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Abstract

The smoothness of generalized solutions for higher-order elliptic equations with
nonlocal boundary conditions is studied in plane domains. Necessary and sufficient
conditions upon the right-hand side of the problem and nonlocal operators under
which the generalized solutions possess an appropriate smoothness are established.
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1 Introduction

In 1932, Carleman [7] considered the problem of finding a harmonic function,
in a plane bounded domain, satisfying a nonlocal condition which connects the
values of the unknown function at different points of the boundary. Further
investigation of elliptic problems with transformations mapping a boundary
onto itself as well as with abstract nonlocal conditions has been carried out
by Vishik [37], Browder [6], Beals [3], Antonevich [2], and others.

In 1969, Bitsadze and Samarskii [5] considered the following nonlocal problem
arising in the plasma theory: to find a function u(y1, y2) harmonic on the
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rectangular G = {y ∈ R2 : −1 < y1 < 1, 0 < y2 < 1}, continuous on G, and
satisfying the relations

u(y1, 0) = f1(y1), u(y1, 1) = f2(y1), −1 < y1 < 1,

u(−1, y2) = f3(y2), u(1, y2) = u(0, y2), 0 < y2 < 1,

where f1, f2, f3 are given continuous functions. This problem was solved in [5]
by reducing it to a Fredholm integral equation and using the maximum prin-
ciple. For arbitrary domains and general nonlocal conditions, such a problem
was formulated as an unsolved one (see also [8]). Different generalizations
of nonlocal problems with transformations mapping the boundary inside the
closure of a domain were studied by many authors [9, 17, 18, 24].

The most complete theory for elliptic equations of order 2m with general
nonlocal conditions was developed by Skubachevskii and his students [14, 20,
28–33]: a classification with respect to types of nonlocal conditions was sug-
gested, the Fredholm solvability in the corresponding spaces was investigated,
and asymptotics of solutions near special conjugation points was obtained.

Note that, besides the plasma theory, nonlocal elliptic problems have interest-
ing applications to biophysics and theory of diffusion processes [10, 11, 26, 35,
36], control theory [1, 4], theory of functional differential equations, mechan-
ics [33], and so on.

The most difficult situation in the theory of nonlocal problems is that where
the support of nonlocal terms can intersect the boundary of a domain. In
this case, solutions of nonlocal problems can have power-law singularities near
some points of the boundary even if the right-hand side is infinitely differen-
tiable and the boundary is infinitely smooth [16,29,34]. This gives rise to the
question of distinguishing some classes of nonlocal problems whose solutions
are sufficiently smooth, provided that the right-hand side of the problem is
smooth. Until now, this issue was studied only for nonlocal perturbations of
the Dirichlet problem for second-order elliptic equations [16, 34].

In the present paper, we investigate the smoothness of solutions for elliptic
equations of higher order with general nonlocal conditions in plane domains.
Unlike the theory of elliptic problems in nonsmooth domains, the violation
of smoothness of solutions for nonlocal problems is connected not only with
the fact that the boundary may contain singular points but rather with the
presence of nonlocal terms in the boundary conditions.

We illustrate some of the occurring phenomena with the following example.
Let ∂G = Γ1 ∪ Γ2 ∪ {g, h}, where Γi are open (in the topology of ∂G) C∞

curves; g, h are the end points of the curves Γ1 and Γ2. Suppose that the
domain G is the plane angle of opening π in some neighborhood of each of the
points g and h. We deliberately take a smooth domain to illustrate how the
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nonlocal terms can affect the smoothness of solutions. Consider the following
problem in the domain G:

∆u = f0(y) (y ∈ G), (1.1)

u|Γ1
+ b1(y)u(Ω1(y))|Γ1

+ a(y)u(Ω(y))|Γ1
= f1(y) (y ∈ Γ1),

u|Γ2
+ b2(y)u(Ω2(y))|Γ2

= f2(y) (y ∈ Γ2).
(1.2)

Here b1, b2, and a are real-valued C∞ functions; Ωi (Ω) are C∞ diffeomorphisms
taking some neighborhood Oi (O1) of the curve Γi (Γ1) onto the set Ωi(Oi)
(Ω(O1)) in such a way that Ωi(Γi) ⊂ G, Ωi(g) = g, Ωi(h) = h, and the
transformation Ωi, near the points g, h, is the rotation of the boundary Γi
through the angle π/2 inwards the domainG (respectively, Ω(Γ1) ⊂ G, Ω(Γ1)∩
{g, h} = ∅, and the approach of the curve Ω(Γ1) to the boundary ∂G can be
arbitrary, cf. [29, 31]), see Fig. 1.1.

Fig. 1.1. Domain G with boundary ∂G = Γ1 ∪ Γ2 ∪ {g, h}.

We say that g and h are the points of conjugation of nonlocal conditions
because they divide the curves on which different nonlocal conditions are set.
The closure of the set

⋃

i=1,2

{y ∈ Ωi(Γi) : bi(Ω
−1
i (y)) 6= 0} ∪ {y ∈ Ω(Γ1) : a(Ω−1(y)) 6= 0}

is referred to as the support of nonlocal terms.

Denote by W k(G) = W k
2 (G) the Sobolev space. We say that a function u ∈

W 1(G) is a generalized solution of problem (1.1), (1.2) with right-hand side
f0 ∈ L2(G), fi ∈W 1/2(Γi) if u satisfies nonlocal conditions (1.2) (the equalities
are understood as those inW 1/2(Γi)) and Eq. (1.1) in the sense of distributions.
Assume that fi ∈W 3/2(Γi). Then one can show that any generalized solution
of problem (1.1), (1.2) belongs to the space W 2 outside of an arbitrarily small
neighborhood of the points g and h. Clearly, the behavior of solutions near
the points g and h is affected by the behavior of the coefficients b1, b2, and
a near these points. However, the influence of the coefficients bi is principally
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different from that of the coefficient a. This phenomenon is explained by the
fact that the coefficients bi (for y being in a small neighborhood of the points
g and h) correspond to nonlocal terms supported near the set {g, h} (in the
general case, such terms correspond to operators B1

iµ), whereas the coefficient
a corresponds to a nonlocal term supported outside of some neighborhood of
the set {g, h} (in the general case, such terms correspond to abstract operators
B2
iµ).

It was proved in [16] that the smoothness of generalized solutions preserves if
b1(g) + b2(g) ≤ −2 or b1(g) + b2(g) > 0 and can be violated if −2 < b1(g) +
b2(g) < 0. If b1(g) + b2(g) = 0, we have the “border” case: the smoothness of
generalized solutions depends on the fulfillment of some integral consistency
condition imposed on the right-hand sides fi and the coefficients bi.

Now we illustrate another phenomenon arising in the border case. Assume
that b1(y) ≡ b2(y) ≡ 0. Let a(y) = 0 in some neighborhood of the point h and
Ω(g) ∈ G. Then the support of nonlocal terms lies strictly inside the domain G.
However, if a(g) 6= 0 or (∂a/∂τg)|y=g 6= 0, where τg denotes the unit vector
tangent to ∂G at the point g, then the smoothness of generalized solutions of
problem (1.1), (1.2) (even with homogeneous nonlocal conditions: {fi} = 0)
can be violated.

The phenomena similar to the above occur in the case of elliptic equations
of order 2m with general nonlocal conditions, which we study in the present
paper. In Sec. 2, we provide the setting of nonlocal problem and introduce the
notion of a generalized solution u ∈ W ℓ(G) of the problem for any integral
0 ≤ ℓ ≤ 2m− 1.

It turns out that the smoothness of generalized solutions essentially depends
on the location of eigenvalues and the structure of root functions of some
auxiliary nonlocal operator L̃(λ), λ ∈ C, corresponding to the conjugation
points.

Let Λ denote the set of all eigenvalues of L̃(λ) lying in the strip 1 − 2m <
Imλ < 1 − ℓ (this set might be empty). In Sec. 3 we assume that the line
Imλ = 1 − 2m has no eigenvalues of the operator L̃(λ) and find sufficient
conditions on the eigenvalues from the set Λ under which any generalized
solution of nonlocal problem belongs to W 2m(G).

In Sec. 4, we investigate the “border” case in which the line Imλ = 1 −
2m contains the unique eigenvalue i(1 − 2m) of L̃(λ) and this eigenvalue
is proper (see Definition 3.1). We show that, under the same conditions on
the eigenvalues of L̃(λ) as in Sec. 3, the smoothness of generalized solutions
preserves if and only if the right-hand side of the problem and the coefficients
at the nonlocal terms satisfy some integral consistency conditions near the
conjugation points.
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In Sec. 5, we show that the sufficient conditions from the previous sections are
also necessary for any generalized solution to be smooth.

Some facts concerning the functional spaces and model nonlocal problems in
plane angles which we use throughout the paper are collected in Appendix.

The results of this paper have been obtained during the author’s work at the
research group of Professor Jäger (Heidelberg University) in the framework of
the project supported by the Humboldt Foundation. The author also expresses
his gratitude to Professor Skubachevskii for attention.

2 Setting of Nonlocal Problems in Bounded Domains

2.1 Setting of the Problem

Let X be a domain in Rn, n = 1, 2. Denote by C∞
0 (X) the set of functions

infinitely differentiable on X and compactly supported in X. If M is a union
of finitely many points (for n = 1, 2) or curves (for n = 2) lying in X, we
denote by C∞

0 (X \M) the set of functions infinitely differentiable on X and
compactly supported in X \M .

Let G ⊂ R2 be a bounded domain with boundary ∂G. Consider a set K ⊂ ∂G

consisting of finitely many points. Let ∂G \ K =
N
⋃

i=1
Γi, where Γi are open (in

the topology of ∂G) C∞ curves. Assume that the domain G is a plane angle
in some neighborhood of each point g ∈ K.

For an integral k ≥ 0, denote by W k(G) = W k
2 (G) the Sobolev space with the

norm

‖u‖W k(G) =





∑

|α|≤k

∫

G
|Dαu(y)|2 dy





1/2

(set W 0(G) = L2(G) for k = 0), where α = (α1, . . . , αn), |α| = α1 + · · · + αn,
Dα = Dα1

1 . . .Dαn
n , Dj = −i∂/∂xj .

For an integral k ≥ 1, we introduce the space W k−1/2(Γ) of traces on a smooth
curve Γ ⊂ G with the norm

‖ψ‖W k−1/2(Γ) = inf ‖u‖W k(G) (u ∈W k(G) : u|Γ = ψ).

Along with Sobolev spaces, we will use weighted spaces (the Kondrar’ev
spaces). Let Q = {y ∈ R2 : r > 0, |ω| < ω0}, Q = {y ∈ R2 : 0 < r <
d, |ω| < ω0}, 0 < ω0 < π, d > 0, or Q = G. We denote by M the set {0} in
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the first and second cases and the set K in the third case. Introduce the space
Hk
a (Q) = Hk

a (Q,M) as a completion of the set C∞
0 (Q \ M) with respect to

the norm

‖u‖Hk
a (Q) =





∑

|α|≤k

∫

Q
ρ2(a−k+|α|)|Dαu(y)|2dy





1/2

,

where a ∈ R, k ≥ 0 is an integral, and ρ = ρ(y) = dist(y,M). For an integral
k ≥ 1, denote by Hk−1/2

a (Γ) the set of traces on a smooth curve Γ ⊂ Q with
the norm

‖ψ‖
H

k−1/2
a (Γ)

= inf ‖u‖Hk
a (Q) (u ∈ Hk

a (Q) : u|Γ = ψ). (2.1)

Denote by P(y,Dy) = P(y,Dy1, Dy2) and Biµs(y,Dy) = Biµs(y,Dy1, Dy2) dif-
ferential operators of order 2m and miµ (miµ ≤ 2m − 1), respectively, with
complex-valued C∞ coefficients (i = 1, . . . , N ; µ = 1, . . . , m; s = 0, . . . , Si).
Here Dy = (Dy1 , Dy2), Dyj

= −i∂/∂yj .

