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Abstract.
The paper is devoted to the study of asymptotic behavior of solutions for nonlocal

elliptic problems in weighted spaces. We deal with the most difficult case when the support
of nonlocal terms intersects with boundary of a plane bounded domain. In this situation,
a general form of the asymptotics is investigated, and coefficients in the asymptotics are
calculated.
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1. Introduction.

I. This work is devoted to the investigation of asymptotic behavior of
solutions for nonlocal elliptic problems. Recently many mathematicians have
been studying nonlocal problems. This interest is explained, on the one hand,
by a significant theoretical progress in the area and, on the other hand, by
a number of important applications arising in plasma theory [3], biophysics,
theory of diffusion processes [7, 30, 26], modern aircraft technology (partic-
ularly, in the theory of sandwich shells and plates [26]), etc.

In the 1-dimensional case the first ones who studied nonlocal prob-
lems were A. Sommerfeld [28], Ya.D. Tamarkin [29], M. Picone [19]. In
the 2-dimensional case the earliest paper devoted to nonlocal problems is
due to T. Carleman [5]. T. Carleman searched for a harmonic function
u in a plane bounded domain G subject to a nonlocal condition connect-
ing the values of the unknown function in different points of boundary:
u(x) + bu

(
ω(x)

)
= g(x). Here ω : ∂G → ∂G is a nondegenerate transforma-

tion subject to the restriction ω(ω(x)) ≡ x (being referred to as Carleman’s
condition in the present time). Such a statement of nonlocal problems has
originated further research into the area of elliptic problems with nonlocal
transformations mapping a boundary onto itself and with abstract boundary
conditions [31, 4, 2, 1].

In 1969, A.V. Bitsadze and A.A. Samarskii [3] considered the following
nonlocal problem arising in plasma theory: find a harmonic function u(y1, y2)
in the rectangle G = {y ∈ R2 : −1 < y1 < 1, 0 < y2 < 1} such that it is
continuous in Ḡ and satisfies the conditions

u(y1, 0) = f1(y1), u(y1, 1) = f2(y1), −1 < y1 < 1,
u(−1, y2) = f3(y2), u(1, y2) = u(0, y2), 0 < y2 < 1,

where f1, f2, f3 are given continuous functions. We notice that this problem
principally differs from the one studied by T. Carleman: now the values of
the unknown function on the part of the boundary ∂G are connected with the
values inside the domain G. This problem was solved in [3] by reducing to
an integral Fredholm equation and using the maximum principle. In case of
an arbitrary domain and general nonlocal transformations, it was formulated
as an unsolved one.

The most difficult case turns out to deal with the situation when a part
Υ1 of boundary of a domain G is mapped by some nonlocal transformation Ω1

on Ω1(Υ1) so that Ω1(Υ1)∩∂G 6= ∅. Various versions of such problems were
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considerer by S.D. Eidelman and N.V. Zhitarashu [6], K.Yu. Kishkis [14],
A.K. Gushchin and V.P. Mikhailov [13], etc.

Basis of general theory for elliptic equations of order 2m with general
nonlocal conditions was founded by A.L. Skubachevskii and his pupils. In a
series of works a priori estimates were proved, a right regularizer was con-
structed, adjoint problems were studied, and properties of index in appropri-
ate spaces were established; spectral properties of some problems were con-
sidered [21, 22, 23, 24, 25, 20, 16, 9, 10]; asymptotics and smoothness of solu-
tions near some special points were investigated [22, 12]. We remark that the
papers [22, 23, 24] were the first ones to deal with the case Ω1(Υ1)∩ Ῡ1 6= ∅,
which had not been previously considered even for the Laplace equation with
nonlocal conditions in plane domains.

II. In this paper we investigate the most difficult situation mentioned
above: the support of nonlocal terms can have a nonempty intersection with
boundary of a domain G. In that case, power singularities for solutions
near some set K ⊂ G can appear [22, 27]. Therefore it is quite natural to
study such problems in special weighted spaces that take into consideration
those possible singularities. (The most convenient spaces turned out to be
Kondrat’ev’s ones [15].) Thus we arrive at the question of asymptotics of
solutions near the set K. In the paper [22], A.L. Skubachevskii obtained a
general form of an asymptotics of solutions to problems with nonlocal trans-
formations coinciding with a rotation operator near the set K. These theo-
rems were applied to investigation of smoothness for generalized solutions of
nonlocal elliptic problems (see [22, 27]).

In the present work we generalize the mentioned results of A.L. Skuba-
chevskii and study the case of arbitrary nonlocal transformations, linear near
the set K. Simultaneously, we get a formula connecting the indices of one
and the same nonlocal problem, but being considered in different weighted
spaces.

Moreover, using the results of the paper [12] (which deals with model
nonlocal problems in plane angles and in R2 \ {0}), we get explicit formu-
las for calculating the coefficients in the asymptotics of solutions. These
formulas are given both in terms of eigenvectors and associated vectors of
model adjoint problems and in terms of distributions from the kernel of ad-
joint problem in a bounded domain. The latter shows, in particular, that
the values of the coefficients in the asymptotics are the functionals over the
right–hand sides of the nonlocal problem under consideration. These func-
tionals depend on the data of the problem in the whole domain, but not only
in some neighborhood of the set K.
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We remark that the calculation of the coefficients in the asymptotics is
both important itself and has a direct application to the question of smooth-
ness of generalized solutions for nonlocal problems. Roughly speaking, it
allows to show that a generalized solution u ∈ W 1

2 (G) to a nonlocal prob-
lem (for an elliptic 2nd order equation) with a right–hand side f ∈ L2(G)
is smooth (i.e., u ∈ W 2

2 (G)) if and only if the function f satisfies some or-
thogonality conditions. In a number of cases these conditions can be verified
explicitly.

III. The paper is organized as follows. The statement of the problem
and some assumptions concerning nonlocal transformations are given in sec-
tion 2. Most of the assumptions are due to simplify computations throughout
the paper. In section 3 we derive an asymptotics (with yet unknown coef-
ficients) for solutions to nonlocal problems. Using the results of section 3,
in section 4 we establish a connection between the indices of one and the
same problem but being considered in different weighted spaces. In section 5
we obtain an asymptotics of solutions for adjoint nonlocal problems. This
allows to get in section 6 explicit formulas for the coefficients in asymptotics
of solutions to the original nonlocal problem. In section 7 we consider an
example illustrating the results of sections 2–6.

2. Statement of the problem in a bounded domain.

Let G ∈ R2 be a bounded domain with a boundary ∂G =
⋃

σ=1,2

Ῡσ,

where Υσ are open (in the topology of ∂G) curves of C∞ class such that
Υ1 ∩Υ2 = ∅, Ῡ1 ∩ Ῡ2 = {g1, h1}. We suppose that in some neighborhoods
of the points g1 and h1 the domain G coincides with an angle.

We denote by P(y, Dy), Bσµ(y, Dy), Tσµ(y, Dy) differential operators
of orders 2m, mσµ, mσµ respectively with complex–valued coefficients from
C∞(R2) (mσµ ≤ 2m − 1, σ = 1, 2; µ = 1, . . . , m). Put also Bσ(y, Dy) =
{Bσµ(y, Dy)}m

µ=1, Tσ(y, Dy) = {Tσµ(y, Dy)}m
µ=1.

Let Ωσ (σ = 1, 2) be an infinitely differentiable nondegenerate trans-
formation mapping some neighborhood Oσ of Υσ onto Ωσ(Oσ) such that
Ωσ(Υσ) ⊂ G. For definiteness, we consider the case when Ω1(g1) = g2 ∈ G,
Ω2(g1) = g1, Ω1(h1) = h1, Ω2(h1) = h2 ∈ G. In this work we also assume
that g2 /∈ Ω2(Υ2), h2 /∈ Ω1(Υ1). The last assumption is made in order to
simplify further computations1. But, following [22, 24], we demand (and it

1 If, say, g2 ∈ Ω2(Υ2), then either g2 = h2 (in that case, an asymptotics of a solution
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Fig. 2.1. The domain G.

is on principle) that following condition holds:
Condition 2.1. The curves Ω1(Υ1) and Ω2(Υ2) are not tangent to the

boundary ∂G at the “consistent points” h1 and g1 respectively (see Fig. 2.1).
We also suppose for simplicity that the transformations Ωσ(y) are linear

near the points g1 and h1.
We introduce the set K = {g1, h1, g2, h2} and consider the nonlocal

elliptic problem

P(y, Dy)u = f(y) (y ∈ G\K), (2.1)

Bσ(y, Dy)u ≡ Bσ(y, Dy)u|Υσ +
(
Tσ(y, Dy)u

)(
Ωσ(y)

)|Υσ = fσ(y)

(y ∈ Υσ; σ = 1, 2).
(2.2)

Here
(
Tσ(y, Dy)u

)(
Ωσ(y)

)
= Tσ(y′, Dy′)u(y′)|y′=Ωσ(y); fσ = {fσµ}m

µ=1.
Remark 2.1. The results of this paper are generalized for the case

when the boundary ∂G consists of a finite number of smooth curves Υσ,
σ = 1, . . . , N , and nonlocal conditions on each Υσ contain a finite number
of nonlocal terms with different transformations. Moreover, these transfor-
mations can map “the consistent points” (which are g1 and h1 in our case)
both to the boundary ∂G and inside the domain G, forming finite orbits.

We introduce the space H l
a(G) as a completion of the set C∞

0 (Ḡ\K) in
the norm

‖u‖Hl
a(G) =


∑

|α|≤l

∫

G

ρ2(a−l+|α|)|Dαu|2dy




1/2

.

near the point g2 will influence not only an asymptotics near g1 but near h1 as well)
or g2 ∈ Ω2(Υ2) (in that case, one must study an asymptotics at the additional point
Ω−1

2 (g2) ∈ Υ2).
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Here C∞
0 (Ḡ\K) is the set of infinitely differentiable functions with compact

supports contained in Ḡ\K; l ≥ 0 is an integer; a ∈ R; ρ = ρ(y) = dist(y, K).
If, instead of the domain G, one considers an angle with a vertex g or

some neighborhood of a point g, then one must put K = {g} in the definition
of the weighted space.

By H
l−1/2
a (Υ) we denote the space of traces on a smooth curve Υ ⊂ Ḡ

with the norm ‖ψ‖
H

l−1/2
a (Υ)

= inf ‖u‖Hl
a(G) (u ∈ H l

a(G) : u|Υ = ψ).
Let us introduce the operator

L = {P(y, Dy), Bσ(y, Dy)} :

H l+2m
a (G) → H l

a(G, Υ)
def
= H l

a(G)×
∏

σ=1,2

m∏
µ=1

H l+2m−mσµ−1/2
a (Υσ),

which corresponds to nonlocal problem (2.1), (2.2).

Throughout the paper we assume that the operators P(y, Dy) and
Bσ(y, Dy) satisfy the following conditions (see, e.g., [17, Chapter 2, sec-
tion 1]).

