (7.10), (7.12), (4.4)
(with τ ≥ 0) has a stationary solution (ψ, u0); moreover, u0 ∈ [0, 1]. If
m(x) ≥ 0 and K(x) ≥ 0, then the stationary solution is unique.

In conclusion of this section, we note that the thermocontrol problem may
have no periodic solutions (different from stationary ones). As an example, we
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consider the following particular case of relations (7.10), (7.12):

wt(x, t) = ∆w(x, t) − p0w(x, t) ((x, t) ∈ QT ), (7.13)

∂w

∂ν
= K(x)(u(t) − uc) ((x, t) ∈ ΓT ), (7.14)

where p0 is a positive constant. Let m(x) ≡ 1 and
∫
ΓK(x) dx ≥ 0.

Denote

K0 =
∫
Γ
K(x) dx.

By assumption, K0 ≥ 0. First, we show that if (w, u) is a periodic solution of
problem (7.13), (7.14), (4.4) (with τ ≥ 0), then

−K0uc/p0 ≤ wm(t) ≤ −K0uc/p0 +K0/p0 (t ≥ 0). (7.15)

Indeed, assume that (w, u) is a T -periodic solution of problem (7.13), (7.14),
(4.4). We extend the solution (w, u) for all t ≥ 0 by periodicity. It follows
from Theorems 4.2 and 6.2 (uniqueness of solutions) and from the periodicity
of (w, u) that Eq. (4.4) (with τ ≥ 0) holds for all t ≥ 0:

au′(t) + u(t) = H(wm(· − τ)) (t ≥ 0). (7.16)

Further, integrating Eq. (7.13) over Q and using the integration-by-parts for-
mula and relation (7.14), we obtain the following ordinary differential equation
for wm(t):

w′
m(t) + p0wm(t) = K0(u(t) − uc) (t ≥ 0). (7.17)

In particular, it follows from (7.17) and (7.16) that wm is twice continuously
differentiable. A periodic solution of Eq. (7.17) has the form

wm(t) = K0

∫ ∞

0
e−p0s(u(t− s) − uc) ds,

where u(t) is extended to R by periodicity. Combining this formula with the
relations 0 ≤ u(t) ≤ 1 (see Theorems 5.1 and 7.1), we obtain (7.15).

Denote
α1 = inf

ρ∈suppµ
ρ1, α2 = sup

ρ∈suppµ
ρ2,

β1 = sup
ρ∈suppµ

ρ1, β2 = inf
ρ∈suppµ

ρ2.

We claim that if

α1 > −∞ and −K0uc/p0 +K0/p0 ≤ α1 (7.18)
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or
α2 < +∞ and −K0uc/p0 ≥ α2, (7.19)

or
β1 ≤ −K0uc/p0 ≤ −K0uc/p0 +K0/p0 ≤ β2, (7.20)

then any periodic solution of problem (7.13), (7.14), (4.4) is a stationary so-
lution.

Indeed, in each of these cases, we have H(wm(· − τ))(t) = const for t ≥ τ due
to (7.15). Therefore, u(t) = u0 = const for t ≥ τ (and hence for t ≥ 0) due
to (7.16), where u0 ∈ [0, 1]. Substituting u(t) ≡ u0 into Eq. (7.17), we see that
wm(t) = −K0uc/p0 +K0u0/p0 for t ≥ 0.

On the other hand, if ψ(x) is the solution of the elliptic problem

∆ψ(x) − p0ψ(x) = 0 (x ∈ Q),

∂ψ

∂ν
= K(x)(u0 − uc) (x ∈ Γ),

then (ψ(x), u0) is a T -periodic solution (with any T ) of problem (7.13), (7.14),
(4.4) with the mean temperature ψm = −K0uc/p0 + K0u0/p0. Due to Re-
marks 5.5 and 7.1 , we have w(x, t) ≡ ψ(x).

It is easy to check that if condition (7.18) holds, then u0 = 1; if condition (7.19)
holds, then u0 = 0; if condition (7.20) holds, then u0 ∈ [0, 1]. In all these cases,
we have H(ψm) = u0.

