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Introduction

In the theory of nonlocal elliptic boundary value prolems in
bounded domains, the most difficult case deals with the situation
when support of nonlocal terms intersects with boundary of a do-
main (see [1]–[5]). This leads to apearance of degree singularities for
solutions near some set. Therefore it is natural to consider nonlocal
elliptic problems in weighted spaces (see [6]–[8]). In order to estab-
lish a priori estimates of solutions and construct a right regularizer

2



for nonlocal problems in bounded domains, one must study nonlocal
problems in dihedral and plane angles (see [4, 5]).

In paper [4], A.L. Skubachevskii found sufficient conditions of Fred-
holm solvability2 for auxiliary nonlocal problems with parameter θ
in plane angles and sufficient conditions of one–valued solvability for
model nonlocal problems in dihedral angles. His consideration was
based on a priori estimates of solutions and on using a right regu-
larizer which needed some additional conditions on a corresponding
“local” model problem.

In the present work, we use another approach. Instead of con-
structing a right regularizer, we obtain the Green formula and study
adjoint nonlocal problems. This leads to nonlocal transmission prob-
lems in dihedral and plane angles. Similar problems were studied
in [9, 10] for the case of smooth boundary of a domain, in [11] for the
one-dimensional case, etc.

Our approach allows to establish 1) a necessary and sufficient con-
dition of Fredholm solvability for auxiliary nonlocal problems with
parameter θ in plane angles (Theorem 9.1); 2) necessary conditions of
Fredholm solvability and sufficient conditions of one–valued solvability
for model nonlocal problems in dihedral angles (Theorems 9.2, 9.3).

The paper is organized as follows. In §§1–3, we consider nonlocal
boundary value problems in plane and dihedral angles. A priori es-
timates in weighted spaces are established. For reader’s convinience,
we formulate a number of results from the paper [4]. In §4, we ob-
tain the Green formulas for nonlocal elliptic problems. The Green
formulas generate nonlocal transmission problems, which are formally
adjoint to nonlocal boundary value problems. Nonlocal transmission
problems are studied in §§5–7. We prove the results that are anal-
ogous to those from §§1–3. §8 deals with operators that are adjoint
to operators of nonlocal boundary value problems. Connection be-
tween adjoint operators and formally adjoint nonlocal transmission
problems is considered. The main results are collected in §9 where
we study solvability of nonlocal boundary value problems in plane
and dihedral angles. §10 illustrates the results obtained in this work:
we investigate the one–valued solvability of nonlocal problems for the
Poisson equation in dihedral angles. The paper has two appendices.

2A closed operatorA acting from a Hilbert space H1 into a Hilbert space H2 is said to be
Fredholm if its range R(A) is closed, dimension of its kernel dimker (A) and codimension
of its range codimR(A) are finite. The number indA = dim ker (A)−codimR(A) is called
index of the Fredholm operator A.
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Appendix A deals with the operator that is adjoint to the operator of
elliptic problem in Rn with additional conditions on the hyperplane
{xn = 0}. We prove a theorem concerning smoothness of solutions for
the corresponding problem. This result is used in §8. In Appendix B,
we prove some auxiliary properties of weighted spaces that are needed
in the main part of the paper.

1 Nonlocal elliptic boundary value problems.

Reduction to problems with homogeneous

nonlocal conditions

1 Nonlocal problems in dihedral angles.

Introduce the sets

M = {x = (y, z) : y = 0, z ∈ Rn−2},
Ωj = {x = (y, z) : r > 0, bj1 < ϕ < bj,Rj+1, z ∈ Rn−2},

Ωjt = {x = (y, z) : r > 0, bjt < ϕ < bj,t+1, z ∈ Rn−2} (t = 1, . . . , Rj),

Γjq = {x = (y, z) : r > 0, ϕ = bjq, z ∈ Rn−2} (q = 1, . . . , Rj + 1).

Here x = (y, z) ∈ Rn, y ∈ R2, z ∈ Rn−2; r, ϕ are the polar coordinates of
a point y; Rj ≥ 1 is an integers; 0 < bj1 < · · · < bj,Rj+1 < 2π; j = 1, . . . , N.

Denote by Pj(Dy, Dz), Bjσµ(Dy, Dz), and Bjσµkqs(Dy, Dz) homogeneous
differential operators with constant complex coefficients of orders 2m, mjσµ ≤
2m−1 and mjσµ ≤ 2m−1 correspondingly (j, k = 1, . . . , N ; σ = 1, Rj +1;
µ = 1, . . . , m; q = 2, . . . , Rj s = 1, . . . , Sjσkq).

We shall assume that the following conditions hold (see [12, Chapter 2,
§§1.2, 1.4]).

Condition 1.1. For all j = 1, . . . , N , the operators Pj(Dy, Dz) are properly
elliptic.

Condition 1.2. For all j = 1, . . . , N ; σ = 1, Rj + 1, the system
{Bjσµ(Dy, Dz)}m

µ=1 is normal and covers the operator Pj(Dy, Dz) on Γjσ.

Consider the N equations for functions U1, . . . , UN

Pj(Dy, Dz)Uj = fj(x) (x ∈ Ωj) (1.1)
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with the nonlocal conditions

Bjσµ(Dy, Dz)U = Bjσµ(Dy, Dz)Uj|Γjσ
+

+
∑
k,q,s

(Bjσµkqs(Dy, Dz)Uk)(Gjσkqsy, z)|Γjσ
= gjσµ(x) (x ∈ Γjσ) (1.2)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m).

Here and below the summation in the formula for Bjσµ(Dy, Dz) is taken
over k = 1, . . . , N ; q = 2, . . . , Rk; s = 1, . . . , Sjσkq; U =
(U1, . . . , UN); (Bjσµkqs(Dy, Dz)Uk)(Gjσkqsy, z) means that the expression
(Bjσµkqs(Dy′ , Dz′)Uk)(x

′) is calculated for x′ = (Gjσkqsy, z); Gjσkqs is the
operator of rotation by the angle ϕjσkq and expansion by χjσkqs times in the
plane {y} such that bk1 < bjσ + ϕjσkq = bkq < bk,Rk+1, 0 < χjσkqs.

We introduce the space H l
a(Ω) as a completion of the set C∞

0 (Ω̄\M) in
the norm

‖w‖Hl
a(Ω) =


∑

|α|≤l

∫

Ω

r2(a−l+|α|)|Dα
xw(x)|2dx




1/2

,

where Ω = {x = (y, z) : r > 0, 0 < b1 < ϕ < b2 < 2π, z ∈ Rn−2},
C∞

0 (Ω̄\M) is the set of infinitely differentiable functions in Ω̄ with compact

supports belonging to Ω̄\M ; a ∈ R, l ≥ 0 is an integer. Denote by H
l−1/2
a (Γ)

(for l ≥ 1) the space of traces on an (n − 1)-dimensional half-plane Γ ⊂ Ω̄
with the norm

‖ψ‖
H

l−1/2
a (Γ)

= inf ‖w‖Hl
a(Ω) (w ∈ H l

a(Ω) : w|Γ = ψ).

Introduce the spaces of vector–functions

H l+2m, N
a (Ω) =

N∏
j=1

H l+2m
a (Ωj), H l, N

a (Ω, Γ) =
N∏

j=1

H l
a(Ωj, Γj),

H l
a(Ωj, Γj) = H l

a(Ωj)×
∏

σ=1, Rj+1

m∏
µ=1

H l+2m−mjσµ−1/2
a (Γjσ).

We study solutions U = (U1, . . . , UN) ∈ H l+2m, N
a (Ω) for problem (1.1),

(1.2) supposing that f = {fj, gjσµ} ∈ H l, N
a (Ω, Γ). Introduce the bounded

operator corresponding to problem (1.1), (1.2)

L = {Pj(Dy, Dz), Bjσµ(Dy, Dz)} : H l+2m, N
a (Ω) → H l, N

a (Ω, Γ).
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Lemma 1.1. For any gjσµ ∈ H
l+2m−mjσµ−1/2
a (Γjσ) (j = 1, . . . , N ; σ =

1, Rj + 1; µ = 1, . . . , m), there exists a vector–function U ∈ H l+2m, N
a (Ω)

such that
Bjσµ(Dy, Dz)U = gjσµ(x) (x ∈ Γjσ),

‖U‖Hl+2m, N
a (Ω) ≤ c

∑
j, σ, µ

‖gjσµ‖
H

l+2m−mjσµ−1/2
a (Γjσ)

,

where c > 0 is independent of gjσµ.

Lemma 1.1 is proved in [4, §1].
Let W l(Q) be a Sobolev space, where Q ⊂ Rn is an open domain with

Lipschitz boundary. By W l−1/2(Γ) (for l ≥ 1) we denote the space of traces
on an (n − 1)-dimensional smooth manifold Γ ⊂ Q̄. Further we shall need
interpolation inequalities for Sobolev and weighted spaces.

Lemma 1.2. Let Q be bounded; then for any w ∈ W l(Q) and λ ∈ C, we
have

|λ|l−s ‖w‖W s(Q) ≤ cls(‖w‖W l(Q) + |λ|l ‖w‖L2(Q)). (1.3)

Here 0 < s < l; cls > 0 is independent of w, λ.

Lemma 1.3. Let Q be bounded; then for any w ∈ W 1(Q) and λ ∈ C, we
have

|λ|1/2 ‖w|∂Q‖L2(∂Q) ≤ c(‖w‖W 1(Q) + |λ| ‖w‖L2(Q)). (1.4)

Here c > 0 is independent of w, λ.

Lemmas 1.2, 1.3 are proved in [13, Chapter 1, §1]. Using lemma 1.2 and
properties of weighted spaces, one can establish the following result (see [2,
§1]).

Lemma 1.4. For any w ∈ H l
a(Ω) and λ ∈ C, we have

|λ|s ‖w‖Hl−s
a−s(Ω) ≤ cls(‖w‖Hl

a(Ω) + |λ|l ‖w‖H0
a−l(Ω)). (1.5)

Here 0 < s < l; cls > 0 is independent of w, λ.
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2 Nonlocal problems with parameter θ in plane angles.

Now we consider the case of the space R2. Put K = {y ∈ R2 : r > 0, 0 <

b1 < ϕ < b2 < 2π}. As above, we introduce the spaces H l
a(K) and H

l−1/2
a (γ),

where γ ⊂ K̄ is a ray.
Let us also introduce the space El

a(K) as a completion of the set
C∞

0 (K̄\{0}) in the norm

‖w‖El
a(K) =


∑

|α|≤l

∫

K

r2a(r2(|α|−l) + 1)|Dα
y w(y)|2dy




1/2

.

By E
l−1/2
a (γ) (for l ≥ 1) we denote the space of traces on a ray γ ⊂ K̄ with

the norm

‖ψ‖
E

l−1/2
a (γ)

= inf ‖w‖El
a(K) (w ∈ El

a(K) : w|γ = ψ).

One can find constructive definitions of the spaces H
l−1/2
a (Γ) and E

l−1/2
a (γ)

in [7, §1].
Introduce the spaces of vector–functions

El+2m, N
a (K) =

N∏
j=1

El+2m
a (Kj), El, N

a (K, γ) =
N∏

j=1

El
a(Kj, γj),

El
a(Kj, γj) = El

a(Kj)×
∏

σ=1, Rj+1

m∏
µ=1

El+2m−mjσµ−1/2
a (γjσ),

where Kj = {y : r > 0, bj1 < ϕ < bj,Rj+1}, γjσ = {y : r > 0, ϕ = bjσ}.
Consider the auxiliary problem for u = (u1, . . . , uN) ∈ El+2m, N

a (K)

Pj(Dy, θ)uj = fj(y) (y ∈ Kj), (1.6)

Bjσµ(Dy, θ)u = Bjσµ(Dy, θ)uj|γjσ
+

∑
k,q,s

(Bjσµkqs(Dy, θ)uk)(Gjσkqsy)|γjσ
=

= gjσµ(y) (y ∈ γjσ)
(1.7)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m),

where θ is an arbitrary point on a unit sphere Sn−3 = {z ∈ Rn−2 : |z| = 1},
f = {fj, gjσµ} ∈ El, N

a (K, γ).
Introduce the bounded operator corresponding to problem (1.6), (1.7),

L(θ) = {Pj(Dy, θ), Bjσµ(Dy, θ)} : El+2m, N
a (K) → El, N

a (K, γ).
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Lemma 1.5. For any gjσµ ∈ E
l+2m−mjσµ−1/2
a (γjσ) (j = 1, . . . , N ; σ =

1, Rj + 1; µ = 1, . . . , m) and θ ∈ Sn−3, there exists a vector–function
u ∈ El+2m, N

a (K) such that

Bjσµ(Dy, θ)u = gjσµ(y) (y ∈ γjσ),

‖u‖El+2m, N
a (K) ≤ c

∑
j, σ, µ

‖gjσµ‖
E

l+2m−mjσµ−1/2
a (γjσ)

,

where c > 0 is independent of gjσµ, θ.

Lemma 1.5 is proved in [4, §1].

2 Solvability of nonlocal boundary value

problems in plane angles

We shall need the results of this section (obtained by A.L. Skubachevskii
in [4, §2]) in §3 for study a priori estimates of solutions to nonlocal boundary
value problems in dihedral angles.

1 Reduction of nonlocal problems in plane angles to nonlocal
problems on arcs.

Consider the following nonlocal problem for U = (U1, . . . , UN) ∈
H l+2m, N

a (K)
Pj(Dy, 0)Uj = fj(x) (y ∈ Kj), (2.1)

Bjσµ(Dy, 0)U = Bjσµ(Dy, 0)Uj|γjσ
+

+
∑
k,q,s

(Bjσµkqs(Dy, 0)Uk)(Gjσkqsy)|γjσ
= gjσµ(y) (y ∈ γjσ) (2.2)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m),

where f = {fj, gjσµ} ∈ H l, N
a (K, γ).

We write the operators Pj(Dy, 0), Bjσµ(Dy, 0), Bjσµkqs(Dy, 0) in the
polar coordinates: Pj(Dy, 0) = r−2mP̃j(ϕ, Dϕ, rDr), Bjσµ(Dy, 0) =
r−mjσµB̃jσµ(ϕ, Dϕ, rDr), Bjσµkqs(Dy, 0) = r−mjσµB̃jσµkqs(ϕ, Dϕ, rDr),

where Dϕ = −i ∂
∂ϕ

, Dr = −i ∂
∂r

.
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Put τ = ln r and do the Fourier transform with respect to τ ; then
from (2.1), (2.2), we get

P̃j(ϕ, Dϕ, λ)Ũj(ϕ, λ) = F̃j(ϕ, λ) (bj1 < ϕ < bj,Rj+1), (2.3)

B̃jσµ(ϕ, Dϕ, λ)Ũ(ϕ, λ) = B̃jσµ(ϕ, Dϕ, λ)Ũj(ϕ, λ)|ϕ=bjσ
+

+
∑
k,q,s

e(iλ−mjσµ) ln χjσkqsB̃jσµkqs(ϕ, Dϕ, λ)Ũk(ϕ + ϕjσkq, λ)|ϕ=bjσ
=

= G̃jσµ(λ),

(2.4)

where Fj(ϕ, τ) = e2mτfj(ϕ, τ), Gjσµ(τ) = emjσµτgjσµ(τ); Ũj(ϕ, λ) =

(2π)−1/2
∞∫
−∞

Uj(ϕ, τ)e−iλτdτ.

This problem is a system of N ordinary differential equations (2.3) for
functions Ũj ∈ W l+2m(bj1, bj,Rj+1) with nonlocal conditions (2.4) connecting

values of Ũj and their derivatives at the point ϕ = bjσ with values of Ũk and
their derivatives at the points of the intervals (bk1, bk,Rk+1).

2 Solvability of nonlocal problems with parameter λ on arcs.

Let us consider the operator–valued function

L̃(λ) = {P̃j(ϕ, Dϕ, λ), B̃jσµ(ϕ, Dϕ, λ)} :
W l+2m, N(b1, b2) → W l, N [b1, b2]

corresponding to problem (2.3), (2.4). Here

W l+2m, N(b1, b2) =
∏N

j=1 W l+2m(bj1, bj,Rj+1),

W l, N [b1, b2] =
∏N

j=1 W l[bj1, bj,Rj+1],

W l[bj1, bj,Rj+1] = W l(bj1, bj,Rj+1)× Cm × Cm.

Introduce the equivalent norms depending on the parameter λ (|λ| ≥ 1) in
the Hilbert spaces W l(bj1, bj,Rj+1) and W l[bj1, bj,Rj+1]:

|||Ũj|||W l(bj1, bj,Rj+1) =
(‖Ũj‖2

W l(bj1, bj,Rj+1)
+ |λ|2l ‖Ũj‖2

L2(bj1, bj,Rj+1)

)1/2
,

|||{F̃j, G̃jσµ}|||W l[bj1, bj,Rj+1] =
(
|||F̃j|||2W l(bj1, bj,Rj+1)

+

+
∑
σ, µ

(1 + |λ|2(l+2m−mjσµ−1/2))|G̃jσµ|2
)1/2

,
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where Ũj ∈ W l(bj1, bj,Rj+1), {F̃j, G̃jσµ} ∈ W l[bj1, bj,Rj+1]. And therefore
we have

|||Ũ |||W l+2m, N (b1, b2) =
(∑

j

|||Ũj|||2W l+2m(bj1, bj,Rj+1)

)1/2

,

|||Φ̃|||W l, N [b1, b2] =
(∑

j

|||Φ̃j|||2W l[bj1, bj,Rj+1]

)1/2

,

where Ũ = (Ũ1, . . . , ŨN) ∈ W l+2m, N(b1, b2), Φ̃ = (Φ̃1, . . . , Φ̃N) ∈
W l, N [b1, b2].

The next two statements are proved in [4, §2].

Lemma 2.1. For all λ ∈ C, the operator L̃(λ) : W l+2m, N(b1, b2) →
W l, N [b1, b2] is Fredholm, ind L̃(λ) = 0; for any h ∈ R, there exists a q0 > 0
such that for λ ∈ Jh, q0 = {λ ∈ C : Im λ = h, |Re λ| ≥ q0}, the operator
L̃(λ) has the bounded inverse L̃−1(λ) : W l, N [b1, b2] → W l+2m, N(b1, b2) and

|||L̃−1(λ)Φ̃|||W l+2m, N (b1, b2) ≤ c|||Φ̃|||W l, N [b1, b2]

for all Φ̃ ∈ W l, N [b1, b2], where c > 0 is independent of λ and Φ̃. The
operator–valued function L̃−1(λ) : W l, N [b1, b2] → W l+2m, N(b1, b2) is finitely
meromorphic.

Lemma 2.2. For any 0 < ε < 1/d, there exists a q > 1 such that the
set {λ ∈ C : |Im λ| ≤ ε ln |Re λ|, |Re λ| ≥ q} contains no poles of the
operator–valued function L̃−1(λ), where d = max | ln χjσkqs|; for every pole
λ0 of the operator–valued function L̃−1(λ), there exists a δ > 0 such that the
set {λ ∈ C : 0 < |Im λ−Im λ0| < δ} contains no poles of the operator–valued
function L̃−1(λ).

3 One–valued solvability of nonlocal problems in plane angles.

The following theorem is obtained from Lemma 2.1.

Theorem 2.1. Suppose the line Im λ = a+1−l−2m contains no poles of the
operator–valued function L̃−1(λ); then nonlocal boundary value problem (2.1),
(2.2) has a unique solution U ∈ H l+2m, N

a (K) for every right-hand side f ∈
H l, N

a (K, γ) and
‖U‖Hl+2m, N

a (K) ≤ c‖f‖Hl, N
a (K, γ),

where c > 0 does not depend on f.

One can find the proof of Theorem 2.1 in [4, §2].
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3 A priori estimates of solutions for nonlocal

boundary value problems

1 A priori estimates in dihedral angles.

Denote d1 = min{1, χjσkqs}/2, d2 = 2 max{1, χjσkqs}, Ωp
j = Ωj ∩ {r1d

6−p
1 <

r < r2d
6−p
2 , |z| < 2−p−1}, where j = 1, . . . , N ; p = 0, . . . , 6; 0 < r1 < r2.

Lemma 3.1. Suppose Uj ∈ W 2m(Ω0
j),

Pj(Dy, Dz)Uj ∈ W l(Ω0
j), Bjσµ(Dy, Dz)U ∈ W l+2m−mjσµ−1/2(Γjσ ∩ Ω̄0

j)
(3.1)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m);

then U ∈ ∏
j

W l+2m(Ω3
j) and for |λ| ≥ 1,

∑
j

‖Uj‖W l+2m(Ω6
j ) ≤ c

∑
j

{‖Pj(Dy, Dz)Uj‖W l(Ω3
j )+

+
∑
σ, µ

‖Bjσµ(Dy, Dz)U‖W l+2m−mjσµ−1/2(Γjσ∩Ω̄3
j )

+ |λ|−1‖Uj‖W l+2m(Ω3
j )+

+|λ|l+2m−1‖Uj‖L2(Ω3
j )

}
,

(3.2)

where c > 0 is independent of λ and U.

Proof. Denote

ε = min{bj,q+1 − bjq}/4 (j = 1, . . . , N ; q = 1, . . . , Rj) (3.3)

and introduce the functions ζjq ∈ C∞(R) such that

ζjq(ϕ) = 1 for |bjq − ϕ| < ε/2, ζjq(ϕ) = 0 for |bjq − ϕ| > ε (3.4)

(j = 1, . . . , N ; q = 1, . . . , Rj + 1).

Put ζj(ϕ) = ζj1(ϕ) + ζj,Rj+1(ϕ). Since the functions ζj are the multipli-
cators in W l(Ωp

j), we have (1 − ζj)Uj ∈ W 2m(Ω0
j). Apply theorem 5.1 [12,

Chapter 2, §5.1] to the function (1− ζj)Uj and to the operator Pj(Dy, Dz);
then from (3.1) and Leibniz’ formula, we get

(1− ζj)Uj ∈ W l+2m(Ω1
j). (3.5)
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Denote Vjσµ =
∑

k, q, s

(Bjσµkqs(Dy, Dz)((1 − ζk)Uk))(Gjσkqsy, z). Clearly, we

have

Vjσµ|Γjσ∩Ω̄2
j

=
∑

k, q, s

(Bjσµkqs(Dy, Dz)Uk)(Gjσkqsy, z)|Γjσ∩Ω̄2
j
. (3.6)

From equality (3.6) and relations (3.1), (3.5), it follows that

Bjσµ(Dy, Dz)Uj|Γjσ∩Ω̄2
j

= Bjσµ(Dy, Dz)U − Vjσµ|Γjσ∩Ω̄2
j
∈

∈ W l+2m−mjσµ−1/2(Γjσ ∩ Ω̄2
j).

