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Abstract

The smoothness of generalized solutions for higher-order elliptic equations with
nonlocal boundary conditions is studied in plane domains. Necessary and sufficient
conditions upon the right-hand side of the problem and nonlocal operators under
which the generalized solutions possess an appropriate smoothness are established.
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1 Introduction

In 1932, Carleman [7] considered the problem of finding a harmonic function,
in a plane bounded domain, satisfying a nonlocal condition which connects the
values of the unknown function at different points of the boundary. Further
investigation of elliptic problems with transformations mapping a boundary
onto itself as well as with abstract nonlocal conditions has been carried out
by Vishik [37], Browder [6], Beals [3], Antonevich [2], and others.

In 1969, Bitsadze and Samarskii [5] considered the following nonlocal problem
arising in the plasma theory: to find a function wu(y;,y2) harmonic on the
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rectangular G = {y € R?: =1 < y; < 1, 0 < yp < 1}, continuous on G, and
satisfying the relations

u(y,0) = filyr), w(y,1) = folyn), —1<wy <1,
u(—=1,y2) = fa(y2), w(l,y2) =u(0,12), 0<yp <1,

where f1, fo, f3 are given continuous functions. This problem was solved in [5]
by reducing it to a Fredholm integral equation and using the maximum prin-
ciple. For arbitrary domains and general nonlocal conditions, such a problem
was formulated as an unsolved one (see also [8]). Different generalizations
of nonlocal problems with transformations mapping the boundary inside the
closure of a domain were studied by many authors [9,17,18,24].

The most complete theory for elliptic equations of order 2m with general
nonlocal conditions was developed by Skubachevskii and his students [14, 20,
28-33]: a classification with respect to types of nonlocal conditions was sug-
gested, the Fredholm solvability in the corresponding spaces was investigated,
and asymptotics of solutions near special conjugation points was obtained.

Note that, besides the plasma theory, nonlocal elliptic problems have interest-
ing applications to biophysics and theory of diffusion processes [10, 11,26, 35,
36], control theory [1,4], theory of functional differential equations, mechan-
ics [33], and so on.

The most difficult situation in the theory of nonlocal problems is that where
the support of nonlocal terms can intersect the boundary of a domain. In
this case, solutions of nonlocal problems can have power-law singularities near
some points of the boundary even if the right-hand side is infinitely differen-
tiable and the boundary is infinitely smooth [16,29,34]. This gives rise to the
question of distinguishing some classes of nonlocal problems whose solutions
are sufficiently smooth, provided that the right-hand side of the problem is
smooth. Until now, this issue was studied only for nonlocal perturbations of
the Dirichlet problem for second-order elliptic equations [16,34].

In the present paper, we investigate the smoothness of solutions for elliptic
equations of higher order with general nonlocal conditions in plane domains.
Unlike the theory of elliptic problems in nonsmooth domains, the violation
of smoothness of solutions for nonlocal problems is connected not only with
the fact that the boundary may contain singular points but rather with the
presence of nonlocal terms in the boundary conditions.

We illustrate some of the occurring phenomena with the following example.
Let 0G = TI'y UTy U {g, h}, where I'; are open (in the topology of 0G) C*
curves; g, h are the end points of the curves I'; and I'y. Suppose that the
domain G is the plane angle of opening 7 in some neighborhood of each of the
points g and h. We deliberately take a smooth domain to illustrate how the



nonlocal terms can affect the smoothness of solutions. Consider the following
problem in the domain G:

Au= foly) (y€G), (1.1)
ulp, + b1 (y)u(C(y))Ir, + a(y)u(Qy))|r, = fily) (y €T1), (1.2)
ulp, + ba(y)u(Qa(y))|r, = f2(y) (y € ITy). .

Here by, by, and a are real-valued C'* functions; €); (2) are C'* diffeomorphisms
taking some neighborhood O; (O;) of the curve I'; (I';) onto the set €;(O;)
(Q(0y)) in such a way that Q;(I;) C G, Q(g) = g, Q(h) = h, and the
transformation €);, near the points g, h, is the rotation of the boundary T’
through the angle 7/2 inwards the domain G (respectively, Q(I';) C G, Q(I'y)N

{g,h} = @, and the approach of the curve )(I';) to the boundary dG can be
arbitrary, cf. [29,31]), see Fig. 1.1.
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Fig. 1.1. Domain G with boundary 0G =T'; UTy U {g, h}.

We say that g and h are the points of conjugation of nonlocal conditions
because they divide the curves on which different nonlocal conditions are set.
The closure of the set

U {y € () b:(27 (1) # 0} U{y € AT = a(Q7'(y)) # 0}

i=1,2
is referred to as the support of nonlocal terms.

Denote by W#(G) = WJ(G) the Sobolev space. We say that a function u €
WYQ) is a generalized solution of problem (1.1), (1.2) with right-hand side
fo € Ly(@), fi € WY2(I,) if u satisfies nonlocal conditions (1.2) (the equalities
are understood as those in W'/2(I';)) and Eq. (1.1) in the sense of distributions.
Assume that f; € W3/2(T;). Then one can show that any generalized solution
of problem (1.1), (1.2) belongs to the space W? outside of an arbitrarily small
neighborhood of the points g and h. Clearly, the behavior of solutions near
the points g and h is affected by the behavior of the coefficients by, by, and
a near these points. However, the influence of the coefficients b; is principally



different from that of the coefficient a. This phenomenon is explained by the
fact that the coefficients b; (for y being in a small neighborhood of the points
g and h) correspond to nonlocal terms supported near the set {g,h} (in the
general case, such terms correspond to operators Bilu), whereas the coefficient
a corresponds to a nonlocal term supported outside of some neighborhood of

the set {g, h} (in the general case, such terms correspond to abstract operators
B?).
m

It was proved in [16] that the smoothness of generalized solutions preserves if
b1(g) + ba(g) < =2 or by(g) + b2(g) > 0 and can be violated if —2 < by(g) +
ba(g) < 0. If b1(g) + ba(g) = 0, we have the “border” case: the smoothness of
generalized solutions depends on the fulfillment of some integral consistency
condition imposed on the right-hand sides f; and the coefficients b;.

Now we illustrate another phenomenon arising in the border case. Assume
that b1 (y) = b2(y) = 0. Let a(y) = 0 in some neighborhood of the point i and
Q(g) € G. Then the support of nonlocal terms lies strictly inside the domain G.
However, if a(g) # 0 or (0a/07,)|y=y # 0, where 7, denotes the unit vector
tangent to OG at the point g, then the smoothness of generalized solutions of
problem (1.1), (1.2) (even with homogeneous nonlocal conditions: {f;} = 0)
can be violated.

The phenomena similar to the above occur in the case of elliptic equations
of order 2m with general nonlocal conditions, which we study in the present
paper. In Sec. 2, we provide the setting of nonlocal problem and introduce the
notion of a generalized solution u € WG) of the problem for any integral
0<l<2m—1.

It turns out that the smoothness of generalized solutions essentially depends
on the location of eigenvalues and the structure of root functions of some
auxiliary nonlocal operator £(\), A € C, corresponding to the conjugation
points.

Let A denote the set of all eigenvalues of £()\) lying in the strip 1 — 2m <
ImA < 1 — ¢ (this set might be empty). In Sec. 3 we assume that the line
ImA = 1 — 2m has no eigenvalues of the operator £()\) and find sufficient
conditions on the eigenvalues from the set A under which any generalized
solution of nonlocal problem belongs to W?™(G).

In Sec. 4, we investigate the “border” case in which the line Im\ = 1 —
2m contains the unique eigenvalue i(1 — 2m) of £(\) and this eigenvalue
is proper (see Definition 3.1). We show that, under the same conditions on
the eigenvalues of £()) as in Sec. 3, the smoothness of generalized solutions
preserves if and only if the right-hand side of the problem and the coefficients
at the nonlocal terms satisfy some integral consistency conditions near the
conjugation points.



In Sec. 5, we show that the sufficient conditions from the previous sections are
also necessary for any generalized solution to be smooth.

Some facts concerning the functional spaces and model nonlocal problems in
plane angles which we use throughout the paper are collected in Appendix.

The results of this paper have been obtained during the author’s work at the
research group of Professor Jager (Heidelberg University) in the framework of
the project supported by the Humboldt Foundation. The author also expresses
his gratitude to Professor Skubachevskii for attention.

2 Setting of Nonlocal Problems in Bounded Domains
2.1 Setting of the Problem

Let X be a domain in R, n = 1,2. Denote by C§°(X) the set of functions
infinitely differentiable on X and compactly supported in X. If M is a union
of finitely many points (for n = 1,2) or curves (for n = 2) lying in X, we
denote by C5°(X \ M) the set of functions infinitely differentiable on X and
compactly supported in X \ M.

Let G C R? be a bounded domain with boundary 8G Consider a set K C 0G
consisting of finitely many points. Let 0G \ K = U [';, where I'; are open (in
the topology of OG) C*° curves. Assume that the domaln G is a plane angle
in some neighborhood of each point g € K.

For an integral k > 0, denote by W*(G) = W¥(G) the Sobolev space with the

norm
1/2
Jellwne) = (z 1D |2dy)

lal<k
(set WO(G) = Lyo(G) for k = 0), where a = (v, ..., ), |a| = a1+ + ay,
D* =DM ... D%, D; = —id/da;.

For an integral k& > 1, we introduce the space W*~1/2(T") of traces on a smooth
curve I' C G with the norm

[ llwr-s/2ry = inf [ullwr) (v € WHG) : ulr = o).