Condition 2.2. For all y ∈ Ḡ the operator P(y, Dy) is properly ellip-
tic.

Condition 2.3. For σ = 1, 2 and y ∈ Ῡσ the system Bσ(y, Dy) =
{Bσµ(y, Dy)}m

µ=1 covers the operator P(y, Dy).
Remark that we do not impose any restrictions on the nonlocal operators

Tσµ(y, Dy) but the natural restriction on their orders.

3. Asymptotics of solutions for nonlocal problems.

I. In this section we obtain an asymptotics of a given solution u ∈
H l+2m

a (G) for problem (2.1), (2.2) with a right–hand side {f, fσ} ∈ H l
a1

(G, Υ),
0 < a− a1 < 1.

Notice that the violation of the inequality a−a1 < 1 means that {f, fσ}
is “too regular”. In that case, exact results should yield more terms in
asymptotics in comparison with our case. This situation can be investigated
in the way similar to [22] (see also [15, 18]). Namely, one should consider
corresponding equations for a residue in the asymptotics formula and apply
to them the results obtained for the case a− a1 < 1. We are not going to do
this here since detailed computations would lead to enormous enlargement
of the paper, giving no essentially new results (with respect to the present
work and to the paper [22]). The same remark is valid for the case when
u ∈ H l+2m

a (G), {f, fσ} ∈ H l1
a1

(G, Υ), and l1 6= l.
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The asymptotics will be found with the help of eigenvalues and cor-
responding Jordan chains of some holomorphic operator–valued functions.
Therefore let us remind some relevant definitions and facts (see [8]).

Suppose L̃(λ) : H1 → H2 is a holomorphic operator–valued function,
H1, H2 are Hilbert spaces. A holomorphic at a point λ0 vector–function ϕ(λ)
with the values in H1 is called a root function of the operator L̃(λ) at λ0 if
ϕ(λ0) 6= 0 and the vector–function L̃(λ)ϕ(λ) is equal to 0 at λ0. If L̃(λ) has
at least one root function at the point λ0, then λ0 is called an eigenvalue of
L̃(λ). Multiplicity of zero for the vector–function L̃(λ)ϕ(λ) at the point λ0

is called a multiplicity of the root function ϕ(λ); the vector ϕ(0) = ϕ(λ0) is
called an eigenvector corresponding to the eigenvalue λ0. Let ϕ(λ) be a root

function at the point λ0 of multiplicity κ, and ϕ(λ) =
∞∑

j=0

(λ−λ0)
jϕ(j). Then

the vectors ϕ(1), . . . , ϕ({−1) are called associated with the eigenvector ϕ0,
and the ordered set ϕ(0), . . . , ϕ({−1) is called a Jordan chain corresponding
to the eigenvalue λ0. Rank of the eigenvector ϕ(0) (rank ϕ(0)) is the maximum
of multiplicities of all root functions such that ϕ(λ0) = ϕ(0).

Let an eigenvalue λ0 of the operator L̃(λ) be isolated, dim ker L̃(λ0) < ∞,
and rank of λ0 finite. Suppose J = dim ker L̃(λ0) and ϕ(0,1), . . . , ϕ(0,J) is
a system of linearly independent eigenvectors such that rank ϕ(0,1) is the
greatest of ranks of all eigenvectors corresponding to the eigenvalue λ0, and
rank ϕ(0,j) (j = 2, . . . , J) is the greatest of ranks of eigenvectors from
some orthogonal supplement in ker L̃(λ0) to the linear manifold of the vec-
tors ϕ(0,1), . . . , ϕ(0,j−1). The numbers κj = rank ϕ(0,j) are called partial
multiplicities of the eigenvalue λ0, and the sum κ1 + · · ·+κJ is called a (full)
multiplicity of λ0. If the vectors ϕ(0,j), . . . , ϕ({j−1,j) form a Jordan chain
for every j = 1, . . . , J , then the set of vectors {ϕ(0,j), . . . , ϕ({j−1,j) : j =
1, . . . , J} is called a canonical system of Jordan chains corresponding to
the eigenvalue λ0.

II. At first let us consider an asymptotics of the solution u for prob-
lem (2.1), (2.2) near the point g2. In this case we will see that the asymp-
totics is defined by a model “local” problem in R2 \ {g2} with a “regular”
right–hand side. Such a problem was studied in [12, section 5]. Thereafter
we will consider the asymptotics near the point g1. In that case, we will
arrive at a model nonlocal problem in some angle K with a right–hand side
being a sum of “regular” and “special” functions. The asymptotics of the
“special” one will be defined by the asymptotics of the solution u near g2,
which is explained by the presence of the nonlocal transformation Ω1. Then
the results of [12] will be applied to this model problem.
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Thus we fix a neighborhood V(g2) of g2 such that V(g2) ∩ ∂G = ∅ and
V(g2) ∩ {h2} = ∅. One can see that an asymptotic behavior of u in V(g2)
does not depend on nonlocal conditions (2.2), but is defined only by the
equation

P(y, Dy)u = f(y)
(
y ∈ V(g2)

)
. (3.1)

Let P(Dy) be the principal homogeneous part of the operator P(g2, Dy).
Then equation (3.1) can be written in the form

P(Dy)u(y) = f̂(y)
(
y ∈ V(g2)

)
, (3.2)

where f̂ , by virtue of the condition 0 < a − a1 < 1, belongs to the space
H l

a1

(V(g2)
)
2. We introduce the bounded operator

L2 = P(Dy) : H l+2m
a (R2) → H l

a(R2),

where, defining the weighted spaces, one must put K = {g2}.
We write the operator P(Dy) in polar coordinates with the pole at the

point g2: P(Dy) = r−2mP̃(ω, Dω, rDr), where Dω = −i ∂
∂ω

, Dr = −i ∂
∂r

.

Let us introduce the operator–valued function

L̃2(λ) = P̃(ω, Dω, λ) : W l+2m
2,2π (0, 2π) → W l

2,2π(0, 2π).

Here W l
2,2π(0, 2π) is the closure of the set of infinitely differentiable 2π-

periodic functions in W l
2(0, 2π).

The operator L̃2(λ) is obtained from the operator L2 by passing to polar
coordinates, followed by the Mellin transformation with respect to r:

ũ(λ) = (2π)−1/2

∞∫

0

r−iλ−1u(r) dr.

From [22, section 1] it follows that there exists a finite–meromorphic
operator–valued function R̃2(λ) such that its poles (except, maybe, a finite
number of them) are located inside a double angle of opening less than π

containing the imaginary axis; moreover, if λ is not a pole of R̃2(λ), then

2 To show that f̂ ∈ H l
a1

(V(g2)
)
, one must estimate the expressions of the two types:

1) pα(y)Dαu, |α| ≤ 2m− 1, and 2)
(
pα(y)− pα(0)

)
Dαu, |α| = 2m, where pα are infinitely

differentiable coefficients of P(y, Dy). The 1st one is estimated by direct use of the
condition 0 < a−a1 < 1, while the 2nd one needs additional application of Lemma 3.3′ [15].
Further, in analogous situations, we will omit these explanations.
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R̃2(λ) is inverse to the operator L̃2(λ). Thus a number λ is a pole of R̃2(λ)
if and only if λ is an eigenvalue (of finite multiplicity) of L̃2(λ).

If the line Im λ = a + 1− l− 2m contains no eigenvalues of L̃2(λ), then,
by virtue of [22, section 1], the operator L2 is an isomorphism.

In order to formulate a theorem concerning an asymptotics near g2, let
us introduce some denotation. Suppose λ2 is an eigenvalue of L̃2(λ),

{ϕ(0,ζ)
2 , . . . , ϕ

({ζ,2−1,ζ)
2 : ζ = 1, . . . , J2} (3.3)

is a canonical system of Jordan chains of the operator L̃2(λ) corresponding
to the eigenvalue λ2.

Consider the vector u2 = {u(k,ζ)
2 }, where

u
(k,ζ)
2 (ω, r) = riλ2

k∑
q=0

1

q!
(i ln r)qϕ

(k−q,ζ)
2 (ω), (3.4)

(ω, r) are polar coordinates with the pole at the point g2.

Notice that (see [12, section 5]) the vector u2, the components u
(k,ζ)
2 of

which are defined by (3.4), satisfies the relation

L2u2 = 0. (3.5)

Theorem 3.1. Let the lines Im λ = a1+1−l−2m, Im λ = a+1−l−2m
contain no eigenvalues of L̃2(λ) and the strip a1 + 1 − l − 2m < Im λ <

a + 1− l − 2m contain the only eigenvalue λ2 of L̃2(λ). Then

u(y) = c2u2(y) + û(y)
(
y ∈ V(g2)

)
3. (3.6)

Here u2 = {u(k,ζ)
2 }, u

(k,ζ)
2 are defined by (3.4); c2 = {c(k,ζ)

2 } is a vector of
some constants; û ∈ H l+2m

a1

(V(g2)
)
4.

Proof. Introduce the cut–off function η ∈ C∞(R2) equal to 1 in some
neighborhood of the point g2 and vanishing outside V(g2). Suppose that the
function ηu is defined in the whole of R2, being equal to 0 outside V(g2).
Then from (3.2) and Leibnitz’s formula, it follows that

L2(ηu) ∈ H l+2m
a1

(R2).

3 In formula (3.6) and further the expressions such as c2u2 are calculated in the following

way: c2u2 =
J2∑

ζ=1

κζ,2−1∑
k=0

c
(k,ζ)
2 u

(k,ζ)
2 .

4 The results of this work are evidently generalized for the case when the strip a1 + 1−
l − 2m < Imλ < a + 1− l − 2m contains a finite number of eigenvalues of L̃2(λ).
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Now it remains only to apply Theorem 5.1 [12], which establishes the asymp-
totics of solutions for nonlocal problems in R2 \ {g2}.

Remark 3.1. In fact, the assumption that the line Im λ = a+1− l−2m
contains no eigenvalues of L̃2(λ) is superfluous. Theorem 3.1 remains valid
even if it is violated (see Remark 5.1 [12]). But this assumption will be
used for studying the adjoint nonlocal problem and for calculating the coef-
ficients c

(k,ζ)
2 . However, this assumption does not lead to the loss in gen-

erality. Indeed, one can find an ε, 0 < ε < a − a1, such that the strip
a− ε+1− l− 2m ≤ Im λ ≤ a+1− l− 2m contains no eigenvalues of L̃2(λ),
and therefore (see [12, section 5]) u ∈ H l+2m

a−ε (V(g2)). Hence we arrive at the
situation of Theorem 3.1.

Remark 3.2. From the results of [12], proof of Theorem 3.1, and Re-
mark 3.1, it follows that if the strip a1 + 1− l− 2m ≤ Im λ < a + 1− l− 2m
has no eigenvalues of L̃2(λ), then u ∈ H l+2m

a1

(V(g2)
)

for any right–hand side
{f, fσ} ∈ H l

a1
(G, Υ).