(3.7)

Again applying theorem 5.1 [12, Chapter 2, §5.1] to the function Uj and to the
operator {Pj(Dy, Dz), Bjσµ(Dy, Dz)|Γjσ∩Ω̄2

j
} (σ = 1, Rj +1; µ = 1, . . . , m)

from (3.1), (3.7), we obtain Uj ∈ W l+2m(Ω3
j).

Now estimate (3.2) follows from lemma 3.1 [4, §3].

Let W l
loc(Ω̄j\M) be a set of functions belonging to the space W l on any

compactum in Ω̄j that does not intersect with M.

Theorem 3.1. Let U ∈ ∏
j

W 2m
loc (Ω̄j\M) be a solution for nonlocal boundary

value problem (1.1), (1.2) such that U ∈ H0, N
a−l−2m(Ω) and f ∈ H l, N

a (Ω, Γ);
then U ∈ H l+2m, N

a (Ω) and

‖U‖Hl+2m, N
a (Ω) ≤ c

(‖f‖Hl, N
a (Ω, Γ) + ‖U‖H0, N

a−l−2m(Ω)

)
, (3.8)

where c > 0 is independent of U.

Proof. From Lemma 3.1, it follows that U ∈ ∏
j

W l+2m
loc (Ω̄j\M). Now

lemma 3.2 [4, §3] implies that U ∈ H l+2m, N
a (Ω) and a priori estimate (3.8) is

valid.

2 A priori estimates in plane angles.

Put Kps
j = Kj ∩{r1d

6−p
1 · 2s < r < r2d

6−p
2 · 2s}, where 0 < r1 < r2; s ≥ 1; j =

1, . . . , N ; p = 0, . . . , 6.

Lemma 3.2. Suppose s ≥ 1, θ ∈ Sn−3. Assume that uj ∈ W 2m(K0s
j ),

Pj(Dy, θ)uj ∈ W l(K0s
j ), Bjσµ(Dy, θ)u = 0 (y ∈ γjσ ∩ K̄0s

j )
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(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m);

then u ∈ ∏
j

W l+2m(K3s
j ) and for |λ| ≥ 1,

∑
j

2sa‖uj‖W l+2m(K6s
j ) ≤ c

∑
j

{
2sa‖Pj(Dy, θ)uj‖W l(K3s

j )+

+|λ|−12sa‖uj‖W l+2m(K3s
j ) + |λ|l+2m−12s(a−l−2m)‖uj‖L2(K3s

j )

}
,

(3.9)

where c > 0 is independent of u, θ, λ, and s.

Proof. Repeating the proof of Lemma 3.1 and substituting Kps
j for Ωp

j and

θ for Dz, we obtain u ∈ ∏
j

W l+2m(K3s
j ). Now a priori estimate (3.9) follows

from lemma 3.3 [4, §3].

Theorem 3.2. Let u ∈ ∏
j

W 2m
loc (K̄j\{0}) be a solution for problem (1.6),

(1.7) such that u ∈ E0, N
a−l−2m(K) and f ∈ El, N

a (K, γ); then u ∈ El+2m, N
a (K)

and
‖u‖El+2m, N

a (K) ≤ c
(‖f‖El, N

a (K, γ) + ‖u‖E0, N
a−l−2m(K)

)
, (3.10)

where c > 0 is independent of u, θ ∈ Sn−3.

Proof. 1) By Lemma 1.5, it suffices to consider the case gjσµ = 0. Since fj ∈
El

a(Kj) ⊂ W l
loc(K̄j\{0}), as above, one can show that u ∈ ∏

j

W l+2m
loc (K̄j\{0}).

Put r1 = d1, r2 = d2 and denote Kps
j = Kj ∩{d7−p

1 ·2s < r < d7−p
2 ·2s}, where

s ≥ 1; j = 1, . . . , N ; p = 0, . . . , 6. Let us also denote K60
j = Kj∩{r < d2}.

Introduce the functions ψ ∈ C∞(R), ψ(r) = 1 for r < d2, ψ(r) = 0 for
r > 2d2; ψ̂ ∈ C∞(R), ψ̂(r) = 1 for r < 2d2

2, ψ̂(r) = 0 for r > 3d2
2.

Applying Theorem 3.1 to the operator {Pj(Dy, 0), Bjσµ(Dy, 0)} (for
n = 2), we get

∑
j

‖uj‖El+2m
a (K60

j ) ≤ k1

∑
j

‖ψuj‖Hl+2m
a (Kj)

≤
≤ k2

∑
j

{‖Pj(Dy, 0)(ψuj)‖Hl
a(Kj)+

+
∑
σ, µ

‖Bjσµ(Dy, 0)(ψuj)‖
H

l+2m−mjσµ−1/2
a (γjσ)

+ ‖ψuj‖H0
a−l−2m(Kj)

}
.

(3.11)
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Let us estimate ‖Pj(Dy, 0)(ψuj)‖Hl
a(Kj). Using Leibniz’ formula, the condi-

tion θ ∈ Sn−3, and limitations for supports of the functions ψ, ψ̂, we obtain

‖Pj(Dy, 0)(ψuj)‖Hl
a(Kj) ≤

≤ k3(‖Pj(Dy, θ)(ψuj)‖Hl
a(Kj) + ‖ψuj‖Hl+2m−1

a−1 (Kj)
) ≤

≤ k4(‖Pj(Dy, θ)uj‖El
a(Kj) + ‖ψ̂uj‖Hl+2m−1

a−1 (Kj)
).

(3.12)

Let us estimate ‖Bjσµ(Dy, 0)(ψuj)‖
H

l+2m−mjσµ−1/2
a (γjσ)

. Using Leibniz’ for-

mula, the condition θ ∈ Sn−3, limitations for supports of the functions ψ, ψ̂,
and the condition gjσµ = 0, we get

‖Bjσµ(Dy, 0)(ψuj)‖
H

l+2m−mjσµ−1/2
a (γjσ)

≤
≤ k5(‖Bjσµ(Dy, θ)(ψuj)‖

H
l+2m−mjσµ−1/2
a (γjσ)

+ ‖ψ̂uj‖Hl+2m−1
a−1 (Kj)

) ≤
≤ k6

(‖ψBjσµ(Dy, θ)uj‖
H

l+2m−mjσµ−1/2
a (γjσ)

+
∑

k, q, s

‖(ψ(χjσkqsy)−
−ψ(y))(Bjσµkqs(Dy, θ)uk)(Gjσkqsy)|γjσ

‖
H

l+2m−mjσµ−1/2
a (γjσ)

+

+‖ψ̂uj‖Hl+2m−1
a−1 (Kj)

) ≤ k7

(∑
k

‖uk‖W l+2m(Kj∩S0) + ‖ψ̂uj‖Hl+2m−1
a−1 (Kj)

)
,

(3.13)
where S0 = {y ∈ R2 : 1 < r < 2d2/d1}.

Inequalities (3.11)–(3.13), Lemma 3.1, and interpolation inequality (1.5)
yield ∑

j

‖uj‖El+2m
a (K60

j ) ≤ k8

∑
j

{‖fj‖El
a(Kj)+

+|λ|−1‖uj‖El+2m
a (Kj)

+ |λ|l+2m−1‖uj‖E0
a−l−2m(Kj)

} (3.14)

2) By virtue of Lemma 3.2, for s ≥ 1, we have

∑
j

‖uj‖El+2m
a (K6s

j ) ≤ k9

∑
j

{‖fj‖El
a(K3s

j )+

+|λ|−1‖uj‖El+2m
a (K3s

j ) + |λ|l+2m−1‖uj‖E0
a−l−2m(K3s

j )

}
.

(3.15)

Summing up (3.14), (3.15) for all s ≥ 1 and taking a sufficiently large |λ|,
we obtain (3.10).

From Theorem 2.1 and Lemma 3.2, one can also get the following result
(see theorem 3.1 [4, §3]).
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Theorem 3.3. Suppose the line Im λ = a + 1− l− 2m contains no poles of
the operator–valued function L̃−1(λ); then for all solutions u ∈ El+2m, N

a (K)
to nonlocal boundary value problem (1.6), (1.7) and all θ ∈ Sn−3, we have

‖u‖El+2m, N
a (K) ≤ c

(‖f‖El, N
a (K, γ) +

∑
j

‖uj‖L2(Kj∩S)

)
, (3.16)

where S = {y ∈ R2 : 0 < R1 < r < R2}, c > 0 is independent of θ and u.
If for any θ ∈ Sn−3, estimate (3.16) holds for all solutions to nonlocal

boundary value problem (1.6), (1.7), then the line Im λ = a + 1 − l − 2m
contains no poles of the operator–valued function L̃−1(λ).

Theorem 3.3 implies that kernel of L(θ) is of finite dimension and range
of L(θ) is closed. In order to prove that cokernel of L(θ) is also of finite
dimension, we shall obtain the Green formula for nonlocal problems and
study problems that are adjoint to nonlocal boundary value problems with
respect to the Green formula.

4 The Green formula for nonlocal elliptic

problems

In this section, we obtain the Green formula, which connects nonlocal bound-
ary value problems and nonlocal transmission problems in dihedral angles,
plane angles, and on arcs. Nonlocal transmission problems will be studied
in §§5–7.

1 The Green formula in dihedral angles.

Consider nonlocal boundary value problem (1.1), (1.2).
Let nkq be the unit normal vector to Γkq directed inside Ωkq (q =

1, . . . , Rk), nk,Rk+1 be the unit normal vector to Γk,Rk+1, directed inside
ΩkRk

.
Denote by C∞(Ω̄jt\M) (C∞(Ω̄j\M), C∞(Γjq\M)) the set of infinitely

differentiable in Ω̄jt\M (in Ω̄j\M, in Γjq\M) functions. We also denote by
C∞

0 (Ω̄jt\M) (C∞
0 (Ω̄j\M), C∞

0 (Γjq\M)) the set of infinitely differentiable in
Ω̄jt (in Ω̄j, in Γjq) functions with compact support from Ω̄jt\M (from Ω̄j\M,
from Γjq\M) (j = 1, . . . N ; t = 1, . . . , Rj; q = 1, . . . , Rj + 1).
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For Ujt ∈ C∞
0 (Ω̄jt\M), Vjt ∈ C∞(Ω̄jt\M) (or Ujt ∈ C∞(Ω̄jt\M), Vjt ∈

C∞
0 (Ω̄jt\M)), put

(Ujt, Vjt)Ωjt
=

∫

Ωjt

Ujt · V̄jt dx (j = 1, . . . , N ; t = 1, . . . , Rj).

For UΓjq
∈ C∞

0 (Γjq), VΓjq
∈ C∞(Γjq) (or UΓjq

∈ C∞(Γjq), VΓjq
∈ C∞

0 (Γjq)),
put

(UΓjq
, VΓjq

)Γjq
=

∫

Γjq

UΓjq
· V̄Γjq

dΓ (j = 1, . . . , N ; q = 1, . . . , Rj + 1).

If we have functions Vjt(x) defined in Ωjt, then denote by Vj(x) the func-
tion given by Vj(x) ≡ Vjt(x) for x ∈ Ωjt.

For short, let us omit the arguments (Dy, Dz) of differential operators.
Denote by Qj the operator that is formally adjoint to Pj.

Theorem 4.1. For the operators Pj, Bjσµ, and Bjσµkqs defined in §1, there
exist (not unique)

1) a system {B′
jσµ}m

µ=1 of normal on Γjσ operators of orders 2m−1−m′
jσµ

with constant coefficients such that the system {Bjσµ, B′
jσµ}m

µ=1 is a Dirichlet
one on Γjσ

3 of order 2m (σ = 1, Rj + 1);
2) a Dirichlet system {Bjqµ, B′

jqµ}m
µ=1 on Γjq of order 2m such that the

operators Bjqµ and B′
jqµ are of orders 2m − µ and m − µ correspondingly

(q = 2, . . . , Rj).
If the choice has been done, then there exist operators Cjσµ, Fjσµ, Tjqν,

and Tjqνkσs (j, k = 1, . . . , N ; σ = 1, Rj + 1 for the operators Cjσµ and
Fjσµ, σ = 1, Rk +1 for the operators Tjqνkσs; µ = 1, . . . , m; q = 2, . . . , Rj;
ν = 1, . . . , 2m; s = 1, . . . , S ′jqkσ = Skσjq) with constant coefficients such
that

I) the operators Cjσµ, Fjσµ, Tjqν, and Tjqνkσs are of orders m′
jσµ, 2m −

1−mjσµ, ν − 1, and ν − 1 correspondingly;
II) the system {Cjσµ, Fjσµ}m

µ=1 is a Dirichlet one on Γjσ of order 2m
(σ = 1, Rj + 1),

the system {Cjσµ}m
µ=1 covers the operator Qj on Γjσ (σ = 1, Rj + 1),

the system {Tjqν}2m
ν=1 is a Dirichlet one on Γjq of order 2m (q =

2, . . . , Rj);

3See [12, Chapter 2, §2.2] for the definition of a Dirichlet system.
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III) for all Uj ∈ C∞
0 (Ω̄j\M), Vjt ∈ C∞(Ω̄jt\M) (or Uj ∈ C∞(Ω̄j\M),

Vjt ∈ C∞
0 (Ω̄jt\M)), the following Green formula is valid:

∑
j

{∑
t

(PjUj, Vjt)Ωjt
+

∑
σ,µ

(BjσµU, FjσµVj|Γjσ
)Γjσ

+

+
∑
q,µ

(BjqµUj|Γjq
, TjqµV )Γjq

}
=

∑
j

{∑
t

(Uj, QjVjt)Ωjt
+

+
∑
σ,µ

(B′
jσµUj|Γjσ

, CjσµVj|Γjσ
)Γjσ

+
∑
q,µ

(B′
jqµUj|Γjq

, Tjq,m+µV )Γjq

}
.

(4.1)

In the Green formulas (here and below), the summation is taken over j =
1, . . . , N ; t = 1, . . . , Rj; σ = 1, Rj + 1; q = 2, . . . , Rj; µ = 1, . . . , m;
Bjσµ is given by (1.2);

TjqνV = TjqνVj,q−1|Γjq
− TjqνVjq|Γjq

+
∑
k,σ,s

(TjqνkσsVk)(G ′jqkσsy, z)|Γjq

(ν = 1, . . . , 2m),

in the formula for Tjqν (here and below), the summation is taken over k =
1, . . . , N ; σ = 1, Rk + 1; s = 1, . . . , S ′jqkσ = Skσjq; G ′jqkσs is the operator
of rotation by the angle ϕ′jqkσ = −ϕkσjq and expansion by χ′jqkσs = 1/χkσjqs

times in the plane {y}.

Proof. For j = 1, . . . , N , put B′
jσµ =

(
−i ∂

∂njσ

)2m−1−m′
jσµ

, Bjqµ =
(
−i ∂

∂njq

)2m−µ

, B′
jqµ =

(
−i ∂

∂njq

)m−µ

(σ = 1, Rj +1; q = 2, . . . , Rj; µ =

1, . . . , m), where m′
jσµ are chosen so that the numbers mjσµ and 2m−1−m′

jσµ

run over the set 0, 1, . . . , 2m− 1, while µ changes from 1 to 2m.
By theorem 2.1 [12, Chapter 2, §2.2], there exist uniquely defined differ-

ential operators Fjσµ, F ′
jσµ, Fjqµ, and F ′

jqµ (j = 1, . . . , N ; σ = 1, Rj +1; q =
2, . . . , Rj; µ = 1, . . . , m) of orders 2m−1−mjσµ, m′

jσµ, µ−1, and m+µ−1
correspondingly with constant coefficients such that

the system {Fjσµ, F ′
jσµ}m

µ=1 is a Dirichlet one on Γjσ of order 2m (σ =
1, Rj + 1),

the system {F ′
jσµ}m

µ=1 covers the operator Qj on Γjσ (σ = 1, Rj + 1),
the system {Fjqµ, F ′

jqµ}m
µ=1 is a Dirichlet one on Γjq of order 2m (q =

2, . . . , Rj),
for any Uj ∈ C∞

0 (Ω̄j\M), Vjt ∈ C∞(Ω̄jt\M) (or Uj ∈ C∞(Ω̄j\M), Vjt ∈
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C∞
0 (Ω̄jt\M)), the following Green formulas are valid:

(PjUj, Vj1)Ωj1
+

m∑
µ=1

(Bj1µUj|Γj1
, Fj1µVj1|Γj1

)Γj1
+

+
m∑

µ=1

(Bj2µUj|Γj2
, Fj2µVj1|Γj2

)Γj2
= (Uj, QjVj1)Ωj1

+

+
m∑

µ=1

(B′
j1µUj|Γj1

, F ′
j1µVj1|Γj1

)Γj1
+

m∑
µ=1

(B′
j2µUj|Γj2

, F ′
j2µVj1|Γj2

)Γj2
,

(PjUj, Vj2)Ωj2
−

m∑
µ=1

(Bj2µUj|Γj2
, Fj2µVj2|Γj2

)Γj2
+

+
m∑

µ=1

(Bj3µUj|Γj3
, Fj3µVj2|Γj3

)Γj3
= (Uj, QjVj2)Ωj2

−

−
m∑

µ=1

(B′
j2µUj|Γj2

, F ′
j2µVj2|Γj2

)Γj2
+

m∑
µ=1

(B′
j3µUj|Γj3

, F ′
j3µVj2|Γj3

)Γj3
,

· · · ,

(PjUj, VjRj
)ΩjRj

−
m∑

µ=1

(BjRjµUj|ΓjRj
, FjRjµVjRj

|ΓjRj
)ΓjRj

+

+
m∑

µ=1

(Bj,Rj+1,µUj|Γj,Rj+1
, Fj,Rj+1,µVjRj

|Γj,Rj+1
)Γj,Rj+1

=

= (Uj, QjVjRj
)ΩjRj

−
m∑

µ=1

(B′
jRjµUj|ΓjRj

, F ′
jRjµVjRj

|ΓjRj
)ΓjRj

+

+
m∑

µ=1

(B′
j,Rj+1,µUj|Γj,Rj+1

, F ′
j,Rj+1,µVjRj

|Γj,Rj+1
)Γj,Rj+1

.

(4.2)

Adding equalities (4.2) together, we get

∑
t

(PjUj, Vjt)Ωjt
+

∑
σ=1, Rj+1

m∑
µ=1

(BjσµUj|Γjσ
, FjσµVj|Γjσ

)Γjσ
+

+
Rj∑
q=2

m∑
µ=1

(BjqµUj|Γjq
, FjqµVj,q−1|Γjq

− FjqµVjq|Γjq
)Γjq

=

=
∑
t

(Uj, QjVjt)Ωjt
+

∑
σ=1, Rj+1

m∑
µ=1

(B′
jσµUj|Γjσ

, F ′
jσµVj|Γjσ

)Γjσ
+

+
Rj∑
q=2

m∑
µ=1

(B′
jqµUj|Γjq

, F ′
jqµVj,q−1|Γjq

− F ′
jqµVjq|Γjq

)Γjq
.

(4.3)
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Add
N∑

k=1

Rk∑
q=2

Sjσkq∑
s=1

(BjσµkqsUk)(Gjσkqs·) to BjσµUj and subtract it in (4.3);

then using change of variables x′ = (Gjσkqsy, z) in the integrals over Γjσ, we
obtain

(BjσµUj|Γjσ
, FjσµVj|Γjσ

)Γjσ
= (BjσµU, FjσµVj|Γjσ

)Γjσ
−

−(
∑
k,q

Sjσkq∑
s=1

(BjσµkqsUk)(Gjσkqs·)|Γjσ
, FjσµVj|Γjσ

)Γjσ
=

= (BjσµU, FjσµVj|Γjσ
)Γjσ

+

+
∑
k,q

S′kqjσ∑
s=1

(− 1
χjσkqs

BjσµkqsUk|Γkq
, (FjσµVj)(G ′kqjσs·)|Γkq

)Γkq
.

(4.4)

Here S ′kqjσ = Sjσkq; G ′kqjσs is the operator of rotation by the angle ϕ′kqjσ =
−ϕjσkq and expansion by χ′kqjσs = 1/χjσkqs times in the plane {y}.

Clearly, we have

− 1

χjσkqs

Bjσµkqs =
m∑

α=1

ΛjσµkqsαBkqα −
m∑

α=1

Λ′jσµkqsαB′
kqα

4. (4.5)

Here

Λjσµkqsα =
mjσµ−(2m−α)∑

|β|+l=0

aβl
jσµkqsαDβ

z

(
∂

∂ykq

)l

,

Λ′jσµkqsα =
mjσµ−(m−α)∑
|β|+l=0

a′βl
jσµkqsαDβ

z

(
∂

∂ykq

)l

,

aβl
jσµkqsα, a′βl

jσµkqsα ∈ C, ykq is the coordinate on the half-axis Γkq ∩ {z = 0}.
If mjσµ − (2m − α) < 0 (mjσµ − (m − α) < 0), then we put Λjσµkqsα = 0
(Λ′jσµkqsα = 0).

Denote by (Λjσµkqsα)∗, (Λ′jσµkqsα)∗ the operators that are formally adjoint
to Λjσµkqsα, Λ′jσµkqsα correspondingly. Then (4.4) and (4.5) imply

(BjσµUj|Γjσ
, FjσµVj|Γjσ

)Γjσ
= (BjσµU, FjσµVj|Γjσ

)Γjσ
+

+
∑
k,q

S′kqjσ∑
s=1

m∑
α=1

(BkqαUk|Γkq
, (Λjσµkqsα)∗[(FjσµVj)(G ′kqjσs·)|Γkq

])Γkq
−

−∑
k,q

S′kqjσ∑
s=1

m∑
α=1

(B′
kqαUk|Γkq

, (Λ′jσµkqsα)∗[(F ′
jσµVj)(G ′kqjσs·)|Γkq

])Γkq
.