Along with Sobolev spaces, we will use weighted spaces (the Kondrar’'ev
spaces). Let Q = {y e R?: r >0, |w| <w},Q={yeR?: 0<r<
d, |w| <wo}, 0 <wy<m,d>0,orQ =G. We denote by M the set {0} in



the first and second cases and the set K in the third case. Introduce the space
HKQ) = HK(Q, M) as a completion of the set C5°(Q \ M) with respect to

the norm
1/2
|wm@=(z/fW“wnwm%J,
jof<k "€
where a € R, k > 0 is an integral, and p = p(y) = dist(y, M). For an integral

k > 1, denote by H*~'/2(T) the set of traces on a smooth curve I' C Q with
the norm

ol ooy = nf fullise) (0 € HEQ): ule =), (21)

Denote by P(y, D,) = P(y, D,,, D,,) and B;,s(y, Dy) = Bius(y, Dy,, D,,) dif-
ferential operators of order 2m and m;, (m;, < 2m — 1), respectively, with
complex-valued C* coefficients (i = 1,...,N; u=1,...,m; s = 0,...,5;).
Here D, = (Dy,, Dy,), D,, = —id/0y;.

We assume that the following condition holds for the operators P(y, D,) and
Biuo(y, Dy) (these operators will correspond to the “local” elliptic problem).

Condition 2.1 The operator P(y, D,)) is properly elliptic on G, and the sys-
tem { Biuo(y, Dy) Yoy satisfies the Lopatinsky condition with respect to the op-
erator P(y, D,) for alli=1,...,N andy € T;.

We denote

B?uu:Bmo(y,Dy)u, yel,,i=1,....N, u=1,,...,m.

For any closed set M, we denote its e-neighborhood by O.(M), i.e.,

O.(M) ={y e R*: dist(y, M) < ¢}, e >0.

Now we introduce operators corresponding to nonlocal terms supported near
the set K. Let Qs (i =1,...,N;s=1,...,5;) be C* diffeomorphisms taking
some neighborhood O; of the curve I'; N O, (K) to the set Q;5(0;) in such a
way that Q;,(T; N O.(K)) C G and

Qis(g) e for geT;NK. (2.2)

Thus, the transformations ;s take the curves I'; N O.(K) strictly inside the
domain G and the set of their end points I'; N K to itself.

Let us specify the structure of the transformations €2;; near the set K. Denote
by Q' the transformation Q; : O; — Q(0;) and by Q! : Q;,(0;) — O;

(2



the inverse transformation. The set of points Qiiq( L (9N eEK(1<s; <
Si;, 7 =1,...,q) is said to be an orbit of the point g € K and denoted by
Orb(g). In other words, the orbit Orb(g) is formed by the points (of the set
K) that can be obtained by consecutively applying the transformations ijij

to the point g.

It is clear that either Orb(g) = Orb(g¢’) or Orb(g) N Orb(¢’) = @ for any
9,9 € K. In what follows, we assume that the set K consists of one orbit (the
results are easy to generalize for the case in which K consists of finitely many
disjoint orbits, cf. Sec. 6 in [16]). To simplify the notation, we also assume
that the set (orbit) IC consists of N points: g1, ..., gn.

Take a sufficiently small number ¢ (cf. Remark 2.3 in [16]) such that there exist
neighborhoods O, (g;), Oc,(g;) D O:(g;), satistying the following conditions:

(1) The domain G is a plane angle in the neighborhood O, (g;):
(2) Oc,(9j) N O:,(gk) = @ for any g;, g € K, k # j;
(3) If g; € I'; and Q45(g;) = g, then O.(g;) C O; and (Og(gj)) C O (gr)-

For each point g; € T; N K, we fix a transformation Y; : y — ¢/(g;) which is

—
a composition of the shift by the vector —Og; and the rotation through some
angle so that

Y}(Om (gj)) = 061 (0)7 Y;(G N O&l (gj)) = Kj N 051 (0)7

V(TN 0. (9)) = 12 N0, (0) (0= 10r2),

where
Ki={yeR*: r>0, lw|<wj}, Yo={yeR: r>0, w=(-1)w,}

Here (w,r) are the polar coordinates and 0 < w; < 7.

Let the following condition hold (see Fig. 2.1).

Condition 2.2 Let g; € T;NK and Qi5(g;) = gr € K; then the transformation
Yio QoY 0(0) — O, (0)

1s the composition of rotation and homothety.

Remark 2.1 Condition 2.2, together with the fact that Q;s(;) C G, implies

that if g € Qs (L;NIKC) N, N # @, then the curves Q;s(I; N OL(K)) and T';

intersect at nonzero angle at the point g.

We c@ose a number gy, 0 < g9 < ¢ possessing the following property: if
g; € I'i and Qi5(g5) = g, then O (gr) C Q2i5(O:(g5)) C O (g). Consider a



Fig. 2.1. The transformation Y3 0 Q17 0 Y77 : O.(0) — O, (0) is a composition of
rotation and homothety

function ¢ € C*(R?) such that

Cy) =1 (y € O4p2(K)), ((y) =0 (y ¢ O,(K)).

Introduce the nonlocal operators Bilu by the formulas

Sy
Bl,u =3 (Biu(y, Dy)(C)) ((v), v €TiN O-(K),
B}#u = O: y € I\ O-(K),

where (Bws(y, Dy)u) (le(y)) = Bips(x, Dy )u(2)] =0, () Since Bj,u = 0 for

suppu C G\ O, (K), we say that the operators Bilu correspond to nonlocal
terms supported near the set K.

Set G, = {y € G : dist(y,0G) > p} for p > 0. Consider operators B},
satisfying the following condition (cf. [14,29,32]).

Condition 2.3 There exist numbers sy > 35 > 0 and p > 0 such that
||B22}Lu||W2mimi“71/2(Fi) S Cl||u||W2m(G\m) \V/u c W2m(G \ 0%1 (’C)), (23)

||B22uU||W2m—mm71/2(ri\m) S CQ||U||W2m(Gp) ‘v’u - W2m(GP), (24)

wheret=1,....,N, pu=1,...,m, and c;,co > 0 do not depend on wu.



It follows from (2.3) that B},u = 0 whenever suppu C O,,(K). For this
reason, we say that the operators B?H correspond to nonlocal terms supported
outside the set IC.

We assume that Conditions 2.1-2.3 are fulfilled throughout.

We study the following nonlocal elliptic boundary-value problem:

B?Mu+Biluu+BfMu: finly) (yely i=1,...,N; p=1,...,m). (2.6)

Note that the points g; divide the curves on which different nonlocal conditions
are set; therefore, it is natural to say that g;, j = 1,..., N, are the points of

conjugation of nonlocal conditions.

Introduce the spaces of vector-valued functions

W2m—mi“—1/2 (Fz>7

—
s

-
Il

—
=
I

—

W2m—m—1/2 (aG) —

Hzm—m—1/2(aG) — Hgm—mw—l/2(1—wi)'

—
i3

-
Il

—
=
I

—

We will always assume that {fo, fi,} € La(G) x W?M—m=1/2(9@G).
From now on, we fix an integral number ¢ such that 0 < ¢ < 2m — 1.

Definition 2.1 A function u is called a generalized solution of problem (2.5),
(2.6) with right-hand side {fy, fi,} € La(G) x Wm—m=12(5@G) if

ue WHG) NW(G\ O5(K)) V6 >0 (2.7)

and u satisfies relations (2.5) a.e. and equalities (2.6) in W2m=mun=1/2(T; \
Os(K)) for all § > 0.

Note that if u satisfies (2.7), then B3,u € W™= =1/2(I;) due to (2.3) and
Bj,u € Wm—mu=1/2(I'; \ O5(K)) for all § > 0. Therefore, Definition 2.1 does
make sense.

Remark 2.2 Let W*(G), k > 1, denote the space adjoint to W*(G) with
respect to the extension of the inner product in Ls(G).

Denote by H-*=V/2(T,), k > 1, the space adjoint to H","*(T';) with respect
to the extension of the inner product in Lo(I;).



One can show that C°°(T;) C Hf_k+1/2, k=1,...,2m. Therefore, the norm

N 2m 1/2
v = (IR + 3 [P 0l o) 29

i=1 k=1

is finite for any u € C°°(G), where v; is the outward normal to the piece I'; of

k-1
the boundary and Di~'u = (—i)F! 0" u . Denote by W*(G) the completion

k=1
v,

of C=(G) in the norm (2.8).
It follows from (2.8) that the closure S of the mapping
u— {ulg, Dllfi_lu} (u e C™(Q))

establishes an isometric correspondence between W(G) and a subspace of the
direct product

e k+1/2 (T,

We will identify u € WYG) with Su and write u = {u, uyx} € WHG).

”::13

Then, similarly to [23], one can introduce the concept of a strong generalized
solution u € WY(G) of problem (2.5), (2.6). Moreover, one can prove that
if u is a strong generalized solution, then the component u € WG of the
vector u is a generalized solution in the sense of Definition 2.1. Conversely,
if u € WYQ) is a generalized solution in the sense of Definition 2.1, then
u = {u, DE~'u} belongs to WHG) and is a strong generalized solution. Fur-
thermore, if the function v = {u,vix} € WYG) (with the same first compo-
nent u) is a strong generalized solution, then u = v i.e., a generalized solution
uniquely determines a strong generalized solution.

2.2  Model Problems

When studying problem (2.5), (2.6), particular attention must be paid to the
behavior of solutions near the set IC of conjugation points. In this subsection,
we consider corresponding model problems.