We assume that the following condition holds for the operators P(y,Dy) and
Biµ0(y,Dy) (these operators will correspond to the “local” elliptic problem).

Condition 2.1 The operator P(y,Dy) is properly elliptic on G, and the sys-
tem {Biµ0(y,Dy)}

m
µ=1 satisfies the Lopatinsky condition with respect to the op-

erator P(y,Dy) for all i = 1, . . . , N and y ∈ Γi.

We denote

B0
iµu = Biµ0(y,Dy)u, y ∈ Γi, i = 1, . . . , N, µ = 1, , . . . , m.

For any closed set M, we denote its ε-neighborhood by Oε(M), i.e.,

Oε(M) = {y ∈ R
2 : dist(y,M) < ε}, ε > 0.

Now we introduce operators corresponding to nonlocal terms supported near
the set K. Let Ωis (i = 1, . . . , N ; s = 1, . . . , Si) be C∞ diffeomorphisms taking
some neighborhood Oi of the curve Γi ∩Oε(K) to the set Ωis(Oi) in such a
way that Ωis(Γi ∩Oε(K)) ⊂ G and

Ωis(g) ∈ K for g ∈ Γi ∩ K. (2.2)

Thus, the transformations Ωis take the curves Γi ∩ Oε(K) strictly inside the
domain G and the set of their end points Γi ∩ K to itself.

Let us specify the structure of the transformations Ωis near the set K. Denote
by Ω+1

is the transformation Ωis : Oi → Ωis(Oi) and by Ω−1
is : Ωis(Oi) → Oi
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the inverse transformation. The set of points Ω±1
iqsq

(. . .Ω±1
i1s1(g)) ∈ K (1 ≤ sj ≤

Sij , j = 1, . . . , q) is said to be an orbit of the point g ∈ K and denoted by
Orb(g). In other words, the orbit Orb(g) is formed by the points (of the set
K) that can be obtained by consecutively applying the transformations Ω±1

ijsj

to the point g.

It is clear that either Orb(g) = Orb(g′) or Orb(g) ∩ Orb(g′) = ∅ for any
g, g′ ∈ K. In what follows, we assume that the set K consists of one orbit (the
results are easy to generalize for the case in which K consists of finitely many
disjoint orbits, cf. Sec. 6 in [16]). To simplify the notation, we also assume
that the set (orbit) K consists of N points: g1, . . . , gN .

Take a sufficiently small number ε (cf. Remark 2.3 in [16]) such that there exist
neighborhoods Oε1(gj), Oε1(gj) ⊃ Oε(gj), satisfying the following conditions:

(1) The domain G is a plane angle in the neighborhood Oε1(gj);
(2) Oε1(gj) ∩Oε1(gk) = ∅ for any gj, gk ∈ K, k 6= j;

(3) If gj ∈ Γi and Ωis(gj) = gk, then Oε(gj) ⊂ Oi and Ωis

(

Oε(gj)
)

⊂ Oε1(gk).

For each point gj ∈ Γi ∩ K, we fix a transformation Yj : y 7→ y′(gj) which is

a composition of the shift by the vector −
−−→
Ogj and the rotation through some

angle so that

Yj(Oε1(gj)) = Oε1(0), Yj(G ∩ Oε1(gj)) = Kj ∩ Oε1(0),

Yj(Γi ∩ Oε1(gj)) = γjσ ∩Oε1(0) (σ = 1 or 2),

where

Kj = {y ∈ R
2 : r > 0, |ω| < ωj}, γjσ = {y ∈ R

2 : r > 0, ω = (−1)σωj}.

Here (ω, r) are the polar coordinates and 0 < ωj < π.

Let the following condition hold (see Fig. 2.1).

Condition 2.2 Let gj ∈ Γi∩K and Ωis(gj) = gk ∈ K; then the transformation

Yk ◦ Ωis ◦ Y
−1
j : Oε(0) → Oε1(0)

is the composition of rotation and homothety.

Remark 2.1 Condition 2.2, together with the fact that Ωis(Γi) ⊂ G, implies
that if g ∈ Ωis(Γi ∩K) ∩ Γj ∩K 6= ∅, then the curves Ωis(Γi ∩Oε(K)) and Γj
intersect at nonzero angle at the point g.

We choose a number ε0, 0 < ε0 ≤ ε possessing the following property: if
gj ∈ Γi and Ωis(gj) = gk, then Oε0(gk) ⊂ Ωis(Oε(gj)) ⊂ Oε1(gk). Consider a
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Fig. 2.1. The transformation Y2 ◦ Ω11 ◦ Y −1
1 : Oε(0) → Oε1(0) is a composition of

rotation and homothety

function ζ ∈ C∞(R2) such that

ζ(y) = 1 (y ∈ Oε0/2(K)), ζ(y) = 0 (y /∈ Oε0(K)).

Introduce the nonlocal operators B1
iµ by the formulas

B1
iµu =

Si
∑

s=1

(

Biµs(y,Dy)(ζu)
)(

Ωis(y)
)

, y ∈ Γi ∩ Oε(K),

B1
iµu = 0, y ∈ Γi \ Oε(K),

where
(

Biµs(y,Dy)u
)(

Ωis(y)
)

= Biµs(x,Dx)u(x)|x=Ωis(y). Since B1
iµu = 0 for

supp u ⊂ G \ Oε0(K), we say that the operators B1
iµ correspond to nonlocal

terms supported near the set K.

Set Gρ = {y ∈ G : dist(y, ∂G) > ρ} for ρ > 0. Consider operators B2
iµ

satisfying the following condition (cf. [14, 29, 32]).

Condition 2.3 There exist numbers κ1 > κ2 > 0 and ρ > 0 such that

‖B2
iµu‖W 2m−miµ−1/2(Γi)

≤ c1‖u‖W 2m(G\Oκ1
(K)) ∀u ∈W 2m(G \ O

κ1
(K)), (2.3)

‖B2
iµu‖W 2m−miµ−1/2(Γi\Oκ2

(K))
≤ c2‖u‖W 2m(Gρ) ∀u ∈W 2m(Gρ), (2.4)

where i = 1, . . . , N , µ = 1, . . . , m, and c1, c2 > 0 do not depend on u.
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It follows from (2.3) that B2
iµu = 0 whenever supp u ⊂ O

κ1
(K). For this

reason, we say that the operators B2
iµ correspond to nonlocal terms supported

outside the set K.

We assume that Conditions 2.1–2.3 are fulfilled throughout.

We study the following nonlocal elliptic boundary-value problem:

P(y,Dy)u = f0(y) (y ∈ G), (2.5)

B0
iµu+ B1

iµu+ B2
iµu = fiµ(y) (y ∈ Γi; i = 1, . . . , N ; µ = 1, . . . , m). (2.6)

Note that the points gj divide the curves on which different nonlocal conditions
are set; therefore, it is natural to say that gj, j = 1, . . . , N , are the points of
conjugation of nonlocal conditions.

Introduce the spaces of vector-valued functions

W2m−m−1/2(∂G) =
N
∏

i=1

m
∏

µ=1

W 2m−miµ−1/2(Γi),

H2m−m−1/2
a (∂G) =

N
∏

i=1

m
∏

µ=1

H2m−miµ−1/2
a (Γi).

We will always assume that {f0, fiµ} ∈ L2(G) ×W2m−m−1/2(∂G).

From now on, we fix an integral number ℓ such that 0 ≤ ℓ ≤ 2m− 1.

Definition 2.1 A function u is called a generalized solution of problem (2.5),
(2.6) with right-hand side {f0, fiµ} ∈ L2(G) ×W2m−m−1/2(∂G) if

u ∈W ℓ(G) ∩W 2m(G \ Oδ(K)) ∀δ > 0 (2.7)

and u satisfies relations (2.5) a.e. and equalities (2.6) in W 2m−miµ−1/2(Γi \
Oδ(K)) for all δ > 0.

Note that if u satisfies (2.7), then B2
iµu ∈ W 2m−miµ−1/2(Γi) due to (2.3) and

B1
iµu ∈ W 2m−miµ−1/2(Γi \ Oδ(K)) for all δ > 0. Therefore, Definition 2.1 does

make sense.

Remark 2.2 Let W−k(G), k ≥ 1, denote the space adjoint to W k(G) with
respect to the extension of the inner product in L2(G).

Denote by H−(k−1/2)
a (Γi), k ≥ 1, the space adjoint to H

k−1/2
−a (Γi) with respect

to the extension of the inner product in L2(Γi).
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One can show that C∞(Γi) ⊂ H
ℓ−k+1/2
ℓ , k = 1, . . . , 2m. Therefore, the norm

‖u‖Wℓ(G) =

(

‖u‖2
Wℓ(G) +

N
∑

i=1

2m
∑

k=1

∥

∥

∥Dk−1
νi

u
∥

∥

∥

2

H
ℓ−k+1/2

ℓ
(Γi)

)1/2

(2.8)

is finite for any u ∈ C∞(G), where νi is the outward normal to the piece Γi of

the boundary and Dk−1
νi

u = (−i)k−1∂
k−1u

∂νk−1
i

∣

∣

∣

∣

∣

Γi

. Denote by Wℓ(G) the completion

of C∞(G) in the norm (2.8).

It follows from (2.8) that the closure S of the mapping

u 7→ {u|G, D
k−1
νi

u} (u ∈ C∞(G))

establishes an isometric correspondence between Wℓ(G) and a subspace of the
direct product

W ℓ(G) ×
N
∏

i=1

2m
∏

k=1

H
ℓ−k+1/2
ℓ (Γi).

We will identify u ∈ Wℓ(G) with Su and write u = {u, uik} ∈ Wℓ(G).

Then, similarly to [23], one can introduce the concept of a strong generalized
solution u ∈ Wℓ(G) of problem (2.5), (2.6). Moreover, one can prove that
if u is a strong generalized solution, then the component u ∈ W ℓ(G) of the
vector u is a generalized solution in the sense of Definition 2.1. Conversely,
if u ∈ W ℓ(G) is a generalized solution in the sense of Definition 2.1, then
u = {u,Dk−1

νi
u} belongs to Wℓ(G) and is a strong generalized solution. Fur-

thermore, if the function v = {u, vik} ∈ Wℓ(G) (with the same first compo-
nent u) is a strong generalized solution, then u = v i.e., a generalized solution
uniquely determines a strong generalized solution.

2.2 Model Problems

When studying problem (2.5), (2.6), particular attention must be paid to the
behavior of solutions near the set K of conjugation points. In this subsection,
we consider corresponding model problems.