(4.6)

4We choose the sign “minus” in right hand side of relation (4.5) just for convenience.
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Substituting (4.6) into (4.3), summing over j, and grouping the summands
containing BjqµUj, we get

∑
j

{∑
t

(PjUj, Vjt)Ωjt
+

∑
σ=1, Rj+1

m∑
µ=1

(BjσµU, FjσµVj|Γjσ
)Γjσ

+

+
Rj∑
q=2

m∑
µ=1

(BjqµUj|Γjq
, FjqµVj,q−1|Γjq

− FjqµVjq|Γjq
+

+
∑
k

∑
σ=1, Rk+1

S′jqkσ∑
s=1

({
m∑

α=1

(Λ̂kσαjqsµ)∗Fkσα}Vk)(G ′jqkσs·)|Γjq
)Γjq

}
=

=
∑
j

{∑
t

(Uj, QjVjt)Ωjt
+

∑
σ=1, Rj+1

m∑
µ=1

(B′
jσµUj|Γjσ

, F ′
jσµVj|Γjσ

)Γjσ
+

+
Rj∑
q=2

m∑
µ=1

(B′
jqµUj|Γjq

, F ′
jqµVj,q−1|Γjq

− F ′
jqµVjq|Γjq

+

+
∑
k

∑
σ=1, Rk+1

S′jqkσ∑
s=1

({
m∑

α=1

(Λ̂′kσαjqsµ)∗F ′
kσα}Vk)(G ′jqkσs·)|Γjq

)Γjq

}
,

(4.7)

where the operators Λ̂kσαjqsµ and Λ̂′kσαjqsµ are obtained from the operators

Λkσαjqsµ and Λ′kσαjqsµ by substituting aβl
kσαjqsµ(χ′jqkσs)

l and a′βl
kσαjqsµ(χ′jqkσs)

l

for aβl
kσαjqsµ and a′βl

kσαjqsµ correspondingly.
Denoting

Cjσµ = F ′
jσµ (j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m),

Tjqν = Fjqν for ν = 1, . . . , m; Tjqν = F ′
jq,ν−m for ν = m + 1, . . . , 2m;

Tjqνkσs =
m∑

α=1

(Λ̂kσαjqsν)
∗Fkσα for ν = 1, . . . , m,

Tjqνkσs =
m∑

α=1

(Λ̂′kσαjqs,ν−m)∗F ′
kσα for ν = m + 1, . . . , 2m

(j, k = 1, . . . , N ; q = 2, . . . , Rj; σ = 1, Rk + 1; s = 1, . . . , S ′jqkσ),

we complete the proof.

Remark 4.1. Formula (4.1) can be extended by continuity for the case
Uj ∈ H2m

a (Ωj), Vjt ∈ H2m
−a+2m(Ωjt). Indeed, C∞

0 (Ω̄j\M) is dense in
H2m

a (Ωj), C∞
0 (Ω̄jt\M) is dense in H2m

−a+2m(Ωjt); therefore there exist se-
quences {Up

j }∞p=1 ⊂ C∞
0 (Ω̄j\{0}) and {V q

jt}∞q=1 ⊂ C∞
0 (Ω̄jt\{0}) that con-

verge to Uj and Vjt in H2m
a (Ωj) and H2m

−a+2m(Ωjt) correspondingly. Green
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formula (4.1) is valid for the functions Up
j and V q

jt; passing to the limit as
p, q → ∞, we obtain the Green formula for Uj and Vjt (we can pass to the
limit by virtue of the Schwarz inequality and Theorem B.1).

The following two examples illustrate the Green formula.

Example 4.1. For simplicity we assume that n = 2, N = 1. Put K =
{y : r > 0, b1 < ϕ < b3}, Kt = {y : r > 0, bt < ϕ < bt+1} (t = 1, 2),
γq = {y : r > 0, ϕ = bq} (q = 1, 2, 3), where y = (y1, y2) ∈ R2;
0 < b1 < b2 < b3 < 2π.

Let n1 be the unit normal vector to γ1 directed inside K1 and n2, n3 be
the unit normal vectors to γ2, γ3 correspondingly directed inside K2.

Consider the nonlocal problem

−4U = f(y) (y ∈ K), (4.8)

U |γ1 + αU(χ12r, ϕ + ϕ12)|γ1 = g1(y) (y ∈ γ1),
U |γ3 = g3(y) (y ∈ γ3).

(4.9)

Here U(r, ϕ) is the function U(y) written in the polar coordinates; b1+ϕ12 =
b2, χ12 > 0; α ∈ R.

Take U ∈ C∞
0 (K̄\{0}), Vt ∈ C∞(K̄t\{0}). Multiply −4U by V̄t and

integrate over Kt, t = 1, 2; then using the formula of integration by parts,
we get

∫
K1

(−4U) · V̄1 dy +
∫
γ1

U |γ1 · ∂V̄1
∂n1

∣∣∣
γ1

dγ − ∫
γ2

U |γ2 · ∂V̄1
∂n2

∣∣∣
γ2

dγ =

=
∫

K1

U · (−4V̄1) dy +
∫
γ1

∂U
∂n1

∣∣∣
γ1

· V̄1|γ1 dγ − ∫
γ2

∂U
∂n2

∣∣∣
γ2

· V̄1|γ2 dγ,

∫
K2

(−4U) · V̄2 dy +
∫
γ2

U |γ2 · ∂V̄2
∂n2

∣∣∣
γ2

dγ +
∫
γ3

U |γ3 · ∂V̄2
∂n3

∣∣∣
γ3

dγ =

=
∫

K2

U · (−4V̄2) dy +
∫
γ2

∂U
∂n2

∣∣∣
γ2

· V̄2|γ2 dγ +
∫
γ3

∂U
∂n3

∣∣∣
γ3

· V̄2|γ3 dγ.
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Adding the last two equalities together, we obtain

∑
t

∫
Kt

(−4U) · V̄t dy +
∫
γ1

U |γ1 · ∂V̄1
∂n1

∣∣∣
γ1

dγ+

+
∫
γ3

U |γ3 · ∂V̄2
∂n3

∣∣∣
γ3

dγ +
∫
γ2

U |γ2 ·
(

∂V̄2
∂n2

∣∣∣
γ2

− ∂V̄1
∂n2

∣∣∣
γ2

)
dγ =

=
∑
t

∫
Kt

U · (−4V̄t) dy +
∫
γ1

∂U
∂n1

∣∣∣
γ1

· V̄1|γ1 dγ +
∫
γ3

∂U
∂n3

∣∣∣
γ3

· V̄2|γ3 dγ+

+
∫
γ2

∂U
∂n2

∣∣∣
γ2

· (V̄2|γ2 − V̄1|γ2) dγ.

(4.10)

But we have

∫
γ1

U |γ1 · ∂V̄1
∂n1

∣∣∣
γ1

dγ =
∫
γ1

(U |γ1 + αU(χ12r, ϕ + ϕ12)|γ1) · ∂V̄1
∂n1

∣∣∣
γ1

dγ−

− ∫
γ1

αU(χ12r, ϕ + ϕ12)|γ1 · ∂V̄1
∂n1

∣∣∣
γ1

dγ =

=
∫
γ1

(U |γ1 + αU(χ12r, ϕ + ϕ12)|γ1) · ∂V̄1
∂n1

∣∣∣
γ1

dγ−

− ∫
γ2

U |γ2 · αχ′21
∂V̄1
∂n1

(χ′21r, ϕ + ϕ′21)
∣∣∣
γ2

dγ,

where χ′21 = 1/χ12, ϕ′21 = −ϕ12. This and (4.10) finally yield

∑
t

∫
Kt

(−4U) · V̄t dy +
∫
γ1

(U |γ1 + αU(χ12r, ϕ + ϕ12)|γ1) · ∂V̄1
∂n1

∣∣∣
γ1

dγ+

+
∫
γ3

U |γ3 · ∂V̄2
∂n3

∣∣∣
γ3

dγ +
∫
γ2

∂U
∂n2

∣∣∣
γ2

· (V̄1|γ2 − V̄2|γ2) dγ =

=
∑
t

∫
Kt

U · (−4V̄t) dy +
∫
γ1

∂U
∂n1

∣∣∣
γ1

· V̄1|γ1 dγ +
∫
γ3

∂U
∂n3

∣∣∣
γ3

· V̄2|γ3 dγ+

∫
γ2

U |γ2 ·
(

∂V̄1
∂n2

∣∣∣
γ2

− ∂V̄2
∂n2

∣∣∣
γ2

+ αχ′21
∂V̄1
∂n1

(χ′21r, ϕ + ϕ′21)
∣∣∣
γ2

)
dγ.

Example 4.2. Using denotations of Example 4.1, consider the nonlocal prob-
lem

−4U = f(y) (y ∈ K), (4.11)

∂U
∂n1

|γ1 + α∂U
∂r

(χ12r, ϕ + ϕ12)|γ1 = g1(y) (y ∈ γ1),

∂U
∂n3

|γ3 = g3(y) (y ∈ γ3).
(4.12)
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From formula (4.10) and equality

∫
γ1

∂U
∂n1

∣∣∣
γ1

· V̄1|γ1 dγ =
∫
γ1

(
∂U
∂n1

∣∣∣
γ1

+ α∂U
∂r

(χ12r, ϕ + ϕ12)
∣∣∣
γ1

)
· V̄1|γ1 dγ+

+
∫
γ2

U |γ2 · α(χ′21)
2∂V̄1

∂r
(χ′21r, ϕ + ϕ′21)

∣∣∣
γ2

dγ

(where χ′21 = 1/χ12, ϕ′21 = −ϕ12), we get the following Green formula:

∑
t

∫
Kt

(−4U) · V̄t dy +
∫
γ1

(
∂U
∂n1

∣∣∣
γ1

+ α∂U
∂r

(χ12r, ϕ + ϕ12)
∣∣∣
γ1

)
· (−V̄1)|γ1 dγ+

+
∫
γ3

∂U
∂n3

∣∣∣
γ3

· (−V̄2)|γ3 dγ +
∫
γ2

∂U
∂n2

∣∣∣
γ2

· (V̄1|γ2 − V̄2|γ2) dγ =

=
∑
t

∫
Kt

U · (−4V̄t) dy +
∫
γ1

(−U)|γ1 · ∂V̄1
∂n1

∣∣∣
γ1

dγ +
∫
γ3

(−U)|γ3 · ∂V̄2
∂n3

∣∣∣
γ3

dγ+

+
∫
γ2

U |γ2 ·
(

∂V̄1
∂n2

∣∣∣
γ2

− ∂V̄2
∂n2

∣∣∣
γ2

+ α(χ′21)
2∂V̄1

∂r
(χ′21r, ϕ + ϕ′21)

∣∣∣
γ2

)
dγ.

2 The Green formula with parameter η in plane angles.

For n = 2, j = 1, . . . , N , put

Kj = {y : r > 0, bj1 < ϕ < bj,Rj+1},
Kjt = {y : r > 0, bjt < ϕ < bj,t+1} (t = 1, . . . , Rj),

γjq = {y : r > 0, ϕ = bjq} (q = 1, . . . , Rj + 1).

Replace Dz by η in differential operators and consider the auxiliary non-
local boundary value problem with parameter η ∈ Rn−2 for u = (u1, . . . , uN)

Pj(Dy, η)uj = fj(y) (y ∈ Kj), (4.13)

Bjσµ(Dy, η)u = Bjσµ(Dy, η)uj|γjσ
+

+
∑
k,q,s

(Bjσµkqs(Dy, η)uk)(Gjσkqsy)|γjσ
= gjσµ(y) (y ∈ γjσ) (4.14)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m).

For ujt ∈ C∞
0 (K̄jt\{0}), vjt ∈ C∞(K̄jt\{0}) (or ujt ∈ C∞(K̄jt\{0}), vjt ∈

C∞
0 (K̄jt\{0})), put

(ujt, vjt)Kjt
=

∫

Kjt

ujt · v̄jt dy (j = 1, . . . , N ; t = 1, . . . , Rj).
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For uγjq
∈ C∞

0 (γjq), vγjq
∈ C∞(γjq) (or uγjq

∈ C∞(γjq), vγjq
∈ C∞

0 (γjq)), put

(uγjq
, vγjq

)γjq
=

∫

γjq

uγjq
· v̄γjq

dγ (j = 1, . . . , N ; q = 1, . . . , Rj + 1).

If we have functions vjt(y) defined in Kjt, then denote by vj(y) the function
given by vj(y) ≡ vjt(y) for y ∈ Kjt.

Theorem 4.2. Let Pj, Bjσµ, etc., be the operators from Theorem 4.1. Then
for all uj ∈ C∞

0 (K̄j\{0}), vjt ∈ C∞(K̄jt\{0}) (or uj ∈ C∞(K̄j\{0}), vjt ∈
C∞

0 (K̄jt\{0})), the following Green formula with parameter η is valid:
∑
j

{∑
t

(Pj(Dy, η)uj, vjt)Kjt
+

+
∑
σ,µ

(Bjσµ(Dy, η)u, Fjσµ(Dy, η)vj|γjσ
)γjσ

+

+
∑
q,µ

(Bjqµ(Dy, η)uj|γjq
, Tjqµ(Dy, η)v)γjq

}
=

=
∑
j

{∑
t

(uj, Qj(Dy, η)vjt)Kjt
+

+
∑
σ,µ

(B′
jσµ(Dy, η)uj|γjσ

, Cjσµ(Dy, η)vj|γjσ
)γjσ

+

+
∑
q,µ

(B′
jqµ(Dy, η)uj|γjq

, Tjq,m+µ(Dy, η)v)γjq

}
.

(4.15)

Here Bjσµ(Dy, η) is given by (4.14);

Tjqν(Dy, η)v = Tjqν(Dy, η)vj,q−1|γjq
− Tjqν(Dy, η)vjq|γjq

+
+

∑
k,σ,s

(Tjqνkσs(Dy, η)vk)(G ′jqkσsy)|γjq

(ν = 1, . . . , 2m);

G ′jqkσs is the transformation defined in Theorem 4.1.

Proof. Introduce the functions ψ1, ψ2 ∈ C∞
0 (Rn−2) such that

ψ1(z) = 0 for |z| > 1,

∫

Rn−2

ψ1(z)dz = 1,

ψ2(z) = 1 for |z| < 1, ψ2(z) = 0 for |z| > 2.

Substituting Uj(y, z) = ei(η, z)ψ1(z)uj(y), Vjt(y, z) = ei(η, z)ψ2(z)vjt(y) into
equality (4.1), we get (4.15).
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Remark 4.2. Replacing in Remark 4.1 H2m
a (·) and H2m

−a+2m(·) by E2m
a (·)

and E2m
−a+2m(·) correspondingly and Theorem B.1 by Theorem B.2, we see

that formula (4.15) can be extended by continuity for the case uj ∈ E2m
a (Kj),

vjt ∈ E2m
−a+2m(Kjt).

3 The Green formula with parameter λ on arcs.

Put Πj = {(ϕ, τ) : bj1 < ϕ < bj,Rj+1, τ ∈ R}, Πjt = {(ϕ, τ) : bjt < ϕ <
bj,t+1, τ ∈ R} (t = 1, . . . , Rj).

For ujt ∈ C∞
0 (Π̄jt), vjt ∈ C∞(Π̄jt) (or ujt ∈ C∞(Π̄jt), vjt ∈ C∞

0 (Π̄jt)),
denote

(ujt, vjt)Πjt
=

∞∫
−∞

bj,t+1∫
bjt

ujt(ϕ, τ) · vjt(ϕ, τ) dϕdτ

(j = 1, . . . , N ; t = 1, . . . , Rj).

For ψ ∈ C∞
0 (R), ξ ∈ C∞(R) (or ψ ∈ C∞(R), ξ ∈ C∞

0 (R)), denote (ψ, ξ)R =
∞∫
−∞

ψ(τ) · ξ(τ) dτ. For Ũjt, Ṽjt ∈ C∞([bjt, bj,t+1]), we also denote

(Ũjt, Ṽjt)(bjt, bj,t+1) =

bj,t+1∫

bjt

Ũjt(ϕ)·Ṽjt(ϕ) dϕ (j = 1, . . . , N ; t = 1, . . . , Rj).

And finally for d, e ∈ C, we put (d, e)C = d · ē.
If we have functions Ṽjt(ϕ) defined in [bjt, bj,t+1], then denote by Ṽj(ϕ)

the function given by Ṽj(ϕ) ≡ Ṽjt(ϕ) for ϕ ∈ (bjt, bj,t+1).
Put Dz = 0 and write the differential operators in the polar coordinates:

Pj(Dy, 0) = r−2mP̃j(ϕ, Dϕ, rDr), Bjσµ(Dy, 0) = r−mjσµB̃jσµ(ϕ, Dϕ, rDr),
ets.

Consider nonlocal boundary value problem (2.3), (2.4) with parameter λ.

Theorem 4.3. Let Pj, Bjσµ, etc., be the operators from Theorem 4.1. Then
for all Ũj ∈ C∞([bj1, bj,Rj+1]), Ṽjt ∈ C∞([bjt, bj,t+1]), the following Green
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formula with parameter λ is valid:

∑
j

{∑
t

(P̃j(ϕ, Dϕ, λ)Ũj, Ṽjt)(bjt, bj,t+1)+

+
∑
σ,µ

(B̃jσµ(ϕ, Dϕ, λ)Ũ , F̃jσµ(ϕ, Dϕ, λ′)Ṽj|ϕ=bjσ
)C+

+
∑
q,µ

(B̃jqµ(ϕ, Dϕ, λ)Ũj|ϕ=bjq
, T̃jqµ(ϕ, Dϕ, λ′)Ṽ )C

}
=

=
∑
j

{∑
t

(Ũj, Q̃j(ϕ, Dϕ, λ′)Ṽjt)(bjt, bj,t+1)+

+
∑
σ,µ

(B̃′
jσµ(ϕ, Dϕ, λ)Ũj|ϕ=bjσ

, C̃jσµ(ϕ, Dϕ, λ′)Ṽj|ϕ=bjσ
)C+

+
∑
q,µ

(B̃′
jqµ(ϕ, Dϕ, λ)Ũj|ϕ=bjq

, T̃jq,m+µ(ϕ, Dϕ, λ′)Ṽ )C
}
.

(4.16)

Here B̃jσµ(ϕ, Dϕ, λ) is given by (2.4);

T̃jqν(ϕ, Dϕ, λ′)Ṽ = T̃jqν(ϕ, Dϕ, λ′)Ṽj,q−1(ϕ)|ϕ=bjq
−

−T̃jqν(ϕ, Dϕ, λ′)Ṽjq(ϕ)|ϕ=bjq
+

+
∑
k,σ,s

e(iλ′−(ν−1)) ln χ′jqkσsT̃jqνkσs(ϕ, Dϕ, λ′)Ṽk(ϕ + ϕ′jqkσ)|ϕ=bjq
;

λ′ = λ̄−2i(m−1); ϕ′jqkσ and χ′jqkσs are the rotation angles and the expansion
coefficients correspondingly defined in Theorem 4.1.

Proof. Put r = eτ , vjt = r2m−2wjt, wj(ϕ, τ) ≡ wjt(ϕ, τ) for (ϕ, τ) ∈ Πjt.
Then from formula (4.15) for η = 0, we obtain

∑
j

{∑
t

(
P̃j(ϕ, Dϕ, Dτ )uj, wjt

)
Πjt

+

+
∑
σ,µ

(
B̃jσµ(ϕ, Dϕ, Dτ )u, F̃jσµ(ϕ, Dϕ, Dτ − 2i(m− 1))wj|ϕ=bjσ

)
R
+

+
∑
q,µ

(
B̃jqµ(ϕ, Dϕ, Dτ )uj|ϕ=bjσ

, T̃jqµ(ϕ, Dϕ, Dτ − 2i(m− 1))w
)
R

}
=

=
∑
j

{∑
t

(
uj, Q̃j(ϕ, Dϕ, Dτ − 2i(m− 1))wjt

)
Πjt

+

∑
σ,µ

(
B̃′

jσµ(ϕ, Dϕ, Dτ )uj|ϕ=bjσ
, C̃jσµ(ϕ, Dϕ, Dτ − 2i(m− 1))wj|ϕ=bjσ

)
R
+

+
∑
q,µ

(
B̃′

jqµ(ϕ, Dϕ, Dτ )wj|ϕ=bjq
, T̃jq,m+µ(ϕ, Dϕ, Dτ − 2i(m− 1))w

)
R

}
,

(4.17)

26



where

B̃jσµ(ϕ, Dϕ, Dτ )u = B̃jσµ(ϕ, Dϕ, Dτ )uj|ϕ=bjσ
+

+
∑
k,q,s

e−mjσµ ln χjσkqsB̃jσµkqs(ϕ, Dϕ, Dτ )uk(ϕ + ϕjσkq, τ + ln χjσkqs)|ϕ=bjσ
,

T̃jqν(ϕ, Dϕ, Dτ − 2i(m− 1))w =

= T̃jqν(ϕ, Dϕ, Dτ − 2i(m− 1))wj,q−1|ϕ=bjq
−

−T̃jqν(ϕ, Dϕ, Dτ − 2i(m− 1))wjq|ϕ=bjq
+

∑
k,σ,s

e(2(m−1)−(ν−1)) ln χ′jqkσs×
×T̃jqνkσs(ϕ, Dϕ, Dτ − 2i(m− 1))wk(ϕ + ϕ′jqkσ, τ + ln χ′jqkσs)|ϕ=bjq

.

Introduce the functions ψ1, ψ2 ∈ C∞
0 (R) such that

ψ1(τ) = 0 for |τ | > 1,

∞∫

−∞

ψ1(τ)dτ = 1,

ψ2(τ) = 1 for |τ | < 1, ψ2(τ) = 0 for |τ | > 2.

Substituting uj(ϕ, τ) = eiλτψ1(τ)Ũj(ϕ), wjt(ϕ, τ) = eiλ̄τψ2(τ)Ṽjt(ϕ) into
equality (4.17), we obtain (4.16).

Remark 4.3. Formula (4.16) can be extended by continuity for the case
Ũj ∈ W 2m(bj1, bj,Rj+1), Ṽjt ∈ W 2m(bjt, bj,t+1) (see remark 2.2 [12, Chapter
2, §2.3]).

5 Nonlocal elliptic transmission problems.

Reduction to problems with homogeneous

nonlocal and boundary conditions

1 Nonlocal problems in dihedral angles.

Put V = (V1, . . . , VN), f = (f1, . . . , fN). Here the functions Vj(x) (fj(x))
are defined in Ωj (j = 1, . . . , N). As before, we shall denote by Vjt (fjt) the
restriction of Vj (fj) to Ωjt. Then we see that Green formula (4.1) generates
the problem, which is formally adjoint to problem (1.1), (1.2)

Qj(Dy, Dz)Vjt = fjt(x) (x ∈ Ωjt; t = 1, . . . , Rj), (5.1)
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Cj1µ(Dy, Dz)V = Cj1µ(Dy, Dz)Vj1(x)|Γj1
= gj1µ(x) (x ∈ Γj1),

Cj,Rj+1,µ(Dy, Dz)V = Cj,Rj+1,µ(Dy, Dz)VjRj
(x)|Γj,Rj+1

=

= gj,Rj+1,µ(x) (x ∈ Γj,Rj+1),

(5.2)

Tjqν(Dy, Dz)V = Tjqν(Dy, Dz)Vj,q−1(x)|Γjq
− Tjqν(Dy, Dz)Vjq(x)|Γjq

+
+

∑
k,σ,s

(Tjqνkσs(Dy, Dz)Vk)(G ′jqkσsy, z)|Γjq
= hjqν(x) (x ∈ Γjq)

(5.3)
(j = 1, . . . , N ; µ = 1, . . . , m; q = 2, . . . , Rj; ν = 1, . . . , 2m).