Denote by u;(y) the function u(y) for y € O, (g;). If g; € T4, y € O(g;),

and 5(y) € O, (gx), then we denote the function u(£2;s5(y)) by ur(Q4is(y)). In
this notation, nonlocal problem (2.5), (2.6) acquires the following form in the

10



e-neighborhood of the set (orbit) K:
P(yv ) fO( ) (y € Oa(g]) N G)a

Biuo(y, D)5 (¥)0.(s)) m+2( ina (0 D) (Cu)) (s (W) 0 = Cin(v)

(yeoa(g])mru Ze{léng:ngP_i}; ]ZlaaNa M:L"'am)>

where

7vbi,u = fi,u - B2 U
Let y — 3/(g;) be the change of variables described in Sec. 2.1. Set
K; :ijoa(0)7 750 :’ngﬂOg(O)

and introduce the functions

Ui(y) =uwy(y), Fi(y) = foly(¥)), v €K;,
Fiou(y) = i),  Bj,.(v) = BLu) (), ¥ €7 (2.9)
\Iljoﬂ(y/) = Fjou( ) B;Lo,u,( )7 y/ S /7;;07
where 0 =1 (0 = 2) if the transformation y — y'(g;) takes I'; to the side 7

(7j2) of the angle K;. Denote y' by y again. Then, by virtue of Condition 2.2,
problem (2.5), (2.6) acquires the form

P;(y, D,)U; = F(y) (y € Kj), (2.10)

Bjou(y, Dy)U =D (Bjours(¥, Dy)Ui)(Gjoksy) = Vieu(y) (y € 75,). (2.11)
k,s

Here (and below unless otherwise stated) j,k = 1,...,N; 0 = 1,2; u =
L...,m; s =0,...,5qm P;(y,D,) and Bjous(y, D,) are differential opera-
tors of order 2m and mjy, (Mjy, < 2m — 1), respectively, with C'*° complex-
valued coefficients; Gj,is is the operator of rotation by an angle wjis and
homothety with a coefficient xjoks (Xjors > 0) in the y-plane. Moreover,

|(_1)ij + wjaks| < bk fOI" (k> S) 7& (]a O)

(cf. Remark 2.1) and
Wjejo = 0, Xjojo =1
(i.e., gjo-joy = y)

Along with the operators P;(y, D,) and Bj,,(y, D, ), we consider the operators

Pj(Dy>v Bjou U Z Jouks Uk)(gjcrksy) (2-12)

where P;(D,) and Bjyuks(D,) are the principal homogeneous parts of the
operators P;(0, D,) and Bj,.s(0, D,), respectively.

11



We write the operators Pngy) and Bj,uks(Dy) in the polar coordinates:
_2’”77 (w, Dy, rD,), T #Bjouks(w, Dy, D,), respectively, and consider the
analytlc operator-valued function2

N N
L)1 W2 (—w;, w;) — 11 ( —wj,w;) (CQm),
j=1 J=1
Z()‘)SO = {75] (wa Dwa )‘)ija Bjau(wa Dwa )\)gp},
where D, = —id/0w, D, = —id/0r, and

Bjau(wa Dwa )\)QO - Z(Xjaks)ik_mjauéjauks(wa Dw> )\)@k(w + wjaks)|w:(—1)"wj .
k,s

Spectral properties of the operator E()\) play a crucial role in the study of
smoothness of generalized solutions. The following assertion is of particular
importance (see Lemmas 2.1 and 2.2 in [30]).

Lemma 2.1 For any A € C, the operator E()\) has the Fredholm property and
ind L(\) =

The spectrum of the operator L(\) is discrete. For any numbers ¢; < ¢y, the
band c; < Im A < ¢y contains at most finitely many eigenvalues of the operator

L.

3 Preservation of Smoothness of Generalized Solutions
3.1 Formulation of the Main Result

In this section, we study the case in which the following condition holds.

Condition 3.1 The line Im A =1 — 2m contains no eigenvalues of the oper-
ator L(N).

Let A = Ao be an eigenvalue of the operator £(\).

Definition 3.1 (cf. [14,19]) We say that Ao is a proper eigenvalue if none
of the corresponding eigenvectors p(w) = (¢1(w),...,pn(w)) has an asso-
ciated vector, while the functions r'*°p;(w), j = 1,..., N, are homogeneous
polynomials in y1,y2 (of degree iNg € NU{0}). An eigenvalue which is not
proper is said to be improper.

2 Main definitions and facts concerning analytic operator-valued functions can be
found in [12].

12



Let A be the set of all eigenvalues of £()\) in the band 1 —2m < Im X < 1 —/¢
(this set can be empty). We also denote iA = {iX : X € A}.

Condition 3.2 All the eigenvalues from the set A are proper.

In particular, Condition 3.2 implies that A = @ if { =2m —1 (e.g., if { = m =
1, cf. [16]) and iA C {¢,...,2m — 2} if £ < 2m — 2.

In the case where ¢ < 2m — 2, we will need some additional conditions.

Let W™"(—w;,w;) be the space adjoint to W?™(—w;,w;). Consider the op-
erator (L(\))* : w (L2(—wj,wj) X CQ’”) — 1L, W (—wj, w;) which is
adjoint to the operator £(\).

For any s € {/,...,2m — 2}, we denote by J; the set of all indices (j',0’, ')
such that

S S mjlglu/ — 1. (31)
We also denote by Cj the space of numerical vectors {c¢;,,} with complex
entries such that
Cjlg'y! = 0, (j/ao-/a,u/) € Js.

Condition 3.3 If ¢ < 2m — 2, then the following assertions hold for any
s € 1A:

(1) J. 42 ~
(2) ({0, cjou}, ) = 0 for all {cjo,} € Cs and ¢ € ker (L(—is))".
(3) Let o, € W™ (—wj,w;) denote a solution of the equation L(—is)p. =

J
10, ¢jou}, where {cjou} € Cs (this solution exists due to item 2 and is
defined up to an arbitrary element vy € ker L(—is)). Then r*p.(w) is a
homogeneous polynomial (of degree s) for any {cjs,} € Cs.

Remark 3.1 (1) Part 1 in Condition 3.3 is necessary for the fulfillment of
part 2. This follows from Lemma 2.1.

(2) Part 2 is necessary and sufficient for the existence of solutions ¢, for all
{¢jou} in part 3.

Condition 3.4 If { < 2m — 2, then the following assertion holds for any
s e {l,....2m —2} \ i\ Let o, € T]; W*"(—w;,w;) denote a solution® of
the equation L(—is)p. = {0,¢jon}, where {¢jou} € Cs. Then r°p.(w) is a
homogeneous polynomial (of degree s) for any {cjou} € Cs.

Remark 3.2 Suppose that Condition 3.2 is fulfilled.

3 This solution exists and is unique because —is is not an eigenvalue of £(\).
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(1) If Conditions 3.3 and 3.4 hold, then the problem
P](Dy)v = 0, BjJM(Dy)V = C]'(ju’l"s_mjuH (32)

admits a solution V (y) which is a homogeneous polynomial of degree s,
provided that {cjo,} € Cs, where s = {,...,2m — 2. Indeed, substituting
a function V = r*p.(w) into (3.2), we obtain the equation L(—is)p, =
{0, ¢jou}. Due to Conditions 3.3 and 3.4, this equation admits a solution
e such that the function V- = r*p.(w) is a homogeneous polynomial of
degree s.

(2) If Condition 3.3 or 3.4 fails, then there is a vector {cj,,} € Cs such that
problem (3.2) admits a solution

V =rpe(w) +7°(ilnr) Z cnip™ (w), (3.3)

n=1

where s € {€,...,2m — 2}, ¢, € C, ¢, o™ € [I\L, W (—wj,w;), and

J = J(s). Moreover, the function V is not a polynomial in y,, ys.
Indeed, if Condition 3.4 fails, then the assertion is evident (with ¢; =
- = ¢y = 0). Assume that Condition 3.3 fails. If parts 1 and 2 of

Condition 3.4 hold while part 3 fails, then the assertion is evident again

(with ¢; = -+ = ¢y = 0). Let part 1 or 2 fail. In both cases, part 2
does not hold (see Remark 3.1). This means that there exists a proper
eigenvalue Ay = —is € A and a numerical vector {cjo,} € Cs such that

{0, ¢jou} is not orthogonal to ker (L(Ag))*.

Let o, .. o) (J > 1) denote some basis in ker L(\,). Since A, is a
proper eigenvalue, none of the eigenvectors o™ has an associate vector.
We substitute a function V' given by (3.3) in Egs. (3.2). Then we obtain

. T dL(N
L(As)pe =10, Cjau} - Z Cn d()\ )
n=1

o™, (3.4)
A=A

Note that dimker (L£(),))" = dimker L(\;) = J due to Lemma 2.1. Let

(
PO ) denote a basis in ker (L(\))*. By Lemma 5.2 in [13], the

matrix ~
dL(N) (n) (k)
IS N

1s nondegenerate. Therefore, we can choose the constants ¢, in such a way
that the right-hand side in (3.4) is orthogonal to ker (L(\,))*; hence, there
is a solution @. for Eq. (3.4). Moreover, since {0, cjs,} is not orthogonal
to ker (L(\))*, it follows that the vector (cy,. .., c; ) is nontrivial. Thus,

the function V' given by (3.3) is not a polynomial in yy, ys.

A nk=1,....J

The main result of this section is as follows.
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Theorem 3.1 Let Conditions 3.1-3.4 hold and u be a generalized solution of
problem (2.5), (2.6) with right-hand side { fo, fi,} € La(G) x WHM™m=1/2(9@).
Then u € W*™(G).