III. Now we consider an asymptotics of the solution u for problem (2.1),
(2.2) near the point g1. Fix a neighborhood V(g1) of g1 such that

V(g1) ∩ Ω1(Υ1) = ∅ and V(g1) ∩ {h2} = ∅. (3.7)

Then one can see that an asymptotic behavior of the solution u is defined
by the problem

P(y, Dy)u = f(y) (y ∈ V(g1) ∩G), (3.8)

B1(y, Dy)u|V(g1)∩Υ1 = f1(y)− (
T1(y, Dy)u

)(
Ω1(y)

)|V(g1)∩Υ1

(y ∈ V(g1) ∩Υ1),

B2(y, Dy)u|V(g1)∩Υ2 +
(
T2(y, Dy)u

)(
Ω2(y)

)|V(g1)∩Υ2 = f2(y)

(y ∈ V(g1) ∩Υ2).

(3.9)

Let P(Dy), Bσ(Dy), T2(Dy) be the principal homogeneous parts of the
operators P(g1, Dy), Bσ(g1, Dy), T2(g1, Dy) respectively5. Let T1(Dy) be
the principal homogeneous part of the operator T1(g2, Dy).

From now on we shall suppose that the origin coincides with the point
g1: g1 = 0, and

V(g1) ∩G = V(0) ∩K, (3.10)

5 Notice that earlier, in this section, we denoted by P(Dy) the principal homogeneous
part of the operator P(g2, Dy). To be strict we had to denote these operators by different
symbols. But we do not do it since throughout the paper it will always be clear from the
context whether we consider the principal homogeneous part of P(y, Dy) at g1 or at g2.
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where K is the plane angle: K = {y ∈ R2 : r > 0, b1 < ω < b2} with the
arms γσ = {y ∈ R2 : r > 0, ω = bσ}, σ = 1, 2. Here (ω, r) are polar
coordinates with the pole at the point g1 = 0, 0 < b1 < b2 < 2π.

According to the assumptions of section 2, the transformations Ωσ(y) are
linear in V(g1) = V(0). Let Ω1(y) (y ∈ V(g1)) be a composition of a rotation
and an expansion with respect to g1, and the shift by the vector −−→g1g2. Let
Ω2(y) (y ∈ V(g1)) coincide with the linear operator G2 of a rotation by an
angle ω2 (b1 < b2 + ω2 < b2) and an expansion with a coefficient β2 > 0.

Let the neighborhood V(g1) = V(0) be so small that {Ω1(y) : y ∈
V(g1)} ⊂ V(g2) and relations (3.7), (3.10) are fulfilled with the set {Ω2(y) :
y ∈ V(g1)} substituted for V(g1) (which is related to (3.9)). (Mention that
this requirement is automatically fulfilled whenever the expansion coefficients
for the transformations Ωσ(y) near the point g1 are less or equal to 1.)

Now, using asymptotics formula (3.6) for the solution u near g2 and
Leibnitz’s formula, we get that problem (3.8), (3.9) in V(g1)∩G is equivalent
to the following one in V(0) ∩K:

P(Dy)u = f̂(y) (y ∈ V(0) ∩K), (3.11)

B1(Dy)u|V(0)∩γ1 = f̂1(y)− c2f12(y) (y ∈ V(0) ∩ γ1),

B2(Dy)u|V(0)∩γ2 + (T2(Dy)u)(G2y)|V(0)∩γ2 = f̂2(y) (y ∈ V(0) ∩ γ2).
(3.12)

Here f̂ = f − (
P(y, Dy)− P(Dy)

)
u,

f12 =
(
T1(Dy)u2

)(
Ω1(y)

)|V(0)∩γ1 , (3.13)

f̂1 = f1 −
(
B1(y, Dy)−B1(Dy)

)
u|V(0)∩γ1−(

T1(y, Dy)− T1(Dy))u
)(

Ω1(y)
)|V(0)∩γ1 −

(
T1(Dy)û

)(
Ω1(y)

)|V(0)∩γ1 ,

f̂2 = f2 −
(
B2(y, Dy)−B2(Dy)

)
u|V(0)∩γ2−(

(T2(y, Dy)− T2(Dy))u
)(G2y

)|V(0)∩γ2 .

Since T1µ(Dy) is a homogeneous operator of order m1µ, from (3.13) and (3.4)

it follows that the components f
(k,ζ)
12µ of the vector f12 = {f (k,ζ)

12µ } are linear
combinations of the functions riλ2−m1µ(i ln r)q, 0 ≤ q ≤ k.

Moreover, by virtue of the condition 0 < a − a1 < 1, we have f̂ ∈
H l

a1
(V(0) ∩K), f̂σµ ∈ H

l+2m−mσµ−1/2
a1 (V(0) ∩ γσ).

Thus we see that (3.11), (3.12) is a model nonlocal problem in V(0)∩K

with the right–hand side being the sum of the “regular” function {f̂ , f̂1, f̂2}
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and the “special” function {0, −c2f12, 0}. The asymptotics of the vector f12

is defined by the asymptotics of the solution u near the point g2, i.e., by the
vector u2 (see (3.4)).

Now we are to apply the results of [12]. Put

B1(Dy)u = B1(Dy)u|γ1 ,

B2(Dy)u = B2(Dy)u|γ2 + (T2(Dy)u)(G2y)|γ2

(3.14)

and introduce the bounded operator

L1 = {P(Dy), Bσ(Dy)} :

H l+2m
a (K) → H l

a(K, γ)
def
= H l

a(K)×
∏

σ=1,2

m∏
µ=1

H l+2m−mσµ−1/2
a (γσ),

which corresponds to the model nonlocal problem in the angle K.
Write the operators involved into L1 in polar coordinates: P(Dy) =

r−2mP̃(ω, Dω, rDr), Bσ(Dy) = {r−mσµB̃σµ(ω, Dω, rDr)}m
µ=1, Tσ(Dy) =

{r−mσµT̃σµ(ω, Dω, rDr)}m
µ=1.

Consider the operator–valued function

L̃1(λ) : W l+2m
2 (b1, b2) → W l

2[b1, b2]
def
= W l

2(b1, b2)× C2m

given by

L̃1(λ)ϕ = {P̃(ω, Dω, λ)ϕ, B̃1µ(ω, Dω, λ)ϕ(ω)|ω=b1 ,

B̃2µ(ω, Dω, λ)ϕ(ω)|ω=b2 + β
iλ−m2µ

2 T̃2µ(ω + ω2, Dω, λ)ϕ(ω + ω2)|ω=b2}.
The operator L̃1(λ) is obtained from the operator L1 by passing to polar
coordinates, followed by the Mellin transformation with respect to r.

From Lemmas 2.1, 2.2 [23] it follows that there exists a finite–meromor-
phic operator–valued function R̃1(λ) such that its poles (except, maybe, a
finite number of them) are located inside a double angle of opening less than
π containing the imaginary axis; moreover, if λ is not a pole of R̃1(λ), then
R̃1(λ) is inverse to the operator L̃1(λ). Thus a number λ is a pole of R̃1(λ)
if and only if λ is an eigenvalue (of finite multiplicity) of L̃1(λ).

If the line Im λ = a + 1− l− 2m contains no eigenvalues of L̃1(λ), then,
by virtue of Theorem 2.1 [23], the operator L1 is an isomorphism.

In order to formulate a theorem concerning an asymptotics near g1, let
us introduce some denotation. Suppose λ1 is an eigenvalue of the operator
L̃1(λ) located inside the strip a1 + 1− l − 2m < Im λ < a + 1− l − 2m,

{ϕ(0,ζ)
1 , . . . , ϕ

({ζ,1−1,ζ)
1 : ζ = 1, . . . , J1} (3.15)
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is a canonical system of Jordan chains of the operator L̃1(λ) corresponding
to the eigenvalue λ1.

Consider the vector u1 = {u(k,ζ)
1 }, where

u
(k,ζ)
1 (ω, r) = riλ1

k∑
q=0

1

q!
(i ln r)qϕ

(k−q,ζ)
1 (ω), (3.16)

(ω, r) are polar coordinates with the pole at the point g1 = 0.

Notice that (see Lemma 2.2 [12]) the vector u1, the elements u
(k,ζ)
1 of

which are defined by (3.16), satisfies the relation

L1u1 = 0. (3.17)

If λ2 is an eigenvalue of L̃1(λ) (i.e., λ2 = λ1), then denote by κ(λ2) the
greatest of partial multiplicities of λ2. If λ2 is not an eigenvalue of L̃1(λ)
(i.e., λ2 6= λ1), put κ(λ2) = 0.

Theorem 3.2. Let the lines Im λ = a1+1−l−2m, Im λ = a+1−l−2m
contain no eigenvalues of L̃1(λ) and the strip a1 + 1 − l − 2m < Im λ <

a + 1− l − 2m contain the only eigenvalue λ1 of L̃1(λ). Then

u(y) = c1u1(y) + c2u12(y) + û(y) (y ∈ V(g1) ∩G). (3.18)

Here u1 = {u(k,ζ)
1 }, where u

(k,ζ)
1 is defined by (3.16); u12 = {u(k,ζ)

12 }, where

u
(k,ζ)
12 is a linear combination (which will be strictly defined in the proof below)

of the functions riλ2(i ln r)qϕkζq(ω), ϕkζq ∈ W l+2m
2 (b1, b2), 0 ≤ q ≤ k+κ(λ2),

(ω, r) are polar coordinates with the pole at g1; c1 = {c(k,ζ)
1 } is a vector

of some constants; c2 is the vector of constants appearing in (3.6); û ∈
H l+2m

a1
(V(g1) ∩G)6.

Proof. Let u12 = {u(k,ζ)
12 } be a particular solution (which is defined by

Lemma 4.3 [12]) for the problem

P(Dy)u12 = 0 (y ∈ K), (3.19)

B1(Dy)u12 = −f12, B2(Dy)u12 = 0, (3.20)

Here f12 = {f (k,ζ)
12µ } is defined by (3.13). We remind that each element f

(k,ζ)
12µ

is the linear combination of the functions riλ2−m1µ(i ln r)q, 0 ≤ q ≤ k. There-
fore, by Lemma 4.3 [12], the particular solution u12 has the form described in

the formulation of the theorem. Moreover, each element u
(k,ζ)
12 of the vector

6 See footnote 4 on page 183.
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u12 is uniquely defined if λ2 is not an eigenvalue of L̃1(λ) (i.e., λ2 6= λ1).
Otherwise (i.e., if λ2 = λ1) it is defined accurate to an arbitrary linear com-
bination of power solutions (3.16) corresponding to the eigenvalue λ2 = λ1.

Later on we shall suppose the particular solution u12 = {u(k,ζ)
12 } being fixed.