Here Qj is formally adjoint to Pj; the operators Cjσµ, Tjqν , Tjqνkσs are of
orders m′

jσµ, ν − 1, ν − 1 correspondingly; G ′jqkσs is the operator of rotation
by the angle ϕ′jqkσ = −ϕkσjq and expansion by χ′jqkσs = 1/χkσjqs times in
the plane {y} such that bjq + ϕ′jqkσ = bkσ, 0 < χ′jqkσs; j, k = 1, . . . , N ;
q = 2, . . . , Rj; σ = 1, Rk + 1; s = 1, . . . , S ′jqkσ = Skσjq.

Problem (5.1)–(5.3) is a system of R1+· · ·+RN equations for functions Vjt

with boundary conditions (5.2) and nonlocal transmission conditions (5.3).
We shall say that problem (5.1)–(5.3) is a nonlocal transmission problem.

Let us write the nonlocal transmission problems, which are formally ad-
joint to nonlocal boundary value problems of Examples 4.1 and 4.2.

Example 5.1. From Example 4.1, it follows that the problem

−4Vt = ft(y) (y ∈ Kt; t = 1, 2),

V1|γ1 = g1(y) (y ∈ γ1),
V2|γ3 = g3(y) (y ∈ γ3),

V1|γ2 − V2|γ2 = h21(y) (y ∈ γ2),
∂V1
∂n2

∣∣∣
γ2

− ∂V2
∂n2

∣∣∣
γ2

+ αχ′21
∂V1
∂n1

(χ′21r, ϕ + ϕ′21)
∣∣∣
γ2

= h22(y) (y ∈ γ2)

is formally adjoint to problem (4.8), (4.9).

Example 5.2. From Example 4.2, it follows that the problem

−4Vt = ft(y) (y ∈ Kt; t = 1, 2),

∂V1
∂n1

∣∣∣
γ1

= g1(y) (y ∈ γ1),

∂V2
∂n3

∣∣∣
γ1

= g3(y) (y ∈ γ3),
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V1|γ2 − V2|γ2 = h21(y) (y ∈ γ2),
∂V1
∂n2

∣∣∣
γ2

− ∂V2
∂n2

∣∣∣
γ2

+ α(χ′21)
2∂V1

∂r
(χ′21r, ϕ + ϕ′21)

∣∣∣
γ2

= h22(y) (y ∈ γ2)

is formally adjoint to problem (4.11), (4.12).

From Theorem 4.1, it follows that the following conditions hold (see [12,
Chapter 2, §§1.2, 1.4]).

Condition 5.1. For all j = 1, . . . , N , the operators Qj(Dy, Dz) are prop-
erly elliptic.

Condition 5.2. For all j = 1, . . . , N ; σ = 1, Rj + 1, the system
{Cjσµ(Dy, Dz)}m

µ=1 is normal and covers the operator Qj(Dy, Dz) on Γjσ.

Condition 5.3. For all j = 1, . . . , N ; q = 2, . . . , Rj, the system
{Tjqν(Dy, Dz)}2m

ν=1 is normal on Γjq.

Remark 5.1. One can easily prove that under condition 5.3, the system
{Tjqν(Dy, Dz), Tjqν(Dy, Dz)}2m

ν=1 jointly covers the operator Qj(Dy, Dz) on
Γjq in the sense of [9].

Consider the space Hl
a(Ωj) =

Rj⊕
t=1

H l
a(Ωjt) with the norm ‖Vj‖Hl

a(Ωj) =

(
Rj∑
t=1

‖Vjt‖2
Hl

a(Ωjt)

)1/2

.

Introduce the spaces of vector–functions

Hl+2m, N
a (Ω) =

N∏
j=1

Hl+2m
a (Ωj), Hl, N

a (Ω, Γ) =
N∏

j=1

Hl
a(Ωj, Γj),

Hl
a(Ωj, Γj) = Hl

a(Ωj)×
×∏

σ=1, Rj+1

∏m
µ=1 H

l+2m−m′
jσµ−1/2

a (Γjσ)×∏Rj

q=2

∏2m
ν=1 H

l+2m−ν+1/2
a (Γjq).

We study solutions V = (V1, . . . , VN) ∈ Hl+2m, N
a (Ω) for problem (5.1)–

(5.3) supposing that f = {fj, gjσµ, hjqν} ∈ Hl, N
a (Ω, Γ). Introduce the

bounded operator M : Hl+2m, N
a (Ω) → Hl, N

a (Ω, Γ) corresponding to prob-
lem (5.1)–(5.3) and given by

MV = {Wj, Cjσµ(Dy, Dz)V, Tjqν(Dy, Dz)V }
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Here Cjσµ(Dy, Dz)V and Tjqν(Dy, Dz)V are given by (5.2) and (5.3) corre-
spondingly; Wj(x) ≡ Qj(Dy, Dz)Vjt(x) for x ∈ Ωjt. (Notice that we cannot
write Wj ≡ Qj(Dy, Dz)Vj for x ∈ Ωj because Vj ∈ Hl+2m

a (Ωj) may have
discontinuity on Γjq, q = 2, . . . , Rj.)

Lemma 5.1. For any gjσµ ∈ H
l+2m−m′

jσµ−1/2
a (Γjσ), hjqν ∈ H

l+2m−ν+1/2
a (Γjq)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m; q = 2, . . . , Rj; ν =
1, . . . , 2m), there exists a vector–function V ∈ Hl+2m, N

a (Ω) such that

Cjσµ(Dy, Dz)V = gjσµ(x) (x ∈ Γjσ), Tjqν(Dy, Dz)V = hjqν(x) (x ∈ Γjq),

‖V ‖Hl+2m, N
a (Ω) ≤ c

∑
j

{∑
σ, µ

‖gjσµ‖
H

l+2m−m′
jσµ

−1/2

a (Γjσ)
+

+
∑
q, ν

‖hjqν‖H
l+2m−ν+1/2
a (Γjq)

}
,

where c > 0 is independent of gjσµ, hjqν .

Proof. By virtue of condition 5.2 and lemma 3.1 [7], there exists a vector–
function W ∈ H l+2m, N

a (Ω) such that

Cjσµ(Dy, Dz)W = gjσµ(x) (x ∈ Γjσ), (5.4)

‖W‖Hl+2m, N
a (Ω) ≤ k1

∑
j, σ, µ

‖gjσµ‖
H

l+2m−m′
jσµ

−1/2

a (Γjσ)
. (5.5)

By virtue of condition 5.3 and lemma 3.1 [7], for all j = 1, . . . , N and
q = 2, . . . , Rj there exists a function Ŵj,q−1 ∈ H l+2m

a (Ωj,q−1) such that

Tjqν(Dy, Dz)Ŵj,q−1(x)|Γjq
= hjqν(x)−

− ∑
k, σ, s

(Tjqνkσs(Dy, Dz)Wk)(G ′jqkσsy, z)|Γjq
(x ∈ Γjq), (5.6)

‖Ŵj,q−1‖Hl+2m
a (Ωj,q−1) ≤ k2

∑
ν

‖hjqν(x)−
− ∑

k, σ, s

(Tjqνkσs(Dy, Dz)Wk)(G ′jqkσsy, z)|Γjq
‖

H
l+2m−ν+1/2
a (Γjq)

.
(5.7)

Since the functions ζjq defined by formula (3.4) are the multiplicators in
the spaces Hl+2m

a (Ωj), from (5.4)–(5.7), it follows that the functions

Vj(x) =





ζj1Wj1(x) + ζj2Ŵj1(x) for x ∈ Ωj1,

ζj,t+1Ŵjt(x) for x ∈ Ωjt (t = 2, . . . , Rj − 1),
ζj,Rj+1WjRj

(x) for x ∈ ΩjRj

satisfy the conditions of the Lemma.
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2 Nonlocal problems with parameter θ in plane angles.

Put v = (v1, . . . , vN), f = (f1, . . . , fN). Here the functions vj(y) (fj(y))
are defined in Kj (j = 1, . . . , N). As before, we shall denote by vjt (fjt)
the restriction of vj (fj) to Kjt. Then we see that Green formula (4.15) (for
η = θ ∈ Sn−3 = {z ∈ Rn−2 : |z| = 1}) generates the problem, which is
formally adjoint to problem (1.6), (1.7)

Qj(Dy, θ)vjt = fjt(y) (y ∈ Kjt; t = 1, . . . , Rj), (5.8)

Cj1µ(Dy, θ)v = Cj1µ(Dy, θ)vj1(y)|γj1
= gj1µ(y) (y ∈ γj1),

Cj,Rj+1,µ(Dy, θ)v = Cj,Rj+1,µ(Dy, θ)vjRj
(y)|γj,Rj+1

=

= gj,Rj+1,µ(y) (y ∈ γj,Rj+1),

(5.9)

Tjqν(Dy, θ)v = Tjqν(Dy, θ)vj,q−1(y)|γjq
− Tjqν(Dy, θ)vjq(y)|γjq

+
+

∑
k,σ,s

(Tjqνkσs(Dy, θ)vk)(G ′jqkσsy)|γjq
= hjqν(y) (y ∈ γjq) (5.10)

(j = 1, . . . , N ; µ = 1, . . . , m; q = 2, . . . , Rj; ν = 1, . . . , 2m).

It is easy to see that problem (5.8)–(5.10) can be also obtained from prob-
lem (5.1)–(5.3) by substituting θ for Dz.

Consider the space Hl
a(Kj) =

Rj⊕
t=1

H l
a(Kjt) with the norm ‖vj‖Hl

a(Kj) =

(
Rj∑
t=1

‖vjt‖2
Hl

a(Kjt)

)1/2

and the space E l
a(Kj) =

Rj⊕
t=1

El
a(Kjt) with the norm

‖vj‖El
a(Kj) =

(
Rj∑
t=1

‖vjt‖2
El

a(Kjt)

)1/2

.

Introduce the spaces of vector–functions

E l+2m, N
a (K) =

N∏
j=1

E l+2m
a (Kj), E l, N

a (K, γ) =
N∏

j=1

E l
a(Kj, γj),

E l
a(Kj, γj) = E l

a(Kj)×
×∏

σ=1, Rj+1

∏m
µ=1 E

l+2m−m′
jσµ−1/2

a (γjσ)×∏Rj

q=2

∏2m
ν=1 E

l+2m−ν+1/2
a (γjq).

We study solutions v = (v1, . . . , vN) ∈ E l+2m, N
a (Ω) for problem (5.8)–(5.10)

supposing that f = {fj, gjσµ, hjqν} ∈ E l, N
a (Ω, Γ). Introduce the bounded
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operator M(θ) : E l+2m, N
a (Ω) → E l, N

a (Ω, Γ) corresponding to problem (5.8)–
(5.10) and given by

Mv = {wj, Cjσµ(Dy, θ)v, Tjqν(Dy, θ)v}.

Here Cjσµ(Dy, θ)v and Tjqν(Dy, θ)v are given by (5.9) and (5.10) correspond-
ingly; wj(y) ≡ Qj(Dy, θ)vjt(y) for y ∈ Kjt.

Repeating the proof of Lemma 5.1, from lemma 3.1′ [7], we get the fol-
lowing statement.

Lemma 5.2. For any gjσµ ∈ E
l+2m−m′

jσµ−1/2
a (γjσ), hjqν ∈ E

l+2m−ν+1/2
a (γjq)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m; q = 2, . . . , Rj; ν =
1, . . . , 2m) there exists a vector–function v ∈ E l+2m, N

a (Ω) such that

Cjσµ(Dy, θ)v = gjσµ(y) (y ∈ γjσ), Tjqν(Dy, θ)v = hjqν(y) (y ∈ γjq),

‖v‖El+2m, N
a (Ω) ≤ c

∑
j

{∑
σ, µ ‖gjσµ‖

E
l+2m−m′

jσµ
−1/2

a (γjσ)
+

+
∑

q, ν ‖hjqν‖E
l+2m−ν+1/2
a (γjq)

}
,

where c > 0 is independent of gjσµ, hjqν , θ.

6 Solvability of nonlocal transmission prob-

lems in plane angles

The results of this section are analogous to those of §2. We shall need these
results for obtaining a priori estimates of solutions to nonlocal transmission
problems in dihedral angles in §7.

1 Reduction of nonlocal problems in plane angles to nonlocal
problems on arcs.

Consider the nonlocal transmission problem for a vector–function V =
(V1, . . . , VN) ∈ Hl+2m, N

a (K)

Qj(Dy, 0)Vjt = fjt(y) (y ∈ Kjt; t = 1, . . . , Rj), (6.1)
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Cj1µ(Dy, 0)V = Cj1µ(Dy, 0)Vj1(y)|γj1
= gj1µ(y) (y ∈ γj1),

Cj,Rj+1,µ(Dy, 0)V = Cj,Rj+1,µ(Dy, 0)VjRj
(y)|γj,Rj+1

=

= gj,Rj+1,µ(y) (y ∈ γj,Rj+1),

(6.2)

Tjqν(Dy, 0)V = Tjqν(Dy, 0)Vj,q−1(y)|γjq
− Tjqν(Dy, 0)Vjq(y)|γjq

+
+

∑
k,σ,s

(Tjqνkσs(Dy, 0)Vk)(G ′jqkσsy)|γjq
= hjqν(y) (y ∈ γjq) (6.3)

(j = 1, . . . , N ; µ = 1, . . . , m; q = 2, . . . , Rj; ν = 1, . . . , 2m),

where f = {fj, gjσµ, hjqν} ∈ Hl, N
a (K, γ).

Put formally Dz = 0 and write the differential operators in the po-
lar coordinates: Qj(Dy, 0) = r−2mQ̃j(ϕ, Dϕ, rDr), Cjσµ(Dy, 0) =

r−m′
jσµC̃jσµ(ϕ, Dϕ, rDr), Tjqν(Dy, 0) = r−ν+1T̃jqν(ϕ, Dϕ, rDr),

Tjqνkσs(Dy, 0) = r−ν+1T̃jqνkσs(ϕ, Dϕ, rDr).
Put τ = ln r and do the Fourier transform with respect to τ ; then

from (6.1)–(6.3), we get

Q̃j(ϕ, Dϕ, λ)Ṽjt(ϕ, λ) = F̃jt(ϕ, λ) (ϕ ∈ (bjt, bj,t+1); t = 1, . . . , Rj),
(6.4)

C̃j1µ(ϕ, Dϕ, λ)Ṽ (ϕ, λ) = C̃j1µ(ϕ, Dϕ, λ)Ṽj1(ϕ, λ)|ϕ=bj1
=

= G̃j1µ(λ),

C̃j,Rj+1,µ(ϕ, Dϕ, λ)Ṽ (ϕ, λ) = C̃j,Rj+1,µ(ϕ, Dϕ, λ)ṼjRj
(ϕ, λ)|ϕ=bj,Rj+1

=

= G̃j,Rj+1,µ(λ),
(6.5)

T̃jqν(ϕ, Dϕ, λ)Ṽ (ϕ, λ) = T̃jqν(ϕ, Dϕ, λ)Ṽj,q−1(ϕ, λ)|ϕ=bjq
−

−T̃jqν(ϕ, Dϕ, λ)Ṽjq(ϕ, λ)|ϕ=bjq
+

+
∑
k,σ,s

e(iλ−(ν−1)) ln χ′jqkσsT̃jqνkσs(ϕ, Dϕ, λ)Ṽk(ϕ + ϕ′jqkσ, λ)|ϕ=bjq
= H̃jqν(λ)

(6.6)
(j = 1, . . . , N ; µ = 1, . . . , m; q = 2, . . . , Rj; ν = 1, . . . , 2m).

Here Fjt(ϕ, τ) = e2mτfjt(ϕ, τ), Gjσµ(τ) = em′
jσµτgjσµ(τ); Hjqν(τ) =

e(ν−1)τhjqν(τ); Ṽjt, F̃jt, G̃jσµ, and H̃jqν are the Fourier transforms of Vjt,
Fjt, Gjσµ, and Hjqν correspondingly.

This problem is a system of R1 + · · · + RN ordinary differential equa-
tions (6.4) for the functions Ṽjt ∈ W l+2m(bjt, bj,t+1) with boundary condi-
tions (6.5) and nonlocal transmission conditions (6.6) connecting jumps of the
functions Ṽj and their derivatives at the points of the intervals (bj1, bj,Rj+1)

with values of the functions Ṽk1 and Ṽk,Rk+1 and their derivatives at the points
ϕ = bk1 and ϕ = bk,Rk+1 correspondingly.
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Notice that problem (6.4)–(6.6) is formally adjoint to problem (2.3), (2.4)
with respect to Green formula (4.16).

2 Solvability of nonlocal problems with parameter λ on arcs.

Consider the space W l(bj1, bj,Rj+1) =
Rj⊕
t=1

W l(bjt, bj,t+1) with the norm

‖Ṽj‖Wl(bj1, bj,Rj+1) =

(
Rj∑
t=1

‖Ṽjt‖2
W l(bjt, bj,t+1)

)1/2

. Introduce the spaces of

vector–functions

W l+2m, N(b1, b2) =
N∏

j=1

W l+2m(bj1, bj,Rj+1),

W l, N [b1, b2] =
N∏

j=1

W l[bj1, bj,Rj+1],

W l[bj1, bj,Rj+1] = W l(bj1, bj,Rj+1)× Cm × Cm ×
Rj∏
q=2

C2m.

Introduce the equivalent norms depending on the parameter λ (|λ| ≥ 1) in
the Hilbert spaces W l(bj1, bj,Rj+1) and W l[bj1, bj,Rj+1]:

|||Ṽj|||Wl(bj1, bj,Rj+1) =
(‖Ṽj‖2

Wl(bj1, bj,Rj+1)
+ |λ|2l ‖Ṽj‖2

L2(bj1, bj,Rj+1)

)1/2
,

|||{F̃j, G̃jσµ, H̃jqν}|||Wl[bj1, bj,Rj+1] =
(
|||F̃j|||2Wl(bj1, bj,Rj+1)

+

+
∑
σ, µ

(1 + |λ|2(l+2m−m′
jσµ−1/2))|G̃jσµ|2 +

∑
q, ν

(1 + |λ|2(l+2m−ν+1/2))|H̃jqν |2
)1/2

,

where Ṽj ∈ W l(bj1, bj,Rj+1), {F̃j, G̃jσµ, H̃jqν} ∈ W l[bj1, bj,Rj+1]. And there-
fore we have

|||Ṽ |||W l+2m, N (b1, b2) =
(∑

j

|||Ṽj|||2Wl+2m(bj1, bj,Rj+1)

)1/2

,

|||Φ̃|||Wl, N [b1, b2] =
(∑

j

|||Φ̃j|||2Wl[bj1, bj,Rj+1]

)1/2

,
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where Ṽ = (Ṽ1, . . . , ṼN) ∈ W l+2m, N(b1, b2), Φ̃ = (Φ̃1, . . . , Φ̃N) ∈
W l, N [b1, b2].

Consider the operator–valued function M̃(λ) : W l+2m, N(b1, b2) →
W l, N [b1, b2] corresponding to problem (6.4)–(6.6) and given by

M̃(λ)Ṽ = {W̃j, C̃jσµ(ϕ, Dϕ, λ)Ṽ , T̃jqν(ϕ, Dϕ, λ)Ṽ }.

Here C̃jσµ(ϕ, Dϕ, λ)Ṽ and T̃jqν(ϕ, Dϕ, λ)Ṽ are given by (6.5) and (6.6)
correspondingly; W̃j(ϕ) = Q̃j(ϕ, Dϕ, λ)Ṽjt(ϕ) for ϕ ∈ (bjt, bj,t+1).

Lemma 6.1. For all λ ∈ C, the operator M̃(λ) : W l+2m, N(b1, b2) →
W l, N [b1, b2] is Fredholm, indM̃(λ) = 0; for any h ∈ R, there exists a q0 > 0
such that for λ ∈ Jh, q0 = {λ ∈ C : Im λ = h, |Re λ| ≥ q0}, the operator
M̃(λ) has the bounded inverse M̃−1(λ) : W l, N [b1, b2] → W l+2m, N(b1, b2)
and

|||M̃−1(λ)Φ̃|||Wl+2m, N (b1, b2) ≤ c|||Φ̃|||Wl, N [b1, b2] (6.7)

for all Φ̃ ∈ W l, N [b1, b2], where c > 0 is independent of λ and Φ̃; the operator–
valued function M̃−1(λ) : W l, N [b1, b2] → W l+2m, N(b1, b2) is finitely mero-
morphic.

Proof. If

T̃jqν(ϕ, Dϕ, λ)Ṽ (ϕ, λ) = T̃jqν(ϕ, Dϕ, λ)Ṽj,q−1(ϕ, λ)|ϕ=bjq
−

−T̃jqν(ϕ, Dϕ, λ)Ṽjq(ϕ, λ)|ϕ=bjq

(i.e., if the operators Tjqνkσs(ϕ, Dϕ, rDr) corresponding to the nonlocal terms
are absent), then we denote by M̃0(λ) the operator M̃(λ). Following the
scheme developed by M.S. Agranovich and M.I. Vishik in [13] (see also [10,
§5]), one can show that there exist 0 < ε1 < π/2 and q1 > 0 such that for

λ ∈ Qε1,q1 = {λ : |λ| ≥ q1, | arg λ| ≤ ε1} ∪ {λ : |λ| ≥ q1, | arg λ− π| ≤ ε1},

there exists the bounded inverse operator M̃−1
0 (λ); moreover, for all Φ̃ ∈

W l, N [b1, b2],

|||M̃−1
0 (λ)Φ̃|||Wl+2m, N (b1, b2) ≤ k1|||Φ̃|||Wl, N [b1, b2]. (6.8)

Here k1 > 0 is independent of λ and Φ̃.
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Consider the operator M̃t(λ) = M̃0(λ) + t(M̃(λ) − M̃0(λ)), 0 ≤ t ≤ 1.
We shall prove that for any h ∈ R, there exists a q0 > 0 such that if λ ∈ Jh,q0

and 0 ≤ t ≤ 1, then we have

k2|||M̃t(λ)Ṽ |||Wl, N [b1, b2] ≤ |||Ṽ |||Wl+2m, N (b1, b2) ≤ k3|||M̃t(λ)Ṽ |||Wl, N [b1, b2]

(6.9)
for all Ṽ ∈ W l+2m, N(b1, b2). Here k2, k3 > 0 are independent of λ, t and V.

Denote M̃t(λ)Ṽ = Φ̃; then we have

M̃0(λ)Ṽ = Φ̃ + Ψ̃,

where

Ψ̃ = {0, 0, −t
∑

k, σ, s

e(iλ−(ν−1)) ln χ′jqkσsT̃jqνkσs(ϕ, Dϕ, λ)Ṽk(ϕ+ϕ′jqkσ, λ)|ϕ=bjq
}.