3.2 Proof of the Main Result

Let U;(y') = uj(y(y')), j = 1,..., N, be the functions corresponding to the set
(orbit) I and satisfying problem (2.10), (2.11) with right-hand side {F}, ¥;,,}
(see Sec. 2.2).

Set
D, = 2max{X;oks } dy = min{X,os } /2 (3.5)
Let € > 0 be so small that D,e < ¢; (where € and &, are defined in Sec. 2.1).

Introduce the spaces of vector-valued functions

WHEK®) = [[WHKS), HUK®) =][HIKS), k=>0; (3.6)

J J
2m—m— 12 2m—mjou—1/2
w P(y7) = [Twerm=mm=2(55,),
J,o
3.7
Him—m—1/2(fye) — HHSm—ij“—1/2(fng>. ( )
j’o-

Similarly, one can introduce the spaces W*(K), HE(K), W?m=m=1/2(5) and
HEm TR 2 ().

Since any generalized solution u € W?™ (G\O(;(IC)) for any 0 > 0 by definition,
it follows that
U; € W™K\ Os(0)) V6> 0. (3.8)

It follows from the belonging U € W*(K*') that
U € Hy(K). (3.9)

Further, we have (see (2.10), (2.11)) {F;} € WP°(K*) and, by the belong-
ing f;, € W2n—miu=l/2(1;), by relation (2.7), and by estimate (2.3), we have
{V;,,} € Wm=m=1/2(45) Therefore,

{Fj} € H3,u(K%),  {W50,} € Mo ™ 12(5%). (3.10)

It follows from relations (3.8)—(3.10) and from Lemma A.5 that
U HZ (K. (3.11)

To prove Theorem 3.1, it suffices to show that U € W?™(K®).
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Lemma 3.1 Let U € WY K*), U; satisfy relations (3.8), and U be a solu-
tion* of problem (2.10), (2.11) with right-hand side {F;, ¥;,,} € W°(K*) x
W2n—m=1/2(~&)  Then,

U=Q+U, (3.12)
where U € H2m (K®) and Q = (Q1,...,Qn) is a polynomial vector of de-
gree® ( —1.

PROOF. 1. Due to (3.11), it suffices to consider the case ¢ > 1. Let ¢ be
an arbitrary number such that 0 < 6 < 1. By Lemma 4.11 in [19], for each
function ¥, € Wzm_mf““_1/2(7§0), there is a polynomial Pj,,(r) of degree
2m — mj,,, — 2 such that

2m—m—1/2
{Wjou — Pjou} € sz—znié / (%)
Using Lemma A.8, one can construct a function

(-1 1y

=33 "r(ilnr) el (w) € Ham(KF), (3.13)

5=01=0

where ¢}, € [ W?™(—wj,w;), such that
J
[R5y, D)W} € Moo s(K5), (Bion(y, Dy)W" = Py} € Mo 75 ().

Therefore, {P;(y, D,)(U; — WH} € H3_y_s(K*), {Bjouly, D,)(U; — W)} €
Hom 5512 ().

It follows from (3.11) and (3.13) that U — W' € H2™(K*). Due to Lemma 2.1,
we can choose a number 9§, 0 < § < 1, in such a way that the band 1 —¢—¢§ <
Im A < 1 —/ has no eigenvalues of £~(>\) Therefore, applying Lemma A.7 and
Lemma A.8, we obtain

U-W'=Ww?+T1,

where
ng lo

= > r(ilnr)'gp (W),

n=11=0
{141, ., liny } 18 the set of all eigenvalues lying in the band 1 — ¢ < Im A < 1
(in fact, we have to consider the eigenvalues in the band 1 —¢—§ < ITm A < 1,

1 Since U € H3™(K*') due to (3.11) and {F}, ¥ ,,} € HY,,(K°) x Hzm me 1/2(’}/5),
relations (2.10), (2.11) can be understood as equalities in the corresponding weighted
spaces.

° Saying “a polynomial of degree s,” we always mean “a polynomial of degree no
greater than s.” We mean that the polynomial equals zero if s < 0.
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but the band 1 — ¢ — 4 <ImA < 1— ¢ has no eigenvalues by the choice of J),
Sogzl S H W2m(_wj7wj)7 and U € Hgm—é—é(Ka) - HSE—Z(KE)
j

Since s < ¢ — 1 (in the formula for W), Reiu, < £ —1 (in the formula for
W?2), and W' + W2 = U — U € WY(K?), it follows from Lemma A.3 that
W1+ W? is a polynomial vector of degree £ — 1.

Lemma 3.2 Let the hypotheses of Lemma 3.1 be fulfilled, and let Condi-
tions 3.2-3.4 hold. Then
U=W+U' (3.14)

where W = (Wy,...,Wx) is a polynomial vector of degree 2m — 2, U' €
HZ™(K®) (0 is such that 0 < § < 1 and the band 1 —2m <Im A < 1—-2m 40
contains no eigenvalues of L(N)), and

{P;(y, D,)Uj} € Hy(K7),

, 12, . i (3.15)
{Bjou(y, D,)U'} € H; )y nn? Y2 (y9).

PROOF. 1. Consider the function U defined by Lemma 3.1. The function U
belongs to H2™_,(K*), and, by virtue of relations (2.10), (2.11), and (3.12), it
is a solution of the problem

Pj(y>Dy)Uj:Fj_Pj(y>Dy)Qj (yEK]E),

; } (3.16)
Bjou(y, Dy)U = Vo, — Bjou(y, Dy)Q (y € ”Yja)-
Since {F;} € WP(K*) and @Q is a polynomial vector, it follows that
{F; = P;(y, D,)Q;} € Hy(K°). (3.17)

Further, Vo, — Bjo.(y, Dy)Q € W™ mieu=1/2(4%) Hence, by Lemma 4.11
in [19], there exists a polynomial Pj,,(r) of degree 2m — mj,, — 2 such that

{ Wi = Biow(y, D)Q = Py} € 1" 2(57) nWPm12(97) - (3.18)
for any 0 < 6 < 1. Moreover, since
{\Ijjau - Bjau(y> Dy)Q} = {Bqu(y7 Dy)U} € ng:zn_l/2(,}/€)’

we see that each polynomial Pj,,(r) consists of monomials of degree max(0, {—
Mjou)s - - - > 2M — Mgy, — 2 (the polynomial Pj,,(r) is absent if £ = 2m — 1).

2. We write each polynomial Pj,,(r) as follows:

Pjou(r) = Cjourt™mom 4 ¢, Tmaentt 4 (3.19)

jou
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where, in particular, ¢;,, = 0 for all j, o, pr such that ¢ < mj,, — 1 (cf. (3.1)
for s = ¢). Therefore, {¢jo,} € Ci.

We consider the auxiliary problem
Pi(Dy)W =0,  Bjou(Dy)W* = cjp ", (3.20)

where P;(D,) and Bj,,(D,) are the same as in (2.12). By virtue of Condi-
tions 3.3 and 3.4 (see Remark 3.2), there exists a solution W*(y) of prob-
lem (3.20) such that W¥(y) is a homogeneous polynomial of degree /.

Using (3.19) and (3.20) and expanding the coefficients of B,,,(y, D,) by the
Taylor formula, we obtain

{P;(y, D,)W;} € Hy(K"),

12, . (321)
{Bjou(yv Dy>W£ - Pjou + PJ/ } S H?ﬁ 1/2(7 ) N W2 1/2(7 )7

ou

where P/, (r) is a polynomial consisting of monomials of degree max(0,¢ —

Mo + 1), ..., 2m — mjs, — 2.
It follows from (3.17), (3.18), and (3.21) that

{F; =Py, D,)(Q; + W})} € Ho(K7),

{%w—&meMQ+W%—ﬂwhﬂﬁﬂmmwﬂmwmm*%fh
3.22

3. Repeating the procedure described in item 2 finitely many times (and using
Conditions 3.3 and 3.4 each time), we obtain

{F; =Py, Dy)(Q; + Wi + -+ W)} € Hy(KF),
{\Iljou - Bjcr,u(yv Dy)(Q + WZ +... W2m_2>} (323)
c H?m—m—1/2(75) N W2m—m—1/2 (,ye)’

where W? is a homogeneous polynomial vector of degree s, s =/¢,...,2m — 2
(note that a homogeneous polynomial vector of degree 2m — 1 already belongs
to H3™(K®)). If £ = 2m — 1, then the polynomials W* in (3.23) are absent;
in this case, the second relation in (3.23) follows from (3.18), where Pj,, is
absent.

Combining (3.16) and (3.23) yields

{Pi(y, D,)(U; = W} — -+ = WP 2)} € Hy(K°),

{Biouly, Dy) (U = W' — oo W)} € HI 12 (7)o 12 ().
(3.24)
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4. Since the line ImA = 1 — 2m + & has no eigenvalues of £()\) and rela-
tions (3.24) hold, it follows from Lemma A.7, Lemma A.8, and Conditions 3.2—
3.4 that the function U + W’ 4 - - + W22 belongs to the space H2™(K?)
up to a polynomial consisting of monomials of degree grégxl S,...,2m — 2 (this

polynomial is absent if £ = 2m — 1). In other words, there is a polynomial
vector W consisting of monomials of degree [, ... ,2m — 2 such that

0+ W e H2m(K°)
{P;(y, D,)(U; + W;)} € Hy(K?), (3.25)
(Bjou(y, D) (U + W)} € H" ™12 (45) nwm=m=1/2(4),

Now the conclusion of the lemma follows from Lemma 3.1 and from rela-
tions (3.25)

Lemma 3.3 Let the hypotheses of Lemma 3.1 be fulfilled, and let Condi-
tions 3.1-3.4 hold. Then U € W*™(K®).