8 Large Time Behavior of Solutions of Thermocontrol Problems

8.1 Existence of a global B-attractor

As before, the term “thermocontrol problem” refers to problem (4.1)–(4.6) if
τ > 0 and problem (6.1)–(6.5) if τ = 0.

In this section, we study the large-time behavior of solutions for the thermo-
control problem (with τ ≥ 0) under the following assumptions.

Condition 8.1 (1) If τ > 0, then Condition 3.1 holds; if τ = 0, then Con-
dition 6.1 holds.

(2) Condition 3.2 holds.
(3) The right-hand side F satisfies (4.8) and the relation

F̂ = sup
t≥0, ψ∈L2(Q), u∈R

‖F (·, t, ψ(·), u)‖L2(Q) <∞. (8.1)
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We fix an initial configuration ξ ∈ R of the operator H and an arbitrary
number t0 > τ and consider the family {Vt}t≥t0 = {Vt,ξ,F}t≥t0 of nonlinear
operators Vt = Vt,ξ,F : Vτ → Vτ given by

Vt(v) = Vt,ξ,F (v) =



(
w(·, t), u(t), wm(· + t)|[−τ,0]

)
for τ > 0,

(w(·, t), u(t)) for τ = 0,

where (w, u) is the solution of the thermocontrol problem with the initial data
v ∈ Vτ , right-hand side F (x, t, w(x, t), u), and the initial configuration ξ ∈ R.

Remark 8.1 We have

Vt1+t2,ξ,F (v) = Vt2,ζ,G(Vt1,ξ,F (v)) ∀t1, t2 ≥ t0,

where ζρ = hρ(wm, ξρ, 0)(t1) and G(x, t, ψ, q) = F (x, t + t1, ψ, q). Thus, the
family {Vt,ξ,F}t≥t0 does not form a semigroup even if F ≡ 0 (since ζ need not
coincide with ξ).

Definition 8.1 The family {Vt}t≥t0 is said to be continuous if the mapping
[t0,∞) × Vτ � (t,v) �→ Vt(v) ∈ Vτ is continuous.

Lemma 8.1 Let Condition 8.1 hold. Then the following assertions are true.

(1) The operators Vt : Vτ → Vτ are continuous and compact.
(2) The family {Vt}t≥t0 is continuous.

PROOF. I. The continuity of the operators Vt : Vτ → Vτ follows from
Theorem 6.4. The compactness follows from (4.20), (4.22), (4.23), and (4.26)
if τ > 0 and from (6.17) and (6.19) if τ = 0; in both cases, the compactness
of the embedding W 2

2 (Q) ⊂ W 1
2 (Q) and the Ascoli–Arzelà theorem should be

applied.

II. To prove the continuity of the family {Vt}t≥t0 , we fix (t1,v1) ∈ [t0,∞)×Vτ
and ε > 0. Consider an arbitrary element (t,v) ∈ [t0,∞) × Vτ .

We have

‖Vt(v) − Vt1(v1)‖Vτ ≤ ‖Vt(v1) − Vt1(v1)‖Vτ + ‖Vt(v1) − Vt(v)‖Vτ . (8.2)

Due to Theorems 4.2 and 6.2 with T = 2t1,

‖Vt(v1) − Vt1(v1)‖Vτ ≤ ε/2 (8.3)

whenever |t− t1| ≤ δ1, where δ1 = δ1(t1,v1) > 0 is sufficiently small.
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On the other hand, Theorem 6.4 implies that

‖Vt(v1) − Vt(v)‖Vτ ≤ ε/2 (8.4)

whenever t ≤ 2t1 and ‖v − v1‖Vτ ≤ δ2, where δ2 = δ2(t1) > 0 is sufficiently
small.

Inequalities (8.2)–(8.4) prove assertion 2.

Definition 8.2 Let A and B be subsets of Vτ . We say that A attracts B if
for every ε > 0 there exists a number t1 = t1(ε,B) > t0 such that Vt(B) lies
in the ε-neighborhood of A for all t ≥ t1.

The set A is called a global B-attractor (of the family {Vt}t≥t0) if A attracts
each bounded set B.