Introduce the cut–off function η ∈ C∞(R2) equal to 1 in some neigh-
borhood of the origin and vanishing outside V(0). Put w = η(u − c2u12).
Since u is a solution for problem (3.11), (3.12) and u12 is a solution for
problem (3.19), (3.20), one can easily check (using Leibnitz’s formula) that
L1w ∈ H l

a1
(K, γ). Therefore, to conclude the proof, it remains to apply

Theorem 2.2 [12], which establishes the asymptotics of solutions for nonlocal
problems in angles.

Remark 3.3. In fact, the assumption that the line Im λ = a+1− l−2m
contains no eigenvalues of L̃1(λ) is superfluous. But, using the results of the
paper [12], one can show (similarly to Remark 3.1) that this assumption does
not lead to the loss in generality. Therefore we remain it since it will be
used for studying the adjoint nonlocal problem and for calculating the coeffi-
cients c

(k,ζ)
1 .

Remark 3.4. If the strip a1 + 1− l− 2m ≤ Im λ < a + 1− l− 2m has
no eigenvalues of L̃1(λ), but still has one (say, λ2) of L̃2(λ), then (3.18) will
assume the form u(y) = c2u12(y) + û(y) (y ∈ V(g1) ∩ G). And only if the
mentioned strip has neither eigenvalues of L̃1(λ) nor L̃2(λ), the solution u

will be “regular” near the point g1: u ∈ H l+2m
a1

(V(g1)∩G) for any right–hand
side {f, fσ} ∈ H l

a1
(G, Υ). (Cf. Remark 3.2.)

Theorem 3.2 shows that the asymptotic behavior of solutions for prob-
lem (2.1), (2.2) near the point g1 depends on the data of the problem both
near the point g1 itself and near the point g2 ∈ G, which is connected with
g1: g2 = Ω1(g1).

IV. Quite similarly to the above one can study an asymptotics of so-
lutions for problem (2.1), (2.2) near the points hν in terms of the spectral
properties of the operators L̃′ν(λ) corresponding to the points hν , ν = 1, 2.
The operators L̃′ν(λ) are introduced similarly to the operators L̃ν(λ).

In order not to repeat the analogous computations, we suppose that
the solution u is “regular” in some neighborhoods V(hν) of the points hν :
u ∈ H l+2m

a1

(V(hν)
)
, ν = 1, 2.

Now we shall formulate the condition that summarize all our assumptions
concerning the spectral properties of the operators L̃ν(λ) and L̃′ν(λ).

Condition 3.1. Let the lines Im λ = a1 + 1 − l − 2m and Im λ =
a+1− l−2m contain no eigenvalues of the operator–valued functions L̃ν(λ),
L̃′ν(λ); let the strip a1 + 1− l− 2m < Im λ < a + 1− l− 2m contain the only
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eigenvalue λν of L̃ν(λ) and no eigenvalues of L̃′ν(λ), ν = 1, 2.
We notice that the assumption concerning the absence of eigenvalues of

L̃′ν(λ), ν = 1, 2, in the strip a1 + 1 − l − 2m ≤ Im λ ≤ a + 1 − l − 2m
guarantees the regularity of solutions in the above sense (see Remarks 3.2
and 3.4).

From now on we suppose Condition 3.1 being fulfilled.

In the sequel it will be convenient to have an asymptotics formula for
the solution u ∈ H l+2m

a (G) to problem (2.1), (2.2) in the whole domain G.
To write this formula, we introduce infinitely smooth functions ην with the
supports in V(gν) such that ην(y) = 1 in some neighborhoods of the points
gν , ν = 1, 2. Consider the vector–functions

U1 = η1u1; U2 = η2u2 + η1u12. (3.21)

The functions Uν are supposed to be defined in the whole domain G, vanish-
ing outside V(gν), ν = 1, 2. Then Theorems 3.1 and 3.2 yield the following
asymptotics of u ∈ H l+2m

a (G):

u ≡
(
c1U1 + c2U2

)(
mod H l+2m

a1
(G)

)
. (3.22)

Let us remark for the sequel that the components U
(k,ζ)
ν of the vector

Uν = {U (k,ζ)
ν } are such that

LU (k,ζ)
ν ∈ H l

a1
(G, Υ). (3.23)

To prove it, we firstly put {F, Fσ} = LU
(k,ζ)
1 . Since the support of

U
(k,ζ)
1 = η1u

(k,ζ)
1 is contained in V(g1) = V(0), we have

P(y, Dy)η1u
(k,ζ)
1 = F (y) (y ∈ K),

B1(y, Dy)η1u
(k,ζ)
1 |γ1 = F1(y) (y ∈ γ1),

B2(y, Dy)η1u
(k,ζ)
1 |γ2 +

(
T2(y, Dy)η1u

(k,ζ)
1

)(G2y
)|γ2 = F2(y) (y ∈ γ2).

But the vector u1 = {u(k,ζ)
1 } satisfies (3.17). Therefore, using Leibnitz’s

formula, we obtain {F, Fσ} ∈ H l
a1

(G, Υ).

Now put {F, Fσ} = LU
(k,ζ)
2 . Similarly to the above we get

P(y, Dy)η1u
(k,ζ)
12 + P(y, Dy)η2u

(k,ζ)
2 = F (y) (y ∈ K),

B1(y, Dy)η1u
(k,ζ)
12 |γ1 +

(
T1(y, Dy)η2u

(k,ζ)
2

)(
Ω1(y)

)|γ1 = F1(y) (y ∈ γ1),

B2(y, Dy)η1u
(k,ζ)
12 |γ2 +

(
T2(y, Dy)η1u

(k,ζ)
12

)(G2y
)|γ2 = F2(y) (y ∈ γ2).
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But the vector u2 = {u(k,ζ)
2 } satisfies (3.5), and the vector u12 = {u(k,ζ)

12 }
satisfies (3.19), (3.20). Therefore, using Leibnitz’s formula, we again obtain
{F, Fσ} ∈ H l

a1
(G, Υ).

4. Index of nonlocal problems.

I. In this section we study some properties of the kernel, cokernel, and
index of the operator L corresponding to nonlocal problem (2.1), (2.2). In
particular, using the asymptotics formula (3.22), we shall obtain a formula
connecting the indices of one and the same problem (2.1), (2.2), but being
considered in different weighted spaces.

Let κν be a full multiplicity of the eigenvalue λν of the operator–valued

function L̃ν(λ): κν =
Jν∑

ζ=1

κζ,ν . Put κ = κ1 + κ2.

Lemma 4.1. Homogeneous problem (2.1), (2.2) can have no more than
κ linearly independent modulo H l+2m

a1
(G) solutions from the space H l+2m

a (G).

Proof. Put the functions U
(k,ζ)
ν (ν = 1, 2; ζ = 1, . . . , Jν ; k =

0, . . . , κζ,ν − 1) in arbitrary order and denote the elements of the obtained
ordered set by U1, . . . , U{.

Suppose Zt ∈ H l+2m
a1

(G), t = 1, . . . d, are linearly independent modulo
H l+2m

a1
(G) solutions to homogeneous problem (2.1), (2.2), and d > κ. Then

by (3.22) we have

Zt ≡
( {∑

k=1

ctkUk

) (
mod H l+2m

a1
(G)

)
, t = 1, . . . , d, (4.1)

where ctk are some constants. Consider the equation for unknown constants
h1, . . . , hd:

d∑
t=1

htZt = 0
(
mod H l+2m

a1
(G)

)
.

By virtue of (4.1) it is equivalent to

{∑

k=1

( d∑
t=1

ctkht

)
Uk = 0

(
mod H l+2m

a1
(G)

)
.
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Since U1, . . . , U{ are linearly independent modulo H l+2m
a1

(G), the last equa-
tion is equivalent to the system

d∑
t=1

ctkht = 0, k = 1, . . . , κ.

By virtue of the inequality d > κ, this system necessarily has a nontrivial
solution (h1, . . . , hd) 6= 0, while we supposed that Z1, . . . , Zd were linearly
independent modulo H l+2m

a1
(G). This contradiction proves the lemma.

Consider the vector U = (U1, . . . , U{)T . Let Z = (Z1, . . . , Zd)
T ,

0 ≤ d ≤ κ, be a vector, components of which form a maximal set of solu-
tions to homogeneous problem (2.1), (2.2) from the space H l+2m

a (G), linearly
independent modulo the space H l+2m

a1
(G) (i.e., a basis modulo H l+2m

a1
(G)).

By virtue of (4.1), we have Z ≡ CU
(
mod H l+2m

a1
(G)

)
, where C is a ma-

trix of order d × κ. Rank of C equals d. Without loss in generality we
assume that C = (C1, C2), where C1 is a nonsingular (d×d)-matrix. Hence

C−1
1 Z ≡ (I, C−1

1 C2)U
(
mod H l+2m

a1
(G)

)
, where I is the identity (d × d)-

matrix. Therefore we can suppose that

Zt ≡
(
Ut +

{∑

k=d+1

ctkUk

) (
mod H l+2m

a1
(G)

)
, t = 1, . . . , d. (4.2)

We shall say that basis (4.2) is canonical. From now on we fix some canonical
basis.

II. Along with the operator L = {P(y, Dy), Bσ(y, Dy)} : H l+2m
a1

(G) →
H l

a1
(G, Υ), we consider the adjoint operator L∗ : H l

a1
(G, Υ)∗ → H l+2m

a1
(G)∗

given by

< u, L∗{v, wσ} >=< P(y, Dy)u, v > +
∑
σ=1,2

m∑
µ=1

< Bσµ(y, Dy)u, wσµ >

(4.3)
for all u ∈ H l+2m

a1
(G), {v, wσ} ∈ H l

a1
(G, Υ)∗. Here and below < ·, · >

stands for the sesquilinear form on a pair of corresponding adjoint spaces.

Lemma 4.2. Let d be a number of elements in basis (4.2). Then the
equation L∗{v, wσ} = 0 has κ − d solutions from H l

a1
(G, Υ)∗, linearly

independent modulo H l
a(G, Υ)∗.

Proof. 1) Let {ϕt, ψt,σ}, t = 1, . . . , q, be some basis modulo H l
a(G, Υ)∗

in the space of solutions from H l
a1

(G, Υ)∗ for the equation L∗{v, wσ} = 0.
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Suppose q < κ − d. Put U = cd+1Ud+1 + · · · + c{U{, where the vector
(cd+1, . . . , c{) is a nontrivial solution for the q linear algebraic equations

< LU , {ϕt, ψt,σ} >= 0, t = 1, . . . , q (4.4)

(notice that, by virtue of (3.23), LU ∈ H l
a1

(G, Υ) and therefore the forms
< LU , {ϕt, ψt,σ} > are well–defined). This system does have a nontrivial
solution since q < κ − d.