PROOF. It follows from (3.15) and from Lemma A.10 that there exists a
function V' € H2™(K) N W?*™(K) such that

{P;(y, D,)(Uj = Vi)} € Hy(K7),

/ 2m—m-—1/2 (326>
{Biou(y, Dy)(U" = V)} € Hy (v*)-

Due to (3.26) and the fact that the strip 1 —2m < Im A < 1—2m+ ¢ contains
no eigenvalues of £(\), we can use Lemma A.7 to obtain that U’ — V €
H2™(K®) € W*™(K*). Combining this relation with Lemma 3.2 completes
the proof.

Theorem 3.1 results from (2.7) and from Lemma 3.3.

4 The Border Case: Consistency Conditions
4.1 Behavior of Generalized Solutions near the Conjugation Points

Let A be the same set of eigenvalues of £()) as in Sec. 3. In this section, we
consider the following condition instead of Condition 3.1.

Condition 4.1 The line ImA = 1 — 2m contains only the eigenvalue X\ =
i(1 — 2m) of the operator L(X). This eigenvalue is a proper one.
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The principal difference between the results of this section and those of Sec. 3
is related to the behavior of generalized solutions near the set (orbit) K. If
Condition 4.1 holds, then Lemma 3.2 remains valid. However, the conclusion
of Lemma 3.3 is no longer true because Lemma A.10 is inapplicable when the
line Im A = 1—2m contains an eigenvalue of £~()\) In this section, we make use
of other results from [14]. To do this, we impose certain consistency conditions
on the behavior of the functions f;, and the coefficients of nonlocal terms near
the set (orbit) IC.

Let 7j, be the unit vector co-directed with the ray v,,. Consider the operators

a2m—mjgu—1 a2m—mjgu—1
WBWU = o I kZ(BqukS(Dy>Uk>(gjcrksy> :
Jo jo ,S

Using the chain rule, we can write

82m—mjou_l R
Bjcr,uU = Z(BJUHkS(D?J)Uk)(gjoksy)’ (41)

2m—mig, —1
a jo’ s k,s
where ijks(Dy) are some homogeneous differential operators of order 2m —1
with constant coefficients. Formally replacing the nonlocal operators by the
corresponding local operators in (4.1), we introduce the operators

Bjcru(Dy>U = ZBjcr,uks(Dy)Uk(y)‘ (4.2)

k,s

If Condition 4.1 holds, then the system of operators (4.2) is linearly dependent
(see [14, Sec. 3.1]). Let

{Byrore(Dy)} (4.3)
be a maximal linearly independent subsystem of system (4.2). In this case,

any operator l’;’j(w(Dy) which does not enter system (4.3) can be represented
as follows:

Bjou(Dy>: Z 5UZH Bj’o’u’(Dy)v (4'4)
j/7o-/’ul

where 37" are some constants.
Introduce the notion of consistency condition. Let {Z,,} € W*n=m~1/2(4#)

be a vector of functions, each of which is defined on its own interval 75,.
Consider the functions

0
Zjau(r) = Zjau(y) |y=(r coswj,r(—1)7 sinw;) -

Each of the functions Z9,, belongs to W2m=mien=1/2(0, ¢).
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Definition 4.1 Let 3.%" be the constants occurring in (4.4). If the relations

Jop
d2 1 d2m m 1 2
€ Mm—Mjop— S “Mylel W
-1 0 o' 0
P | T g0 oy e ST g L e <00 (45
/0 dr2m—mj(w—1 Jop P JoK d,r2m—mjlo,lul—1 7o' ( )

hold for all indices j, 0, u corresponding to the operators of system (4.2) which
do not enter system (4.3), then we say that the functions Z;,, satisfy the
consistency condition (4.5).

Remark 4.1 The relation {Z;,,} € Hgm_m_l/z(ve) is sufficient (but not nec-
essary) for the functions Zj,, to satisfy the consistency condition (4.5). This
follows from Lemma 4.18 in [19].

Now we will show that the following condition is necessary and sufficient for
a given generalized solution u to belong to W?™(G).

Condition 4.2 Let u be a generalized solution of problem (2.5), (2.6), V,,,
the right-hand sides in nonlocal conditions (2.11), and W the polynomial vector
appearing in Lemma 3.2. Then the functions V., —Bjs,(y, D,)W satisfy the
consistency condition (4.5).

Theorem 4.1 Let Conditions 4.1 and 3.2-3.4 hold, and let u be a general-
ized solution of problem (2.5), (2.6) with right-hand side { fo, fi} € L2(G) x
Wrn=m=1/2(9G). Then u € W?™(QG) if and only if Condition 4.2 holds.

PROOF. 1. Necessity. Let u € W?™(Q). Let the function U = (Uy, ..., Uy)
correspond to the set (orbit) K. Clearly, U € W?*™(K¥®). It follows from
Lemma 3.2 that U = W + U’, where U’ € H?™(K®), 0 < § < 1. Since
we additionally have U = U — W € W?™(K?), it follows from Sobolev’s
embedding theorem that D*U’(0) = 0, |a| < 2m — 2. These relations and
Lemma A.12 imply that the functions V¥,,, — B;,,W = Bj,.(y, D,)U’ satisfy
the consistency condition (4.5).

2. Sufficiency. Suppose that Condition 4.2 holds. It follows from (3.15) and
from Lemma A.11 that there exists a function V' € H2™(K) N W*™(K) (§ is
the same as in Lemma 3.2) such that

{P;(y, D,) (U} — V;)} € H(K"), (4
{Bjou(y, D) (U = V)} € Ho" ™2 (%), '

Due to (4.6) and the fact that the strip 1-2m <ImA < 1-2m+4 contains
only the proper eigenvalue i(1—2m) of £(\), we can use Lemma A.9 to obtain
that all the derivatives of order 2m of the function U’ — V belong to W°(K?).
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It follows from this fact and from the relations
U' =V e Hy"(K®) C Hy" 1K) € W 1K)

that U'—V € W?™(K¢). Combining this relation with Lemma 3.2, we complete
the proof of the sufficiency part.

Note that Theorem 4.1 enables us to conclude whether or not a given solution
u is smooth near the set K, provided that we know the asymptotics for u
of the kind (3.14) near the set K (i.e., if we know the polynomial vector
W). Theorem 4.1 shows what affects the smoothness of solutions in principle.
Below, this will enable us to obtain a constructive condition which is necessary
and sufficient for any generalized solution to belong to W™ (G).

4.2 Problem with Nonhomogeneous Nonlocal Conditions

First of all, we show that the right-hand sides f;, in nonlocal conditions (2.6)
must satisfy a certain consistency condition in order that generalized solutions
be smooth.

Denote by §2m~m-1/2(9G) the set of functions {fi,} € W*M~m~1/2(§G) such
that the functions Fj,, (see (2.9)) satisfy the consistency condition (4.5). It
follows from Lemma 3.2 in [14] that the set S ™~Y/2(9G) is not closed in
the space W —m-1/2(9().

Theorem 4.2 Let Conditions 4.1 and 3.2-3.4 hold. Then there exist a func-
tion {fo, fi} € La(G) x W2m—m=12(9G), {f..} ¢ S ™=Y2(9G), and a
function u € W?™=1(Q) such that u is a generalized solution of problem (2.5),
(2.6) with the right-hand side { fo, fi,} and u & W?™(G).

To prove Theorem 4.2, we preliminarily establish an auxiliary result. Set
e’ = d,min(e, 55), (4.7)
where d, is defined in (3.5).

Lemma 4.1 Let Condition 4.1 hold and a function {Z;,,} € W¥n=m=1/2(~%)
3

0
be such that supp {Zjon} C O:2(0), a—@Zjau(O) =0, 8 <2m—mj,, — 2,
jo
and the functions Zj,, do not satisfy the consistency condition (4.5). Then
there exists a function U € HZ™(K) Cc W?*™ Y K), 6 > 0 is arbitrary, such

that supp U C O.(0), U ¢ W*™(K?), and U satisfies the relations

{Pj(yv Dy)Uj} € WO(KE)a {Bjau(y> Dy)U - Zjau} S Hgm_m_1/2(76)' (48)
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PROOF. By Lemma A.4, there exists a sequence of functions {Z7, } €
Wwammm=1/2(y) 'n = 1,2,.. ., such that supp Z7,, C O-(0), Z},, vanish near
the origin (hence, they satisfy the consistency condition (4.5)), and {Z7, ,} —
{Z;r,} in Wm—m=1/2(7) Taking into account Lemma A.1, we also see that
{Z5,,} = {Zjou} in Hgm_m_lﬂ(v), 0 > 0 is arbitrary. Lemma 3.5 in [14] en-
sures the existence of a sequence V" = (V/*,..., V}{) satisfying the following
conditions: V" € W?M(K?) N HZ™(KY) for any d > 0,

Pi(Dy)Vi"' =0 (y € K;),  Biou(Dy)V" = Zj,(y) (v €750),  (4.9)

J
and the sequence V" converges to a function V' € H3™(K?) in H2™(K?) for any

d > 0. Passing to the limit in (4.9) (in the spaces H3(K?) and H?m_m_l/z(Kd),
respectively), we obtain

Pi(Dy)V; =0 (y € Kj), Bjau(Dy)V = Zjau(y) (Y € Yjo)- (4.10)

Consider a cut-off function £ € C§°(O(0)) equal to one near the origin. Set
U = £V, Clearly, suppU C O.(0) and

UeHM™K)CcW™HK).