The family {Vt}t≥t0 is called B-dissipative if it has a bounded global B-attractor.

Lemma 8.2 Let Condition 8.1 hold. Then the family {Vt}t≥t0 is B-dissipative.

PROOF. I. First, we note that any solution u(t) of Eq. (4.4) satisfies the
inequalities

u0e
−t/a ≤ u(t) ≤ (u0 − 1)e−t/a + 1 ∀t ≥ 0,

which follows from (4.27) and from the representation (4.28). Therefore, for
any ε > 0, there is t′(ε) ≥ 0 such that

−ε ≤ u(t) ≤ 1 + ε ∀t ≥ t′(ε). (8.5)

Now we fix an arbitrary ε ∈ (0, 1) and an arbitrary M1 > 0 and consider a
bounded set Bε = Bε(M1) ⊂ Vτ consisting of the elements

v =


(ϕ, u0, g) for τ > 0,

(ϕ, u0) for τ = 0

such that ‖ϕ‖W 1
2 (Q) ≤M1, −ε ≤ u0 ≤ 1 + ε, and ‖g‖C[−τ,0] ≤M1 if τ > 0.

We will find a set Aε ⊂ Vτ which attracts the sets Bε(M1) for all M1 > 0.

Denote

Aε =
[
max

(
1 + ε, a−1(2 + ε)

)
+ F̂
]
,

where F̂ is given by (8.1). Clearly, A(u0) ≤ Aε for −ε ≤ u0 ≤ 1 + ε, where
A(u0) is given by (4.24).
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Set c = sup
T∈[1,2]

c4(T ), where c4(T ) > 0 is the constant occurring in (4.20)

and (6.15). It follows from Theorems 4.2 and 6.2 that c <∞.

Set

Mε =
cAε

1 − e−ω
.

Let (w, u) be the solution of the thermocontrol problem with an initial data
v1 ∈ Bε and the initial configuration ξ ∈ R.

Let t ∈ [1, 2]. Then, due to (4.20) and (6.15), we have

‖w(·, t)‖W 1
2 (Q) ≤ cAε+e

−ωM1 = Mε+e
−ω(M1−Mε) = M2 ∀t ∈ [1, 2]. (8.6)

Let t ∈ [2, 3]. Then (w(·, t), u(t)) coincides with the solution of the thermo-
control problem, at the moment t− 1 ∈ [1, 2], with the initial data

v2 =



(
w(·, 1), u(1), wm(· + 1)|[−τ,0]

)
for τ > 0,

(w(·, 1), u(1)) for τ = 0,

the right-hand side G(x, t, ψ(x), q) = F (x, t + 1, ψ(x), q), and the initial con-
figuration ζρ = hρ(wm, ξρ, 0)(1).

Note that the constant c does not depend on the initial configuration of the
operator H and does not increase under the change of F for G. Hence, us-
ing (8.5), (8.6), (4.20), and (6.15), we obtain

‖w(·, t)‖W 1
2 (Q) ≤ cAε + e−ωM2 = Mε + e−ω(M2 −Mε) = M3 ∀t ∈ [2, 3].

Continuing this process, we see that

‖w(·, t)‖W 1
2 (Q) ≤Mk+1 ∀t ∈ [k, k + 1], k = 1, 2, 3, . . . , (8.7)

where Mk+1 = Mε + e−ω(Mk −Mε).

Further, using the Schwartz inequality, we have

|wm(t)| ≤ ‖m‖L2(Q)‖w(·, t)‖L2(Q) ≤ K‖m‖L2(Q)‖w(·, t)‖W 1
2 (Q) ∀t ≥ 0, (8.8)

where K is the norm of the embedding operator W 1
2 (Q) → L2(Q) (recall that

the norm in W 1
2 (Q) is given by (2.4)).
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Since Mk →Mε as k → ∞, it follows from (8.5), (8.7), and (8.8) that the set

Aε =



{(ϕ, u0, g) ∈ Vτ : ‖ϕ‖W 1

2 (Q) ≤Mε, −ε ≤ u0 ≤ 1 + ε,

‖g‖C[−τ,0] ≤ KMε‖m‖L2(Q)} for τ > 0,

{(ϕ, u0) ∈ V0 : ‖ϕ‖W 1
2 (Q) ≤Mε, −ε ≤ u0 ≤ 1 + ε} for τ = 0,

attracts the set Bε.