By virtue of (6.8), we have

|||Ṽ |||Wl+2m, N (b1, b2) ≤ k1|||Φ̃ + Ψ̃|||Wl, N [b1, b2]. (6.10)

Take ε > 0 from formula (3.3) and a q0 ≥ q1 such that Jh,q0 ⊂ Qε1,q1 . Then
using inequalities (1.3), (1.4), we get

Ijqνk1s = (1 + |λ|l+2m−ν+1/2)
∣∣∣e(iλ−(ν−1)) ln χ′jqk1s×

×T̃jqνk1s(ϕ, Dϕ, λ)Ṽk(ϕ + ϕ′jqk1)|ϕ=bjq

∣∣∣ ≤
k4|λ|l+2m−ν

{‖T̃jqνk1s(ϕ, Dϕ, λ)Ṽk1‖W 1(bk1, bk1+ε/2)+

|λ| ‖T̃jqνk1s(ϕ, Dϕ, λ)Ṽk1‖L2(bk1, bk1+ε/2)

} ≤ k5|||Ṽk1|||W l+2m(bk1, bk1+ε/2).
(6.11)

If ε1 is sufficiently small and q1 is sufficiently large, then from inequal-
ity (6.11), theorem 4.1 [13, Chapter 1, §4], Leibniz’ formula, and interpolation
inequality (1.3), we obtain

Ijqνk1s ≤ k5|||ζk1Ṽk1|||W l+2m(bk1, bk1+ε/2) ≤ k6

(|||Q̃k(ζk1Ṽk1)|||W l(bk1, bk2)+

+
m∑

µ=1

(1 + |λ|l+2m−m′
k1µ−1/2)

∣∣∣C̃k1µ(ϕ, Dϕ, λ)Ṽk1(ϕ)|ϕ=bk1

∣∣∣
) ≤

≤ k7

(|||Q̃kṼk1|||W l(bk1, bk2) + |λ|−1|||Ṽk1|||W l+2m(bk1, bk2)+

+
m∑

µ=1

(1 + |λ|l+2m−m′
k1µ−1/2)|C̃k1µ(ϕ, Dϕ, λ)Ṽk1(ϕ)|ϕ=bk1

|).
(6.12)
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Similarly to (6.11), (6.12), one can estimate

Ijqνk,Rk+1,s = (1 + |λ|l+2m−ν+1/2)×
×

∣∣∣e(iλ−(ν−1)) ln χ′jqk,Rk+1,sT̃jqνk,Rk+1,s(ϕ, Dϕ, λ)Ṽk(ϕ + ϕ′jqk,Rk+1)|ϕ=bjq

∣∣∣ :

Ijqνk,Rk+1,s ≤ k8

(|||Q̃kṼkRk
|||W l(bkRk

, bk,Rk+1)+

+|λ|−1|||ṼkRk
|||W l+2m(bkRk

, bkRk+1)+

+
m∑

µ=1

(1 + |λ|l+2m−m′
k,Rk+1,µ−1/2

)|C̃k,Rk+1,µ(ϕ, Dϕ, λ)ṼkRk
(ϕ)|ϕ=bk,Rk+1

|).
(6.13)

Now if q0 is sufficiently large, then (6.10), (6.12), and (6.13) imply right-
hand side of inequality (6.9). Left-hand side of inequality (6.9) is obvious.
Using a standard method of continuation with respect to parameter t (see
the proof of theorem 7.1 [14, Chapter 2, §7]), inequality (6.9) and existence
of a bounded inverse operator M̃−1

0 (λ) for λ ∈ Qε1,q1 , one can easily see that
for λ ∈ Jh,q0 , the operator M̃(λ) also has a bounded inverse and (6.7) holds.

Let us prove that the operator M̃(λ) is Fredholm. For λ0 ∈ Qε1,q1 , we
have

M̃(λ)M̃−1
0 (λ0) = I + (M̃(λ)− M̃0(λ0))M̃−1

0 (λ0),

where I is the identity operator in W l, N [b1, b2]. Since the operators
Q̃j(ϕ, Dϕ, λ) contain the parameter λ only in junior terms, the operator

M̃(λ)− M̃0(λ0) : W l+2m, N(b1, b2) →W l+1, N [b1, b2]

is bounded for every fixed λ ∈ C. Hence from the compactness of the imbed-
ding operator of W l+1(bjt, bj,t+1) into W l(bjt, bj,t+1), it follows that the op-
erator

(M̃(λ)− M̃0(λ0))M̃−1
0 (λ0) : W l, N [b1, b2] →W l, N [b1, b2]

is compact. Thus by theorem 15.1 [15, §15], the operator M̃(λ) is Fredholm
and indM̃(λ) = 0 for all λ ∈ C.

From this, from existence of the bounded inverse operator M̃−1(λ) for λ ∈
Jh,q0 , and from theorem 1 [16], it follows that the operator–valued function
M̃−1(λ) is finitely meromorphic.

Repeating the proof of lemma 2.2 [4, §2], from (6.10)–(6.13), we obtain
the following statement.
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Lemma 6.2. For any 0 < ε′ < 1/d′, there exists a q > 1 such that the set
{λ ∈ C : |Im λ| ≤ ε′ ln |Re λ|, |Re λ| ≥ q} contains no poles of the operator–
valued function M̃−1(λ), where d′ = max | ln χ′jqkσs|; for every pole λ0 of

the operator–valued function M̃−1(λ), there exists a δ > 0 such that the set
{λ ∈ C : 0 < |Im λ − Im λ0| < δ} contains no poles of the operator–valued
function M̃−1(λ).

3 One–valued solvability of nonlocal problems in plane angles.

Replacing in the proof of theorem 2.1 [4, §2] Sobolev spaces W l(·) by W l(·)
and weighted spaces H l

a(·) byHl
a(·), from Lemma 6.1, we obtain the following

result.

Theorem 6.1. Suppose the line Im λ = a+1−l−2m contains no poles of the
operator–valued function M̃−1(λ); then nonlocal transmission problem (6.1)–
(6.3) has a unique solution V ∈ Hl+2m, N

a (K) for every right-hand side f ∈
Hl, N

a (K, γ) and
‖V ‖Hl+2m, N

a (K) ≤ c‖f‖Hl, N
a (K, γ),

where c > 0 does not depend on f.

7 A priori estimates of solutions for nonlocal

transmission problems

In this section, we prove a priori estimates for solutions to nonlocal trans-
mission problems analogous to those of §3.

1 A priori estimates in dihedral angles.

Denote d′1 = min{1, χ′jqkσs}/2, d′2 = 2 max{1, χ′jqkσs}, Ωp
j = Ωj∩{r1(d

′
1)

6−p <
r < r2(d

′
2)

6−p, |z| < 2−p−1}, Ωp
jt = Ωjt ∩ {r1(d

′
1)

6−p < r < r2(d
′
2)

6−p, |z| <
2−p−1}, where j = 1, . . . , N ; t = 1, . . . , Rj; p = 0, . . . , 6; 0 < r1 < r2.

Introduce the space W l(Ωp
j) =

Rj⊕
t=1

W l(Ωp
jt) with the norm ‖Vj‖Wl(Ωp

j ) =

(
Rj∑
t=1

‖Vjt‖2
W l(Ωp

jt)

)1/2

.
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Lemma 7.1. Suppose Vj ∈ W2m(Ω0
j),

Qj(Dy, Dz)Vjt ∈ W l(Ω0
jt),

Cjσµ(Dy, Dz)V ∈ W l+2m−m′
jσµ−1/2(Γjσ ∩ Ω̄0

j),
Tjqν(Dy, Dz)V ∈ W l+2m−ν+1/2(Γjq ∩ Ω̄0

j)

(7.1)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m;
q = 2, . . . , Rj; ν = 1, . . . , 2m);

then we have V ∈ ∏
j

W l+2m(Ω3
j) and for |λ| ≥ 1,

∑
j

‖Vj‖Wl+2m(Ω6
j ) ≤ c

∑
j

{∑
t

‖Qj(Dy, Dz)Vjt‖W l(Ω3
jt)

+

+
∑
σ, µ

‖Cjσµ(Dy, Dz)V ‖
W

l+2m−m′
jσµ

−1/2
(Γjσ∩Ω̄3

j )
+

+
∑
q, ν

‖Tjqν(Dy, Dz)V ‖W l+2m−ν+1/2(Γjq∩Ω̄3
j )+

+|λ|−1‖Vj‖Wl+2m(Ω3
j ) + |λ|l+2m−1‖Vj‖L2(Ω3

j )

}
,

(7.2)

where c > 0 is independent of λ and V.

Proof. Since the functions ζjq (q = 1, . . . , Rj+1) given by (3.4) are the mul-
tiplicators in the spaces W l(Ωp

jt) (t = 1, . . . , Rj), we have ζjσVj ∈ W 2m(Ω0
j)

(σ = 1, Rj + 1). Apply theorem 5.1 [12, Chapter 2, §5.1] to the functions
ζjσVj and to the operator {Qj(Dy, Dz), Cjσµ(Dy, Dz)}; then from (7.1) and
Leibniz’ formula, we get

ζjσVj ∈ W l+2m(Ω1
j). (7.3)

Denote Wjqν =
∑

k, σ, s

(Tjqνkσs(Dy, Dz)(ζkσVk))(G ′jqkσsy, z). Clearly,

Wjqν |Γjq∩Ω̄2
j

=
∑

k, σ, s

(Tjqνkσs(Dy, Dz)Vk))(G ′jqkσsy, z)|Γjq∩Ω̄2
j
. (7.4)

From equality (7.4) and relations (7.1), (7.3), it follows that

Tjqν(Dy, Dz)Vj,q−1|Γjq∩Ω̄2
j
− Tjqν(Dy, Dz)Vjq|Γjq∩Ω̄2

j
=

= Tjqν(Dy, Dz)V −Wjqν |Γjq∩Ω̄2
j
∈ W l+2m−ν+1/2(Γjq ∩ Ω̄2

j).
(7.5)
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Now (7.1), (7.5), and theorem 1 [9, §2] imply that Vj ∈ W l+2m(Ω3
j) and

∑
j

‖Vj‖Wl+2m(Ω6
j ) ≤ k1

∑
j

{∑
t

‖Qj(Dy, Dz)Vjt‖W l(Ω5
jt)

+

+
∑
σ, µ

‖Cjσµ(Dy, Dz)V ‖
W

l+2m−m′
jσµ

−1/2
(Γjσ∩Ω̄5

j )
+

+
∑
q, ν

‖Tjqν(Dy, Dz)Vj,q−1|Γjq∩Ω̄5
j
−

−Tjqν(Dy, Dz)Vjq|Γjq∩Ω̄5
j
‖W l+2m−ν+1/2(Γjq∩Ω̄5

j ) + ‖Vj‖L2(Ω5
j )

}
.

(7.6)

Again using theorem 5.1 [12, Chapter 2, §5.1], Leibniz’ formula, and inequal-
ity (1.3), we get

‖Wjqν |Γjq∩Ω̄5
j
‖W l+2m−ν+1/2(Γjq∩Ω̄5

j ) ≤ k2

∑
k, σ

‖ζkσVk‖W l+2m(Ω4
k) ≤

≤ k3

∑
k

{∑
t

‖Qk(Dy, Dz)Vkt‖W l(Ω3
kt)

+

+
∑
σ, µ

‖Ckσµ(Dy, Dz)V ‖
W

l+2m−m′
kσµ

−1/2
(Γkσ∩Ω̄3

j )
+

+|λ|−1‖Vk‖Wl+2m(Ω3
k) + |λ|l+2m−1‖Vk‖L2(Ω3

k)

}
.

(7.7)

From (7.6), (7.4), and (7.7), it follows inequality (7.2).

Denote W l
loc(Ω̄j\M) =

Rj⊕
t=1

W l
loc(Ω̄jt\M).

Theorem 7.1. Let V ∈ ∏
j

W2m
loc (Ω̄j\M) be a solution for nonlocal transmis-

sion problem (5.1)–(5.3) such that V ∈ H0, N
a−l−2m(Ω) and f ∈ Hl, N

a (Ω, Γ);
then V ∈ Hl+2m, N

a (Ω) and

‖V ‖Hl+2m, N
a (Ω) ≤ c

(‖f‖Hl, N
a (Ω, Γ) + ‖V ‖H0, N

a−l−2m(Ω)

)
, (7.8)

where c > 0 is independent of V.

Proof. From Lemma 7.1, it follows that V ∈ ∏
j

W l+2m
loc (Ω̄j\M). Now repeat-

ing the proof of lemma 3.2 [4, §3] and replacing there W l(·) by W l(·) and
weighted spaces H l

a(·) by Hl
a(·), from Lemmas 5.1 and 7.1, we derive that

V ∈ Hl+2m, N
a (Ω) and a priori estimate (7.8) holds.
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2 A priori estimates in plane angles.

Put Kps
j = Kj ∩{r1(d

′
1)

6−p · 2s < r < r2(d
′
2)

6−p · 2s}, Kps
jt = Kjt ∩{r1(d

′
1)

6−p ·
2s < r < r2(d

′
2)

6−p · 2s}, where 0 < r1 < r2; s ≥ 1; j = 1, . . . , N ; p =
0, . . . , 6.

Introduce the space W l(Kps
j ) =

Rj⊕
t=1

W l(Kps
jt ) with the norm ‖vj‖Wl(Kps

j ) =

(
Rj∑
t=1

‖vjt‖2
W l(Ωps

jt )

)1/2

.

Lemma 7.2. Suppose s ≥ 1, θ ∈ Sn−3. Assume that vj ∈ W2m(K0s
j ),

Qj(Dy, θ)vjt ∈ W l(K0s
jt ),

Cjσµ(Dy, θ)v = 0 (y ∈ γjσ ∩ K̄0s
j ), Tjqν(Dy, θ)v = 0 (y ∈ γjq ∩ K̄0s

j )

(j = 1, . . . , N, σ = 1, Rj + 1, µ = 1, . . . , m,
q = 2, . . . , Rj, ν = 1, . . . , 2m);

then v ∈ ∏
j

W l+2m(K3s
j ) and for all |λ| ≥ 1,

∑
j

2sa‖vj‖Wl+2m(K6s
j ) ≤ c

∑
j

{
2sa

∑
t

‖Qj(Dy, θ)vjt‖W l(K3s
jt )+

+|λ|−12sa‖vj‖Wl+2m(K3s
j ) + |λ|l+2m−12s(a−l−2m)‖vj‖L2(K3s

j )

}
,

(7.9)

where c > 0 is independent of v, θ, λ, and s.

Proof. Repeating the proof of Lemma 7.1 and replacing Ωp
j by Kps

j and Dz

by θ, we get v ∈ ∏
j

W l+2m(K3s
j ). Now repeating the proof of lemma 3.3 [4,

§3] and replacing there W l(·) by W l(·) and H l
a(·) by Hl

a(·), from a priori
estimate (7.2), we derive estimate (7.9).

Theorem 7.2. Let v ∈ ∏
j

W2m
loc (K̄j\{0}) be a solution for problem (5.8)–

(5.10) such that v ∈ E0, N
a−l−2m(K) and f ∈ E l, N

a (K, γ); then v ∈ E l+2m, N
a (K)

and
‖v‖El+2m, N

a (K) ≤ c
(‖f‖El, N

a (K, γ) + ‖v‖E0, N
a−l−2m(K)

)
, (7.10)

where c > 0 is independent of v and θ ∈ Sn−3.
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Proof. The proof is analogous to the proof of Theorem 3.2, where one must
replace W l(·), H l

a(·), El
a(·) by W l(·), Hl

a(·), E l
a(·); Lemmas 1.5, 3.1, 3.2 by

Lemmas 5.2, 7.1, 7.2 correspondingly; Theorem 3.1 by Theorem 7.1.

From Theorem 6.1 and Lemma 7.2, we obtain the following result (see
theorem 3.1 [4, §3] with El

a(·) replaced by E l
a(·)).

Theorem 7.3. Suppose the line Im λ = a + 1− l− 2m contains no poles of
the operator–valued function M̃−1(λ); then for all solutions v ∈ E l+2m, N

a (K)
to nonlocal transmission problem (5.8)–(5.10) and all θ ∈ Sn−3, we have

‖v‖El+2m, N
a (K) ≤ c

(‖f‖El, N
a (K, γ) +

∑
j

‖vj‖L2(Kj∩S′)
)
, (7.11)

where S ′ = {y ∈ R2 : 0 < R′
1 < r < R′

2}; c > 0 is independent of θ and v.
If for any θ ∈ Sn−3, estimate (7.11) holds for all solutions to nonlocal

transmission problem (5.8)–(5.10), then the line Im λ = a + 1 − l − 2m
contains no poles of the operator–valued function M̃−1(λ).

Theorem 7.3 implies that kernel of M(θ) is of finite dimension and range
of L(θ) is closed.

8 Adjoint nonlocal problems

In this section, we study operators that are adjoint to the operators of the
nonlocal boundary value problems with parameter θ ∈ Sn−3.

1 Operators L(θ)∗.

Let L(θ) = {Pj(Dy, θ), Bjσµ(Dy, θ)} : E2m, N
a (K) → E0, N

a (K, γ) be the
operator corresponding to problem (1.6), (1.7). Consider the adjoint operator
L(θ)∗ : (E0, N

a (K, γ))∗ → (E2m, N
a (K))∗, where

(E0, N
a (K, γ))∗ =

N∏
j=1

{
E0
−a(Kj)×

∏
σ=1, Rj+1

m∏
µ=1

(E2m−mjσµ−1/2
a (γjσ))∗

}
,

(E2m, N
a (K))∗ =

N∏
j=1

(E2m
a (Kj))

∗.
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L(θ)∗ takes f = {fj, gjσµ} ∈ (E0, N
a (K, γ))∗ to L(θ)∗f by the rule

< u, L(θ)∗f >=
∑
j

{
< Pj(Dy, θ)uj, fj >Kj

+

+
∑
σ,µ

< Bjσµ(Dy, θ)u, gjσµ >γjσ

}

for all u ∈ E2m, N
a (K). Here < ·, · >, < ·, · >Kj

, < ·, · >γjσ
are the

sesquilinear forms on the corresponding dual pairs of the spaces.

Introduce the space W l(Kj) =
Rj⊕
t=1

W l(Kjt) with the norm ‖vj‖Wl(Kj) =

(
Rj∑
t=1

‖vjt‖2
W l(Kjt)

)1/2

. Further (see Theorem 8.1), we shall see that if the j-th

component of L(θ)∗f is smooth in Kj (j = 1, . . . , N), then fj is smooth
only in Kjt and, generally, may have discontinuity on γjq (q = 2, · · · , Rj).
This happens because of nonlocal terms with supports on γjq in the operator
L(θ) and therefore in the operator L(θ)∗. Hence it is natural to consider
spaces W l(·) (but not W l(·)) when studying smoothness of f .

Consider the functions ψp ∈ C∞
0 (R1) such that

ψp(r) = 1 for r1d
3−p
1 < r < r2d

3−p
2 ,

ψp(r) = 0 for r < 2
3r1d

3−p
1 and r > 3

2r2d
3−p
2 ,

where 0 < r1 < r2; p = 0, . . . , 3. Put γ̂jq = {y : ϕ = bjq or ϕ = bjq + π}
(j = 1, . . . , N ; q = 1, . . . , Rj + 1). Clearly, γjq ⊂ γ̂jq.

Theorem 8.1. Suppose f = {fj, gjσµ} ∈ (E0, N
a (K, γ))∗, L(θ)∗f ∈

(E2m, N
a (K))∗,

ψ0L(θ)∗f ∈




∏
j

W−2m+l
K̄j

(Rn)5 for l < 2m,
∏
j

W−2m+l(Kj) for l ≥ 2m;

then ψ3f ∈
∏
j

{W l(Kj)×
∏
σ,µ

W−2m+l+mjσµ+1/2(γ̂jσ)
}

and

‖ψ3f‖Q
j
{Wl(Kj)×

Q
σ,µ

W−2m+l+mjσµ+1/2(γ̂jσ)} ≤
cl

(‖ψ0L(θ)∗f‖−2m+l + ‖ψ0f‖Q
j

{
W−1

K̄j
(Rn)×Q

σ,µ
W−2m−1+mjσµ+1/2(γ̂jσ)

})
,

(8.1)
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where

‖ · ‖−2m+l =




‖ · ‖Q

j
W−2m+l

K̄j
(Rn) for l < 2m,

‖ · ‖Q
j
W−2m+l(Kj) for l ≥ 2m,

cl > 0 depends on l ≥ 0 and does not depend on f.

Proof. 1) For any g ∈ (E
l−1/2
a (γjq))

∗ and ψp, denote by ψg ⊗ δ(γjq) the
distribution from W−l

K̄j
(Rn) given by

< uj, ψg ⊗ δ(γjq) >Kj
=< ψuj|γjq

, g >γjq
for all uj ∈ W l(Kj),

j = 1, . . . , N ; q = 1, . . . , Rj + 1.
Introduce the auxiliary operator

LG(θ)∗ :
N∏

j=1

{
E0
−a(Kj)×

∏
σ=1, Rj+1

m∏
µ=1

(
E

2m−mjσµ−1/2
a (γjσ))∗×

×
N∏

k=1

Rk∏
q=2

Sjσkq∏
s=1

(E
2m−mjσµ−1/2
a (γkq))

∗)} → (E2m, N
a (K))∗

that takes f ′ = {fj, gjσµ, g′jσµkqs} ∈
∏
j

{
E0
−a(Kj)×

∏
σ,µ

(
E

2m−mjσµ−1/2
a (γjσ))∗×

∏
k,q,s

(E
2m−mjσµ−1/2
a (γkq))

∗)} to LG(θ)∗f ′ by the rule

< u, LG(θ)∗f ′ >=
∑
j

{
< Pj(Dy, θ)uj, fj >Kj

+

+
∑
σ,µ

(
< Bjσµ(Dy, θ)uj|γjσ

, gjσµ >γjσ
+

∑
k,q,s

< Bjσµkqs(Dy, θ)uk|γkq
, g′jσµkqs >γkq

)}
for all u ∈ E2m, N

a (K).