Denote by uj(y) the function u(y) for y ∈ Oε1(gj). If gj ∈ Γi, y ∈ Oε(gj),
and Ωis(y) ∈ Oε1(gk), then we denote the function u(Ωis(y)) by uk(Ωis(y)). In
this notation, nonlocal problem (2.5), (2.6) acquires the following form in the
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ε-neighborhood of the set (orbit) K:

P(y,Dy)uj = f0(y) (y ∈ Oε(gj) ∩G),

Biµ0(y,Dy)uj(y)|Oε(gj)∩Γi
+

Si
∑

s=1

(

Biµs(y,Dy)(ζuk)
)(

Ωis(y)
)∣

∣

∣

Oε(gj)∩Γi

= ψiµ(y)

(

y ∈ Oε(gj) ∩ Γi; i ∈ {1 ≤ i ≤ N : gj ∈ Γi}; j = 1, . . . , N ; µ = 1, . . . , m
)

,

where
ψiµ = fiµ −B2

iµu.

Let y 7→ y′(gj) be the change of variables described in Sec. 2.1. Set

Kε
j = Kj ∩Oε(0), γεjσ = γjσ ∩Oε(0)

and introduce the functions

Uj(y
′) = u(y(y′)), Fj(y

′) = f0(y(y
′)), y′ ∈ Kε

j ,

Fjσµ(y
′) = fiµ(y(y

′)), Bu
jσµ(y

′) = (B2
iµu)(y(y

′)), y′ ∈ γεjσ,

Ψjσµ(y
′) = Fjσµ(y

′) − Bu
jσµ(y

′), y′ ∈ γεjσ,

(2.9)

where σ = 1 (σ = 2) if the transformation y 7→ y′(gj) takes Γi to the side γj1
(γj2) of the angle Kj . Denote y′ by y again. Then, by virtue of Condition 2.2,
problem (2.5), (2.6) acquires the form

Pj(y,Dy)Uj = Fj(y) (y ∈ Kε
j ), (2.10)

Bjσµ(y,Dy)U ≡
∑

k,s

(Bjσµks(y,Dy)Uk)(Gjσksy) = Ψjσµ(y) (y ∈ γεjσ). (2.11)

Here (and below unless otherwise stated) j, k = 1, . . . , N ; σ = 1, 2; µ =
1, . . . , m; s = 0, . . . , Sjσk; Pj(y,Dy) and Bjσµks(y,Dy) are differential opera-
tors of order 2m and mjσµ (mjσµ ≤ 2m− 1), respectively, with C∞ complex-
valued coefficients; Gjσks is the operator of rotation by an angle ωjσks and
homothety with a coefficient χjσks (χjσks > 0) in the y-plane. Moreover,

|(−1)σbj + ωjσks| < bk for (k, s) 6= (j, 0)

(cf. Remark 2.1) and
ωjσj0 = 0, χjσj0 = 1

(i.e., Gjσj0y ≡ y).

Along with the operators Pj(y,Dy) and Bjσµ(y,Dy), we consider the operators

Pj(Dy), Bjσµ(Dy)U ≡
∑

k,s

(Bjσµks(Dy)Uk)(Gjσksy), (2.12)

where Pj(Dy) and Bjσµks(Dy) are the principal homogeneous parts of the
operators Pj(0, Dy) and Bjσµks(0, Dy), respectively.
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We write the operators Pj(Dy) and Bjσµks(Dy) in the polar coordinates:
r−2mP̃j(ω,Dω, rDr), r

−mjσµB̃jσµks(ω,Dω, rDr), respectively, and consider the
analytic operator-valued function 2

L̃(λ) :
N
∏

j=1

W 2m(−ωj, ωj) →
N
∏

j=1

(

L2(−ωj, ωj) × C
2m
)

,

L̃(λ)ϕ =
{

P̃j(ω,Dω, λ)ϕj, B̃jσµ(ω,Dω, λ)ϕ
}

,

where Dω = −i∂/∂ω, Dr = −i∂/∂r, and

B̃jσµ(ω,Dω, λ)ϕ =
∑

k,s

(χjσks)
iλ−mjσµB̃jσµks(ω,Dω, λ)ϕk(ω + ωjσks)|ω=(−1)σωj

.

Spectral properties of the operator L̃(λ) play a crucial role in the study of
smoothness of generalized solutions. The following assertion is of particular
importance (see Lemmas 2.1 and 2.2 in [30]).

Lemma 2.1 For any λ ∈ C, the operator L̃(λ) has the Fredholm property and
ind L̃(λ) = 0.

The spectrum of the operator L̃(λ) is discrete. For any numbers c1 < c2, the
band c1 < Imλ < c2 contains at most finitely many eigenvalues of the operator
L̃(λ).

3 Preservation of Smoothness of Generalized Solutions

3.1 Formulation of the Main Result

In this section, we study the case in which the following condition holds.

Condition 3.1 The line Imλ = 1 − 2m contains no eigenvalues of the oper-
ator L̃(λ).

Let λ = λ0 be an eigenvalue of the operator L̃(λ).

Definition 3.1 (cf. [14, 19]) We say that λ0 is a proper eigenvalue if none
of the corresponding eigenvectors ϕ(ω) = (ϕ1(ω), . . . , ϕN(ω)) has an asso-
ciated vector, while the functions riλ0ϕj(ω), j = 1, . . . , N , are homogeneous
polynomials in y1, y2 (of degree iλ0 ∈ N ∪ {0}). An eigenvalue which is not
proper is said to be improper.

2 Main definitions and facts concerning analytic operator-valued functions can be
found in [12].
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Let Λ be the set of all eigenvalues of L̃(λ) in the band 1− 2m < Imλ < 1− ℓ
(this set can be empty). We also denote iΛ = {iλ : λ ∈ Λ}.

Condition 3.2 All the eigenvalues from the set Λ are proper.

In particular, Condition 3.2 implies that Λ = ∅ if ℓ = 2m−1 (e.g., if ℓ = m =
1, cf. [16]) and iΛ ⊂ {ℓ, . . . , 2m− 2} if ℓ ≤ 2m− 2.

In the case where ℓ ≤ 2m− 2, we will need some additional conditions.

Let W−2m(−ωj, ωj) be the space adjoint to W 2m(−ωj , ωj). Consider the op-

erator (L̃(λ))∗ :
∏N
j=1

(

L2(−ωj , ωj) × C2m
)

→
∏N
j=1W

−2m(−ωj, ωj) which is

adjoint to the operator L̃(λ).

For any s ∈ {ℓ, . . . , 2m − 2}, we denote by Js the set of all indices (j′, σ′, µ′)
such that

s ≤ mj′σ′µ′ − 1. (3.1)

We also denote by Cs the space of numerical vectors {cjσµ} with complex
entries such that

cj′σ′µ′ = 0, (j′, σ′, µ′) ∈ Js.

Condition 3.3 If ℓ ≤ 2m − 2, then the following assertions hold for any
s ∈ iΛ:

(1) Js 6= ∅.
(2) 〈{0, cjσµ}, ψ〉 = 0 for all {cjσµ} ∈ Cs and ψ ∈ ker (L̃(−is))∗.
(3) Let ϕc ∈

∏

j
W 2m(−ωj , ωj) denote a solution of the equation L̃(−is)ϕc =

{0, cjσµ}, where {cjσµ} ∈ Cs (this solution exists due to item 2 and is
defined up to an arbitrary element ϕ0 ∈ ker L̃(−is)). Then rsϕc(ω) is a
homogeneous polynomial (of degree s) for any {cjσµ} ∈ Cs.

Remark 3.1 (1) Part 1 in Condition 3.3 is necessary for the fulfillment of
part 2. This follows from Lemma 2.1.

(2) Part 2 is necessary and sufficient for the existence of solutions ϕc for all
{cjσµ} in part 3.

Condition 3.4 If ℓ ≤ 2m − 2, then the following assertion holds for any
s ∈ {ℓ, . . . , 2m − 2} \ iΛ. Let ϕc ∈

∏

jW
2m(−ωj, ωj) denote a solution 3 of

the equation L̃(−is)ϕc = {0, cjσµ}, where {cjσµ} ∈ Cs. Then rsϕc(ω) is a
homogeneous polynomial (of degree s) for any {cjσµ} ∈ Cs.

Remark 3.2 Suppose that Condition 3.2 is fulfilled.

3 This solution exists and is unique because −is is not an eigenvalue of L̃(λ).
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(1) If Conditions 3.3 and 3.4 hold, then the problem

Pj(Dy)V = 0, Bjσµ(Dy)V = cjσµr
s−mjσµ (3.2)

admits a solution V (y) which is a homogeneous polynomial of degree s,
provided that {cjσµ} ∈ Cs, where s = ℓ, . . . , 2m− 2. Indeed, substituting
a function V = rsϕc(ω) into (3.2), we obtain the equation L̃(−is)ϕs =
{0, cjσµ}. Due to Conditions 3.3 and 3.4, this equation admits a solution
ϕc such that the function V = rsϕc(ω) is a homogeneous polynomial of
degree s.

(2) If Condition 3.3 or 3.4 fails, then there is a vector {cjσµ} ∈ Cs such that
problem (3.2) admits a solution

V = rsϕc(ω) + rs(i ln r)
J
∑

n=1

cnϕ
(n)(ω), (3.3)

where s ∈ {ℓ, . . . , 2m − 2}, cn ∈ C, ϕc, ϕ
(n) ∈

∏N
j=1W

2m(−ωj , ωj), and
J = J(s). Moreover, the function V is not a polynomial in y1, y2.

Indeed, if Condition 3.4 fails, then the assertion is evident (with c1 =
· · · = cJ = 0). Assume that Condition 3.3 fails. If parts 1 and 2 of
Condition 3.4 hold while part 3 fails, then the assertion is evident again
(with c1 = · · · = cJ = 0). Let part 1 or 2 fail. In both cases, part 2
does not hold (see Remark 3.1). This means that there exists a proper
eigenvalue λs = −is ∈ Λ and a numerical vector {cjσµ} ∈ Cs such that
{0, cjσµ} is not orthogonal to ker (L̃(λs))

∗.
Let ϕ(1), . . . , ϕ(J) (J ≥ 1) denote some basis in ker L̃(λs). Since λs is a

proper eigenvalue, none of the eigenvectors ϕ(n) has an associate vector.
We substitute a function V given by (3.3) in Eqs. (3.2). Then we obtain

L̃(λs)ϕc = {0, cjσµ} −
J
∑

n=1

cn
dL̃(λ)

dλ

∣

∣

∣

∣

∣

λ=λs

ϕ(n). (3.4)

Note that dim ker (L̃(λs))
∗ = dim ker L̃(λs) = J due to Lemma 2.1. Let

ψ(1), . . . , ψ(J) denote a basis in ker (L̃(λs))
∗. By Lemma 3.2 in [13], the

matrix
∥

∥

∥

∥

∥

〈

dL̃(λ)

dλ

∣

∣

∣

∣

∣

λ=λs

ϕ(n), ψ(k)

〉∥

∥

∥

∥

∥

n,k=1,...,J

is nondegenerate. Therefore, we can choose the constants cn in such a way
that the right-hand side in (3.4) is orthogonal to ker (L̃(λs))

∗; hence, there
is a solution ϕc for Eq. (3.4). Moreover, since {0, cjσµ} is not orthogonal
to ker (L̃(λs))

∗, it follows that the vector (c1, . . . , cJ) is nontrivial. Thus,
the function V given by (3.3) is not a polynomial in y1, y2.