II. Now we consider an arbitrary bounded set B ⊂ Vτ . Let (w, u) be the
solution of the thermocontrol problem with the initial data v1 ∈ B and the
initial configuration ξ ∈ R. It follows from (8.5) that, for any ε > 0, there is
a number T = T (B, ε) ≥ t0 such that −ε ≤ u(T ) ≤ 1 + ε, i.e.,

v = VT (v1) ∈ Bε,
where Bε is the set considered in step I of the proof.

Since
Vt(v1) = Vt−T,ζ,G(v) ∀t ≥ T + t0,

where ζρ = hρ(wm, ξρ, 0)(T ) and G(x, t, ψ(x), q) = F (x, t + T, ψ(x), q), it fol-
lows that the set Aε attracts the set B.

Since ε > 0 is arbitrary, we see that the set A equal to

{(ϕ, u0, g) ∈ Vτ : ‖ϕ‖W 1
2 (Q) ≤M, 0 ≤ u0 ≤ 1, ‖g‖C[−τ,0] ≤ KM‖m‖L2(Q)}

if τ > 0 and to

{(ϕ, u0) ∈ V0 : ‖ϕ‖W 1
2 (Q) ≤M, 0 ≤ u0 ≤ 1}

if τ = 0, where

M =
cA

1 − e−ω
, A =

[
max

(
1, 2a−1

)
+ F̂
]
,

attracts the set B.

8.2 Existence of a compact connected minimal global B-attractor

In this subsection, we prove the existence of a minimal global B-attractor.

Definition 8.3 A set A ⊂ Vτ is called the minimal global B-attractor (of the
family {Vt}t≥t0) if A is closed, is a global B-attractor, and any other closed
global B-attractor contains A.

Let us introduce the notion of ω-limit sets.
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Definition 8.4 The ω-limit set ω(A) for a set A ⊂ Vτ is the set of the limits
of all converging sequences of the form Vtk(vk), where vk ∈ A and the sequence
{tk} is increasing and converging to +∞.

Denote
γt(v) = {Vτ (v) : τ ≥ t}, t ≥ t0, v ∈ Vτ ;

γt(A) =
⋃

v∈A
γt(v), A ⊂ Vτ .

One can easily verify that

ω(A) =
⋂
t≥T

γt(A), (8.9)

where T ≥ t0 is an arbitrary fixed number.

Theorem 8.1 Let Condition 8.1 hold. Then the family {Vt}t≥t0 has a mini-
mal global B-attractor, which is compact and connected.

PROOF. I. The proof of this theorem is based on Lemmas 8.1 and 8.2 and
exploits the ideas of [15, Part I], where attractors of semigroups are studied.

It follows from Lemma 8.2 that there exists a bounded set B0 ⊂ Vτ such that
for any bounded set B ⊂ Vτ

Vt(B) ⊂ B0 ∀t ≥ T, (8.10)

where T = T (B) ≥ t0 is sufficiently large.

We claim that ω(B0) is the minimal global B-attractor, which is compact and
connected.

II. First, we note that, due to (8.10), we have Vt(B0) ⊂ B0 for all t ≥ T0,
where T0 ≥ T is sufficiently large.

Suppose that the set B0 lies in the ball of radius R centered at the origin.