Now for every gjσµ ∈ (E
2m−mjσµ−1/2
a (γjσ))∗ and ψp we introduce the distri-

butions gGjσµkqs ∈ (E
2m−mjσµ−1/2
a (γkq))

∗ and ψpg
G
jσµkqs ∈ W−2m+mjσµ+1/2(γ̂kq)

given by
< uγkq

, gGjσµkqs >γkq
=< uγkq

(Gjσkqs·), gjσµ >γjσ

for all uγkq
∈ E

2m−mjσµ−1/2
a (γkq)

5W−l
K̄j

(Rn) (l > 0) is the space that is adjoint to W l(Kj). One can identify the space

W−l
K̄j

(Rn) with the subspace of the space W−l(Rn) consisting of distributions with supports
from K̄j (see remark 12.4 [12, Chapter 1, §12.6]).
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and
< Wγkq

, ψpg
G
jσµkqs >γ̂kq

=< (ψpWγkq
)(Gjσkqs·), gjσµ >γjσ

for all Wγkq
∈ W 2m−mjσµ−1/2(γ̂kq).

From this, it follows in particular that ψpg
G
jσµkqs ∈ W−2m+l+mjσµ+1/2(γ̂kq)

iff ψp(Gjσkqs·)gjσµ ∈ W−2m+l+mjσµ+1/2(γ̂jσ); moreover, there are constants
k1, k2 > 0 (depending on l) such that

k1‖ψp(Gjσkqs·)gjσµ‖W−2m+l+mjσµ+1/2(γ̂jσ)
≤ ‖ψpg

G
jσµkqs‖W−2m+l+mjσµ+1/2(γ̂kq)

≤
≤ k2‖ψp(Gjσkqs·)gjσµ‖W−2m+l+mjσµ+1/2(γ̂jσ)

.

(8.2)
Put fG = {fj, gjσµ, gGjσµkqs}. From the definitions of the operators L(θ)∗

and LG(θ)∗, it follows that

LG(θ)∗fG = L(θ)∗f. (8.3)

Denote Ξf = {Ξjfj, Ξjgjσµ}, ΞfG = {Ξjfj, Ξjgjσµ, Ξkg
G
jσµkqs},

where Ξ = (Ξ1, . . . , ΞN), Ξj = Ξj(ϕ) are arbitrary infinitely differ-
entiable on [bj1, bj,Rj+1] functions. Notice that in the formula ΞfG =

{Ξjfj, Ξjgjσµ, Ξkg
G
jσµkqs}, a distribution gGjσµkqs is multiplied by Ξk, but

not by Ξj. This will be important further.
2) Let ζjq be the functions given by formula (3.4). We also consider the

functions

ζ̂jq ∈ C∞(R), ζ̂jq(ϕ) = 1 for |bjq − ϕ| < 3ε/2, ζ̂jq(ϕ) = 0 for |bjq − ϕ| > 2ε;
(8.4)

ζ̄jq ∈ C∞(R), ζ̄jq(ϕ) = 1 for |bjq − ϕ| < ε/8, ζ̄jq(ϕ) = 0 for |bjq − ϕ| > ε/4
(8.5)

(j = 1, . . . , N ; q = 1, . . . , Rj + 1), where ε is given by formula (3.3).
Introduce the N -dimensional vector–function

Ξj′σ′ = (0, . . . , ζj′σ′ , . . . , 0).

Here “zeroes” are everywhere, except the j′-th position, j′ = 1, . . . , N ;
σ′ = 1, Rj′ + 1. If j 6= j′, then we have Ξj′σ′

j = 0. If j = j′, then we see

that the support of Ξj′σ′
j′ = ζj′σ′ does not intersect with γj′q, but the support

of gGjσµj′qs is contained in γj′q (q = 2, . . . , Rj′); therefore, ζj′σ′g
G
jσµj′qs = 0.

Thus we have

LG(θ)∗(ψpΞ
j′σ′fG) = (0, . . . , Qj′(Dy, θ)(ψpζj′σ′fj′)+

+
m∑

µ=1

B∗
j′σ′µ(Dy, θ)(ψpζj′σ′gj′σ′µ ⊗ δ(γj′σ′)), . . . , 0)
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(p = 0, . . . , 3). Here “zeroes” are everywhere, except the j′-th posi-
tion, Qj′(Dy, θ) and B∗

j′σ′µ(Dy, θ) are formally adjoint to Pj′(Dy, θ) and
Bj′σ′µ(Dy, θ) correspondingly.

Notice that the operator

Qj′(Dy, θ)(ψpζj′σ′fj′) +
m∑

µ=1

B∗
j′σ′µ(Dy, θ)(ψpζj′σ′gj′σ′µ ⊗ δ(γj′σ′))

can be identified with the adjoint to the operator

{Pj′(Dy, θ)uj′ , Bj′σ′µ(Dy, θ)uj′|γ̂j′σ′}m
µ=1.

Therefore we can use theorem 4.3 [12, Chapter 2, §4.5]6. Thus from rela-
tion (8.3) and Leibniz’ formula, it follows that

ψ1Ξ
j′σ′fG ∈ ∏

j

{
W l(Kj)×

∏
σ,µ

(
W−2m+l+mjσµ+1/2(γ̂jσ)×

× ∏
k,q,s

W−2m+l+mjσµ+1/2(γ̂kq)
)}

and

‖ψ1Ξ
j′σ′fG‖Q

j

{
W l(Kj)×

Q
σ,µ

(
W−2m+l+mjσµ+1/2(γ̂jσ)× Q

k,q,s
W−2m+l+mjσµ+1/2(γ̂kq)

)} ≤

≤ k3

(‖ψ0L(θ)∗f‖−2m+l + ‖ψ0ζ̂j′σ′fj′‖W−1
K̄j′

(Rn)+

+
m∑

µ=1

‖ψ0gj′σ′µ‖W
−2m−1+mj′σ′µ+1/2

(γ̂j′σ′ )

)
.

(8.6)
From (8.6) and (8.2), it follows in particular that ψ2g

G
j′σ′µkqs ∈

W−2m+l+mj′σ′µ+1/2(γ̂kq) and

‖ψ2g
G
j′σ′µkqs‖W−2m+l+mjσµ+1/2(γ̂kq)

≤ k4

(‖ψ0L(θ)∗f‖−2m+l+

+‖ψ0ζ̂j′σ′fj′‖W−1
K̄j′

(Rn) +
m∑

µ=1

‖ψ0gj′σ′µ‖W
−2m−1+mj′σ′µ+1/2

(γ̂j′σ′ )

)
.

(8.7)

3) Put Ξk′q′ = (0, . . . , ζk′q′ , . . . , 0). Here “zeroes” are everywhere, except
the k′-th position, k′ = 1, . . . , N ; q′ = 2, . . . , Rk′ . If k 6= k′, then we have

6Theorem 4.3 [12, Chapter 2, §4.5] deals with operators having variable coefficients;
therefore some additional restrictions are imposed on supports of considered functions. It
is easy to see that these restrictions may be omitted if the coefficients are constant.
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Ξk′q′
k = 0. If k = k′, then we see that the support of Ξk′q′

k′ = ζk′q′ does
not intersect with the supports of gk′σµ and gGjσµk′qs for q 6= q′; therefore,

ζk′q′gk′σµ = 0 and ζk′q′g
G
jσµk′qs = 0 for q 6= q′. Thus we have

LG(θ)∗(ψpΞ
k′q′fG) = (0, . . . , Qk′(Dy, θ)(ψpζk′q′fk′)+

+
∑

j,σ,µ,s

B∗
jσµk′q′s(Dy, θ)(ψpζk′q′g

G
jσµk′q′s ⊗ δ(γk′q′)), . . . , 0)

(p = 0, . . . , 3), where “zeroes” are everywhere, except the k′-th position,
B∗

jσµk′q′s(Dy, θ) is formally adjoint to Bjσµk′q′s(Dy, θ).
Notice that the operator

Qk′(Dy, θ)(ψpζk′q′fk′) +
∑

j,σ,µ,s

B∗
jσµk′q′s(Dy, θ)(ψpζk′q′g

G
jσµk′q′s ⊗ δ(γk′q′))

can be identified with the adjoint to the operator of the problem

Pk′(Dy, θ)uk′ = f̂k′(y) (y ∈ R2),
Bjσµk′q′s(Dy, θ)uk′|γ̂k′q′ = ĝjσµs(y) (y ∈ γ̂k′q′)

(j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m; s = 1, . . . , Sjσk′q′).

This problem differs from the problem studied in Appendix A only in junior
terms.

In 1), we showed that ψ2g
G
jσµk′q′s ∈ W−2m+l+mjσµ+1/2(γ̂k′q′); hence we can

apply theorem A.1. Thus from relation (8.3) and Leibniz’ formula, we obtain

ψ3Ξ
k′q′fG ∈ ∏

j

{W l(Kj)×
∏
σ,µ

(
W−2m+l+mjσµ+1/2(γ̂jσ)×

× ∏
k,q,s

W−2m+l+mjσµ+1/2(γ̂kq)
)}

and

‖ψ3Ξ
k′q′fG‖Q

j

{
Wl(Kj)×

Q
σ,µ

(
W−2m+l+mjσµ+1/2(γ̂jσ)× Q

k,q,s
W−2m+l+mjσµ+1/2(γ̂kq)

)} ≤

≤ k5

(‖ψ2L(θ)∗f‖−2m+l + ‖ψ2ζ̂k′q′fk′‖W−1
K̄k′

(Rn)+

+
∑

j,σ,µ,s

‖ψ2g
G
jσµk′q′s‖W−2m+l+mjσµ+1/2(γ̂k′q′ )

)
.

(8.8)
Notice that the space W l(·) appeared just here. As we noted earlier, this
is connected with the nonlocal terms gGjσµk′q′s, which have supports on γk′q′

(q′ = 2, . . . , Rk′).
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From inequalities (8.8) and (8.7), we get

‖ψ3Ξ
k′q′fG‖Q

j

{
Wl(Kj)×

Q
σ,µ

(
W−2m+l+mjσµ+1/2(γ̂jσ)× Q

k,q,s
W−2m+l+mjσµ+1/2(γ̂kq)

)} ≤

≤ k6

(‖ψ0L(θ)∗f‖−2m+l +
N∑

j=1

∑
σ=1, Rj+1

{‖ψ0ζ̂jσfj‖W−1
K̄j

(Rn)+

+
m∑

µ=1

‖ψ0gjσµ‖W−2m−1+mjσµ+1/2(γ̂jσ)
}).

(8.9)

4) Finally, we put ζi0 = 1 −
Ri+1∑
q=1

ζiq, Ξi0 = (0, . . . , ζi0, . . . , 0). Here

“zeroes” are everywhere, except the i-th position, i = 1, . . . , N.
Since the support of ζi0 does not intersect with γiq (q = 1, . . . , Ri + 1),

we have

LG(θ)∗(ψpΞ
i0fG) = (0, . . . , Qi(Dy, θ)(ψpζi0fi), . . . , 0)

(p = 0, . . . , 3). Here “zeroes” are everywhere, except the i-th position.
The operator Qi(Dy, θ)(ψpζj′σ′fj′) can be identified with the adjoint one

to the operator of the problem

Pi(Dy, θ)ui = f̂i(x) (y ∈ R2).

Therefore applying theorem 3.1 [12, Chapter 2, §3.2], from (8.3) and Leibniz’
formula, we get

ψ1Ξ
i0fG ∈ ∏

j

{
W l(Kj)×

∏
σ,µ

(
W−2m+l+mjσµ+1/2(γ̂jσ)×

× ∏
k,q,s

W−2m+l+mjσµ+1/2(γ̂kq)
)}

and

‖ψ1Ξ
i0fG‖Q

j

{
W l(Kj)×

Q
σ,µ

(
W−2m+l+mjσµ+1/2(γ̂jσ)× Q

k,q,s
W−2m+l+mjσµ+1/2(γ̂kq)

)} ≤

≤ k7

(‖ψ0L(θ)∗f‖−2m+l + ‖ψ0ζ̄i0fi‖W−1
K̄i

(Rn)

)
,

(8.10)

where ζi0 = 1−
Ri+1∑
q=1

ζ̄iq.

Now a priori estimate (8.1) follows from inequalities (8.6), (8.9), and
(8.10).
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2 Connection between kernel of L(θ)∗ and kernel of M(θ).

Lemma 8.1. The kernel ker (L(θ)∗) of the operator L(θ)∗ coincides with
the set {vj, Fjσµ(Dy, θ)v|γjσ

}, where vj ∈ E2m
−a+2m(Kj), vjt ∈ C∞(K̄jt\{0})

(j = 1, . . . , N ; t = 1, . . . , Rj), and v is a solution to problem (5.8)–(5.10)
for {fj, gjσµ, hjqν} = 0.

Proof. 1) In this proof, we shall omit the arguments (Dy, θ) in differential
operators; so we shall write Pj instead of Pj(Dy, θ) and so on.

Suppose vj ∈ E2m
−a+2m(Kj), vjt ∈ C∞(K̄jt\{0}) and v is a solution to

problem (5.8)–(5.10) for {fj, gjσµ, hjqν} = 0. Then for any functions uj ∈
C∞

0 (K̄j\{0}), by virtue of Theorem 4.1, we have

∑
j

{∑
t

(Pjuj, vjt)Kjt
+

∑
σ,µ

(Bjσµu, Fjσµvj|γjσ
)γjσ

= 0. (8.11)

Since the imbedding operator of E2m
−a+2m(Kj) into E0

−a(Kj) is bounded,
we have vj ∈ E0

−a(Kj). Besides, the operator Fjσµ(Dy, θ) is of order 2m −
1−mjσµ; hence, from the Schwarz inequality and Theorem B.2, for all uγjσ

∈
E

2m−mjσµ−1/2
a (γjσ), we obtain

|(uγjσ
, Fjσµvj|γjσ

)γjσ
|2 ≤ ∫

γjσ

r2(a−(2m−mjσµ−1/2))|uγjσ
|2 dγ×

× ∫
γjσ

r2(−a+2m−(mjσµ+1/2))|Fjσµvj|γjσ
|2 dγ ≤

≤ k1‖uγjσ
‖2

E
2m−mjσµ−1/2
a (γjσ)

· ‖Fjσµvj|γjσ
‖2

E
mjσµ+1/2

−a+2m (γjσ)

Therefore, Fjσµvj|γjσ
∈ (E

2m−mjσµ−1/2
a (γjσ))∗.

Thus, {vj, Fjσµ(Dy, θ)v|γjσ
} ∈ ∏

j

{
E0
−a(Kj) ×

∏
σ,µ

(E
2m−mjσµ−1/2
a (γjσ))∗

}

and from the definition of the operator L(θ)∗ and identity (8.11), we get

< u, L(θ)∗{vj, Fjσµ(Dy, θ)v|γjσ
} >= 0 for all u ∈

∏
j

C∞
0 (K̄j\{0}).

But
∏
j

C∞
0 (K̄j\{0}) is dense in E2m, N

a (K); hence, {vj, Fjσµ(Dy, θ)v|γjσ
} ∈

ker (L(θ)∗).
2) Now suppose {vj, ψjσµ} ∈ ker (L(θ)∗). From Theorem 8.1, it follows

that vjt ∈ C∞(K̄jt\{0}), ψjσµ ∈ C∞(γjσ). Then from the definition of the
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operator L(θ)∗, it follows that
∑

j

{
(Pjuj, vj)Kj

= −
∑
j,σ,µ

(Bjσµu, ψjσµ)γjσ
, for all uj ∈ C∞

0 (K̄j\{0}).

The last identity and Green formula (4.15) imply
∑
j

{∑
σ,µ

(Bjσµu, Fjσµvj|γjσ
− ψjσµ)γjσ

+
∑
q,µ

(Bjqµuj|γjq
, Tjqµv)γjq

}
=

=
∑
j

{∑
t

(uj, Qjvjt)Kjt
+

∑
σ,µ

(B′
jσµuj|γjσ

, Cjσµvj|γjσ
)γjσ

+

+
∑
q,µ

(B′
jqµuj|γjq

, Tjq,m+µv)γjq

}
.

(8.12)

Putting supp uj ∈ C∞
0 (Kjt), from (8.12), we obtain Qjvjt = 0, j = 1, . . . , N ;

t = 1, . . . , Rj.
By Theorem 4.1, the system {Bjσµ, B′

jσµ}m
µ=1 is a Dirichlet system on γjσ

(j = 1, . . . , N ; σ = 1, Rj + 1) of order 2m. Therefore, for any system of
functions {Θjσν}2m

ν=1 ⊂ C∞
0 (γjσ) there exist functions uj ∈ C∞

0 (K̄j\{0}) such
that

Bjσµuj|γjσ
= Θjσµ, B′

jσµuj|γjσ
= Θjσ,µ+m, µ = 1, . . . , m,

uj = 0 in a neighbourhood of γjq (j = 1, . . . , N ; q = 2, . . . , Rj)

(see lemma 2.2 [12, Chapter 2, §2.3]). Therefore, taking into account that
Qjvjt = 0, from (8.12), we obtain Fjσµvj|γjσ

− ψjσµ = 0 and Cjσµvj|γjσ
= 0.

Similarly, since {Bjqµ, B′
jqµ}m

µ=1 is a Dirichlet system on γjq (j =
1, . . . , N ; q = 2, . . . , Rj) of order 2m, we get Tjqνv = 0.

Finally, we know that vj ∈ E0
−a(Kj) by assumption and we showed

that vjt ∈ C∞(K̄jt\{0}); therefore, from Theorem 7.1, it follows that
vj ∈ E2m

−a+2m(Kj).

9 Solvability of nonlocal boundary value

problems

In this section, we study solvability of nonlocal boundary value problems. In
subsection 1, we establish necessary and sufficient conditions for Fredholm
solvability of the nonlocal boundary value problems with parameter θ in
plane angles. In subsection 2, we study necessary conditions for Fredholm
solvability and sufficient conditions for one–valued solvability of nonlocal
boundary value problems in dihedral angles.
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1 Fredholm solvability of nonlocal boundary value problems with
parameter θ.

Theorem 9.1. Put a = b + l. Suppose the line Im λ = b + 1− 2m contains
no poles of the operator–valued function L̃−1(λ); then the operator

L(θ) = {Pj(Dy, θ), Bjσµ(Dy, θ)} : El+2m, N
a (K) → El, N

a (K, γ)

is Fredholm for all θ ∈ Sn−3.
If there is a θ ∈ Sn−3 such that the operator L(θ) is Fredholm, then the

line Im λ = b + 1 − 2m contains no poles of the operator–valued function
L̃−1(λ).

Proof. Suppose the line Im λ = b+1−2m contains no poles of L̃−1(λ); then
by Theorem 3.3, the operator L(θ) has finite dimensional kernel and closed
range.

Let us prove that cokernel of the operator L(θ) is of finite dimension.
First, we put l = 0. By Theorems 2.1 and 6.1, the operators L̃(λ) and M̃(λ)
are Fredholm and have zero indices. Therefore from Green formula (4.16)
and Remark 4.3, it follows that λ0 is a pole of L̃−1(λ) iff λ′0 = λ̄0− 2i(m− 1)
is a pole of M̃−1(λ). Hence the line Im λ = (−b + 2m) + 1− 2m contains no
poles of the operator–valued function M̃−1(λ). Now by Theorem 7.3, kernel
of the operator M(θ) is of finite dimension. Finally, Lemma 8.1 implies
dim ker (L(θ)∗) = dim ker (M(θ)) < ∞.

Consider the case l ≥ 1. Suppose f ∈ El, N
a (K, γ). By the above, there

exists a u ∈ E2m, N
a−l (K) such that L(θ)u = f iff (f, Ψi)E0, N

a−l (K, γ) = 0 for

some linearly independent functions Ψi ∈ E0, N
a−l (K, γ) (i = 1, . . . , J). Here

(·, ·)E0, N
a−l (K, γ) is the inner product in the Hilbert space E0, N

a−l (K, γ). In

addition, by Theorem 3.2, we have u ∈ El+2m, N
a (K).

By virtue of the Schwarz inequality and boundness of the imbeding op-
erator of El, N

a (K, γ) into E0, N
a−l (K, γ), we have

(f, Ψi)E0, N
a−l (K, γ) ≤ ‖f‖E0, N

a−l (K, γ)‖Ψi‖E0, N
a−l (K, γ) ≤

k1‖f‖El, N
a (K, γ)‖Ψi‖E0, N

a−l (K, γ)

for all f ∈ El, N
a (K, γ). Therefore, by virtue of the Riesz theorem concerning

a general form of a linear functional in a Hilbert space, there exist linearly
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independent functions Ψ̂i ∈ El, N
a (K, γ) (i = 1, . . . , J) such that

(f, Ψi)E0, N
a−l (K, γ) = (f, Ψ̂i)El, N

a (K, γ) for all f ∈ El, N
a (K, γ).

This means that cokernel of the operator L(θ) is of the same finite dimension
J for all l ≥ 0.

The second part of the Theorem follows from Theorem 3.3.

2 Solvability of nonlocal boundary value problems in dihedral an-
gles.

Theorem 9.2. Put a = b + l. Suppose the line Im λ = b + 1− 2m contains
no poles of the operator–valued function L̃−1(λ). Suppose also that for l = 0,
we have dim ker (L(θ)) = 0 for all θ ∈ Sn−3, codimR(L(θ0)) = 0 for some
θ0 ∈ Sn−3; then the operator

L = {Pj(Dy, Dz), Bjσµ(Dy, Dz)} : H l+2m, N
a (Ω) → H l, N

a (Ω, Γ)

is an isomorphism.

Proof. By Theorem 3.3, we have dim ker (L(θ)) < ∞ and range R(L(θ)) is
closed in El, N

a (K, γ) for all θ ∈ Sn−3.
Since the operator L(θ) is bounded and dim ker (L(θ)) = 0 for l = 0, we

have

k1‖L(θ)u‖E0, N
a (K, γ) ≤ ‖u‖E2m, N

a (K) ≤ k2‖L(θ)u‖E0, N
a (K, γ), (9.1)

where k1, k2 > 0 are independent of θ ∈ Sn−3 and u (k2 does not depend on
θ ∈ Sn−3, since the sphere Sn−3 is compact).

By assumption, there exists a θ0 ∈ Sn−3 such that the operator L(θ0)
has a bounded inverse. Therefore, using estimates (9.1) and the method
of continuation with respect to the parameter θ ∈ Sn−3 (see the proof of
theorem 7.1 [14, Chapter 2, §7]), we prove that the operator L(θ) has a
bounded inverse for all θ ∈ Sn−3.

Reduce problem (1.1), (1.2) to problem (1.6), (1.7) doing the Fourier
transform with respect to z : U(y, z) → Û(y, η) and changing variables:
y′ = |η| · y. Now repeating the proof of lemma 7.3 [7, §7] and applying
Theorem 3.1 of this work, we complete the proof.
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Theorem 9.3. Suppose for some b ∈ R, l1 ≥ 0, the operator

L = {Pj(Dy, Dz), Bjσµ(Dy, Dz)} : H l1+2m, N
a1

(Ω) → H l1, N
a1

(Ω, Γ), a1 = b+l1,

is Fredholm; then the operator

L(θ) = {Pj(Dy, θ), Bjσµ(Dy, θ)} : El+2m, N
a (K) → El, N

a (K, γ), a = b + l,

is an isomorphism for all θ ∈ Sn−3, l = 0, 1, . . .