The main result of this section is as follows.
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Theorem 3.1 Let Conditions 3.1–3.4 hold and u be a generalized solution of
problem (2.5), (2.6) with right-hand side {f0, fiµ} ∈ L2(G)×W2m−m−1/2(∂G).
Then u ∈W 2m(G).

3.2 Proof of the Main Result

Let Uj(y
′) = uj(y(y

′)), j = 1, . . . , N , be the functions corresponding to the set
(orbit) K and satisfying problem (2.10), (2.11) with right-hand side {Fj ,Ψjσµ}
(see Sec. 2.2).

Set
Dχ = 2 max{χjσks}, dχ = min{χjσks}/2. (3.5)

Let ε > 0 be so small that Dχε < ε1 (where ε and ε1 are defined in Sec. 2.1).

Introduce the spaces of vector-valued functions

Wk(Kε) =
∏

j

W k(Kε
j ), Hk

a(K
ε) =

∏

j

Hk
a (K

ε
j ), k ≥ 0; (3.6)

W2m−m−1/2(γε) =
∏

j,σ

W 2m−mjσµ−1/2(γεjσ),

H2m−m−1/2
a (γε) =

∏

j,σ

H2m−mjσµ−1/2
a (γεjσ).

(3.7)

Similarly, one can introduce the spaces Wk(K), Hk
a(K), W2m−m−1/2(γ), and

H2m−m−1/2
a (γ).

Since any generalized solution u ∈W 2m
(

G\Oδ(K)
)

for any δ > 0 by definition,
it follows that

Uj ∈ W 2m(Kε1
j \ Oδ(0)) ∀δ > 0. (3.8)

It follows from the belonging U ∈ Wℓ(Kε1) that

U ∈ H0
0(K

ε1). (3.9)

Further, we have (see (2.10), (2.11)) {Fj} ∈ W0(Kε) and, by the belong-
ing fiµ ∈ W 2m−miµ−1/2(Γi), by relation (2.7), and by estimate (2.3), we have
{Ψjσµ} ∈ W2m−m−1/2(γε). Therefore,

{Fj} ∈ H0
2m(Kε), {Ψjσµ} ∈ H

2m−m−1/2
2m (γε). (3.10)

It follows from relations (3.8)–(3.10) and from Lemma A.5 that

U ∈ H2m
2m(Kε1). (3.11)

To prove Theorem 3.1, it suffices to show that U ∈ W2m(Kε).
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Lemma 3.1 Let U ∈ Wℓ(Kε), Uj satisfy relations (3.8), and U be a solu-
tion 4 of problem (2.10), (2.11) with right-hand side {Fj,Ψjσµ} ∈ W0(Kε) ×
W2m−m−1/2(γε). Then

U = Q+ Û , (3.12)

where Û ∈ H2m
2m−ℓ(K

ε) and Q = (Q1, . . . , QN) is a polynomial vector of de-
gree 5 ℓ− 1.

PROOF. 1. Due to (3.11), it suffices to consider the case ℓ ≥ 1. Let δ be
an arbitrary number such that 0 < δ < 1. By Lemma 4.11 in [19], for each
function Ψjσµ ∈ W2m−mjσµ−1/2(γεjσ), there is a polynomial Pjσµ(r) of degree
2m−mjσµ − 2 such that

{Ψjσµ − Pjσµ} ∈ H
2m−m−1/2
2m−ℓ−δ (γε).

Using Lemma A.8, one can construct a function

W 1 =
ℓ−1
∑

s=0

l1
∑

l=0

rs(i ln r)lϕ1
sl(ω) ∈ H2m

2m(Kε), (3.13)

where ϕ1
sl ∈

∏

j
W 2m(−ωj, ωj), such that

{Pj(y,Dy)W
1
j } ∈ H0

2m−ℓ−δ(K
ε), {Bjσµ(y,Dy)W

1 − Pjσµ} ∈ H
2m−m−1/2
2m−ℓ−δ (γε).

Therefore, {Pj(y,Dy)(Uj −W 1
j )} ∈ H0

2m−ℓ−δ(K
ε), {Bjσµ(y,Dy)(Uj −W 1)} ∈

H
2m−m−1/2
2m−ℓ−δ (γε).

It follows from (3.11) and (3.13) that U−W 1 ∈ H2m
2m(Kε). Due to Lemma 2.1,

we can choose a number δ, 0 < δ < 1, in such a way that the band 1− ℓ− δ ≤
Imλ < 1− ℓ has no eigenvalues of L̃(λ). Therefore, applying Lemma A.7 and
Lemma A.8, we obtain

U −W 1 = W 2 + Û ,

where

W 2 =
n0
∑

n=1

l2
∑

l=0

riµn(i ln r)lϕ2
nl(ω),

{µ1, . . . , µn0
} is the set of all eigenvalues lying in the band 1 − ℓ ≤ Imλ < 1

(in fact, we have to consider the eigenvalues in the band 1− ℓ− δ ≤ Imλ < 1,

4 Since U ∈ H2m
2m(Kε1) due to (3.11) and {Fj ,Ψjσµ} ∈ H0

2m(Kε)×H
2m−m−1/2
2m (γε),

relations (2.10), (2.11) can be understood as equalities in the corresponding weighted
spaces.
5 Saying “a polynomial of degree s,” we always mean “a polynomial of degree no
greater than s.” We mean that the polynomial equals zero if s < 0.
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but the band 1 − ℓ− δ ≤ Imλ < 1 − ℓ has no eigenvalues by the choice of δ),
ϕ2
nl ∈

∏

j
W 2m(−ωj , ωj), and Û ∈ H2m

2m−ℓ−δ(K
ε) ⊂ H2m

2m−ℓ(K
ε).

Since s ≤ ℓ − 1 (in the formula for W 1), Re iµn ≤ ℓ − 1 (in the formula for
W 2), and W 1 + W 2 = U − Û ∈ Wℓ(Kε), it follows from Lemma A.3 that
W 1 +W 2 is a polynomial vector of degree ℓ− 1.

Lemma 3.2 Let the hypotheses of Lemma 3.1 be fulfilled, and let Condi-
tions 3.2–3.4 hold. Then

U = W + U ′ (3.14)

where W = (W1, . . . ,WN) is a polynomial vector of degree 2m − 2, U ′ ∈
H2m
δ (Kε) (δ is such that 0 < δ < 1 and the band 1− 2m < Imλ ≤ 1− 2m+ δ

contains no eigenvalues of L̃(λ)), and

{Pj(y,Dy)U
′
j} ∈ H0

0(K
ε),

{Bjσµ(y,Dy)U
′} ∈ H

2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε).

(3.15)

PROOF. 1. Consider the function Û defined by Lemma 3.1. The function Û
belongs to H2m

2m−ℓ(K
ε), and, by virtue of relations (2.10), (2.11), and (3.12), it

is a solution of the problem

Pj(y,Dy)Ûj = Fj − Pj(y,Dy)Qj (y ∈ Kε
j ),

Bjσµ(y,Dy)Û = Ψjσµ − Bjσµ(y,Dy)Q (y ∈ γεjσ).
(3.16)

Since {Fj} ∈ W0(Kε) and Q is a polynomial vector, it follows that

{Fj − Pj(y,Dy)Qj} ∈ H0
0(K

ε). (3.17)

Further, Ψjσµ − Bjσµ(y,Dy)Q ∈ W 2m−mjσµ−1/2(γεj ). Hence, by Lemma 4.11
in [19], there exists a polynomial Pjσµ(r) of degree 2m−mjσµ − 2 such that

{Ψjσµ − Bjσµ(y,Dy)Q− Pjσµ} ∈ H
2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε) (3.18)

for any 0 < δ < 1. Moreover, since

{Ψjσµ − Bjσµ(y,Dy)Q} = {Bjσµ(y,Dy)Û} ∈ H
2m−m−1/2
2m−ℓ (γε),

we see that each polynomial Pjσµ(r) consists of monomials of degree max(0, ℓ−
mjσµ), . . . , 2m−mjσµ − 2 (the polynomial Pjσµ(r) is absent if ℓ = 2m− 1).

2. We write each polynomial Pjσµ(r) as follows:

Pjσµ(r) = cjσµr
ℓ−mjσµ + c′jσµr

ℓ−mjσµ+1 + . . . , (3.19)
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where, in particular, cjσµ = 0 for all j, σ, µ such that ℓ ≤ mjσµ − 1 (cf. (3.1)
for s = ℓ). Therefore, {cjσµ} ∈ Cℓ.

We consider the auxiliary problem

Pj(Dy)W
ℓ = 0, Bjσµ(Dy)W

ℓ = cjσµr
ℓ−mjσµ , (3.20)

where Pj(Dy) and Bjσµ(Dy) are the same as in (2.12). By virtue of Condi-
tions 3.3 and 3.4 (see Remark 3.2), there exists a solution W ℓ(y) of prob-
lem (3.20) such that W ℓ(y) is a homogeneous polynomial of degree ℓ.

Using (3.19) and (3.20) and expanding the coefficients of Bjσµ(y,Dy) by the
Taylor formula, we obtain

{Pj(y,Dy)W
ℓ
j } ∈ H0

0(K
ε),

{Bjσµ(y,Dy)W
ℓ − Pjσµ + P ′

jσµ} ∈ H
2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε),

(3.21)

where P ′
jσµ(r) is a polynomial consisting of monomials of degree max(0, ℓ −

mjσµ + 1), . . . , 2m−mjσµ − 2.

It follows from (3.17), (3.18), and (3.21) that

{Fj − Pj(y,Dy)(Qj +W ℓ
j )} ∈ H0

0(K
ε),

{Ψjσµ − Bjσµ(y,Dy)(Q+W ℓ) − P ′
jσµ} ∈ H

2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε).

(3.22)

3. Repeating the procedure described in item 2 finitely many times (and using
Conditions 3.3 and 3.4 each time), we obtain

{Fj − Pj(y,Dy)(Qj +W ℓ
j + · · ·+W 2m−2

j )} ∈ H0
0(K

ε),

{Ψjσµ − Bjσµ(y,Dy)(Q+W ℓ + . . .W 2m−2)}

∈ H
2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε),

(3.23)

where W s is a homogeneous polynomial vector of degree s, s = ℓ, . . . , 2m− 2
(note that a homogeneous polynomial vector of degree 2m−1 already belongs
to H2m

δ (Kε)). If ℓ = 2m − 1, then the polynomials W s in (3.23) are absent;
in this case, the second relation in (3.23) follows from (3.18), where Pjσµ is
absent.

Combining (3.16) and (3.23) yields

{Pj(y,Dy)(Ûj −W ℓ
j − · · · −W 2m−2

j )} ∈ H0
0(K

ε),

{Bjσµ(y,Dy)(Û −W ℓ − · · · −W 2m−2)} ∈ H
2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε).