Fix a number t1 ≥ t0. Let us show that the set γt1+T0(B0) is precompact.
Indeed,

γt1+T0(B0) =
⋃
s≥T0

Vt1,ζs,Gs(Vs(B0)),

where ζsρ = hρ(wm, ξρ, 0)(s) and Gs(x, t, ψ(x), u) = F (x, t+s, ψ(x), u). There-
fore, for any element

w =


(ψ, u1, r) for τ > 0,

(ψ, u1) for τ = 0
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from γt1+T0(B0), there is an element v ∈ Vs(B0) ⊂ B0 such that

w = Vt1,ζ,G(v),

where ζ ∈ R and the function G possesses the same properties as F does.
Applying Theorems 4.2 and 6.2, we obtain

‖ψ‖W 2
2 (Q) ≤ k1, |u1| ≤ max(1, R),

‖r‖C[−τ,0] ≤ k2, |r(s2) − r(s1)| ≤ k3|s2 − s1|1/2 ∀s1, s2 ∈ [−τ, 0]

(the latter two inequalities are absent if τ = 0), where k1, k2, k3 > 0 depend
on t1 and R but do not depend on w ∈ γt1+T0(B0). Using the compactness of
the embedding W 2

2 (Q) ⊂ W 1
2 (Q) and the Ascoli–Arzelà theorem, we see that

the set γt1+T0(B0) is precompact.

On the other hand, γt2+T0(B0) ⊂ γt1+T0(B0) for all t2 > t1 ≥ t0. Therefore, the
set

ω(B0) =
⋂

t≥t0+T0

γt(B0)

is the intersection of the ordered family of compact sets. Hence, ω(B0) is
nonempty, compact, and attracts B0. Due to (8.10), ω(B0) attracts any bounded
set B ⊂ Vτ , i.e., it is a global B-attractor.

The minimality of the global B-attractor ω(B0) and its connectedness are
proved in the same way as in the proof of Theorem 2.1 in [15, Part I].

8.3 Physical interpretation

Fix some numbers ρ∗1 < ρ∗2 and δ > 0. Let the support suppµ of the measure
µ be a subset of the set

P∗ = P ∩ [ρ∗1 − δ, ρ∗1 + δ] × [ρ∗2 − δ, ρ∗2 + δ].

The goal of this subsection is to formulate sufficient conditions under which
the minimal global B-attractor has a nonempty intersection with the set

{(ψ, u0, r) ∈ Vτ : ψm ∈ (ρ∗1 − δ, ρ∗2 + δ)}, τ > 0

({(ψ, u0) ∈ V0 : ψm ∈ (ρ∗1 − δ, ρ∗2 + δ)}, τ = 0)

and to provide the physical interpretation.

We assume that F (x, t, ψ, q) ≡ f(x, t, q),

f(x, t, q) is uniformly continuous in QT × R (8.11)
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and there exist functions F1, F2 ∈ L2(Q) such that

lim
t→∞ ‖f(·, t, 1) − F1‖L2(Q) = 0, lim

t→∞ ‖f(·, t, 0) − F2‖L2(Q) = 0. (8.12)

We consider the following two auxiliary elliptic boundary-value problems:

−Pw1(x) = F1(x) (x ∈ Q),

−γ ∂w1

∂ν
= σ(x)w1(x) + k0(x) + k1(x) (x ∈ Γ)

(8.13)

and
−Pw2(x) = F2(x) (x ∈ Q),

−γ ∂w2

∂ν
= σ(x)w1(x) + k1(x) (x ∈ Γ).

(8.14)

Due to the assumptions about the elliptic operator P and about the coefficients
in the boundary conditions, each of these problems has a unique solution from
W 2

2 (Q).

Assume that
w1m > ρ∗1 − δ, w2m < ρ∗2 + δ. (8.15)

Theorem 8.2 Let suppµ ⊂ P∗, F (x, t, ψ, q) ≡ f(x, t, q), the function f sat-
isfy conditions (8.11) and (8.12), and inequalities (8.15) hold. Then, for any
T1 > 0, there is a number T ≥ T1 such that wm(T ) ∈ (ρ∗1 − δ, ρ∗2 + δ), where
(w, u) is a solution of the thermocontrol problem.

PROOF. Suppose that wm(t) ≤ ρ∗1 − δ for all sufficiently large t (the case
wm(t) ≥ ρ∗2 + δ is treated analogously). Then wm(t) ≤ ρ1 for any ρ ∈ P∗.
Therefore

H(wm(· − τ))(t) =
∫
P∗
hρ(wm(· − τ), ξρ, 0)(t) dµ(ρ) = µ(P∗) = 1

for all sufficiently large t. Hence, u(t) → 1 as t → +∞. Reducing prob-
lem (4.1)–(4.3) to that with the homogeneous boundary conditions, taking
into account that

lim
t→∞ ‖f(·, t, u(t)) − F1(·)‖L2(Q) = 0,

and applying Theorem 4.4 in [18, Chap. 4] (about the asymptotic behavior of
solutions of abstract Cauchy problems), we obtain

‖w(·, t) − w1‖L2(Q) → 0 as t→ ∞.