From (4.4) it follows that there exists a solution Û ∈ H l+2m
a1

(G) for the

equation LÛ = LU . Clearly the function Z = U − Û 6= 0 is a solution from
H l+2m

a (G) for homogeneous problem (2.1), (2.2), which has the asymptotics

Z ≡
( {∑

k=d+1

ckUk

) (
mod H l+2m

a1
(G)

)
. (4.5)

We claim that the function Z is linearly independent of Z1, . . . , Zd, the
elements of basis (4.2) modulo H l+2m

a1
(G). Indeed, suppose that

Z ≡
( d∑

t=1

htZt

) (
mod H l+2m

a1
(G)

)
;

then, by virtue of (4.2), we have

Z ≡
( d∑

t=1

htUt +
{∑

k=d+1

( d∑
t=1

htctk

)Uk

) (
mod H l+2m

a1
(G)

)
.

From this, from (4.5), and from the linear independence of the functions
U1, . . . , U{ modulo H l+2m

a1
(G), it follows that h1 = · · · = hd = 0. However,

we assumed Z1, . . . , Zd were the elements of basis (4.2) modulo H l+2m
a1

(G).
This contradiction proves that q ≥ κ − d.

2) Suppose q > κ − d. Denote by {Φh, Ψh,σ}, h = 1, . . . , q, a system
of elements from H l

a1
(G, Υ) being biorthogonal to the system {ϕt, ψt,σ},

t = 1, . . . , q, and orthogonal to all solutions for the equation L∗{v, wσ} = 0
from H l

a(G, Υ)∗. Then there exist solutions uh ∈ H l+2m
a (G) for the problems

Luh = {Φh, Ψh,σ}, h = 1, . . . , q. Subtracting from uh (if needed) a linear
combination of the elements Z1, . . . , Zd forming basis (4.2), one can make
the relations

uh ≡
( {∑

k=d+1

dhkUk

) (
mod H l+2m

a1
(G)

)
, h = 1, . . . , q. (4.6)
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hold.
The functions u1, . . . , uq are linearly independent modulo H l+2m

a1
(G).

Indeed, in the opposite case some linear combination of the functions uh,
h = 1, . . . , q, would belong to the space H l+2m

a1
(G). Then the corresponding

linear combination of the functions Luh = {Φh, Ψh,σ}, h = 1, . . . , q, would
be orthogonal to all the vectors {ϕt, ψt,σ}, t = 1, . . . , q. This would contra-
dict the choice of the functions {Φh, Ψh,σ}, h = 1, . . . , q. From (4.6) and
from the linear independence of the functions uh, it follows that q ≤ κ − d.
Thus, we necessarily have q = κ − d.

III. Consider the operators

La = {P(y, Dy), Bσ(y, Dy)} : H l+2m
a (G) → H l

a(G, Υ),

La1 = {P(y, Dy), Bσ(y, Dy)} : H l+2m
a1

(G) → H l
a1

(G, Υ).

The operators La and La1 correspond to one and the same nonlocal prob-
lem (2.1), (2.2), but they act in the spaces with the different weight constants
(a and a1 respectively).

Theorem 4.1. The operators La and La1 are Fredholm, and the follow-
ing index formula is valid:

indLa = indLa1 + κ.

Proof. By Theorem 3.4 [22], the operators La and La1 are Fredholm7.
By Lemma 4.1, we have dim kerLa = dim kerLa1 + d. Then by Lemma 4.2,
we have dim kerL∗a = dim kerL∗a1

− (κ − d). Hence indLa = dim kerLa −
dim kerL∗a = dim kerLa1 − dim kerL∗a1

+ κ = indLa1 + κ.
Remark 4.1. Theorem 4.1 remains true without the assumption a −

a1 < 1, too. Indeed, one can always choose numbers a = a0 > a1 > · · · >

aM = a1 such that 0 < ai−ai+1 < 1 and the lines Im λ = ai+1−l−2m do not
contain eigenvalues of L̃ν(λ), ν = 1, 2. Applying Theorem 4.1 subsequently
to the pairs of the operators

Lai
= {P(y, Dy), Bσ(y, Dy)} : H l+2m

ai
(G) → H l

ai
(G, Υ),

Lai+1
= {P(y, Dy), Bσ(y, Dy)} : H l+2m

ai+1
(G) → H l

ai+1
(G, Υ)

we get the formula indLa = indLa1 + κ, where κ is the sum of full multi-
plicities of all eigenvalues of L̃1(λ) and L̃2(λ) contained in the strip a1 +1−
l − 2m < Im λ < a + 1− l − 2m.

7 More precisely, we use the generalization of Theorem 3.4 [22] for the case of transfor-
mations Ω1, Ω2 consisting near g1 and h1 not only of a rotation but of an expansion, too;
see also [24].
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5. Asymptotics of solutions for adjoint nonlocal problems.

I. In this section we shall obtain an asymptotics near the set K for
solutions to the problem, adjoint to (2.1), (2.2). The results of this section

will be applied to calculating the coefficients c
(k,j)
ν in (3.22).

Notice that the approach to the study of adjoint nonlocal problems has
been suggested by the author in [9, 10, 12]. In the papers [9, 10], the solvabil-
ity and smoothness of solutions for model adjoint nonlocal problems in plane
and dihedral angles were studied. The paper [12] deals with an asymptotics
of solutions for model nonlocal problems in plane angles and in R2 \ {0}. In
the present work we essentially use both the ideology of the papers [9, 10]
and the results of the paper [12].

Since we suppose Condition 3.1 being fulfilled, it suffices to obtain ap-
propriate asymptotics formulas only near the points g1 and g2.

Along with formula (4.3) we will use another one for the definition of the
adjoint operator. To write this formula, we introduce the following denota-
tion. For any smooth curve Υ ⊂ Ḡ and any distribution w ∈ H

k−1/2
a1 (Υ)∗ we

denote by w · δΥ the distribution from Hk
a1

(G)∗ given by

< u, w · δΥ >G=< u|Υ, w >Υ for all u ∈ Hk
a1

(G)8. (5.1)

Clearly the support of the distribution w ·δΥ is contained in Ῡ. Similarly one
can define a distribution w·δγ ∈ Hk

a1
(K)∗, where γ = {y ∈ R2 : r > 0, ω = b}

(b1 ≤ b ≤ b2) and w ∈ H
k−1/2
a1 (γ)∗.

Denote by P∗(y, Dy), B∗
σ(y, Dy) = {B∗

σµ(y, Dy)}m
µ=1, T ∗

σ (y, Dy) =
{T ∗

σµ(y, Dy)}m
µ=1 the operators, formally adjoint to P(y, Dy), Bσ(y, Dy) =

{Bσµ(y, Dy)}m
µ=1, Tσ(y, Dy) = {Tσµ(y, Dy)}m

µ=1 respectively.

For any distribution wσµ ∈ H
l+2m−mσµ−1/2
a1 (Υσ), we consider the distri-

bution wΩ
σµ ∈ H

l+2m−mσµ−1/2
a1

(
Ωσ(Υσ)

)∗
given by

< ψ, wΩ
σµ >Ωσ(Υσ)=< ψ

(
Ωσ(·)), wσµ >Υσ (5.2)

for all ψ ∈ H
l+2m−mσµ−1/2
a1

(
Ωσ(Υσ)

)
.

We claim that the adjoint operator L∗ : H l
a1

(G, Υ)∗ → H l+2m
a1

(G)∗ can

8 In this section, for clearness, we denote sesquilinear forms on the pairs of adjoint spaces
Hk

a1
(G), Hk

a1
(G)∗ and H

k−1/2
a1 (Υ), H

k−1/2
a1 (Υ)∗ by < ·, · >G and < ·, · >Υ respectively.
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be defined by the formula

L∗{v, wσ} = P∗(y, Dy)v+
∑
σ=1,2

B∗
σ(y, Dy)(wσ ·δΥσ)+T ∗

σ (y, Dy)(w
Ω
σ ·δΩσ(Υσ)).

(5.3)
Here and further wσ = {wσµ}m

µ=1, wΩ
σ = {wΩ

σµ}m
µ=1,

B∗
σ(y, Dy)(wσ · δΥσ) =

m∑
µ=1

B∗
σµ(y, Dy)(wσµ · δΥσ),

T ∗
σ (y, Dy)(w

Ω
σ · δΩσ(Υσ)) =

m∑
µ=1

T ∗
σµ(y, Dy)(w

Ω
σµ · δΩσ(Υσ)).

Indeed, using definition (4.3) of the adjoint operator L∗ and then rela-
tions (5.2) and (5.1), we get (omitting (y, Dy) for short)

< u, L∗{v, wσ} >=< Pu, v >G +
∑
σ=1,2

m∑
µ=1

(
< Bσµu|Υσ , wσµ >Υσ +

<
(
Tσµu

)(
Ωσ(·))|Υσ , wσµ >Υσ

)
=< Pu, v >G +

∑
σ=1,2

m∑
µ=1

(
< Bσµu, wσµ · δΥσ >G + < Tσµu, wΩ

σµ · δΩσ(Υσ) >G

)

for all u ∈ H l+2m
a1

(G), which yields (5.3).
We are to study an asymptotics of a given solution {v, wσ} ∈ H l

a1
(G, Υ)∗

for the problem

L∗{v, wσ} = Ψ, (5.4)

supposing Ψ ∈ H l+2m
a (G)∗.

For this purpose, parallel to the operator L∗, we consider the auxiliary
operator

L∗Ω : H l
a1

(G)∗ ×
∏

σ=1,2

m∏
µ=1

(
H l+2m−mσµ−1/2

a1
(Υσ)∗×

×H l+2m−mσµ−1/2
a1

(
Ωσ(Υσ)

)∗) → H l+2m
a1

(G)∗

given by

L∗Ω{v, wσ, w′
σ} = P∗(y, Dy)v+
∑
σ=1,2

(
B∗

σ(y, Dy)(wσ · δΥσ) + T ∗
σ (y, Dy)(w

′
σ · δΩσ(Υσ))

)
. (5.5)
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Such an auxiliary operator was used in the papers [11, 10] for the study
of model nonlocal problems in angles. It also turns out to be very useful
in our case. On the one hand, the operator L∗Ω is not a nonlocal one since
the functions wσ and w′

σ are not connected each with another by nonlocal
transformations Ωσ in (5.5). This will allow to use Leibnitz’s formula when
necessary. On the other hand, solutions for the problems corresponding
to L∗ and L∗Ω are related in the following way. If {v, wσ} is a solution to
problem (5.4), then the distribution {v, wσ, wΩ

σ } is a solution to the problem

L∗Ω{v, wσ, wΩ
σ } = Ψ, (5.6)

where wΩ
σ = {wΩ

σµ}m
µ=1 is defined by (5.2).

So, investigating the asymptotics of the solution {v, wσ, wΩ
σ } for prob-

lem (5.6) is equivalent to investigating the asymptotics of the solution {v, wσ}
for problem (5.4).