(3.24)
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4. Since the line Imλ = 1 − 2m + δ has no eigenvalues of L̃(λ) and rela-
tions (3.24) hold, it follows from Lemma A.7, Lemma A.8, and Conditions 3.2–
3.4 that the function Û + W ℓ + · · · + W 2m−2 belongs to the space H2m

δ (Kε)
up to a polynomial consisting of monomials of degree min

s∈iΛ
s, . . . , 2m− 2 (this

polynomial is absent if ℓ = 2m − 1). In other words, there is a polynomial
vector Ŵ consisting of monomials of degree l, . . . , 2m− 2 such that

Û + Ŵ ∈ H2m
δ (Kε)

{Pj(y,Dy)(Ûj + Ŵj)} ∈ H0
0(K

ε),

{Bjσµ(y,Dy)(Û + Ŵ )} ∈ H
2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε).

(3.25)

Now the conclusion of the lemma follows from Lemma 3.1 and from rela-
tions (3.25)

Lemma 3.3 Let the hypotheses of Lemma 3.1 be fulfilled, and let Condi-
tions 3.1–3.4 hold. Then U ∈ W2m(Kε).

PROOF. It follows from (3.15) and from Lemma A.10 that there exists a
function V ∈ H2m

δ (K) ∩W2m(K) such that

{Pj(y,Dy)(U
′
j − Vj)} ∈ H0

0(K
ε),

{Bjσµ(y,Dy)(U
′ − V )} ∈ H

2m−m−1/2
0 (γε).

(3.26)

Due to (3.26) and the fact that the strip 1−2m ≤ Imλ ≤ 1−2m+ δ contains
no eigenvalues of L̃(λ), we can use Lemma A.7 to obtain that U ′ − V ∈
H2m

0 (Kε) ⊂ W2m(Kε). Combining this relation with Lemma 3.2 completes
the proof.

Theorem 3.1 results from (2.7) and from Lemma 3.3.

4 The Border Case: Consistency Conditions

4.1 Behavior of Generalized Solutions near the Conjugation Points

Let Λ be the same set of eigenvalues of L̃(λ) as in Sec. 3. In this section, we
consider the following condition instead of Condition 3.1.

Condition 4.1 The line Im λ = 1 − 2m contains only the eigenvalue λ =
i(1 − 2m) of the operator L̃(λ). This eigenvalue is a proper one.
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The principal difference between the results of this section and those of Sec. 3
is related to the behavior of generalized solutions near the set (orbit) K. If
Condition 4.1 holds, then Lemma 3.2 remains valid. However, the conclusion
of Lemma 3.3 is no longer true because Lemma A.10 is inapplicable when the
line Im λ = 1−2m contains an eigenvalue of L̃(λ). In this section, we make use
of other results from [14]. To do this, we impose certain consistency conditions
on the behavior of the functions fiµ and the coefficients of nonlocal terms near
the set (orbit) K.

Let τjσ be the unit vector co-directed with the ray γjσ. Consider the operators

∂2m−mjσµ−1

∂τ
2m−mjσµ−1
jσ

BjσµU ≡
∂2m−mjσµ−1

∂τ
2m−mjσµ−1
jσ





∑

k,s

(Bjσµks(Dy)Uk)(Gjσksy)



 .

Using the chain rule, we can write

∂2m−mjσµ−1

∂τ
2m−mjσµ−1
jσ

BjσµU ≡
∑

k,s

(B̂jσµks(Dy)Uk)(Gjσksy). (4.1)

where B̂jσµks(Dy) are some homogeneous differential operators of order 2m−1
with constant coefficients. Formally replacing the nonlocal operators by the
corresponding local operators in (4.1), we introduce the operators

B̂jσµ(Dy)U ≡
∑

k,s

B̂jσµks(Dy)Uk(y). (4.2)

If Condition 4.1 holds, then the system of operators (4.2) is linearly dependent
(see [14, Sec. 3.1]). Let

{B̂j′σ′µ′(Dy)} (4.3)

be a maximal linearly independent subsystem of system (4.2). In this case,
any operator B̂jσµ(Dy) which does not enter system (4.3) can be represented
as follows:

B̂jσµ(Dy) =
∑

j′,σ′,µ′
βj

′σ′µ′

jσµ B̂j′σ′µ′(Dy), (4.4)

where βj
′σ′µ′

jσµ are some constants.

Introduce the notion of consistency condition. Let {Zjσµ} ∈ W2m−m−1/2(γε)
be a vector of functions, each of which is defined on its own interval γεjσ.
Consider the functions

Z0
jσµ(r) = Zjσµ(y)|y=(r cosωj , r(−1)σ sinωj).

Each of the functions Z0
jσµ belongs to W 2m−mjσµ−1/2(0, ε).
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Definition 4.1 Let βj
′σ′µ′

jσµ be the constants occurring in (4.4). If the relations

∫ ε

0
r−1

∣

∣

∣

∣

∣

∣

d2m−mjσµ−1

dr2m−mjσµ−1
Z0
jσµ −

∑

j′,σ′,µ′
βj

′σ′µ′

jσµ

d2m−mj′σ′µ′−1

dr2m−mj′σ′µ′−1Z
0
j′σ′µ′

∣

∣

∣

∣

∣

∣

2

dr <∞ (4.5)

hold for all indices j, σ, µ corresponding to the operators of system (4.2) which
do not enter system (4.3), then we say that the functions Zjσµ satisfy the
consistency condition (4.5).

Remark 4.1 The relation {Zjσµ} ∈ H
2m−m−1/2
0 (γε) is sufficient (but not nec-

essary) for the functions Zjσµ to satisfy the consistency condition (4.5). This
follows from Lemma 4.18 in [19].

Now we will show that the following condition is necessary and sufficient for
a given generalized solution u to belong to W 2m(G).

Condition 4.2 Let u be a generalized solution of problem (2.5), (2.6), Ψjσµ

the right-hand sides in nonlocal conditions (2.11), and W the polynomial vector
appearing in Lemma 3.2. Then the functions Ψjσµ−Bjσµ(y,Dy)W satisfy the
consistency condition (4.5).

Theorem 4.1 Let Conditions 4.1 and 3.2–3.4 hold, and let u be a general-
ized solution of problem (2.5), (2.6) with right-hand side {f0, fiµ} ∈ L2(G) ×
W2m−m−1/2(∂G). Then u ∈W 2m(G) if and only if Condition 4.2 holds.

PROOF. 1. Necessity. Let u ∈ W 2m(G). Let the function U = (U1, . . . , UN)
correspond to the set (orbit) K. Clearly, U ∈ W2m(Kε). It follows from
Lemma 3.2 that U = W + U ′, where U ′ ∈ H2m

δ (Kε), 0 < δ < 1. Since
we additionally have U ′ = U − W ∈ W2m(Kε), it follows from Sobolev’s
embedding theorem that DαU ′(0) = 0, |α| ≤ 2m − 2. These relations and
Lemma A.12 imply that the functions Ψjσµ−BjσµW = Bjσµ(y,Dy)U

′ satisfy
the consistency condition (4.5).

2. Sufficiency. Suppose that Condition 4.2 holds. It follows from (3.15) and
from Lemma A.11 that there exists a function V ∈ H2m

δ (K) ∩W2m(K) (δ is
the same as in Lemma 3.2) such that

{Pj(y,Dy)(U
′
j − Vj)} ∈ H0

0(K
ε),

{Bjσµ(y,Dy)(U
′ − V )} ∈ H

2m−m−1/2
0 (γε).

(4.6)

Due to (4.6) and the fact that the strip 1− 2m ≤ Imλ ≤ 1− 2m+ δ contains
only the proper eigenvalue i(1−2m) of L̃(λ), we can use Lemma A.9 to obtain
that all the derivatives of order 2m of the function U ′ −V belong to W0(Kε).
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It follows from this fact and from the relations

U ′ − V ∈ H2m
δ (Kε) ⊂ H2m−1

0 (Kε) ⊂ W2m−1(Kε)

that U ′−V ∈ W2m(Kε). Combining this relation with Lemma 3.2, we complete
the proof of the sufficiency part.

Note that Theorem 4.1 enables us to conclude whether or not a given solution
u is smooth near the set K, provided that we know the asymptotics for u
of the kind (3.14) near the set K (i.e., if we know the polynomial vector
W ). Theorem 4.1 shows what affects the smoothness of solutions in principle.
Below, this will enable us to obtain a constructive condition which is necessary
and sufficient for any generalized solution to belong to W 2m(G).

4.2 Problem with Nonhomogeneous Nonlocal Conditions

First of all, we show that the right-hand sides fiµ in nonlocal conditions (2.6)
must satisfy a certain consistency condition in order that generalized solutions
be smooth.

Denote by S2m−m−1/2(∂G) the set of functions {fiµ} ∈ W2m−m−1/2(∂G) such
that the functions Fjσµ (see (2.9)) satisfy the consistency condition (4.5). It
follows from Lemma 3.2 in [14] that the set S2m−m−1/2(∂G) is not closed in
the space W2m−m−1/2(∂G).

Theorem 4.2 Let Conditions 4.1 and 3.2–3.4 hold. Then there exist a func-
tion {f0, fiµ} ∈ L2(G) × W2m−m−1/2(∂G), {fiµ} /∈ S2m−m−1/2(∂G), and a
function u ∈W 2m−1(G) such that u is a generalized solution of problem (2.5),
(2.6) with the right-hand side {f0, fiµ} and u /∈W 2m(G).

To prove Theorem 4.2, we preliminarily establish an auxiliary result. Set

ε′ = dχ min(ε,κ2), (4.7)

where dχ is defined in (3.5).

Lemma 4.1 Let Condition 4.1 hold and a function {Zjσµ} ∈ W2m−m−1/2(γε)

be such that supp {Zjσµ} ⊂ Oε/2(0),
∂β

∂τβjσ
Zjσµ(0) = 0, β ≤ 2m − mjσµ − 2,

and the functions Zjσµ do not satisfy the consistency condition (4.5). Then
there exists a function U ∈ H2m

δ (K) ⊂ W2m−1(K), δ > 0 is arbitrary, such
that suppU ⊂ Oε′(0), U /∈ W2m(Kε), and U satisfies the relations

{Pj(y,Dy)Uj} ∈ W0(Kε), {Bjσµ(y,Dy)U −Zjσµ} ∈ H
2m−m−1/2
0 (γε). (4.8)
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PROOF. By Lemma A.4, there exists a sequence of functions {Zn
jσµ} ∈

W2m−m−1/2(γ), n = 1, 2, . . . , such that suppZn
jσµ ⊂ Oε(0), Zn

jσµ vanish near
the origin (hence, they satisfy the consistency condition (4.5)), and {Zn

jσµ} →

{Zjσµ} in W 2m−m−1/2(γ). Taking into account Lemma A.1, we also see that

{Zn
jσµ} → {Zjσµ} in H

2m−m−1/2
δ (γ), δ > 0 is arbitrary. Lemma 3.5 in [14] en-

sures the existence of a sequence V n = (V n
1 , . . . , V

n
N ) satisfying the following

conditions: V n ∈ W2m(Kd) ∩H2m
δ (Kd) for any d > 0,

Pj(Dy)V
n
j = 0 (y ∈ Kj), Bjσµ(Dy)V

n = Zn
jσµ(y) (y ∈ γjσ), (4.9)

and the sequence V n converges to a function V ∈ H2m
δ (Kd) in H2m

δ (Kd) for any

d > 0. Passing to the limit in (4.9) (in the spaces H0
δ(K

d) and H
2m−m−1/2
δ (Kd),

respectively), we obtain

Pj(Dy)Vj = 0 (y ∈ Kj), Bjσµ(Dy)V = Zjσµ(y) (y ∈ γjσ). (4.10)

Consider a cut-off function ξ ∈ C∞
0 (Oε′(0)) equal to one near the origin. Set

U = ξV . Clearly, suppU ⊂ Oε′(0) and

U ∈ H2m
δ (K) ⊂ W2m−1(K).