2. We claim that U is the desired function. Indeed, using Leibniz’ formula,
relations (4.10) and Lemma A.2, we infer (4.8).

It remains to prove that U ¢ W?"(K*®). Assume the contrary. Let U €
W (K?). In this case, it follows from Sobolev’s embedding theorem and
from the belonging U € H2™(K*¢) (§ > 0 is arbitrary) that D*U(0) = 0,
|a| < 2m—2. Combining this fact with Lemma A.12 implies that the functions
Bjo.(y, D,)U satisfy the consistency condition (4.5). However, the functions
Bjo.(y, Dy)U —Zj,, do not satisfy the consistency condition (4.5) in that case.
This contradicts (4.8) (see Remark 4.1).

PROOF of Theorem 4.2. 1. We will construct a generalized solution u ¢
W?™(@) supported near the set K so that B, u = 0 due to (2.3).

It was shown in the course of the proof of Lemma 3.2 in [14] that there
exists a function {Z;,,} € W™ ™~1/2(~) such that supp Zj,, C O./2(0),
o°
87']-60
isfy the consistency condition (4.5). By Lemma 4.1, there exists a function
U e H?™(K) C W*(K) such that supp U C O.(0),U ¢ W?*™(K), and U sat-
isfies relations (4.8). Therefore, {P;(y, D,)U;} € W°(K*), {Bjou(y, D,)U} €

Zien(0) = 0, B < 2m — mj,, — 2, and the functions Zj,, do not sat-
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W2m—m=1/2(4) "and the functions Bj,,(y, D,)U do not satisfy the consistency
condition (4.5).

2. Introduce a function u(y) such that u(y) = U;(y'(y)) for y € O (g;) and
u(y) = 0 for y ¢ O (K), where ¢y — y(g;) is the change of variables inverse
to the change of variables y — ¢/(g;) from Sec. 2.1. Since suppu C O, (K),
it follows that B?Mu = 0. Therefore, u(y) is the desired generalized solution of
problem (2.5), (2.6).

Theorem 4.2 shows that if one wants that any generalized solution of prob-
lem (2.5), (2.6) be smooth, then one must take right-hand sides { fo, fi,, } from
the space Ly(G) x S?™™-1/2(94).

Let v be an arbitrary function from the space W?™(G\ O,,, (K)). Consider the
change of variables y — y(g;) from Sec. 2.1 and introduce the functions

B},.(y) = BL0)w(), ¥ €75, (4.11)

(cf. (2.9)). We prove that the following condition is necessary and sufficient
for any generalized solution to be smooth.

Condition 4.3 (1) For anyv € W*™(G\O,, (K)), the functions B}, , satisfy
the consistency condition (4.5).

(2) For any polynomial vector W of degree 2m—2 the functions Bjs,(y, Dy)W
satisfy the consistency condition (4.5).

Note that the validity of Condition 4.3, unlike Condition 4.2, does not depend
on a generalized solution. It depends only on the operators Bilu and B?u and
on the geometry of the domain G near the set (orbit) IC. This is quite natural
because we study the smoothness of all generalized solutions in this section
(while in Sec. 4.1, we have investigated the smoothness of a fixed solution).

Theorem 4.3 Let Conditions 4.1 and 3.2-3.4 hold.

(1) If Condition 4.3 holds and u is a generalized solution of problem (2.5),
(2.6) with right-hand side { fo, fiu} € L2(G) x S ™=Y2(9G), then u €
W2 (@G).

(2) If Condition 4.3 fails, then there exists a right-hand side {fo, fin} €
Ly(G) x S ™=1/2(9G) and a generalized solution u of problem (2.5),
(2.6) such that u ¢ W*™(Q).

PROOF. 1. Sufficiency. Let Condition 4.3 hold, and let u be an arbitrary
generalized solution of problem (2.5), (2.6) with right-hand side {fy, fi.} €
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Ly(G) x S?m—m=1/2(9@G). By (2.7), we have u € W?™(G \ O,,, (K)). Therefore,
by Condition 4.3, the functions BY, , satisfy the consistency condition (4.5).
Let W be a polynomial vector of degree 2m — 2 defined by Lemma 3.2. Us-
ing Condition 4.3 again, we see that the functions B,,,(y, D,)W satisfy the
consistency condition (4.5). Since {f;,} € S ™1/2(9G), it follows that the
functions Fj,, satisfy the consistency condition (4.5). Therefore, the func-

tions W, = Fj,, — B}, and By, (y, D,)W satisfy Condition 4.2. Applying

Theorem 4.1, we obtain u € W2 (Q).

2. Necessity. Let Condition 4.3 fail. In this case, there exist a function v €

wW*(G \ O,,(K)) and a polynomial vector W = (Wy,...,Wy) of degree
2m — 2 such that the functions B}, + B;,, W do not satisfy the consistency
condition (4.5) (one can assume that either v =0, W # 0 or v # 0, W = 0).
Extend the function v to the domain G in such a way that v(y) = 0 for

y € O, 2(K) and v € W?™(G).

By Lemma 4.11 in [19], there exist polynomials F7 (1) of degree 2m—mjq, —2
such that

+ Bjou(y, DY)W — Fl Y e H" ™72 (7)) nwmnmm=1/2 (42

jou

(B;

op

where § > 0 is arbitrary. Hence,

o
07_@ (Bjcr,u + Bjau(y> Dy)W - Fg/ou)(o) = 0, /6 S 2m — Mjop — 2.
jo

2m—mjo—1
Since WFJ{W(T) = 0, it follows that the functions F},, satisfy the
consistency condition (4.5). Therefore, the functions B}, , + Bj,,.(y, D,)W —
F,,, do not satisfy the consistency condition (4.5).
By Lemma 4.1, there exists a function U’ € HF™(K) C W*™ (K such that
supp U’ C O(0), U" ¢ W*™(K*), and

{P;(y, D,)U} € WO(K*), (4.12)
{Bjou(y, DU — (Fl,, — BYy — Biou(y, D)W))} € Ho™ ™2 (%),

One can also write the latter relation as follows:

{Bjou(y, D) (U + W)+ B, — F._}e HZ" ™ '2(v). (4.13)

jou jou

Introduce a function u'(y) such that u'(y) = Ui(y'(y)) + &(y)W; for y €
O.(g;) and v'(y) = 0 for y ¢ O.(K), where y' +— y(g;) is the change of
variables inverse to the change of variables y — 3/(g;) from Sec. 2.1, while
& € C°(0:(g5)), &(y) = 1 for y € O /2(g;), and €' is given by (4.7). Let us
prove that the function v = u’ + v is the desired one. Clearly, u € W?™~1(Q),
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u ¢ W?™(Q), and u satisfies relations (2.7). It follows from the belonging
v € W (@) and from relations (4.12) that

P(y, D,)u € Ly(G).

Consider the functions f;, = B?“u + B}“u + B?“u. It follows from the be-
longing v € W?™(@G), from relations (2.7), and from inequality (2.3) that
fin € WEM—min=1/2 (Fi \ Og(]C)) for any 6 > 0. Consider the behavior of f;,
near the set K. Note that B} u’ = 0 by (2.3). Furthermore, By ,v 4+ Bj,v = 0
for y € O, /p, (K). Therefore,

fin = B?uul + Biluu/ + B?uv (y € O /p, (K)). (4.14)

Introduce the functions Fj,,(y') = fi.(y(y')), where y — 3/(g;) is the change
of variables from Sec. 2.1. It follows from (4.14) and from (4.13) that {F},, —
Fi,.} € HZ™™7Y2(48). Therefore, {Fjou} € W?n—m=1/2(4%) and the func-

tions Fj,,, together with F/_, . satisfy the consistency condition (4.5). Hence

jou
{fin} € S*mm=1/2(9@), which completes the proof.

4.8  Problem with Regular Nonlocal Conditions

Definition 4.2 We say that a function v € W?™(G \ O,,(K)) is admissible
if there ezists a polynomial vector W = (Wi, ..., W) of degree 2m — 2 such
that

o
5 (B + Biou(y. DYW)(0) = 0. 5 < 2m —my, 2 (4.15)
Jo

Any polynomial vector W of degree 2m — 2 satisfying relations (4.15) is said
to be an admissible polynomial vector corresponding to the function v.

Let 7,; be the unit vector parallel to I'; near the point g € I'; N K.

Definition 4.3 (1) The right-hand sides f;,, in nonlocal conditions (2.6) are
said to be reqular if {fi,} € W™m=Y2(9G) and

o’ _
wa(g):ou 6§2m_mw—2, gGFZﬂK

gt
(2) The right-hand sides V¥, in nonlocal conditions (2.11) are said to be
reqular if {U;,,} € W*M—m=12(~2) and
o8
8?\1]]‘0“(0) = 0, ﬁ S 2m — mj(w — 2.
jo
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If m;, = 2m—1 or mj,, = 2m—1, then the corresponding relations are absent.

In particular, the right-hand sides {fi,} € Hgm_m_l/z(OG) and {¥;,,} €
Hém‘m‘l/ ?(7°) are regular due to Sobolev’s embedding theorem. In this sub-
section, we prove that the following condition (which is weaker than Con-
dition 4.3) is necessary and sufficient for any generalized solution of prob-
lem (2.5), (2.6) with regular right-hand sides {f;,} € S ™ 1/2(dG) to be
smooth.