Our plan is this. At first we will multiply the distribution {v, wσ, wΩ
σ }

by the cut–off function η1 and get a corresponding problem near g1. Since the
operator L∗Ω is not a nonlocal one, applying Leibnitz’s formula we will show
that L∗Ωη1{v, wσ, wΩ

σ } ∈ H l+2m
a (G)∗. Therefore we will arrive at the model

adjoint problem in the angle K with a “regular” right–hand side. Using the
results of [12], we will obtain the asymptotics near g1. Then we will multiply
the distribution {v, wσ, wΩ

σ } by η2 and get a corresponding problem near
g2. We will arrive at the model adjoint problem in R2. But in this case a
right–hand side will be a sum of “regular” and “special” distributions. The
asymptotics of the “special” one will be defined by the asymptotics of w1

near g1, which will have been known from the first step. Further application
of the results of [12] will allow to get the asymptotics near g2.

Thus let us multiply {v, wσ, wΩ
σ } by η1. Notice that supp η1∩Ω1(Υ1) =

∅ (see Fig. 2.1) and supp (w1 ·δΩ1(Υ1)) ⊂ Ω1(Υ1). Therefore η1w
Ω
1 ·δΩ1(Υ1) = 0.

From this and from (5.5), it follows that

L∗Ωη1{v, wσ, wΩ
σ } = P∗(y, Dy)η1v + B∗

1(y, Dy)(η1w1 · δΥ1)+

B∗
2(y, Dy)(η1w2 · δΥ2) + T ∗

2 (y, Dy)(η1w
Ω
2 · δΩ2(Υ2)). (5.7)

Let us show that the distribution η1{v, wσ} satisfies the model adjoint
problem in the angle K

L∗1η1{v, wσ} = Ψ̂, (5.8)

where L∗1 : H l
a1

(K, γ)∗ → H l+2m
a1

(K)∗ is the operator, adjoint to L1 :

H l+2m
a1

(K) → H l
a1

(K, γ); Ψ̂ ∈ H l+2m
a (K)∗.
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From (5.6) and Leibnitz’s formula, it follows that, on the one hand,

L∗Ωη1{v, wσ, wΩ
σ } = η1Ψ + Ψ̂1, (5.9)

where Ψ̂1 ∈ H l+2m
a (G)∗ and supp Ψ̂1 ⊂ V(g1). On the other hand, the

function η1(y) − η1

(
Ω−1

2 (y)
)

is equal to 0 near g1 and has a support inside
V(g1) (here we are to suppose supp η1 is so small that supp η1

(
Ω−1

2 (·)) ⊂
V(g1)). Hence,

T ∗
2 (y, Dy)(η1w

Ω
2 · δΩ2(Υ2))− T ∗

2 (y, Dy)
(
η1(Ω

−1
2 (·))wΩ

2 · δΩ2(Υ2)

) ∈ H l+2m
a (G)∗

and has a support inside V(g1). This, (5.7), and (5.9) imply

P∗(y, Dy)η1v + B∗
1(y, Dy)(η1w1 · δΥ1)+

B∗
2(y, Dy)(η1w2 · δΥ2) + T ∗

2 (y, Dy)(η1(Ω
−1
2 (·))wΩ

2 · δΩ2(Υ2)) = Ψ̂2,

where Ψ̂2 ∈ H l+2m
a (G)∗ and supp Ψ̂2 ⊂ V(g1).

Let P∗(Dy), B∗
2(Dy), T ∗

2 (Dy) be the principal homogeneous parts of the
operators P∗(g1, Dy), B∗

2(g1, Dy), T ∗
2 (g1, Dy) respectively. Then, using

Leibnitz’s formula, we finally get

P∗(Dy)η1v + B∗
1(Dy)(η1w1 · δγ1)+

B∗
2(Dy)(η1w2 · δγ2) + T ∗

2 (Dy)(η1(G−1
2 ·)wΩ

2 · δG2(γ2)) = Ψ̂, (5.10)

where Ψ̂ ∈ H l+2m
a (K)∗ and supp Ψ̂ ⊂ V(0). Here we also took into account

that near the point g1 = 0 the domain G and the curves Υσ coincide with the
angle K and the arms γσ respectively, while the transformation Ω2 coincides
with the linear operator G2. But it is easily seen that equality (5.10) is quite
the same as equality (5.8). Indeed, the only not evident identity one should
check is

< u, T ∗
2 (Dy)(η1(G−1

2 ·)wΩ
2 · δG2(γ2)) >K=< (T2(Dy)u)(G2·)|γ2 , η1w2 >γ2 ,

which follows from

< u, T ∗
2 (Dy)

(
η1(G−1

2 ·)wΩ
2 · δG2(γ2)

)
>K=

< η1(G−1
2 ·)T2(Dy)u|G2(γ2), wΩ

2 >G2(γ2)=< η1(T2(Dy)u)(G2·)|γ2 , w2 >γ2 .

Here we subsequently used (5.1) and (5.2).
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Applying the results of the paper [12] to equality (5.8), we shall now
obtain the asymptotics of the distribution η1{v, wσ}. Introduce some deno-
tation. Put

v
(k,ζ)
1 = riλ̄1+2m−2

k∑
q=0

1
q!

(i ln r)qψ
(k−q,ζ)
1 ,

w
(k,ζ)
1,σµ = riλ̄1+mσµ−1

k∑
q=0

1
q!

(i ln r)qχ
(k−q,ζ)
1,σµ .

(5.11)

Here
{
{ψ(0,ζ)

1 , χ
(0,ζ)
1,σµ}, . . . , {ψ({ζ,1−1,ζ)

1 , χ
({ζ,1−1,ζ)
1,σµ } : ζ = 1, . . . , J1

}

are Jordan chains of the operator L̃∗1(λ) (adjoint to L̃1(λ̄)) corresponding to
the eigenvalue λ̄1 and forming a canonical system. These chains are supposed
(see Lemma 3.2 [12]) to satisfy the following condition of biorthogonality and
normalization with respect to the Jordan chains (3.15):

ν∑
p=0

k∑
q=0

1

(ν + k + 1− p− q)!
< ∂ν+k+1−p−q

λ L̃1(λ1)ϕ
(q,ξ)
1 ,

{ψ(p,ζ)
1 , χ

(p,ζ)
1,σµ} >= δξ,ζδ{ξ,1−k−1,ν . (5.12)

Here ζ, ξ = 1, . . . , J1; ν = 0, . . . , κζ,1 − 1; k = 0, . . . , κξ,1 − 1; δξ,ζ is the
Kronecker symbol.

Analogously to section 3, we introduce the vectors w
(k,ζ)
1,σ = {w(k,ζ)

1,σµ }m
µ=1

and {v1, w1,σ} = {v(k,ζ)
1 , w

(k,ζ)
1,σ }.

We remark that, by Lemma 3.1 [12], the distributions {v(k,ζ)
1 , w

(k,ζ)
1,σ }

satisfy the homogeneous equation L∗1{v(k,ζ)
1 , w

(k,ζ)
1,σ } = 0.

Now from equality (5.8) and Theorem 4.2 [12] we get the following result.
Theorem 5.1. Let {v, wσ} ∈ H l

a1
(G, Υ)∗ be a solution for equa-

tion (5.4) with a right–hand side Ψ ∈ H l+2m
a (G)∗. Then the following asymp-

totics formula is valid:

η1{v, wσ} ≡ d1η1{v1, w1,σ}
(
mod H l

a(G, Υ)∗
)
, (5.13)

where {v1, w1,σ} = {v(k,ζ)
1 , w

(k,ζ)
1,σ } is defined by (5.11), d1 = {d(k,ζ)

1 } is a
vector of some constants.

II. Now let us study the asymptotics of the solution {v, wσ} for equa-
tion (5.4) near the point g2. As we mentioned above, in this case we will



NONLOCAL ELLIPTIC PROBLEMS 199

arrive at the model adjoint problem in R2 \ {g2}. A right–hand side of the
equation obtained will be a sum of “regular” and “special” distributions.
The asymptotics of the latter one will be defined by the asymptotics of wσ

near g1, which is already known (see Theorem 5.1).

We multiply {v, wσ, wΩ
σ } by η2. Since the support of η2 is contained in

V(g2) and therefore does not intersect with Ῡ1, Ῡ2, and Ω2(Υ2) (see Fig. 2.1),
we have η2w1 · δΥ1 = 0, η2w2 · δΥ2 = 0, and η2w

Ω
2 · δΩ2(Υ2) = 0. Combining

this with (5.5), we get

L∗Ωη2{v, wσ, wΩ
σ } = P∗(y, Dy)η2v + T ∗

1 (y, Dy)(η2w
Ω
1 · δΩ1(Υ1)). (5.14)

From (5.6) and Leibnitz’s formula, it follows that L∗Ωη2{v, wσ, wΩ
σ } = η2Ψ+

Ψ̂2, where Ψ̂2 ∈ H l+2m
a (G)∗ and supp Ψ̂2 ⊂ V(g2).

Let P∗(Dy), T ∗
1 (Dy) be the principal homogeneous parts of the operators

P∗(g2, Dy), T ∗
1 (g2, Dy) respectively. Then, analogously to the above, we

derive that

P∗(Dy)η2v = −T ∗
1 (Dy)(η2w

Ω
1 · δΩ1(Υ1)) + Ψ̂3, (5.15)

where Ψ̂3 ∈ H l+2m
a (G)∗ and supp Ψ̂3 ⊂ V(g2).

Let L∗2 : H l
a1

(R2)∗ → H l+2m
a1

(R2)∗ be the operator, adjoint to L2 :
H l+2m

a1
(R2) → H l

a1
(R2).

From definition (5.2) of the distribution wΩ
1µ and from asymptotics for-

mula (5.13), it follows that η2w
Ω
1µ is a linear combination of the functions

riλ̄1+m1µ−1(i ln r)q modulo H
l+2m−m1µ−1/2
a (Υ1), where r is a polar radius of

polar coordinates with the pole at g2. Since T ∗
1µ(Dy) is a homogeneous op-

erator of order m1µ, we can write (5.15) (taking into account (5.13)) in the
form

L∗2η2v = −η2d1Ψ21 + Ψ̂. (5.16)

Here Ψ̂ ∈ H l+2m
a (R2)∗ and supp Ψ̂ ⊂ V(g2); Ψ21 = {Ψ(k,ζ)

21 }, where Ψ
(k,ζ)
21

is a linear combination of the distributions riλ̄1−2(i ln r)qΨ
(k,ζ)
21q , 0 ≤ q ≤ k,

Ψ
(k,ζ)
21q ∈ W l+2m

2,2π (0, 2π)∗, r is a polar radius of polar coordinates with the pole
at g2

9; d1 is the vector of constants from (5.13).