2. We claim that U is the desired function. Indeed, using Leibniz’ formula,
relations (4.10) and Lemma A.2, we infer (4.8).

It remains to prove that U /∈ W2m(Kε). Assume the contrary. Let U ∈
W2m(Kε). In this case, it follows from Sobolev’s embedding theorem and
from the belonging U ∈ H2m

δ (Kε) (δ > 0 is arbitrary) that DαU(0) = 0,
|α| ≤ 2m−2. Combining this fact with Lemma A.12 implies that the functions
Bjσµ(y,Dy)U satisfy the consistency condition (4.5). However, the functions
Bjσµ(y,Dy)U−Zjσµ do not satisfy the consistency condition (4.5) in that case.
This contradicts (4.8) (see Remark 4.1).

PROOF of Theorem 4.2. 1. We will construct a generalized solution u /∈
W 2m(G) supported near the set K so that B2

iµu = 0 due to (2.3).

It was shown in the course of the proof of Lemma 3.2 in [14] that there
exists a function {Zjσµ} ∈ W2m−m−1/2(γ) such that suppZjσµ ⊂ Oε/2(0),
∂β

∂τβjσ
Zjσµ(0) = 0, β ≤ 2m − mjσµ − 2, and the functions Zjσµ do not sat-

isfy the consistency condition (4.5). By Lemma 4.1, there exists a function
U ∈ H2m

δ (K) ⊂ W2m(K) such that suppU ⊂ Oε′(0), U /∈ W2m(K), and U sat-
isfies relations (4.8). Therefore, {Pj(y,Dy)Uj} ∈ W0(Kε), {Bjσµ(y,Dy)U} ∈
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W2m−m−1/2(γε), and the functions Bjσµ(y,Dy)U do not satisfy the consistency
condition (4.5).

2. Introduce a function u(y) such that u(y) = Uj(y
′(y)) for y ∈ Oε′(gj) and

u(y) = 0 for y /∈ Oε′(K), where y′ 7→ y(gj) is the change of variables inverse
to the change of variables y 7→ y′(gj) from Sec. 2.1. Since supp u ⊂ O

κ1
(K),

it follows that B2
iµu = 0. Therefore, u(y) is the desired generalized solution of

problem (2.5), (2.6).

Theorem 4.2 shows that if one wants that any generalized solution of prob-
lem (2.5), (2.6) be smooth, then one must take right-hand sides {f0, fiµ} from
the space L2(G) × S2m−m−1/2(∂G).

Let v be an arbitrary function from the space W 2m(G\O
κ1

(K)). Consider the
change of variables y 7→ y′(gj) from Sec. 2.1 and introduce the functions

Bv
jσµ(y

′) = (B2
iµv)(y(y

′)), y′ ∈ γεjσ (4.11)

(cf. (2.9)). We prove that the following condition is necessary and sufficient
for any generalized solution to be smooth.

Condition 4.3 (1) For any v ∈W 2m(G\O
κ1

(K)), the functions Bv
jσµ satisfy

the consistency condition (4.5).
(2) For any polynomial vector W of degree 2m−2 the functions Bjσµ(y,Dy)W

satisfy the consistency condition (4.5).

Note that the validity of Condition 4.3, unlike Condition 4.2, does not depend
on a generalized solution. It depends only on the operators B1

iµ and B2
iµ and

on the geometry of the domain G near the set (orbit) K. This is quite natural
because we study the smoothness of all generalized solutions in this section
(while in Sec. 4.1, we have investigated the smoothness of a fixed solution).

Theorem 4.3 Let Conditions 4.1 and 3.2–3.4 hold.

(1) If Condition 4.3 holds and u is a generalized solution of problem (2.5),
(2.6) with right-hand side {f0, fiµ} ∈ L2(G) × S2m−m−1/2(∂G), then u ∈
W 2m(G).

(2) If Condition 4.3 fails, then there exists a right-hand side {f0, fiµ} ∈
L2(G) × S2m−m−1/2(∂G) and a generalized solution u of problem (2.5),
(2.6) such that u /∈ W 2m(G).

PROOF. 1. Sufficiency. Let Condition 4.3 hold, and let u be an arbitrary
generalized solution of problem (2.5), (2.6) with right-hand side {f0, fiµ} ∈
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L2(G)×S2m−m−1/2(∂G). By (2.7), we have u ∈W 2m(G \O
κ1

(K)). Therefore,
by Condition 4.3, the functions Bu

jσµ satisfy the consistency condition (4.5).
Let W be a polynomial vector of degree 2m − 2 defined by Lemma 3.2. Us-
ing Condition 4.3 again, we see that the functions Bjσµ(y,Dy)W satisfy the
consistency condition (4.5). Since {fiµ} ∈ S2m−m−1/2(∂G), it follows that the
functions Fjσµ satisfy the consistency condition (4.5). Therefore, the func-
tions Ψjσµ = Fjσµ − Bu

jσµ and Bjσµ(y,Dy)W satisfy Condition 4.2. Applying
Theorem 4.1, we obtain u ∈ W 2m(G).

2. Necessity. Let Condition 4.3 fail. In this case, there exist a function v ∈
W 2m(G \ O

κ1
(K)) and a polynomial vector W = (W1, . . . ,WN) of degree

2m− 2 such that the functions Bv
jσµ + BjσµW do not satisfy the consistency

condition (4.5) (one can assume that either v = 0, W 6= 0 or v 6= 0, W = 0).
Extend the function v to the domain G in such a way that v(y) = 0 for
y ∈ O

κ1/2(K) and v ∈ W 2m(G).

By Lemma 4.11 in [19], there exist polynomials F ′
jσµ(r) of degree 2m−mjσµ−2

such that

{Bv
jσµ + Bjσµ(y,Dy)W − F ′

jσµ} ∈ H
2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε),

where δ > 0 is arbitrary. Hence,

∂β

∂τβjσ
(Bv

jσµ + Bjσµ(y,Dy)W − F ′
jσµ)(0) = 0, β ≤ 2m−mjσµ − 2.

Since
d2m−mjσµ−1

dr2m−mjσµ−1
F ′
jσµ(r) ≡ 0, it follows that the functions F ′

jσµ satisfy the

consistency condition (4.5). Therefore, the functions Bv
jσµ + Bjσµ(y,Dy)W −

F ′
jσµ do not satisfy the consistency condition (4.5).

By Lemma 4.1, there exists a function U ′ ∈ H2m
δ (K) ⊂ W2m−1(K) such that

suppU ′ ⊂ Oε′(0), U ′ /∈ W2m(Kε), and

{Pj(y,Dy)U
′
j} ∈ W0(Kε), (4.12)

{Bjσµ(y,Dy)U
′ − (F ′

jσµ − Bv
jσµ − Bjσµ(y,Dy)W ))} ∈ H

2m−m−1/2
0 (γε).

One can also write the latter relation as follows:

{Bjσµ(y,Dy)(U
′ +W ) +Bv

jσµ − F ′
jσµ} ∈ H

2m−m−1/2
0 (γε). (4.13)

Introduce a function u′(y) such that u′(y) = U ′
j(y

′(y)) + ξj(y)Wj for y ∈
Oε′(gj) and u′(y) = 0 for y /∈ Oε′(K), where y′ 7→ y(gj) is the change of
variables inverse to the change of variables y 7→ y′(gj) from Sec. 2.1, while
ξj ∈ C∞

0 (Oε′(gj)), ξj(y) = 1 for y ∈ Oε′/2(gj), and ε′ is given by (4.7). Let us
prove that the function u = u′ + v is the desired one. Clearly, u ∈W 2m−1(G),
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u /∈ W 2m(G), and u satisfies relations (2.7). It follows from the belonging
v ∈ W 2m(G) and from relations (4.12) that

P(y,Dy)u ∈ L2(G).

Consider the functions fiµ = B0
iµu + B1

iµu + B2
iµu. It follows from the be-

longing v ∈ W 2m(G), from relations (2.7), and from inequality (2.3) that

fiµ ∈ W 2m−miµ−1/2
(

Γi \ Oδ(K)
)

for any δ > 0. Consider the behavior of fiµ
near the set K. Note that B2

iµu
′ = 0 by (2.3). Furthermore, B0

iµv + B1
iµv = 0

for y ∈ O
κ1/Dχ(K). Therefore,

fiµ = B0
iµu

′ + B1
iµu

′ + B2
iµv (y ∈ O

κ1/Dχ(K)). (4.14)

Introduce the functions Fjσµ(y
′) = fiµ(y(y

′)), where y 7→ y′(gj) is the change
of variables from Sec. 2.1. It follows from (4.14) and from (4.13) that {Fjσµ−

F ′
jσµ} ∈ H

2m−m−1/2
0 (γε). Therefore, {Fjσµ} ∈ W2m−m−1/2(γε) and the func-

tions Fjσµ, together with F ′
jσµ, satisfy the consistency condition (4.5). Hence

{fiµ} ∈ S2m−m−1/2(∂G), which completes the proof.

4.3 Problem with Regular Nonlocal Conditions

Definition 4.2 We say that a function v ∈ W 2m(G \ O
κ1

(K)) is admissible
if there exists a polynomial vector W = (W1, . . . ,WN) of degree 2m − 2 such
that

∂β

∂τβjσ
(Bv

jσµ + Bjσµ(y,Dy)W )(0) = 0, β ≤ 2m−mjσµ − 2. (4.15)

Any polynomial vector W of degree 2m − 2 satisfying relations (4.15) is said
to be an admissible polynomial vector corresponding to the function v.

Let τgi be the unit vector parallel to Γi near the point g ∈ Γi ∩ K.

Definition 4.3 (1) The right-hand sides fiµ in nonlocal conditions (2.6) are
said to be regular if {fiµ} ∈ W2m−m−1/2(∂G) and

∂β

∂τβgi
fiµ(g) = 0, β ≤ 2m−miµ − 2, g ∈ Γi ∩K.

(2) The right-hand sides Ψjσµ in nonlocal conditions (2.11) are said to be
regular if {Ψjσµ} ∈ W2m−m−1/2(γε) and

∂β

∂τβjσ
Ψjσµ(0) = 0, β ≤ 2m−mjσµ − 2.
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If miµ = 2m−1 or mjσµ = 2m−1, then the corresponding relations are absent.

In particular, the right-hand sides {fiµ} ∈ H
2m−m−1/2
0 (∂G) and {Ψjσµ} ∈

H
2m−m−1/2
0 (γε) are regular due to Sobolev’s embedding theorem. In this sub-

section, we prove that the following condition (which is weaker than Con-
dition 4.3) is necessary and sufficient for any generalized solution of prob-
lem (2.5), (2.6) with regular right-hand sides {fiµ} ∈ S2m−m−1/2(∂G) to be
smooth.

Condition 4.4 For each admissible function v and each admissible polyno-
mial vector W (of degree 2m − 2) corresponding to v, the functions Bv

jσµ +
Bjσµ(y,Dy)W satisfy the consistency condition (4.5).

Theorem 4.4 Let Conditions 4.1 and 3.2–3.4 hold.