Proof. 1) While proving the Theorem, we shall follow the scheme of the
paper [7, §8].

Similarly to the proof of lemma 8.1 [7, §8], one can prove that the operator
L is an isomorphism for l = l1, a = a1. Therefore we have

‖U‖
H

l1+2m, N
a1

(Ω)
≤ k1‖LU‖

H
l1, N
a1

(Ω, Γ)
.

Substituting Up(y, z) = p1−n/2ei(θ, z)ϕ(z/p)u(y) (ϕ ∈ C∞
0 (Rn−2), u ∈

El1+2m, N
a1

(K), θ ∈ Sn−3) into the last inequality and passing to the limit
as p →∞, we get

‖u‖El+2m, N
a (K) ≤ k2‖L(θ)u‖El, N

a (K, γ) (9.2)

for l = l1, a = a1. This implies that L(θ) has trivial kernel for l = l1, a = a1.
But by Theorem 3.2, kernel of L(θ) does not depend on l and a = b + l;
therefore the operator L(θ) has trivial kernel for all l and a = b + l.

By Theorem 3.3, estimate (9.2) implies that the line Im λ = b + 1 −
2m contains no poles of the operator–valued function L̃−1(λ). Hence, by
Theorem 9.1, the operator L(θ) is Fredholm for all l and a = b + l. From
this and from triviality of kerL(θ), it follows that estimate (9.2) is valid for
all l and a = b + l.

2) Repeating the proof of lemma 7.3 [7, §7], from estimate (9.2), we get

‖U‖H2m, N
a (Ω) ≤ k3‖LU‖H0, N

a (Ω, Γ),

where l = 0, a = b. Therefore, the operator L : H2m, N
b (Ω) → H0, N

b (Ω, Γ)
has trivial kernel and closed range. Let us show that its range coincides with
H0, N

b (Ω, Γ). Indeed, since H l1+2m, N
b+l1

(Ω) ⊂ H2m, N
b (Ω), range R(L)b+l1 of the

operator L : H l1+2m, N
b+l1

(Ω) → H l1, N
b+l1

(Ω, Γ) is contained in range R(L)b of the

operator L : H2m, N
b (Ω) → H0, N

b (Ω, Γ):

R(L)b+l1 ⊂ R(L)b.
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By proved in 1), R(L)b+l1 = H l1, N
b+l1

(Ω, Γ) which is dense in H0, N
b (Ω, Γ);

hence, R(L)b is also dense in H0, N
b (Ω, Γ). But R(L)b is closed; therefore,

R(L)b = H0, N
b (Ω, Γ).

So, we have proved that the operator L : H2m, N
b (Ω) → H0, N

b (Ω, Γ) is an
isomorphism.

3) Now we shall prove the estimate

‖V ‖H2m, N
−b+2m(Ω) ≤ k4‖MV ‖H0, N

−b+2m(Ω, Γ). (9.3)

Denote by P : H0, N
b−2m(Ω) → H0, N

b (Ω) the unbounded operator corre-
sponding to problem (1.1), (1.2) with homogeneous nonlocal conditions. The
operator P is given by

Dom (P) = {U ∈ H2m, N
b (Ω) : Bjσµ(Dy, Dz)U = 0,

j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m},
PU = (P1(Dy, Dz)U1, . . . , PN(Dy, Dz)UN), U ∈ Dom (P).

Denote by Q : H0, N
−b (Ω) → H0, N

−b+2m(Ω) the unbounded operator corre-
sponding to problem (5.1)–(5.3) with homogeneous boundary conditions and
homogeneous nonlocal transmission conditions. The operator Q is given by

Dom (Q) = {V ∈ H2m, N
−b+2m(Ω) : Cjσµ(Dy, Dz)V = 0, Tjqν(Dy, Dz)V = 0,

j = 1, . . . , N ; σ = 1, Rj + 1; µ = 1, . . . , m;
q = 2, . . . , Rj; ν = 1, . . . , 2m}

QV = (W1, . . . , WN), Wj = Qj(Dy, Dz)Vjt for x ∈ Ωjt, V ∈ Dom (Q).

It is clear that Dom (P) is dense in H0, N
b−2m(Ω) and Dom (Q) is dense in

H0, N
−b (Ω). From Theorems 3.1 and 7.1, it follows that the operators P and Q

are closed. Since the operator L : H2m, N
b (Ω) → H0, N

b (Ω, Γ) is an isomor-
phism, the operator P is also an isomorphism from Dom (P) onto H0, N

b (Ω).
Denote by P∗ : H0, N

−b (Ω) → H0, N
−b+2m(Ω) the operator that is adjoint to

P with respect to the inner product
∑
j

(Uj, Vj)Ωj
in

∏
j

L2(Ωj). Since the

operator P is an isomorphism from Dom (P) onto H0, N
b (Ω), the operator

P∗ is also an isomorphism from Dom (P∗) onto H0, N
−b+2m(Ω) and its domain

Dom (P∗) is dense in H0, N
−b (Ω). The operator P∗ is given by

∑
j

(
PjUj, Vj

)
Ωj

=
∑

j

(
Uj, (P∗V )j

)
Ωj

for any U ∈ Dom (P), V ∈ Dom (P∗).
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Since the closed operator P∗ is an isomorphism from Dom (P∗) onto
H0, N
−b+2m(Ω), we have

‖V ‖H0, N
−b (Ω) ≤ k5‖P∗V ‖H0, N

−b+2m(Ω) (9.4)

for all V ∈ Dom (P∗), where k5 > 0 is independent of V.
From Theorem 4.1 and Remark 4.1, it follows that Q ⊂ P∗.7 Therefore

using (9.4), we get

‖V ‖H0, N
−b (Ω) ≤ k5‖QV ‖H0, N

−b+2m(Ω)

for all V ∈ Dom (Q). From the last inequality, Lemma 5.1, and Theorem 7.1,
we obtain estimate (9.3).

4) Substituting V p(y, z) = p1−n/2ei(θ, z)ϕ(z/p)v(y) (ϕ ∈ C∞
0 (Rn−2), v ∈

E2m, N
−b+2m(K), θ ∈ Sn−3) into inequality (9.3) and passing to the limit as p →∞,

we get
‖v‖E2m, N

−b+2m(K) ≤ k6‖M(θ)v‖E0, N
−b+2m(K, γ).

Therefore kernel of the operator M(θ) : E2m, N
−b+2m(K) → E0, N

−b+2m(K, γ) is triv-
ial. By virtue of Lemma 8.1, dim ker (L(θ)∗) = dim ker (M(θ)) = 0. Com-
bining this with 1), we see that the operator L(θ) : E2m, N

b (K) → E0, N
b (K, γ)

is an isomorphism. Using Theorem 7.2, we prove the Theorem for arbitrary
l and a = b + l.

Remark 9.1. From Theorems 9.1 and 9.3, it follows that the operator L :
H l+2m, N

a (Ω) → H l, N
a (Ω, Γ) is an isomorphism for all l and a = b+l whenever

L : H l1+2m, N
a1

(Ω) → H l1, N
a1

(Ω, Γ) is Fredholm for some l1 and a1 = b + l1.

10 One–valued solvability of nonlocal prob-

lems for the Poisson equation in dihedral

angles

As an application of the results obtained in this work we shall prove the one–
valued solvability of nonlocal problems for the Poisson equation in dihedral
angles. For this purpose we need to study corresponding auxiliary nonlocal
problems in plane angles which is done by reducing them to boundary value
problems for differential–difference equations (see [2, 17, 18]).

7One can prove that Q = P∗, but for our purposes, it is sufficient to prove the weaker
result.
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1 Difference operators in plane angles.

Put
K = {y ∈ R2 : r > 0, b1 < ϕ < bR+1},

Kt = {y ∈ R2 : r > 0, bt < ϕ < bt+1} (t = 1, . . . , R),

γq = {y ∈ R2 : r > 0, ϕ = bq} (q = 1, . . . , R + 1),

where R ≥ 1 is an integer; 0 < b1 < b2 < · · · < bR < bR+1 < 2π; b2 − b1 =
· · · = bR+1 − bR = d > 0.

Consider the difference operator R : L2(R2) → L2(R2) given by

(Rw)(y) =
R−1∑

p=−R+1

ep · w(r, ϕ + pd),

where w(r, ϕ) is the function w(y) written in the polar coordinates; ep ∈ R.
Let IK : L2(K) → L2(R2) be the operator of extension by zero outside

K; PK : L2(R2) → L2(K) be the operator of restriction to K. Introduce the
operator RK : L2(K) → L2(K) given by

RK = PKRIK .

The following statement is obvious.

Lemma 10.1. The operators R : L2(R2) → L2(R2), RK : L2(K) → L2(K)
are bounded.

(R∗w)(x) =
R−1∑

p=−R+1

ep · w(r, ϕ− pd); R∗
K = PKR∗IK .

Introduce an isomorphism of the Hilbert spaces U : L2(K) → LR
2 (K1) by

the formula

(Uw)t(y) = w(r, ϕ + bt − b1) (y ∈ K1; t = 1, . . . , R),

where LR
2 (K1) =

R∏
t=1

L2(K1).

Denote by R1 the matrix of order R×R with the elements

rp1p2 = ep2−p1 (p1, p2 = 1, . . . , R).

Lemma 10.2. The operator URKU−1 : LR
2 (K1) → LR

2 (K1) is the operator
of multiplication by the matrix R1.
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Lemma 10.3. Spectrum of the operator RK : L2(K) → L2(K) coincides
with spectrum of the matrix R1.

Lemma 10.4. The operator RK +R∗
K : L2(K) → L2(K) is positive definite

if and only if the matrix R1 +R∗
1 is positive definite.

Lemmas 10.2–10.4 are analogous to lemmas 8.6–8.8 [18, Chapter 2, §8].
Introduce the spaces W l(K) and W̊ l(K) as a completion of

the sets C∞
0 (K̄\{0}) and C∞

0 (K) correspondingly in the norm(
∑
|α|≤l

∫
K

|Dα
y w(y)|2dy

)1/2

. Similarly, we introduce the space W l(Kt).

Denote by wt the restriction of a function w to Kt. Consider the spaces

W l(K) =
R⊕

t=1

W l(Kt) and E l
a(K) =

R⊕
t=1

El
a(Kt) with the norms ‖w‖Wl(K) =

(
R∑

t=1

‖wt‖2
W l(Kt)

)1/2

and ‖w‖El
a(K) =

(
R∑

t=1

‖wt‖2
El

a(Kt)

)1/2

correspondingly.

Lemma 10.5. The operator RK maps continuously W̊ l(K) into W l(K) and
for all w ∈ W̊ l(K),

DαRKw = RKDαw (|α| ≤ l).

Lemma 10.5 is analogous to lemma 8.13 [18, Chapter 1, §8].

Lemma 10.6. The operator RK maps continuously W l(K) into W l(K) and
E l

a(K) into E l
a(K).

If detR1 6= 0, then the operator R−1
K also maps continuously W l(K) into

W l(K) and E l
a(K) into E l

a(K).

The proof follows from Lemmas 10.2, 10.3.

2 Differential–difference operators in plane angles.

Consider the differential–difference equation

PRw = −
2∑

i, j=1

(RijKwyj
)yi

+
2∑

i=1

RiKwyi
+R0Kw = f(y) (y ∈ K) (10.1)

with the boundary conditions

w|γ1 = w|γR+1
= 0, (10.2)
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where RijK = PKRijIK , RiK = PKRiIK , R0K = PKR0IK ;

Rijw(y) =
R−1∑

p=−R+1

eijp · w(r, ϕ + pd) (i, j = 1, 2);

Riw(y) =
R−1∑

p=−R+1

eip · w(r, ϕ + pd) (i = 0, 1, 2);

eijp, eip ∈ R; f ∈ L2(K).
Denote by (·, ·)K the inner product in L2(K).

Definition 10.1. We shall say that differential–difference equation (10.1) is
strongly elliptic in K̄ if for all w ∈ C∞

0 (K̄\{0}),

Re (PRw, w)K ≥ c1‖w‖2
W 1(K) − c2‖w‖2

L2(K), (10.3)

where c1 > 0, c2 ≥ 0 do not depend on w.

Definition 10.2. A function w ∈ W̊ 1(K) is called a generalized solution for
problem (10.1), (10.2) if for all u ∈ W̊ 1(K),

2∑
i, j=1

(RijKwyj
, uyi

)K +
2∑

i=1

(RiKwyi
, u)K + (R0Kw, u)K = (f, u)K .

We define the unbounded operator PR : L2(K) → L2(K) with domain
Dom (PR) = {w ∈ W̊ 1(K) : PRw ∈ L2(K)} acting in the space of distribu-
tions D′(K) by the formula

PRw = −
2∑

i, j=1

(RijKwyj
)yi

+
2∑

i=1

RiKwyi
+R0Kw

The operator PR is called a differential–difference operator.
It is easy to show that Definition 10.2 is equivalent to the following one.

Definition 10.3. A function w ∈ D(PR) is called a generalized solution for
problem (10.1), (10.2) if

PRw = f.
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Denote by σ(PR) spectrum of the operator PR : L2(K) → L2(K).
Using the strong ellipticity of the operator PR and Lemmas 10.1, 10.2,

10.5, one can prove the following result (cf. theorem 10.1 [18, Chapter 2,
§10]).

Theorem 10.1. Suppose differential–difference equation (10.1) is strongly
elliptic; then

σ(PR) ⊂ {λ ∈ C : Re λ > −c2},
where c2 ≥ 0 is a constant in (10.3).

Example 10.1. Consider the equation

−4RKw(y) +RKw(y) = f(y) (y ∈ K = {y ∈ R2 : r > 0, b1 < ϕ < b3})
(10.4)

with the boundary conditions

w|γ1 = w|γ3 = 0, (10.5)

where Rw(y) = w(r, ϕ)−αw(r, ϕ+d)−βw(r, ϕ−d), d = b3− b2 = b2− b1;
α, β ∈ R; |α + β| < 2.

Clearly, the matrix R1 has the form

R1 =

(
1 −α
−β 1

)
.

Using Lemma 10.5, for all w ∈ C∞
0 (K\{0}), we get

Re (−4RKw +RKw, w)K =

= 1
2

2∑
i=1

((RK +R∗
K)wyi

, wyi
)K + 1

2((RK +R∗
K)w, w)K .

Since |α + β| < 2, the matrix R1 + R∗
1 is positive definite; therefore, by

Lemma 10.4, the operator RK +R∗
K is also positive definite. From this and

from the last equality, we obtain

Re (−4RKw +RKw, w)K ≥ c1‖w‖2
W 1(K).

Hence by Theorem 10.1, boundary value problem (10.4), (10.5) has a unique
generalized solution w ∈ W̊ 1(K) for every f ∈ L2(K).
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3 Nonlocal problems for the Poisson equation in dihedral angles.

Put
Ω = {x = (y, z) : r > 0, b1 < ϕ < b3, z ∈ Rn−2},

Ωt = {x = (y, z) : r > 0, bt < ϕ < bt+1, z ∈ Rn−2} (t = 1, 2),

Γq = {x = (y, z) : r > 0, ϕ = bq, z ∈ Rn−2} (q = 1, . . . , 3),

where b2 − b1 = b3 − b2 = d > 0.
Consider the nonlocal boundary value problem

−4U ≡ −
n∑

i=1

Uxixi
(x) = f(x) (x ∈ Ω), (10.6)

U |Γ1 + αU(r, ϕ + d, z)|Γ1 = g1(x) (x ∈ Γ1),
U |Γ3 + βU(r, ϕ− d, z)|Γ3 = g3(x) (x ∈ Γ3).

(10.7)

Here U(r, ϕ, z) is the function U(x) written in the cylindrical coordinates;
α, β ∈ R; |α + β| < 2.

For n = 2, we put K = {y : r > 0, b1 < ϕ < b3}, Kt = {y : r > 0, bt <
ϕ < bt+1}, γq = {y : r > 0, ϕ = bq}. Write the corresponding nonlocal
problem in the plane angle K :

−4u + u ≡ −
2∑

i=1

uyiyi
(y) + u(y) = f(y) (y ∈ K), (10.8)

u|γ1 + αu(r, ϕ + d)|γ1 = g1(y) (y ∈ γ1),
u|γ3 + βu(r, ϕ− d)|γ3 = g3(y) (y ∈ γ3).

(10.9)

Clearly, the corresponding homogeneous problem with parameter λ has
the form

−Ũϕϕ + λ2Ũ = 0 (ϕ ∈ (b1, b3)), (10.10)

Ũ(ϕ)|ϕ=b1 + αŨ(ϕ + d)|ϕ=b1 = 0,

Ũ(ϕ)|ϕ=b3 + βŨ(ϕ− d)|ϕ=b3 = 0.
(10.11)

One can easily find the eigenvalues of problem (10.10), (10.11). If α+β =
0, then we have

λk = i
π

b3 − b1

k (k = ±1, ±2, . . . ).
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If 0 < |α + β| < 2, then we have

λk = i 2π
b3 − b1

k (k = ±1, ±2, . . . ),

λp =





i
±2 arctan

√
4− (α + β)2

α + β
b3 − b1

+ i
4πp

b3 − b1
for − 2 < α + β < 0,

i
2π ± 2 arctan

√
4− (α + β)2

α + β
b3 − b1

+ i
4πp

b3 − b1
for 0 < α + β < 2

(p = 0, ±1, ±2, . . . ).

Obviously, the line Im λ = 0 contains no eigenvalues of problem (10.10),
(10.11). Therefore by Theorem 9.1, the operator

(−4u + u, u|γ1 + αu(r, ϕ + d)|γ1 , u|γ3 + βu(r, ϕ− d)|γ3

)
: E2

1(K) →
→ E0

1(K)× ∏
σ=1, 3

E
3/2
1 (γσ)

(10.12)
is Fredholm. Let us show that operator (10.12) has trivial kernel.

Suppose u ∈ E2
1(K) is a solution for homogeneous problem (10.8), (10.9).

Introduce the difference operator RK = PKRIK , where

Rw(y) = w(r, ϕ)− αw(r, ϕ + d)− βw(r, ϕ− d).

Put u = RKw. Since |α + β| < 2, the matrix R1 =

(
1 −α
−β 1

)
corre-

sponding to the difference operator RK is non-singular and

R−1
1 =

1

1− αβ

(
1 α
β 1

)
.

Therefore, by Lemma 10.3, the operator RK has the bounded inverse R−1
K

and w = R−1
K u.

Now we shall show that w ∈ E2
1 (K)∩E1

1(K) and w|γ1 = w|γ3 = 0. Indeed,
by Lemma 10.6, w ∈ E2

1 (K). Further, using the isomorphism U , the matrix
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R−1
1 , and Lemma 10.2, we get

w1|γ2 = [Uw]1(r, b2) = 1
1− αβ

([Uu]1(r, b2) + α[Uu]2(r, b2)) =

= 1
1− αβ

(u(r, b2) + αu(r, b3)),

w2|γ2 = [Uw]2(r, b1) = 1
1− αβ

(β[Uu]1(r, b1) + [Uu]2(r, b1)) =

= 1
1− αβ

(βu(r, b1) + u(r, b2)).

(10.13)

But the function u satisfies homogeneous conditions (10.9) and therefore
αu(r, b3) = βu(r, b1). Combining this with (10.13), we see that w1|γ2 =
w2|γ2 , i.e., w ∈ E1

1(K).
Similarly,

w1|γ1 = [Uw]1(r, b1) = 1
1− αβ

([Uu]1(r, b1) + α[Uu]2(r, b1)) =

= 1
1− αβ

(u(r, b1) + αu(r, b2)) = 0,

w2|γ3 = [Uw]2(r, b2) = 1
1− αβ

(β[Uu]1(r, b2) + [Uu]2(r, b2)) =

= 1
1− αβ

(βu(r, b2) + u(r, b3)) = 0,

since the function u satisfies homogeneous conditions (10.9).
Therefore from the imbedding E2

1 (K) ∩ E1
1(K) ⊂ W 1(K), it follows that

w ∈ W̊ 1(K) and w is a generalized solution to boundary value problem (10.4),
(10.5) for f = 0. In Example 10.1, it is shown that w = 0 which implies
u = RKw = 0.

In order to prove that range of operator (10.12) coincides with E0
1(K)×∏

σ=1, 3

E
3/2
1 (γσ), we study the problems that are formally adjoint to prob-

lems (10.6), (10.7) and (10.8), (10.9) with respect to the Green formulas.
Similarly to Example 4.1, we obtain the following nonlocal transmission prob-
lems:

−4Vt + Vt = f(x) (x ∈ Ωt; t = 1, 2) (10.14)

V1|Γ1 = g1(x) (x ∈ Γ1),
V2|Γ3 = g3(x) (x ∈ Γ3),

(10.15)
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V1|Γ2 − V2|Γ2 = h21(x) (x ∈ Γ2),
∂V1
∂n2

∣∣∣
Γ2

− ∂V2
∂n2

∣∣∣
Γ2

+ α∂V1
∂n1

(r, ϕ− d, z)
∣∣∣
Γ2

+ β ∂V2
∂n3

(r, ϕ + d, z)
∣∣∣
Γ2

=

= h22(x) (x ∈ Γ2)
(10.16)

and
−4vt + vt = f(y) (y ∈ Kt; t = 1, 2) (10.17)

v1|γ1 = g1(y) (y ∈ γ1),
v2|γ3 = g3(y) (y ∈ γ3),

(10.18)

v1|γ2 − v2|γ2 = h21(y) (y ∈ γ2),
∂v1
∂n2

∣∣∣
γ2

− ∂v2
∂n2

∣∣∣
γ2

+ α∂v1
∂n1

(r, ϕ− d)
∣∣∣
γ2

+ β ∂v2
∂n3

(r, ϕ + d)
∣∣∣
γ2

=

= h22(y) (y ∈ γ2).

(10.19)

Here n1 is the unit normal vector to Γ1 (γ1) direct inside Ω1 (K1); n2 and
n3 are the unit normal vectors to Γ2 (γ2) Γ3 (γ3) correspondingly directed
inside Ω2 (K2). As we have notices in the proof of Theorem 9.1, λ0 is an
eigenvalue of problem (10.10), (10.11) iff λ′0 = λ̄0 is an eigenvalue of nonlocal
transmission problem with parameter λ corresponding to problem (10.14)–
(10.16) (which can be written in the obvious way). Hence this problem also
has no eigenvalues on the line Im λ = 0. Then by Theorem 7.3, the operator

(−v4 + v, v1|γ1 , v2|γ3 , v1|γ2 − v2|γ2 ,
∂v1
∂n2

∣∣∣
γ2

− ∂v2
∂n2

∣∣∣
γ2

+

+α∂v1
∂n1

(r, ϕ− d)
∣∣∣
γ2

+ β ∂v2
∂n3

(r, ϕ + d)
∣∣∣
γ2

)
:

E2
1 (K) → E0

1 (K)× ∏
σ=1, 3

E
3/2
1 (γσ)×

2∏
ν=1

E
2−ν+1/2
1 (γ2)

(10.20)

has finite dimensional kernel. Here v4(y) = 4vt(y) for y ∈ Kt, t = 1, 2. Let
us show that kernel of operator (10.20) is trivial.