9 The distribution η2r
iλ̄1−2(i ln r)qΨ(k,ζ)

21q ∈ H l+2m
a1

(R2)∗ is given by

< u, riλ̄1−2(i ln r)qΨ(k,ζ)
21q >=

∞∫

0

< η2(·, r)u(·, r), Ψ(k,ζ)
21q >(0, 2π) riλ̄1−2(i ln r)q r dr

for all u ∈ H l+2m
a1

(R2).
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Thus we see that (5.16) is a model adjoint problem in R2 with the right–
hand side being the sum of the “regular” distribution Ψ̂ and the “special”
distribution Ψ21. The asymptotics of Ψ12 is defined by the asymptotics of
the solution w1 near the point g1, i.e., by the functions w

(k,ζ)
1,σµ (see (5.11)).

Applying the results of the paper [12] to equality (5.16), we shall now
obtain the asymptotics of the distribution η2v. Introduce some denotation.
Put

v
(k,ζ)
2 = riλ̄2+2m−2

k∑
q=0

1

q!
(i ln r)qψ

(k−q,ζ)
2 . (5.17)

Here
{

ψ
(0,ζ)
2 , . . . , ψ

({ζ,2−1,ζ)
2 : ζ = 1, . . . , J2

}

are Jordan chains of the operator L̃∗2(λ) (adjoint to L̃2(λ̄)) corresponding to
the eigenvalue λ̄2 and forming a canonical system. These chains are supposed
(see [12]) to satisfy the following condition of biorthogonality and normaliza-
tion with respect to the Jordan chains (3.3):

ν∑
p=0

k∑
q=0

1

(ν + k + 1− p− q)!
< ∂ν+k+1−p−q

λ L̃2(λ2)ϕ
(q,ξ)
2 ,

ψ
(p,ζ)
2 >= δξ,ζδ{ξ,2−k−1,ν . (5.18)

Here ζ, ξ = 1, . . . , J2; ν = 0, . . . , κζ,2 − 1; k = 0, . . . , κξ,2 − 1.

Analogously to section 3, we introduce the vector v2 = {v(k,ζ)
2 }.

We remark that, according to [12, section 5], the distributions v
(k,ζ)
2

satisfy the homogeneous equation L∗2v(k,ζ)
2 = 0.

If λ̄1 is an eigenvalue of L̃∗2(λ) (i.e., λ̄1 = λ̄2), then denote by κ(λ̄1) the
greatest of partial multiplicities of λ̄1. If λ̄1 is not an eigenvalue of L̃∗2(λ)
(i.e., λ̄1 6= λ̄2), put κ(λ̄1) = 0.

Theorem 5.2. Let {v, wσ} ∈ H l
a1

(G, Υ)∗ be a solution for equa-
tion (5.4) with a right–hand side Ψ ∈ H l+2m

a (G)∗. Then the following asymp-
totics formula is valid:

η2v ≡
(
d2η2v2 + d1η2v21

)(
mod H l

a(G, Υ)∗
)
. (5.19)

Here v2 = {v(k,ζ)
2 } is defined by (5.17), d2 = {d(k,ζ)

2 } is a vector of some

constants; v21 = {v(k,ζ)
21 }, where v

(k,ζ)
21 is a linear combination of the functions
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riλ̄1+2m−2(i ln r)qΨ
(k,ζ)
21q , 0 ≤ q ≤ k + κ(λ̄1), Ψ

(k,ζ)
21q ∈ W l

2,2π(0, 2π)∗; d1 is the
vector of constants appearing in (5.13).

Proof. Let v21 = {v(k,ζ)
21 } be a particular solution (which is defined by

Lemma 5.2 [12]) for the problem

L∗2v21 = −Ψ21, (5.20)

where Ψ21 = {Ψ(k,ζ)
21 } is a “special” distribution appearing in (5.16). We

remind that each element Ψ
(k,ζ)
21 is a linear combination of the distributions

riλ̄1−2(i ln r)qΨ
(k,ζ)
21q , 0 ≤ q ≤ k. Therefore, by Lemma 5.2 [12], the partic-

ular solution v21 has the form described in the formulation of the theorem.
Moreover, each component v

(k,ζ)
21 of the vector v21 is uniquely defined if λ̄1 is

not an eigenvalue of L̃∗2(λ) (i.e., if λ̄1 6= λ̄2). Otherwise (i.e., if λ̄1 = λ̄2) it is
defined accurate to an arbitrary linear combination of power solutions (5.17)
corresponding to the eigenvalue λ̄1 = λ̄2. From now on we shall suppose a
particular solution v21 = {v(k,ζ)

21 } being fixed.
Combining (5.16) with (5.20) and using Leibnitz’s formula, one easily

checks that L∗2(η2v − d1η2v21) ∈ H l+2m
a (R2)∗. Now the asymptotics (5.19) is

resulted from Theorem 5.3 [12], which establishes the asymptotics of solutions
for adjoint problems in R2.

Theorem 5.2 shows that the asymptotic behavior of solutions for adjoint
nonlocal problem (5.4) near the point g2 depends on the data of the problem
both near the point g2 itself and near the point g1, which is connected with
g2: g1 = Ω−1

1 (g2).

IV. Let us write the asymptotics formula for the solution {v, wσ} ∈
H l

a1
(G, Υ)∗ for adjoint nonlocal problem (5.4) in the whole domain G. Put

(cf. (3.21))

{V2, W2,σ} = η2{v2, 0}; {V1, W1,σ} = η1{v1, w1,σ}+ η2{v21, 0}. (5.21)

Now Theorems 5.1 and 5.2 yield the following asymptotics of {v, wσ} ∈
H l

a1
(G, Υ)∗ (cf. formula (3.22)):

{v, wσ} ≡
(
d1{V1, W1,σ}+ d2{V2, W2,σ}

)(
mod H l+2m

a (G, Υ)∗
)
. (5.22)

6. Calculation of the coefficients in the asymptotics formulas.

I. In this section we will calculate the coefficients c
(k,ζ)
ν appearing in

asymptotics (3.22).
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To begin with, let us remark that the coefficients can be calculated in the
following way. At first one should find c

(k,ζ)
1 . Since in the neighborhood V(g2)

of the point g2 the function u has asymptotics (3.6), by Theorem 5.2 [12] we
have

c
(k,ζ)
2 =< L2η2u, iv

({ζ,2−k−1,ζ)
2 >, (6.1)

where v
(k,ζ)
2 is defined in (5.17). Further, by Theorem 3.2, the function u′ =

u − c2u12 (where c2 is calculated in (6.1), u12 is defined in the proof of
Theorem 3.2) has the following asymptotics in the neighborhood V(g1) of
the point g1:

u′(y) = c1u1(y) + û(y) (y ∈ V(g1) ∩G). (6.2)

Here u1 is defined by (3.16); c1 is to be found; û ∈ H l+2m
a1

(V(g1) ∩G). From
asymptotics (6.2) and Theorem 4.1 [12], it follows that

c
(k,ζ)
1 =< L1η1u

′, i{v({ζ,1−k−1,ζ)
1 , w

({ζ,1−k−1,ζ)
1,σ } >, (6.3)

where {vk,ζ)
1 , w

(k,ζ)
1,σ } is defined in (5.11).

Formulas (6.1) and (6.3) show that the value of c1 (as well as the general
form of the asymptotics near g1) depends not only on the data of the problem
near the point g1 but also from the data near g2 = Ω1(g1).

We remark that similarly to (6.1) and (6.3) one can calculate the coeffi-
cients cν with the help of the Green formula and so–called formally adjoint
problems generated by the Green formula10. The corresponding technique
is developed in [10, 12]. We will not recall the Green formula here, but
only mention that the corresponding formulas for cν are immediately ob-
tained if we use Theorems 5.4 [12] and 4.3 [12] instead of Theorems 5.2 [12]
and 4.1 [12] respectively. Formally adjoint problems have the advantage that
they are considered in “original” spaces, but not in adjoint ones (spaces of
distributions). Therefore corresponding eigenvectors and associated vectors
can be found explicitly in a number of cases.

But, anyway, both adjoint problem– and formally adjoint problem–based
formulas for cν involve the solution u itself. Further we are to get formulas
allowing to calculate the coefficients cν only in terms of a right–hand side
{f, fσ} of problem (2.1), (2.2).

10 In this case, additionally to Conditions 2.2 and 2.3, one must demand the system
{Bσµ(Dy)}m

µ=1 to be normal on γσ (σ = 1, 2), where Bσµ(Dy) is the principle homogeneous
part of Bσµ(g1, Dy).
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II. We are supposed to calculate cν with the help of some special distri-
butions from the kernel of the operator L∗ : H l

a1
(G, Υ)∗ → H l+2m

a1
(G)∗. To

begin with, assume that {v, wσ} ∈ H l
a1

(G, Υ) is an arbitrary distribution
from the kernel of L∗.

Let us calculate the value of the expression < Lu, i{v, wσ} >.
We suppose that the following consistent condition is fulfilled. If the

vector cν contains c
(k,ζ)
ν in its tth position, then the vector dν has d

({ζ,ν−k−1,ζ)
ν

in its tth position. The same is true for all the other vectors related to the
adjoint problem ({v1, w1,σ}, v2, etc.).

Besides, we keep assuming that the Jordan chains corresponding to the
eigenvalues λν and λ̄ν of the operators L̃ν(λ) and L̃∗ν(λ) respectively satisfy
conditions of biorthogonality and normalization (5.12) (for ν = 1) and (5.18)
(for ν = 2).

By virtue of (3.22), we have Lu = Lc1U1 + Lc2U2 + Lû, where û ∈
H l+2m

a1
(G). Since {v, wσ} belongs to the kernel of L∗ : H l

a1
(G, Υ)∗ →

H l+2m
a1

(G)∗, we get < Lû, i{v, wσ} >= 0. Therefore, by virtue of (3.23), we
can write

< Lu, i{v, wσ} >=< Lc1U1, i{v, wσ} > + < Lc2U2, i{v, wσ} > . (6.4)

Let ην(ω, r) be the function ην written in polar coordinates with the pole
at gν (ν = 1, 2). For ε > 0 we introduce the functions ην,ε(ω, r) = ην(ω, r/ε).

At first let us consider the 1st term in the right–hand side of (6.4). Since
the difference η1− η1,ε vanishes near g1, we have (η1− η1,ε)c1u1 ∈ H l+2m

a1
(G).

It follows from this and from (3.21) that

< Lc1U1, i{v, wσ} >=< Lc1η1,εu1, i{v, wσ} > . (6.5)

Put for short U1,ε = c1η1,εu1. Since suppU1,ε ⊂ V(g1) ∩ G = V(0) ∩K,
we have

LU1,ε = LU1,ε + {P(y, Dy)−P(Dy), Bσ(y, Dy)− Bσ(Dy)}U1,ε.

Here P(Dy) is the principal homogeneous part of P(g1, Dy); Bσ(Dy) is de-
fined by (3.14). This and Theorem 5.1 imply that the right–hand side of (6.5)
has the form

< L1U1,ε, id1{v1, w1,σ} > + < L1U1,ε, i{F, Gσ} > +

< {P(y, Dy)−P(Dy), Bσ(y, Dy)− Bσ(Dy)}U1,ε,

i(d1{v1, w1,σ}+ {F, Gσ}) >, (6.6)
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where {v1, w1,σ} is defined by (5.11), {F, Gσ} ∈ H l
a(K, γ)∗.