(1) If Condition 4.4 holds and u is a generalized solution of problem (2.5),
(2.6) with right-hand side {f0, fiµ} ∈ L2(G)×S2m−m−1/2(∂G), where fiµ
are regular, then u ∈W 2m(G).

(2) If Condition 4.4 fails, then there exists a right-hand side {f0, fiµ} ∈

L2(G) × H
2m−m−1/2
0 (∂G) and a generalized solution u of problem (2.5),

(2.6) such that u /∈ W 2m(G).

PROOF. 1. Sufficiency. Let Condition 4.4 hold, and let u be an arbitrary
generalized solution of problem (2.5), (2.6) with right-hand side {f0, fiµ} ∈
L2(G)×S2m−m−1/2(∂G), where fiµ are regular. By (2.7), we have u ∈W 2m(G\
O

κ1
(K)).

It follows from the properties of fiµ that the right-hand sides in nonlocal
conditions (2.11) have the form

Ψjσµ = Fjσµ − Bu
jσµ, (4.16)

where {Fjσµ} ∈ W2m−m−1/2(γε),

∂β

∂τβjσ
Fjσµ(0) = 0, β ≤ 2m−mjσµ − 2, (4.17)

and Fjσµ satisfy the consistency condition (4.5).

Further, let U = W + U ′, where U ′ ∈ H2m
δ (Kε) and W are the function and

the polynomial vector (of degree 2m − 2) defined in Lemma 3.2. It follows
from (2.11) and (4.16) that

Bjσµ(y,Dy)U
′ = Fjσµ − (Bu

jσµ + Bjσµ(y,Dy)W ).
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Since {Bu
jσµ +Bjσµ(y,Dy)W −Fjσµ} ∈ W2m−m−1/2(γε) and U ′ ∈ H2m

δ (Kε), it
follows that

{Bu
jσµ + Bjσµ(y,Dy)W − Fjσµ}

= {−Bjσµ(y,Dy)U
′} ∈ H

2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε).

It follows from this relation and from (4.17) that

∂β

∂τβjσ
(Bu

jσµ + Bjσµ(y,Dy)W )(0) = 0, β ≤ 2m−mjσµ − 2,

i.e., u is an admissible function and W is an admissible polynomial vector cor-
responding to u. Hence, by virtue of (4.16) and by Condition 4.4, Condition 4.2
holds. Combining this fact with Theorem 4.1 implies u ∈ W 2m(G).

2. Necessity. Let Condition 4.4 fail. In this case, there exists a function v ∈
W 2m(G\O

κ1
(K)) and a polynomial vectorW = (W1, . . . ,WN) of degree 2m−2

such that

∂β

∂τβjσ
(Bu

jσµ + Bjσµ(y,Dy)W )(0) = 0, β ≤ 2m−mjσµ − 2,

and the functions Bv
jσµ + Bjσµ(y,Dy)W do not satisfy the consistency condi-

tion (4.5).

We must find a function u ∈ W ℓ(G) satisfying relations (2.7) such that u /∈
W 2m(G) and

P(y,Dy)u ∈ L2(G), {B0
iµu+ B1

iµu+ B2
iµu} ∈ H

2m−m−1/2
0 (∂G).

To do this, one can repeat the proof of assertion 2 of Theorem 4.3, assum-
ing that v is the above function, W is the above polynomial vector, and
F ′
jσµ(y) ≡ 0 (which is possible due to the relation Bv

jσµ + Bjσµ(y,Dy)W ∈

H
2m−m−1/2
δ (γε) ∩W2m−m−1/2(γε), where δ > 0 is arbitrary).

5 Violation of Smoothness of Generalized Solutions

5.1 Violation of Conditions 3.1 and 4.1 or Condition 3.2

The title of this subsectoin means that the following condition holds.

Condition 5.1 The band 1−2m ≤ Imλ < 1− ℓ contains an improper eigen-
value of the operator L̃(λ).
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We show that the smoothness of generalized solutions can be violated for any
operators B2

iµ.

Theorem 5.1 Let Condition 5.1 hold. Then there exists a right-hand side
{f0, fiµ} ∈ L2(G) × H

2m−m−1/2
0 (∂G) and a generalized solution u of prob-

lem (2.5), (2.6) such that u /∈W 2m(G).

PROOF. 1. Let λ = λ0 be an improper eigenvalue of the operator L̃(λ),
1 − 2m ≤ Imλ0 < 1 − ℓ. Consider the function

V = riλ0

l0
∑

l=0

1

l!
(i ln r)lϕ(l0−l)(ω) ∈ Wℓ(Kd) ∀d > 0, (5.1)

where ϕ(0), . . . , ϕ(κ−1) are an eigenvector and associated vectors (a Jordan
chain of length κ ≥ 1) of the operator L̃(λ) corresponding to the eigenvalue
λ0. The number l0 (0 ≤ l0 ≤ κ − 1) occurring in the definition of V is such
that the function V is not a polynomial vector in y1, y2. Such a number l0 does
exist because λ0 is not a proper eigenvalue (if Imλ is a noninteger or Imλ is
an integer but Reλ 6= 0, then we can take l0 = 0).

Since V is not a polynomial vector, it follows from Lemma A.3 that

V /∈ W2m(Kd) ∀d > 0. (5.2)

It follows from Lemma A.6 that

Pj(Dy)Vj = 0, Bjσµ(Dy)V |γjσ
= 0. (5.3)

Using (5.3) and the Taylor expansion for the coefficients of Pj(y,Dy) and
Bjσµ(y,Dy), we have

{Pj(y,Dy)Vj − Pj} ∈ W0(Kε), {Bjσµ(y,Dy)V − Pjσµ} ∈ H
2m−m−1/2
0 (γε),

(5.4)
where Pj is a linear combination of terms of the kind

riλ0−2m+1(i ln r)lϕ(ω), . . . , riλ0−2m+k0(i ln r)lϕ(ω),

Pjσµ is a linear combination of terms of the kind

riλ0−mjσµ+1(i ln r)l, . . . , riλ0−mjσµ+k0(i ln r)l,

ϕ(ω) are infinitely smooth vector-valued functions, and k0 ∈ N is such that

−Imλ0 − 2m+ k0 ≤ −1, −Im λ0 − 2m+ k0 + 1 > −1. (5.5)
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Clearly, one can set Pj = 0 and Pjσµ = 0 if inequalities (5.5) are true for
k0 = 0, i.e., if 1 − 2m ≤ Imλ0 < 2 − 2m.

Using Lemma A.8, we can construct the function

V ′ =
k0
∑

k=1

l′
∑

l=0

riλ0+k(i ln r)lkϕkl(ω) ∈W ℓ(Kd) ∀d > 0 (5.6)

such that

{Pj(y,Dy)V
′
j −Pj} ∈ W0(Kε), {Bjσµ(y,Dy)V

′−Pjσµ} ∈ H
2m−m−1/2
0 (γε).

(5.7)

Consider a cut-off function ξ ∈ C∞
0 (Oε′(0)) equal to one near the origin, where

ε′ is given by (4.7). Set U = ξ(V − V ′). Clearly, suppU ⊂ Oε′(0); hence,

supp Bjσµ(y,Dy)U ⊂ γjσ ∩ O
κ2

(0). (5.8)

It follows from (5.1), (5.6), and (5.2) that

U ∈ Wℓ(K), U /∈ W2m(Kd) ∀d > 0. (5.9)

Moreover, by virtue of (5.4) and (5.7), we have

{Pj(y,Dy)Uj} ∈ W0(Kε), {Bjσµ(y,Dy)U} ∈ H
2m−m−1/2
0 (γε). (5.10)

2. Consider the function u(y) given by u(y) = Uj(y
′(y)) for y ∈ Oε′(gj) and

u(y) = 0 for y /∈ Oε′(K), where y′ 7→ y(gj) is the change of variables inverse
to the change of variables y 7→ y′(gj) from Sec. 2.1. The function u is the
desired one. Indeed, u /∈ W 2m(G) due to (5.9). Furthermore, B2

iµu = 0 due
to inequality (2.3) because supp u ⊂ O

κ1
(K). It follows from the equality

B2
iµu = 0 and from relations (5.10) that the function u satisfies the following

relations:

P(y,Dy)u ∈ L2(G), B0
iµu+ B1

iµu+ B2
iµu ∈ H

2m−miµ−1/2
0 (Γi),

supp (B0
iµu+ B1

iµu+ B2
iµu) ⊂ Γi ∩ O

κ2
(K).

(5.11)

5.2 Violation of Condition 3.3 or 3.4

If ℓ = 2m− 1, then all the possibilities for the location of eigenvalues of L̃(λ)
have been investigated. It remains to assume that ℓ ≤ 2m−2 and Condition 3.3
or 3.4 fails.
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Theorem 5.2 Suppose that Condition 3.2 holds while Condition 3.3 or 3.4
fails. Then there is a right-hand side {f0, f

1
iµ+f 2

iµ} ∈ L2(G)×W2m−m−1/2(∂G)
and a generalized solution u of problem (2.5), (2.6) such that u /∈ W 2m(G),
where f 1

iµ is a polynomial of degree 2m−miµ−2 in a neighborhood of the point

g ∈ Γi ∩ K and {f 2
iµ} ∈ H

2m−m−1/2
0 (∂G).

PROOF. 1. Due to part 2 of Remark 3.2, there is a function V given by (3.3)
such that

V ∈ Wℓ(Kd), V /∈ W2m(Kd) ∀d > 0, (5.12)

Pj(Dy)Vj = 0, Bjσµ(Dy)V |γjσ
= cjσµr

s−mjσµ (5.13)

for some s ∈ {ℓ, . . . , 2m− 2} and some (nontrivial) numerical vector {cjσµ} ∈
Cs.

Using (5.13) and the Taylor expansion for the coefficients of Pj(y,Dy) and
Bjσµ(y,Dy), we have

{Pj(y,Dy)Vj − Pj} ∈ W0(Kε),

{Bjσµ(y,Dy)V − cjσµr
s−mjσµ − Pjσµ} ∈ H

2m−m−1/2
0 (γε),

(5.14)

where the functions Pj and Pjσµ are of the same form as in (5.4).

As in the proof of Theorem 5.1, we can construct a function V ′ of the form (5.6)
(with iλ0 replaced by s) satisfying relations (5.7).

Consider a cut-off function ξ ∈ C∞
0 (Oε′(0)) equal to one near the origin, where

ε′ is given by (4.7). Set U = ξ(V − V ′). Clearly, suppU ⊂ Oε′(0) and

U ∈ Wℓ(K), U /∈ W2m(Kd) ∀d > 0. (5.15)

Moreover, by virtue of (5.14) and (5.7), we have

{Pj(y,Dy)Uj} ∈ W0(Kε), {Bjσµ(y,Dy)U − cjσµr
s−mjσµ} ∈ H

2m−m−1/2
0 (γε).

(5.16)

We note that, since {cjσµ} ∈ Cs, the function cjσµr
s−mjσµ either equals zero

(which, in particular, holds for (j, σ, µ) ∈ Js) or is a monomial of degree
s−mjσµ (i.e., no greater than 2m−mjσµ − 2).