Condition 4.4 For each admissible function v and each admissible polyno-
mial vector W (of degree 2m — 2) corresponding to v, the functions B, +
Bjou(y, D,)W satisfy the consistency condition (4.5).

Theorem 4.4 Let Conditions 4.1 and 3.2-3.4 hold.

(1) If Condition 4.4 holds and u is a generalized solution of problem (2.5),
(2.6) with right-hand side {fo, fiu} € L2(G) x S ™=1V2(9Q), where f;,
are reqular, then u € W?™(QG).

(2) If Condition 4.4 fails, then there exists a right-hand side {fo, fin} €
Ly(G) x Hgm_m_l/2(8G) and a generalized solution u of problem (2.5),
(2.6) such that u ¢ W?™(G).

PROOF. 1. Sufficiency. Let Condition 4.4 hold, and let u be an arbitrary
generalized solution of problem (2.5), (2.6) with right-hand side {fy, fi.} €
Ly(G) x §¥m=m=1/2(9@), where f;, are regular. By (2.7), we have u € W*™(G\

0., (K)).

It follows from the properties of f;, that the right-hand sides in nonlocal
conditions (2.11) have the form

Vo = Fjop — Bl (4.16)
where {Fjg,} € W2rm12(y7),
o°
7 Fioul0) =0, B < 2m = mjoy =2, (4.17)
Tjo

and Fj,, satisfy the consistency condition (4.5).

Further, let U = W + U’, where U’ € H2™(K?) and W are the function and
the polynomial vector (of degree 2m — 2) defined in Lemma 3.2. It follows
from (2.11) and (4.16) that

BjUH(yv Dy)U/ = F}UH - (Bu + Bjou(y, Dy)W)

jou
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Since {BY  +Bjou(y, D)W — Fi, } € W2mm=12(4%) and U’ € HZ™(K®), it

jou

follows that
{B;'Lou + Bjau(yv D )W - Fjau}

= {~Bjouly, D,)U'} € Hy" ™2 (yF) n WAmTmII2 (57),

It follows from this relation and from (4.17) that

o8

or 5 (Bu + Bjau(y> Dy)W)(O) = 07 /6 S 2m — Mjop — 2’

jou

i.e., u is an admissible function and W is an admissible polynomial vector cor-
responding to u. Hence, by virtue of (4.16) and by Condition 4.4, Condition 4.2
holds. Combining this fact with Theorem 4.1 implies u € W?2™(G).

2. Necessity. Let Condition 4.4 fail. In this case, there exists a function v €
W2 (G\O,, (K)) and a polynomial vector W = (W, ..., Wy) of degree 2m—?2
such that

o°

a 5 (Bu + Bjau(y>Dy)W)(0) = 0> /6 S 2m — mj"ﬂ - 2’

jou

and the functions B}, , + Bjs.(y, Dy)W do not satisfy the consistency condi-
tion (4.5).

We must find a function u € W*(G) satisfying relations (2.7) such that u ¢
W2 (@) and

P(y, D)u € Ly(G),  {BYu+Blu+B2u}eH ™ *00).
To do this, one can repeat the proof of assertion 2 of Theorem 4.3, assum-

ing that v is the above function, W is the above polynomial vector, and
F!_ .(y) = 0 (which is possible due to the relation BY , + Bj,,(y, Dy,)W €

JoH Jou
HI T2 ()  Wmem=1/2 (1) where § > 0 is arbitrary).

5 Violation of Smoothness of Generalized Solutions
5.1 Violation of Conditions 3.1 and 4.1 or Condition 3.2

The title of this subsectoin means that the following condition holds.

Condition 5.1 The band 1 —2m < Im A\ < 1—/ contains an improper eigen-
value of the operator L(\).
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We show that the smoothness of generalized solutions can be violated for any
operators B?,.

Theorem 5.1 Let Condition 5.1 hold. Then there exists a right-hand side
{for fi} € Lao(G) x HY" ™ 2(8G) and a generalized solution u of prob-
lem (2.5), (2.6) such that u ¢ W*™(Q).

PROOF. 1. Let A = )y be an improper eigenvalue of the operator ﬁ()\),
1—-2m <ImMy <1—/4. Consider the function

b
V=03 i) e WIKY VaS0,  (5)
=0 "

where @ ... p*~D are an eigenvector and associated vectors (a Jordan

chain of length s > 1) of the operator £()\) corresponding to the eigenvalue
Ao- The number [y (0 < ly < 3 — 1) occurring in the definition of V' is such
that the function V' is not a polynomial vector in y;, y. Such a number [y does
exist because \g is not a proper eigenvalue (if Im A is a noninteger or Im A is
an integer but Re A # 0, then we can take [y = 0).

Since V' is not a polynomial vector, it follows from Lemma A.3 that
V¢ W™K Vd > 0. (5.2)
It follows from Lemma A.6 that
P;(D,)V; =0, Biou(Dy)V |, = 0. (5.3)

Using (5.3) and the Taylor expansion for the coefficients of P;(y, D,) and
Bjou(y, Dy), we have

{P;(y, D,)V; = P} e W(K?), {Bjou(y, D)V = Pio,} € HSM‘““W(E),)
5.4
where P; is a linear combination of terms of the kind

,,,,z)\o —2m—+1 ’ ,r,z)\o—2m+k0

(ilnr)pw),... (iln7)p(w),

Pj,, is a linear combination of terms of the kind
pRo=mientl (i ) piReTmaentRo (5 )
¢(w) are infinitely smooth vector-valued functions, and ky € N is such that
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Clearly, one can set P; = 0 and Pj,, = 0 if inequalities (5.5) are true for
ko =0, 1ie,if 1 —2m <Im )y < 2 —2m.

Using Lemma A.8, we can construct the function
ko U
Z S oot i) ko (w) € WHEKY) Vd >0 (5.6)
k=11=0

such that

{Pj(y7 Dy)vj/_Pj} < WO(KE)v {Bjoﬂ(yv Dy)v JUM} < H2m " 1/2((76))'
5.7

Consider a cut-off function £ € C§°(O.(0)) equal to one near the origin, where
¢’ is given by (4.7). Set U = £(V — V). Clearly, supp U C O (0); hence,

supp Bjs.(y, Dy)U C 755 N O,,(0). (5.8)

It follows from (5.1), (5.6), and (5.2) that
U € WYK), U¢ W™K Vd>0. (5.9)
Moreover, by virtue of (5.4) and (5.7), we have

{Pj(y, D)UY € WIE®),  {Bjouly, D)UY} € H" ™ 2(%). (5.10)

2. Consider the function u(y) given by u(y) = U;(y'(y)) for y € O (g;) and
u(y) = 0 for y ¢ O~ (K), where ¥ — y(g;) is the change of variables inverse
to the change of variables y — ¥'(g;) from Sec. 2.1. The function u is the
desired one. Indeed, u ¢ W?™(G) due to (5.9). Furthermore, B ,u = 0 due
to inequality (2.3) because suppu C O,,(K). It follows from the equality
B;,u = 0 and from relations (5.10) that the function u satisfies the following
relations:

P(y,D,)u € Ly(G),  Blu+BLu+B2ue H" ™ A1),

; : T (5.11)
supp (B;,u + B;,u+ B; u) C TN O,,(K).

5.2 Violation of Condition 3.3 or 3.4

If £ = 2m — 1, then all the possibilities for the location of eigenvalues of £(\)
have been investigated. It remains to assume that ¢ < 2m—2 and Condition 3.3
or 3.4 fails.
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Theorem 5.2 Suppose that Condition 3.2 holds while Condition 3.3 or 3.4
fails. Then there is a right-hand side { fo, 1, + 2} € Lo(G) x WM—m=12(9G)
and a generalized solution u of problem (2.5), (2.6) such that u ¢ W?™(Q),

where zlu is a polynomial of degree 2m —m;, — 2 in a neighborhood of the point
geTiNK and {f2} € Hy" ™ *(0G).

PROOF. 1. Due to part 2 of Remark 3.2, there is a function V' given by (3.3)
such that

Ve WHKY), VEW™K? Vd>0, (5.12)
Pj(Dy)V; =0, Biou(Dy)V |y, = Ciour® ™o (5.13)
for some s € {¢,...,2m — 2} and some (nontrivial) numerical vector {c;,,} €

Cs.

Using (5.13) and the Taylor expansion for the coefficients of P;(y, D,) and
Bjou(y, Dy), we have

{P;(y, D,)V; — P;} € WO(K*),

. S . (5.14)
{Bjou(y, Dy)V = ¢jopur® ™" — Pjoy} € Hg 1/2(7 )

where the functions P; and Pj,, are of the same form as in (5.4).

As in the proof of Theorem 5.1, we can construct a function V' of the form (5.6)
(with iAg replaced by s) satisfying relations (5.7).

Consider a cut-off function £ € C5°(O.(0)) equal to one near the origin, where
¢’ is given by (4.7). Set U = (V' — V). Clearly, supp U C O.(0) and

U € WYK), U¢ W™K Vd>0. (5.15)
Moreover, by virtue of (5.14) and (5.7), we have

{Pj(y> Dy)U]} € WO(Ka)a {Bjau(ya Dy)U - Cjaurs_mj(w} € Hgm—m—l/z(,}/a)j
5.16

We note that, since {cj,,} € Cs, the function c;,,r* ™o» either equals zero
(which, in particular, holds for (j,o,u) € Js) or is a monomial of degree
S — Mjy, (i.e., no greater than 2m — mj,, — 2).