Suppose v ∈ E2
1 (K) is a solution for homogeneous problem (10.17)–

(10.19). Consider the adjoint difference operator R∗
K . The matrix R∗

1 =(
1 −β
−α 1

)
corresponds to the difference operator R∗

K . Since |α + β| < 2,

the matrix R∗
1 is non-singular and by Lemma 10.3, there exists the inverse

operator (R∗
K)−1. Put v = (R∗

K)−1w; hence w = R∗
Kv.

Let us show that w ∈ E2
1(K) and w|γ1 + βw(r, ϕ + d)|γ1 = 0, w|γ3 +

αw(r, ϕ− d)|γ3 = 0. Indeed, by Lemma 10.6, w ∈ E2
1 (K). Further using the
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isomorphism U , the matrix R∗
1, and Lemma 10.2, we get

w1|γ2 = [Uw]1(r, b2) = [Uv]1(r, b2)− β[Uv]2(r, b2) =
= v1(r, b2)− βv2(r, b3) = v1(r, b2),

w2|γ2 = [Uw]2(r, b1) = −α[Uv]1(r, b1) + [Uv]2(r, b1) =
= −αv1(r, b1) + v2(r, b2) = v2(r, b2),

(10.21)

since v satisfies homogeneous conditions (10.18). From (10.21) and homoge-
neous conditions (10.19), we get w1|γ2 = w2|γ2 .

Similarly,
∂w1
∂ϕ

∣∣∣
γ2

= ∂v1
∂ϕ

(r, b2)− β∂v2
∂ϕ

(r, b3),

∂w2
∂ϕ

∣∣∣
γ2

= −α∂v1
∂ϕ

(r, b1) + ∂v2
∂ϕ

(r, b2).
(10.22)

Taking into account that ∂
∂ni

= 1
r

∂
∂ϕ

(i = 1, 2) and ∂
∂n3

= −1
r

∂
∂ϕ

,

from (10.22) and homogeneous conditions (10.19), we obtain ∂w1
∂n2

∣∣∣
γ2

=

∂w2
∂n2

∣∣∣
γ2

. Therefore, w ∈ E2
1(K). Analogously one can show that w|γ1 +

βw(r, ϕ + d)|γ1 = 0, w|γ3 + αw(r, ϕ− d)|γ3 = 0.
This means that w ∈ E2

1(K) is a solution for the problem

−4w + w = 0 (y ∈ K), (10.23)

w|γ1 + βw(r, ϕ + d)|γ1 = 0 (y ∈ γ1),
w|γ3 + αw(r, ϕ− d)|γ3 = 0 (y ∈ γ3).

(10.24)

But problem (10.23), (10.24) is a nonlocal boundary value problem of
type (10.8), (10.9) (one must replace α by β and β by α). Hence, by the
above, w = 0 if |α + β| < 2. This implies v = R̄Kw = 0.

From Lemma 8.1, it follows that dimension of cokernal of operator (10.12)
is equal to dimension of kernel of operator (10.20). Therefore cokernal of
operator (10.12) is trivial. Finally applying Theorem 9.2, we obtain that

nonlocal boundary value problem (10.6), (10.7) has a unique solution U ∈
H l+2

1+l (Ω) for every right-hand side {f, g1, g3} ∈ H l
1+l(K)× ∏

σ=1, 3

H
l+3/2
1+l (Γσ).
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A A priori estimates for the operator L∗ in

Rn

1 Some approaches for ordinary differential equations.

Let P(ξ′, −i d
dxn

) and Bν(ξ
′, −i d

dxn
) (ν = 1, . . . , J ; J ≥ 1) be differential

operators with constant coefficients and parameter ξ′ = (ξ1, . . . , ξn−1) ∈
Rn−1 such that after replacing −i d

dxn
by ξn, we get polynomials of orders

2m and mν ≤ 2m − 1 that are homogeneous with respect to (ξ′, ξn) corre-
spondingly.

Let the following condition hold.

Condition A.1. P(ξ′, ξn) 6= 0 for all (ξ′, ξn) 6= 0.

Consider the bounded operator Lξ′ : W 2m(R) → L2(R)× CJ given by

Lξ′u = (P(ξ′, −i
d

dxn

)u, B1(ξ
′, −i

d

dxn

)u|xn=0, . . . , BJ(ξ′, −i
d

dxn

)u|xn=0).

Introduce the adjoint operator L∗ξ′ : L2(R) × CJ → W−2m(R) that takes

Ψ = (ψ, d1, . . . , dJ) ∈ L2(R)× CJ to L∗ξ′Ψ by the rule

< u, L∗ξ′Ψ >=< P(ξ′, −i
d

dxn

)u, ψ > +
J∑

ν=1

< Bν(ξ
′, −i

d

dxn

)u|xn=0, dν >

for all u ∈ W 2m(R).

Lemma A.1. Suppose n ≥ 2; then for all ξ′ ∈ Rn−1, ξ′ 6= 0, the operator Lξ′

is Fredholm, its kernel is trivial.

Proof. Since n ≥ 2, condition A.1 implies that

k1(1 + |ξn|2)2m ≤ |P(ξ′, ξn)|2 ≤ k2(1 + |ξn|2)2m for ξ′ 6= 0. (A.1)

Here k1, k2 depend on ξ′ and do not depend on ξn. Multiplying the first
inequality in (A.1) by |ũ(ξn)|2 (ũ is the Fourier transform of the function u
with respect to xn) and integrating over R, we obtain

‖u‖W 2m(R) ≤ k3‖P(ξ′, ξn)u‖L2(R),
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where k3 > 0 depend only on ξ′ and do not depend on u. The last inequality
implies that the operator Lξ′ has trivial kernel and closed range.

Let us show that cokernel of the operator Lξ′ is of finite dimension. Using
the Fourier transform and inequality (A.1), one can easily check that for n ≥
2, ξ′ 6= 0, the operator P(ξ′, −i d

dxn
) maps W 2m(R) onto L2(R). Therefore

the operator Lξ′ maps W 2m(R) onto L2(R)×MJ , whereMJ is a closed (since
range of Lξ′ is closed) subspace of CJ . But CJ is a finite dimensional space;
hence cokernel of the operator Lξ′ is also finite dimensional.

Lemma A.2. Suppose n ≥ 2; then for all ξ′ ∈ Rn−1, ξ′ 6= 0, we have
I) the operator L∗ξ′ is Fredholm, its range coincides with W−2m(R);

II) for all Ψ = (ψ, d1, . . . , dJ) ∈ L2(R) × CJ , the following estimate
holds:

‖ψ‖L2(R) ≤ cξ′
(‖L∗ξ′Ψ‖W−2m(R) +

J∑
ν=1

|dν |
)
, (A.2)

where cξ′ > 0 depends on ξ′ and does not depend on Ψ;
III) if ξ′ ∈ K ⊂ Rn−1, where K is a compactum such that K ∩ {0} = ∅,

then inequality (A.2) holds with a constant c that does not depend on ξ′.

Proof. I) follows from Lemma A.1. Let us prove II). Denote by ker (L∗ξ′)
kernel of the operator L∗ξ′ . Since L∗ξ′ is Fredholm, ker (L∗ξ′) is of finite dimen-
sion.

Let us show that in the space ker (L∗ξ′), we can introduce the norm

‖Ψ̂‖ker (L∗
ξ′ )

=

(
J∑

ν=1

|d̂ν |2
)1/2

, Ψ̂ = (ψ̂, d̂1, . . . , d̂J) ∈ ker (L∗ξ′) ⊂ L2(R)×CJ ,

which is equivalent to the standart norm in L2(R) × CJ . Among all of the
properties of a norm, the following one is not obvious: Ψ̂ = 0 whenever
‖Ψ̂‖ker (L∗

ξ′ )
= 0. Check it. Suppose ‖Ψ̂‖ker (L∗

ξ′ )
= 0; then Ψ̂ = (ψ̂, 0, . . . , 0).

Since Ψ̂ ∈ ker (L∗ξ′), it follows from the definition of the operator L∗ξ′ that

< P(ξ′, −i
d

dxn

)u, ψ̂ >= 0 (A.3)

for all u ∈ W 2m(R).
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As we have already mentioned in the proof of Lemma A.1, the opera-

tor P(ξ′, −i d
dxn

) maps W 2m(R) onto L2(R) if n ≥ 2, ξ′ 6= 0. From this

and (A.3), it follows that ψ̂ = 0; hence, Ψ̂ = 0.
Now we get that the norm ‖·‖ker (L∗

ξ′ )
is equivalent to the norm ‖·‖L2(R)×CJ ,

since the space ker (L∗ξ′) is of finite dimension.
The operator L∗ξ′ is closed and range of L∗ξ′ is closed; hence from theo-

rem 2.3 [15, §2], it follows that for any Ψ = (ψ, d1, . . . , dJ) ∈ L2(R)× CJ ,
there exists a Φ ∈ L2(R)× CJ such that L∗ξ′Ψ = L∗ξ′Φ and

‖Φ‖L2(R)×CJ ≤ k1‖L∗ξ′Ψ‖W−2m(R),

where k1 > 0 depends on ξ′ and does not depend on Φ and Ψ. But Ψ = Φ+Ψ̂,
where Ψ̂ = (ψ̂, d̂1, . . . , d̂J) ∈ ker (L∗ξ′); therefore,

‖Ψ‖L2(R)×CJ ≤ k1‖L∗ξ′Ψ‖W−2m(R) + ‖Ψ̂‖L2(R)×CJ .

By proved, the norms ‖ · ‖ker (L∗
ξ′ )

and ‖ · ‖L2(R)×CJ are equivalent; this implies

‖ψ‖L2(R) ≤ ‖Ψ‖L2(R)×CJ ≤ k1‖L∗ξ′Ψ‖W−2m(R) + k2

J∑
ν=1

|d̂ν | ≤

≤ k1‖L∗ξ′Ψ‖W−2m(R) + k2

J∑
ν=1

|dν |+ k2‖Φ‖L2(R)×CJ ≤

≤ k1‖L∗ξ′Ψ‖W−2m(R) + k2

J∑
ν=1

|dν |+ k1k2‖L∗ξ′Ψ‖W−2m(R) ≤

≤ cξ′(‖L∗ξ′Ψ‖W−2m(R) +
J∑

ν=1

|dν |),

where cξ′ = max(k1 + k1k2, k2).
Let us prove III). Suppose III) does not hold; then there exist sequences

{(ξ′)k} ⊂ K, {Ψk} = {(ψk, dk
1, . . . , dk

J)}, k = 1, 2, . . . , such that
‖ψk‖L2(R) = 1,

‖L∗(ξ′)kΨk‖W−2m(R) +
J∑

ν=1

|dk
ν | → 0 as k →∞. (A.4)

Choose from {(ξ′)k} a subsequence (we shall denote it {(ξ′)k} too) that con-
verges to a (ξ′)0 ∈ K. By assumption, (ξ′)0 6= 0; therefore by proved, esti-
mate (A.2) holds for ξ′ = (ξ′)0.
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Notice that

‖L∗(ξ′)0Ψk‖W−2m(R) ≤ ‖L∗
(ξ′)kΨk‖W−2m(R)+

+‖L∗
(ξ′)k − L∗(ξ′)0‖L2(R)×CJ→W−2m(R) · ‖Ψk‖L2(R)×CJ .

From (A.4), it follows that ‖L∗
(ξ′)kΨk‖W−2m(R) → 0. Further, ‖L∗

(ξ′)k −
L∗(ξ′)0‖L2(R)×CJ→W−2m(R) → 0, since Lξ′ depends on ξ′ polynomially. Finally,

‖Ψk‖L2(R)×CJ is uniformly bounded by a constant not depending on k which
follows from (A.4) and relation ‖ψk‖L2(R) = 1. Hence, ‖L∗(ξ′)0Ψk‖W−2m(R) → 0

as k →∞. Combining this with (A.4), we obtain

‖L∗(ξ′)0Ψk‖W−2m(R) +
J∑

ν=1

|dk
ν | → 0 as k →∞. (A.5)

Now applying estimate (A.2) to the sequence {Ψk} and ξ′ = (ξ′)0, from (A.5),
we eventually get

‖ψk‖L2(R) → 0 as k →∞.

This contradicts the assumption ‖ψk‖L2(R) = 1.

2 A priori estimates in Rn.

Write a point x ∈ Rn (n ≥ 2) in the form x = (x′, xn), where x′ =
(x1, . . . , xn−1) ∈ Rn−1, xn ∈ R. Similarly, write a point ξ ∈ Rn (n ≥ 2)
in the form ξ = (ξ′, ξn), where ξ′ = (ξ1, . . . , ξn−1) ∈ Rn−1, ξn ∈ R.

Let P(D) = P(Dx′ , Dxn), Bν(D) = Bν(Dx′ , Dxn) (ν = 1, . . . , J ; J ≥ 1)
be differential operators with constant coefficients such that after replacing
D = (Dx′ , Dxn) by ξ = (ξ′, ξn), we get polynomials P(ξ) = P(ξ′, ξn),
Bν(ξ) = Bν(ξ

′, ξn) of orders 2m and mν ≤ 2m − 1 correspondingly that
are homogeneous with respect to ξ = (ξ′, ξn). We shall suppose that the
polynomial P(ξ) satisfies condition A.1.

Consider the bounded operator

L : W 2m(Rn) → L2(Rn)×
J∏

ν=1

W 2m−mν−1/2(Rn−1)

given by

LU = (P(D)U, B1(D)U |xn=0, . . . , BJ(D)U |xn=0).
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Notice that the problem corresponding to the operator L is quite artificial.
This is not a boundary value problem, since a solution U is considered in Rn.
And this is not a transmission problem, since we impose the trace conditions
on the hyperplane {xn = 0}, but not transmission conditions. Moreover the
operators BJ(D) do not cover the operator P(D) on the hyperplane {xn = 0}.
Nevertheless we need this problem for getting a priori estimates of solutions
to adjoint nonlocal problems (§8). This is explained by the specific character
of our method, which may be called “separation of nonlocality”.

Introduce the adjoint operator L∗ : L2(Rn)×
J∏

ν=1

W−2m+mν+1/2(Rn−1) →
W−2m(Rn). The operator L∗ takes F = (f0, g1, . . . , gJ) ∈ L2(Rn) ×
J∏

ν=1

W−2m+mν+1/2(Rn−1) to L∗F by the rule

< U, L∗F >=< P(D)U, f0 > +
J∑

ν=1

< Bν(D)U |xn=0, gν >

for all U ∈ W 2m(Rn).

Denote Rn
+ = {x ∈ Rn : xn > 0}, Rn

− = {x ∈ Rn : xn < 0}. Con-
sider the space W l(Rn) = W l(Rn

+) ⊕ W l(Rn
−) with the norm ‖U‖Wl(Rn) =(

‖U+‖2
W l(Rn

+)
+ ‖U−‖2

W l(Rn
−)

)1/2

.

Theorem A.1. Suppose

F = (f0, g1, . . . , gJ) ∈ L2(Rn)×
J∏

ν=1

W−2m+l+mν+1/2(Rn−1),

L∗F ∈
{

W−2m+l(Rn) for l < 2m,
W−2m+l(Rn) for l ≥ 2m;

then f0 ∈ W l(Rn) and

‖f0‖Wl(Rn) ≤ cl

(‖L∗F‖−2m+l + ‖f0‖W−1(Rn) +
J∑

ν=1

‖gν‖W−2m+l+mν+1/2(Rn−1)

)
,

(A.6)

where ‖ · ‖−2m+l =

{ ‖ · ‖W−2m+l(Rn) for l < 2m,
‖ · ‖W−2m+l(Rn) for l ≥ 2m,

cl > 0 depends on l ≥ 0

and does not depend on F.
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Proof. Suppose l = 0. Then using Fourier transform of the functions f0, gν

and L∗F with respect to x′ we derive estimate (A.6) from Lemma A.2 (in
the same way as estimate (4.27) [12, Chapter 2, §4.4] follows from (4.18) [12,
Chapter 2, §4.2], see the proof of theorem 4.1 [12, Chapter 2, §4.4]).

If l ≥ 1, then we prove that f0 ∈ W l(Rn) and obtain estimate (A.6)
using (A.6) for l = 0, the finite difference method, and condition A.1 (in the
same way as estimate (4.40) [12, Chapter 2, §4.5] is derived from (4.40′) [12,
Chapter 2, §4.5], see the proof of theorem 4.3 [12, Chapter 2, §4.5]).

Remark A.1. Unlike model problems in Rn (see [12, Chapter 2, §3]), our
operator L∗ contains distributions with support on the hyperplane {xn = 0}.
That is why smoothness of the function f0 can be violated on the hyperplane
{xn = 0} even if L∗F is infinitely smooth in Rn. Moreover, Theorem A.1
shows that if we want the function f0 to be more smooth in Rn

+ and Rn
−, then

we must consider more smooth function L∗F and more smooth distribu-
tions gν as well.

B Some properties of weighted spaces

Introduce the space H l
a(Ω) as a completion of the set C∞

0 (Ω̄\M) in the norm

‖U‖Hl
a(Ω) =


∑

|α|≤l

∫

Ω

r2(a+|α|−l)|Dα
xU(x)|2dx




1/2

,

where Ω = {x = (y, z) : r > 0, 0 < b1 < ϕ < b2 < 2π, z ∈ Rn−2},
M = {x = (y, z) : y = 0, z ∈ Rn−2}. Denote by H

l−1/2
a (Γ) (l ≥ 1) the

space of traces on the (n− 1)-dimensional half-plane Γ = {x = (y, z) : r >
0, ϕ = b, z ∈ Rn−2} (b1 ≤ b ≤ b2) with the norm

‖Ψ‖
H

l−1/2
a (Γ)

= inf ‖U‖Hl
a(Ω) (U ∈ H l

a(Ω) : U |Γ = Ψ).

Introduce the space El
a(K) as a completion of the set C∞

0 (K̄\{0}) in the
norm

‖u‖El
a(K) =


∑

|α|≤l

∫

K

r2a(r2(|α|−l) + 1)|Dα
y u(y)|2dy




1/2

,
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where K = {y ∈ R2 : r > 0, 0 < b1 < ϕ < b2 < 2π}. By E
l−1/2
a (γ) (l ≥ 1)

we denote the space of traces on the ray γ = {y : r > 0, ϕ = b} (b1 ≤ b ≤ b2)
with the norm

‖ψ‖
E

l−1/2
a (γ)

= inf ‖u‖El
a(K) (u ∈ El

a(K) : u|γ = ψ).

Our aim is to prove the following two theorems.

Theorem B.1. For all Ψ ∈ H
l−1/2
a (Γ), we have




∫

Γ

r2(a−(l−1/2))|Ψ|2 dΓ




1/2

≤ c‖Ψ‖
H

l−1/2
a (Γ)

,

where c > 0 is independent of Ψ.

Theorem B.2. For all ψ ∈ E
l−1/2
a (γ), we have




∫

γ

r2(a−(l−1/2))|ψ|2 dγ




1/2

≤ c‖ψ‖
E

l−1/2
a (γ)

,

where c > 0 is independent of ψ.

At first, let us formulate two lemmas (see [8, Chapter 6, §1.3].

Lemma B.1. The norm ‖U‖Hl
a(Ω) is equivalent to the norm




∫

Rn−2

|η|2(l−a)−2‖W (·, η)‖2
El

a(K) dη




1/2

,

where W (y, η) = Û(|η|−1y, η), Û(y, η) is the Fourier transform of U(y, z)
with respect to z.

Lemma B.2. The norm ‖u‖El
a(Ω) is equivalent to the norm




l∑

k=0

∞∫

0

r2(a−(l−1/2))

l−k∑
j=0

(1 + r)2(l−k−j)‖(rDr)
ku(r, ·)‖2

W j(b1, b2) dr




1/2

,

u(r, ϕ) is the function u(y) written in the polar coordinates.
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Let us prove Theorem B.2. Take a function u ∈ El
a(K) such that u|γ = ψ,

‖u‖El
a(K) ≤ 2‖ψ‖

E
l−1/2
a (γ)

. Since u(r, ϕ)|ϕ=b = ψ(r) and the trace operator in

Sobolev spaces is bounded, we have |ψ(r)|2 ≤ k1‖u(r, ·)‖2
W l(b1, b2)

. Therefore
by Lemma B.2, we get

∫

γ

r2(a−(l−1/2))|ψ|2 dγ ≤ k1

∞∫

0

r2(a−(l−1/2))‖u(r, ·)‖2
W l(b1, b2) dr ≤ k2‖u‖2

El
a(K).

(B.1)
Now Theorem B.2 follows from (B.1) and the inequality ‖u‖El

a(K) ≤
2‖ψ‖

E
l−1/2
a (γ)

.

Let us prove Theorem B.1. Take a function U ∈ H l
a(Ω) such that U |Γ =

Ψ, ‖U‖Hl
a(Ω) ≤ 2‖Ψ‖

H
l−1/2
a (Γ)

. Using the Fourier transform with respect to z

and the Parseval equality, we have
∫

Γ

r2(a−(l−1/2))|Ψ|2 dΓ =

∫

Rn−2

∫

R1

r2(a−(l−1/2))|Ψ̂(r, η)|2 drdη,

where Ψ̂(r, η) is the Fourier transformation of the function Ψ(r, z) with
respect to z. Doing change of variables r = |η|−1r′ in the last integral and
using (B.1), we obtain

∫
Γ

r2(a−(l−1/2))|Ψ|2 dΓ =

≤ ∫
Rn−2

∫
R1

|η|−2(a−(l−1/2))−1(r′)2(a−(l−1/2))|Ψ̂(η−1r′, η)|2 dr′dη ≤
≤ k2

∫
Rn−2

|η|2(l−a)−2‖W (·, η)‖2
El

a(K)
dη,

(B.2)

where W (y, η) = Û(|η|−1y, η). Now Theorem B.1 follows from (B.2),
Lemma B.1, and the inequality ‖U‖Hl

a(Ω) ≤ 2‖Ψ‖
H

l−1/2
a (Γ)

.

The author is grateful to professor A.L. Skubachevskii for constant at-
tention to this work.
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