2. Consider the function u(y) given by u(y) = Uj(y
′(y)) for y ∈ Oε′(gj) and

u(y) = 0 for y /∈ Oε′(K), where y′ 7→ y(gj) is the change of variables inverse
to the change of variables y 7→ y′(gj) from Sec. 2.1. The function u is the
desired one. Indeed, u /∈ W 2m(G) due to (5.15). Furthermore, B2

iµu = 0 due
to inequality (2.3) because supp u ⊂ O

κ1
(K). It follows from the equality
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B2
iµu = 0 and from relations (5.16) that the function u satisfies the following

relations:

P(y,Dy)u ∈ L2(G), B0
iµu+ B1

iµu+ B2
iµu = f 1

iµ + f 2
iµ,

where f 1
iµ is a polynomial 6 of degree no greater than 2m − miµ − 2 in a

neighborhood of the point g ∈ Γi ∩ K and f 2
iµ ∈ H

2m−miµ−1/2
0 (Γi).

Remark 5.1 We remind that the space S2m−m−1/2(∂G) was introduced in
Sec. 4.2 in the case where the line Imλ = 1 − 2m contains only the proper
eigenvalue i(1 − 2m). In this case, it was proved in Theorem 4.2 that the
smoothness of generalized solutions may violate if the right-hand side {fiµ} ∈
W2m−m−1/2(∂G) does not belong to S2m−m−1/2(∂G). Theorem 5.2 shows that
if Condition 3.3 or Condition 3.4 fails, then the smoothness of generalized
solutions may violate even for the right-hand side {fiµ} ∈ S2m−m−1/2(∂G).

On the other hand, it is on principle that the smoothness violation in Theo-
rem 5.2 occurs for a nonzero (and even nonregular) right-hand side {fiµ}. It
can be proved that if we confine ourselves with regular right-hand sides, then
Conditions 3.3 and 3.4 are not necessary for the preservation of smoothness.

A Appendix

This appendix is included for the reader’s convenience. Here we collect some
known results on weighted spaces and properties of nonlocal operators, which
are most frequently referred to in the main part of the paper.

A.1 Some Properties of Sobolev and Weighted Spaces

In this subsection, we formulate some results concerning properties of weighted
spaces introduced in Sec. 2.1. Set

K = {y ∈ R
2 : r > 0, |ω| < ω0},

γσ = {y ∈ R
2 : r > 0, ω = (−1)σω0} (σ = 1, 2).

6 The function f1
iµ (being written in the system of coordinates originated at the

point g ∈ Γi ∩ K) either equals zero or is a monomial of degree s − mjσµ.
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Lemma A.1 (see Lemma 2.1 in [14]) Let ψ ∈ W k−1/2(γσ) (σ = 1 or 2,
k ≥ 2), suppψ ⊂ {0 ≤ r ≤ ε} for some ε > 0, and

ds

drs
ψ(0) = 0, s = 0, . . . , k − 2.

Then ψ ∈ H
k−1/2
δ (γσ) for any δ > 0 and

‖ψ‖
ψ∈H

k−1/2

δ
(γσ)

≤ c‖ψ‖W k−1/2(γσ),

where c = c(ε, δ) > 0 does not depend on ψ.

Lemma A.2 (see Lemma 3.3′ in [19]) Let a function u ∈ Hk
a (K), where

k ≥ 0 and a ∈ R, be compactly supported. Suppose that p ∈ Ck(K) and
p(0) = 0. Then pu ∈ Hk

a−1(K).

Lemma A.3 (see Lemma 4.20 in [19]) The function riλ0Φ(ω) lns r, where
Imλ0 = −(k − 1) and s ≥ 0 is an integer, belongs to W k(K ∩ {|y| < 1}) if
and only if it is a homogeneous polynomial in y1, y2 of degree k − 1.

Lemma A.4 Let f ∈ W k(R2) and Dαf(0) = 0, |α| ≤ k − 2, if k ≥ 2. Then
there exists a sequence fn ∈ C∞

0 (R2), n = 1, 2, . . . , such that fn(y) = 0 in
some neighborhood of the origin (depending on n) and fn → f in W k(R2).

PROOF. The proof is analogous to that of Lemma 4.1 in [16].

A.2 Nonlocal Problems in Plane Angles in Weighted Spaces

In this subsection and in the next one, we formulate some properties of solu-
tions of problem (2.10), (2.11) in the spaces (3.6) and (3.7). First, we consider
the case of weighted spaces.

For convenience, we rewrite this problem:

Pj(y,Dy)Uj = Fj(y) (y ∈ Kε
j ),

Bjσµ(y,Dy)U = Φjσµ(y) (y ∈ γεjσ),
(A.1)

Along with problem (A.1), we consider the following model problem in the
unbounded angles.

Pj(Dy)Uj = Fj(y) (y ∈ Kj),

Bjσµ(Dy)U = Φjσµ(y) (y ∈ γjσ).
(A.2)
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Lemma A.5 (see Lemma 2.3 in [15]) Let a function U be a solution of
problem (A.1) (or (A.2)) such that

Uj ∈W 2m(K
Dχε
j \ Oδ(0)) ∀δ > 0; U ∈ H0

a−2m(KDχε),

where Dχ is given by (3.5) and a ∈ R. Suppose that

{Fj} ∈ H0
a(K

ε), {Φjσµ} ∈ H2m−m−1/2
a (γε).

Then U ∈ H2m
a (Kε).

Consider the asymptotics of solutions of problem (A.2).

Lemma A.6 (see Lemma 2.1 in [13]) The function

U = riλ0

l0
∑

l=0

1

l!
(i ln r)lϕ(l0−l)(ω), (A.3)

is a solution of homogeneous problem (A.2) if and only if λ0 is an eigenvalue
of the operator L̃(λ) and ϕ(0), . . . , ϕ(κ−1) is a Jordan chain corresponding to
the eigenvalue λ0; here l0 ≤ κ − 1.

Any solution of the kind (A.3) is called a power solution.

Lemma A.7 (see Theorem 2.2 and Remark 2.2 in [13]) Let

{Fj} ∈ H0
a(K) ∩H0

a′(K), {Φjσµ} ∈ H2m−m−1/2
a (γ) ∩H

2m−m−1/2
a′ (γ),

where a > a′. Suppose that the line Imλ = a′ − 1 contains no eigenvalues
of the operator L̃(λ). If U is a solution of problem (A.2) belonging to the
space H2m

a (K), then

U =
n0
∑

n=1

Jn
∑

q=1

κqn−1
∑

l0=0

c(l0,q)n W (l0,q)
n (ω, r) + U ′.

Here λ1, . . . , λn0
are eigenvalues of L̃(λ) located in the band a′ − 1 < Imλ <

a− 1;

W (l0,q)
n (ω, r) = riλn

l0
∑

l=0

1

l!
(i ln r)lϕ(l0−l,q)

n (ω)

are the power solutions of homogeneous problem (A.2);

{ϕ(0,q)
n , . . . , ϕ(κqn−1,q)

n : q = 1, . . . , Jn}

is a canonical system of Jordan chains of the operator L̃(λ) corresponding to
the eigenvalue λn; c

(m,q)
n are some complex constants; finally, U ′ is a solution

of problem (A.2) belonging to the space H2m
a′ (K).
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If the right-hand sides of problem (A.2) are of particular form, then there exist
solutions of particular form. Let

Fj(ω, r) = riλ0−2m
M
∑

l=0

1

l!
(i ln r)lf

(l)
j (ω), Φjσµ(r) = riλ0−mjσµ

M
∑

l=0

1

l!
(i ln r)lϕ

(l)
jσµ,

(A.4)

where f
(l)
j ∈ L2(−ωj , ωj), ϕ

(l)
jσµ ∈ C, λ0 ∈ C.

If λ0 is an eigenvalue of the operator L̃(λ), then denote by κ(λ0) the greatest
of partial multiplicities of this eigenvalue; otherwise, set κ(λ0) = 0.

Lemma A.8 (see Lemma 4.3 in [13]) For problem (A.2) with right-hand
side {Fj ,Φjσµ} given by (A.4), there exists a solution

U = riλ0

M+κ(λ0)
∑

l=0

1

l!
(i ln r)lu(l)(ω), (A.5)

where u(l) ∈
∏

j
W 2m(−ωj , ωj). A solution of such a form is unique if κ(λ0) = 0

(i.e., λ0 is not an eigenvalue of L̃(λ)). If κ(λ0) > 0, then the solution (A.5) is
defined accurate to an arbitrary linear combination of power solutions (A.3)
corresponding to the eigenvalue λ0.

The following result is a modification of Lemma A.7 for the case in which the
line Imλ = 1−2m contains the unique eigenvalue λ0 = i(1−2m) of L̃(λ) and
this eigenvalue is proper (see Definition 3.1).

Lemma A.9 (see Lemma 3.4 in [14]) Let U ∈ H2m
a (K), where a > 0, be

a solution of problem (A.2) with right-hand side {Fj} ∈ H0
a(K) ∩ H0

0(K),

{Φjσµ} ∈ H2m−m−1/2
a (γ) ∩ H

2m−m−1/2
0 (γ). Suppose that the band 1 − 2m ≤

Imλ < a + 1 − 2m contains only the eigenvalue λ0 = i(1 − 2m) of L̃(λ) and
this eigenvalue is proper. Then DαU ∈ H0

0(K) for |α| = 2m.

A.3 Nonlocal Problems in Plane Angles in Sobolev Spaces

Lemma A.10 (see Lemma 2.4 and Corollary 2.1 in [14]) Suppose the
line Imλ = 1 − 2m contains no eigenvalues of L̃(λ). Let

{Φjσµ} ∈ W2m−m−1/2(γε) ∩H
2m−m−1/2
δ (γε) ∀δ > 0.

Then there exists a compactly supported function V ∈ W2m(K) ∩ H2m
δ (K),

where δ > 0 is arbitrary, such that

{Pj(y,Dy)Vj} ∈ H0
0(K

ε), {Bjσµ(y,Dy)V |γε
jσ
− Φjσµ} ∈ H

2m−m−1/2
0 (γε).
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Now we consider the situation where the line Imλ = 1 − 2m contains the
unique eigenvalue λ0 = i(1−2m) of L̃(λ) and it is proper (see Definition 3.1).

Lemma A.11 (see Lemma 3.3 and Corollary 3.1 in [14]) Let the line
Imλ = 1−2m contain only the unique eigenvalue λ0 = i(1−2m) of L̃(λ) and
it is proper. Suppose that

{Φjσµ} ∈ W2m−m−1/2(γε) ∩H
2m−m−1/2
δ (γε) ∀δ > 0

and the functions Φjσµ satisfy the consistency condition (4.5). Then there
exists a compactly supported function V ∈ W2m(K) ∩ H2m

δ (K), where δ > 0
is arbitrary, such that

{Pj(y,Dy)Vj} ∈ H0
0(K

ε), {Bjσµ(y,Dy)V |γε
jσ
− Φjσµ} ∈ H

2m−m−1/2
0 (γε).

Lemma A.12 (see Lemma 3.1 in [14]) Let the line Imλ = 1−2m contain
only the proper eigenvalue λ0 = i(1−2m) of L̃(λ). Suppose that U ∈ W2m(K)
is a compactly supported solution of problem (A.1) (or (A.2)) andDαU(0) = 0,
|α| ≤ 2m−2. Then the functions Φjσµ satisfy the consistency condition (4.5).
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