2. Consider the function u(y) given by u(y) = U;(y'(y)) for y € O.(g;) and
u(y) = 0 for y ¢ O~ (K), where y' — y(g;) is the change of variables inverse
to the change of variables y +— 3/(g;) from Sec. 2.1. The function w is the
desired one. Indeed, u ¢ W?™(G) due to (5.15). Furthermore, B} ,u = 0 due
to inequality (2.3) because suppu C O,,(K). It follows from the equality
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B;,u = 0 and from relations (5.16) that the function u satisfies the following
relations:

P(y, Dy)u € Ly(G), B?uu + B}uu + B?uu = ZIH + fw

., is a polynomial® of degree no greater than 2m — m;, — 2 in a

neighborhood of the point g € T; N K and f7, € Hgm_mi“_l/2(Fi).

where

Remark 5.1 We remind that the space S*™ ™V2(9G) was introduced in
Sec. 4.2 in the case where the line Im\ = 1 — 2m contains only the proper
eigenvalue i(1 — 2m). In this case, it was proved in Theorem 4.2 that the
smoothness of generalized solutions may violate if the right-hand side { f;,} €
W2m=m=1/2(9G) does not belong to S*™ ™~12(9G). Theorem 5.2 shows that
if Condition 3.3 or Condition 3.4 fails, then the smoothness of generalized
solutions may violate even for the right-hand side {f;,} € S~ ™1/2(9G).

On the other hand, it is on principle that the smoothness violation in Theo-
rem 5.2 occurs for a nonzero (and even nonregular) right-hand side { f;,}. It

can be proved that if we confine ourselves with reqular right-hand sides, then
Conditions 3.3 and 3.4 are not necessary for the preservation of smoothness.

A Appendix

This appendix is included for the reader’s convenience. Here we collect some
known results on weighted spaces and properties of nonlocal operators, which
are most frequently referred to in the main part of the paper.

A.1 Some Properties of Sobolev and Weighted Spaces

In this subsection, we formulate some results concerning properties of weighted
spaces introduced in Sec. 2.1. Set

K={yeR*: r>0, |w| <wl,

Yo ={y €R*: r>0, w=(—1)"wp} (0 =1,2).

6 The function Zlu (being written in the system of coordinates originated at the
point g € I'; N K) either equals zero or is a monomial of degree s — Moy
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Lemma A.1 (see Lemma 2.1 in [14]) Let ¢ € W*12(v,) (0 = 1 or 2,
k>2), suppy C {0 <r <ce} for somee >0, and
dS
drs

$(0)=0, s=0,....k—2.

Then i € Hg_l/z(%) for any § > 0 and
Hw“weH(’;*l/z(%) < CHwHkam(%)’

where ¢ = ¢(,0) > 0 does not depend on 1.

Lemma A.2 (see Lemma 3.3’ in [19]) Let a function u € H*(K), where
k >0 and a € R, be compactly supported. Suppose that p € C*(K) and
p(0) = 0. Then pu € HF |(K).

Lemma A.3 (see Lemma 4.20 in [19]) The function r*®(w) In®r, where
ImM\g = —(k —1) and s > 0 is an integer, belongs to W*(K N {|y| < 1}) if
and only if it is a homogeneous polynomial in y1, Yy of degree k — 1.

Lemma A.4 Let f € W*R?) and D*f(0) =0, || < k — 2, if k > 2. Then
there exists a sequence f* € C*(R?), n = 1,2,..., such that f"(y) = 0 in
some neighborhood of the origin (depending on n) and f* — f in W*(R?).

PROOF. The proof is analogous to that of Lemma 4.1 in [16].

A.2  Nonlocal Problems in Plane Angles in Weighted Spaces

In this subsection and in the next one, we formulate some properties of solu-
tions of problem (2.10), (2.11) in the spaces (3.6) and (3.7). First, we consider
the case of weighted spaces.

For convenience, we rewrite this problem:

P;(y, D,)U; = F;(y)  (y € Kj),

Bjou(y, Dy)U = @0, (y) (¥ € 7jy), (A.1)

Along with problem (A.1), we consider the following model problem in the
unbounded angles.

Pi(Dy)U; = F(y)  (y € Kj),

Biou(Dy)U = @jou(y) (Y € Yjo)- (A.2)
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Lemma A.5 (see Lemma 2.3 in [15]) Let a function U be a solution of
problem (A.1) (or (A.2)) such that

U; € WK\ 05(0) V6>0; U eHL,, (KD,
where D, is given by (3.5) and a € R. Suppose that
(B} eHUK),  {jp} € HEmm12(y7),
Then U € H2™(K®).
Consider the asymptotics of solutions of problem (A.2).

Lemma A.6 (see Lemma 2.1 in [13]) The function
’ 1
U =73 —(ilnr)plo(w), (A.3)

is a solution of homogeneous problem (A.2) if and only if Ao is an eigenvalue
of the operator L(N\) and ¢, ... o>V is a Jordan chain corresponding to
the eigenvalue \g; here lyp < » — 1.

Any solution of the kind (A.3) is called a power solution.

Lemma A.7 (see Theorem 2.2 and Remark 2.2 in [13]) Let
{F5} € HolK) N HG (K), {®jop} € H 1 20) N2 (),

where a > a'. Suppose that the line Im\ = a’ — 1 contains no eigenvalues
of the operator L(N). If U is a solution of problem (A.2) belonging to the
space H*™(K), then

no Jn gn—1

U= > Y cdeawlbad(w r+U.

n=1qg=1 [p=0

Here Ay, ..., A\, are eigenvalues of L(N) located in the band a' —1 < Im \ <
a—1;
lo

; 1
W) =1 3 g

are the power solutions of homogeneous problem (A.2);

(ilnr)' o=t (w)

{00 plan=td) g =1 J.}
s a canonical system of Jordan chains of the operator [i(A) corresponding to
the eigenvalue \,; ™9 are some complex constants; finally, U’ is a solution

of problem (A.2) belonging to the space HX"(K).
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If the right-hand sides of problem (A.2) are of particular form, then there exist
solutions of particular form. Let

—_

iAg—2m < 1 . IAQ—Mj < .
Fyw,r) = r7m 32 S (inn) [0 (W), Bou(r) = rmmien 30 S (i) el
1=0 1=0
(A.4)
where fj(l) € L*(—wj,w;), @Qu eC, \eC.

If \g is an eigenvalue of the operator £()), then denote by s¢()\o) the greatest
of partial multiplicities of this eigenvalue; otherwise, set s(\g) = 0.

Lemma A.8 (see Lemma 4.3 in [13]) For problem (A.2) with right-hand
side {Fj, ®jou} given by (A.4), there exists a solution

, 1
U = rtho Z ﬁ(ilnr)lu(l)(w), (A.5)

where u® € [TW?™(—w;,w;). A solution of such a form is unique if s¢(X\o) = 0
J

(i.e., Ao is not an eigenvalue of L(N)). If 32(Xo) > 0, then the solution (A.5) is
defined accurate to an arbitrary linear combination of power solutions (A.3)
corresponding to the eigenvalue \g.

The following result is a modification of Lemma A.7 for the case in which the
line Im A = 1 —2m contains the unique eigenvalue Ay = i(1 —2m) of £(\) and
this eigenvalue is proper (see Definition 3.1).

Lemma A.9 (see Lemma 3.4 in [14]) Let U € H>™(K), where a > 0, be
a solution of problem (A.2) with right-hand side {F;} € H(K) N HY(K),
{®;0,} € HZm™=12(7) N HEP™V2(y). Suppose that the band 1 — 2m <
Im\ < a+ 1 —2m contains only the eigenvalue Ao = i(1 — 2m) of L(\) and
this eigenvalue is proper. Then D*U € HY(K) for |a| = 2m.

A.8 Nonlocal Problems in Plane Angles in Sobolev Spaces
Lemma A.10 (see Lemma 2.4 and Corollary 2.1 in [14]) Suppose the
line Im A =1 — 2m contains no eigenvalues of L(N). Let

(B} € WHm=L2(2) A2 (45 Y5 > 0.

Then there exists a compactly supported function V.€ W?™(K) N HZ"(K),
where § > 0 is arbitrary, such that

{Pi(y, D,)Vi} € HY(K?),  {Bjouly, Dy)V]ye, — ®jo} € Ho" ™71 2(9).
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Now we consider the situation WherNe the line Im A = 1 — 2m contains the
unique eigenvalue A\g = i(1 —2m) of £L(\) and it is proper (see Definition 3.1).

Lemma A.11 (see Lemma 3.3 and Corollary 3.1 in [14]) Let the line
Im A = 1—2m contain only the unique eigenvalue A\g = i(1 —2m) of L(\) and
it 1s proper. Suppose that

{Djou} € WP I2(4) AHFTT T2 (9F) W8>0

and the functions ®j,, satisfy the consistency condition (4.5). Then there
exists a compactly supported function V€ W?*™(K) N HZ™(K), where § > 0
15 arbitrary, such that

{Pi(y, D,)Vi} € HY(K?),  {Bjouly, Dy)V]ye, — ®jo} € Ho" ™71 2(9).

Lemma A.12 (see Lemma 3.1 in [14]) Let the line Im A\ = 1—2m contain
only the proper eigenvalue g = i(1—2m) of L(\). Suppose that U € W?™(K))
is a compactly supported solution of problem (A.1) (or (A.2)) and D*U(0) = 0,
la| <2m —2. Then the functions ®,,,, satisfy the consistency condition (4.5).
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