Therefore, using the Schwartz inequality, we have

|wm(t) − w1m| → 0 as t→ ∞.
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Combining this relation with (8.15), we see that wm(t) > ρ∗1 − δ for all suffi-
ciently large t, and we have obtained the contradiction.

As an example, let us consider the thermocontrol problem with F = 0 and
the particular boundary condition

γ
∂w

∂ν
+ σ(x)(w(x, t) − we(x)) = K(x)(u(t) − uc) ((x, t) ∈ ΓT ), (8.16)

where γ and σ(x) are the same as above, we ∈ C∞(Γ) is the ambient temper-
ature, uc ∈ (0, 1) is a “critical” value of the control function u(t), K ∈ C∞(Γ)
is a nonnegative amplification coefficient (cf. problem (7.10)–(7.12) and the
papers [5, 10]). We also assume that m(x) ≥ 0 and m �= 0 (as an element of
L∞(Q)).

Corollary 8.1 There is a number K0 > 0 such that if K(x) ≥ K0 (x ∈ Γ),
then for any T1 > 0 there is a number T ≥ T1 such that wm(T ) ∈ (ρ∗1 −
δ, ρ∗2+δ), where (w, u) is a solution of the thermocontrol problem with boundary
condition (8.16).

PROOF. In the particular case under consideration, auxiliary elliptic prob-
lems (8.13) and (8.14) reduce to the following problems:

−Pw1(x) = 0 (x ∈ Q),

γ
∂w1

∂ν
+ σ(x)w1 = σ(x)we +K(x) (1 − uc) (x ∈ Γ)

(8.17)

and
−Pw2(x) = 0 (x ∈ Q),

γ
∂w2

∂ν
+ σ(x)w2 = σ(x)we −K(x)uc (x ∈ Γ).

(8.18)

Clearly, one can choose K0 > 0 in such a way that if K(x) ≥ K0 (x ∈ Γ), then

σ(x)we(x) −K(x)uc < 0 < σ(x)we(x) +K(x) (1 − uc) (x ∈ Γ). (8.19)

In this case, the maximum principle and the Hopf lemma (if γ > 0) imply
that w2(x) < 0 < w1(x) for x ∈ Q, where w1 and w2 are the solutions of
problems (8.17) and (8.18), respectively. Therefore, if K0 is sufficiently large
and K(x) ≥ K0 (x ∈ Γ), then inequalities (8.15) hold. Now it remains to
apply Theorem 8.2.

Remark 8.2 It follows from Corollary 7.1 that the thermocontrol problem
with boundary condition (8.16) has a unique stationary solution (ψ, u0) and
u0 ∈ [0, 1]. Corollary 8.1 shows that if the amplification coefficient K(x) is
sufficiently large, then ψm ∈ (ρ∗1 − δ, ρ∗2 + δ).
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9 Open questions

As a conclusion, we formulate some open questions which we did not address
in the present work.

(1) We have shown the existence of stationary solutions of the thermocontrol
problems, provided that the right-hand side of the parabolic equation
does not depend on t. Find out if there are periodic solutions different
from stationary solutions in this case.

(2) Study the stability of the above stationary solutions.
(3) Study the stability of periodic solutions.
(4) Investigate the structure of the global attractor in more detail.

The authors are grateful to B. Fiedler and A. L. Skubachevskii for their interest
in this work.

References

[1] H. W. Alt, “On the thermostat problem,” Control Cyb., 14, 171–193 (1985).

[2] A. Ashyralyev, P. Sobolevskii, Well-Posedness of Parabolic Difference Equations,
Operator Theory, Advances and Applications, 69, Birkhäuser Verlag, Basel —
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