By Theorem 4.1 [12], the 1st term in (6.6) is equal to (c1, d1)
11. The

2nd term in (6.6) is majorized by

c‖U1,ε‖Hl+2m
a (K)‖{F, Gσ}‖Hl

a(K, γ)∗ = O(1),

where we use the Hardy–Littlewood symbol “O” with its usual interpretation
(O(1) tends to 0 as ε → 0).

By virtue of the boundedness of the imbedding operator of H l+2m
a1+1 (K)

into H l+2m−1
a1

(K), Lemma 3.3′ [15], and the inequality a < a1 + 1, the last
term in (6.6) is majorized by

c‖U1,ε‖Hl+2m
a1+1 (K)‖d1{v1, w1,σ}+{F, Gσ}‖Ha1 (K, γ)∗ ≤ c′‖U1,ε‖Hl+2m

a (K) = O(1).

Thus, as ε tends to 0, we get

< Lc1U1, i{v, wσ} >= (c1, d1). (6.7)

Now let us consider the 2nd term in the right–hand side of (6.4). Since
the functions (η2−η2,ε)c2u2 and (η1−η1,ε)c2u12 belong to the space H l+2m

a1
(G),

we obtain from (3.21) that

< Lc2U2, i{v, wσ} >=< Lc2(η2,εu2 + η1,εu12), i{v, wσ} > . (6.8)

Put for short U2,ε = c2η2,εu2, U12,ε = c2η1,εu12. Using Theorems 5.1
and 5.2, write the right–hand side of (6.8) in the form

< L2U2,ε, id2v2 > + < L2U2,ε, id1v21 > + < P(Dy)U12,ε, id1v1 > +

< B1(Dy)U12,ε +
(
T1(Dy)U2,ε

)(
Ω1(y)

)|γ1 , id1w1,1 > +

< B2(Dy)U12,ε id1w1,2 > +O(1). (6.9)

Here P(Dy), T1(Dy) are the principal homogeneous parts of P(g1, Dy),
T(g2, Dy) respectively; Bσ(Dy), σ = 1, 2, are defined by (3.14).

By Theorem 5.2 [12], the 1st term in (6.9) is equal to (c2, d2).

Since L2c2u2 = 0 (see (3.5)), the 2nd term in (6.9) is equal to

< [L2, η2,ε]c2u2, id1v21 >, (6.10)

11 Here (c1, d1) (and further (c2, d2), etc) stands for the inner product of the corre-

sponding complex vectors: (c1, d1) =
∑
k,ζ

c
(k,ζ)
1 d

(κζ,1−k−1,ζ)
1 .
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where [·, ·] is the commutator. Using the condition 0 < a− a1 < 1, one can
easily check that (6.10) is equal to

(Â12(ε)c2, d1), (6.11)

where Â12(ε) is a matrix of the corresponding order, the elements of which
are linear combinations of the functions ελ2−λ1(i ln ε)q.

Further, let us recall that the function u12 is a solution for problem (3.19),
(3.20). Hence the sum of the 3rd, 4th, and 5th terms in (6.9) is equal to

< [P(Dy), η1,ε]c2u12, id1v1 > + < [B1(Dy), η1,ε]c2u12+(
[T1(Dy), η1,ε]c2u2

)(
Ω1(y)

)|γ1 , id1w1,1 > +

< [B2(Dy), η1,ε]c2u12, id1w1,2 > (6.12)

and therefore is of the form (6.11). Thus we see that

< Lc2U2, i{v, wσ} >= (c2, d2) + (A12(ε)c2, d1) + O(1), (6.13)

where A12(ε) is a matrix of the corresponding order, the elements of which
are linear combinations of the functions ελ2−λ1(i ln ε)q.

From equations (6.4), (6.7), and (6.13), it follows that

< Lu, i{v, wσ} >= (c2, d2) + (c1 + A12(ε)c2, d1) + O(1), (6.14)

III. Keeping denotation of section 4, we will denote by U1, . . . , U{ the
ordered set of functions U

(k,ζ)
ν , which are the elements of the vectors Uν ,

ν = 1, 2, defined by (3.21).

Denote by V1, . . . ,V{ the set of functions {V (k,ζ)
ν , W

(k,ζ)
ν,σ }, which are the

elements of the vectors {Vν , Wν,σ}, ν = 1, 2, defined by (5.21).
Suppose the sets {U1, . . . ,U{} and {V1, . . . ,V{} are ordered consis-

tently, i.e., the equality Ut = U
(k,ζ)
ν is fulfilled simultaneously with the equal-

ity Vt = {V ({ζ,ν−k−1,ζ)
ν , W

({ζ,ν−k−1,ζ)
ν,σ }.

In this work we restrict ourselves to the case when d = 0 in Lemma 4.2.
This mean that any solution to homogeneous problem (2.1), (2.2) from the
space H l+2m

a (G) necessarily belongs to the space H l+2m
a1

(G). In that case
we will show that for any right–hand side {f, fσ} ∈ H l

a1
(G, Υ) the co-

efficients in the asymptotics formula for solutions are uniquely defined. If
d > 0, then, similarly to the case of “local” problems (see Theorem 3.6 [18,
Chapter 4]), there is some freedom in choosing the coefficients of the asymp-
totics. Moreover, the procedure for calculation of the coefficients becomes
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more technically complicated (while the idea remains similar to the one we
shall describe below) and will not be considered here.

So, suppose d = 0. Then, by virtue of Lemma 4.2, there exist solutions
Y1, . . . , Y{ ∈ H l

a1
(G, Υ)∗ for the equation L∗Y = 0, linearly independent

modulo H l
a(G, Υ)∗. By (5.22) we have Yt ≡

{∑
k=1

dtkVk

(
mod H l

a(G, Υ)∗
)
,

t = 1, . . . , κ. Since Y1, . . . , Y{ are linearly independent modulo H l
a(G, Υ)∗,

the matrix ‖dtk‖ is nonsingular. Hence, without loss in generality, we can
assume that

Yt ≡ Vt

(
mod H l

a(G, Υ)∗
)
, t = 1, . . . , κ. (6.15)

Now let us prove that the elements of the matrix A12(ε) appearing
in (6.14) have finite limits as ε → 0. This limit will be denoted by A12:

A12 = lim
ε→0

A12(ε).

Let lν be the length of the vector cν (or dν , which is the same), ν = 1, 2.
Clearly, l2 + l1 = κ. Suppose for definiteness that the first l2 elements in
the ordered set {U1, . . . ,U{} ({V1, . . . ,V{}) are components of the vec-
tor U2 ({V2, W2,σ}) and the last l1 ones are components of the vector U1

({V1, W1,σ}):

{U1, . . . ,U{} = { U2︸︷︷︸
l2

, U1︸︷︷︸
l1

}
(
{V1, . . . ,V{} =

{ {V2, W2,σ}︸ ︷︷ ︸
l2

, {V1, W1,σ}︸ ︷︷ ︸
l1

})
.

Now fix an arbitrary t from the set {1, . . . , l2} and an arbitrary k from
the set {l2 +1, . . . , κ}. Substituting in (6.14) u = Ut (which is a component
of the vector U2) and {v, wσ} = Yk (which is, by (6.15), a component of the
vector {V1, W1,σ} modulo H l

a(G, Υ)∗), we get c1 = 0, d2 = 0, and therefore,

< LUt, iYk} >= atk(ε) + O(1). (6.16)

Here atk(ε) is the corresponding element of the matrix A12(ε). The left–hand
side of (6.16) does not depend on ε. Therefore atk(ε) has a finite limit as
ε → 0.

Thus, passing in (6.14) to the limit as ε → 0, we get

< Lu, i{v, wσ} >= (c2, d2) + (c1 + A12c2, d1). (6.17)
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Theorem 6.1. Let u ∈ H l+2m
a (G) be a solution for problem (2.1), (2.2)

with a right–hand side {f, fσ} ∈ H l
a1

(G, Υ). Then u has the asymptotics

u ≡
( {∑

t=1

ctUt

) (
mod H l+2m

a1
(G)

)
. (6.18)

The constants ct (t = 1, . . . , κ) can be calculated by the formulas

ct =< {f, fσ}, iYt > (6.19)

if t ≤ l2 (i.e., ct coincides with a component of the vector {c(k,ζ)
2 });

ct =< {f, fσ}, iYt − i
[
A12(Y1, . . . , Yl2)

T
]

t−l2
> (6.20)

if l2 < t ≤ κ (i.e., ct coincides with a component of the vector {c(k,ζ)
1 }). Here

[·]j stands for the jth component of a vector.
Proof. Substituting {v, wσ} = Y1, . . . , {v, wσ} = Y{ subsequently

in (6.17), we obtain formulas (6.19) and (6.20).

Theorem 6.1 shows that the values of the coefficients c
(k,ζ)
ν are the func-

tionals over the right–hand sides {f, fσ} of problem (2.1), (2.2). These
functionals depend on the data of the problem in the whole domain G, but
not only in the neighborhoods V(g1) and V(g2).

Remark 6.1. We remind that the elements of the matrix A12(ε) are
linear combinations of the functions ελ2−λ1(i ln ε)q. Hence, if λ1 6= λ2, then
A12 = 0.

7. Example.

I. In this section we consider an example illustrating the results of sec-
tions 2–6.

Keeping denotation and assumptions of sections 2 and 3, we consider the
following nonlocal problem

P(y, Dy) ≡
∑

|α|≤2

pα(y)
∂|α|u

∂yα1
1 ∂yα2

2

= f(y) (y ∈ G \ K), (7.1)

Bσu ≡ u(y)|Υσ + eσu
(
Ωσ(y)

)|Υσ = fσ(y) (y ∈ Υσ; σ = 1, 2). (7.2)

Here P(y, Dy) is a 2nd order differential operator, properly elliptic in Ḡ,
with infinitely smooth coefficients pα(y); eσ ∈ C. For clearness we assume

∑

|α|=2

pα(gν)
∂|α|u

∂yα1
1 ∂yα2

2

= ∆u, ν = 1, 2. (7.3)
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Let us obtain the asymptotics of a solution u ∈ H2
a(G) for problem (7.1),

(7.2) with a right–hand side {f, fσ} ∈ H0
a1

(G, Υ)
def
= H0

a1
(G)× ∏

σ=1,2

H
3/2
a1 (Υσ),

assuming 0 < a− a1 < 1.
At first, according to section 3, we consider the asymptotics of the solu-

tion u in the neighborhood V(g2) of the point g2. For this purpose one must
write the model equation in R2 \ {g2}. Taking into account (7.3), we obtain

∆u = f̂(y) (y ∈ R2 \ {g2}), (7.4)

where f̂ ∈ H0
a1

(V(g2)
)
.

Write equation (7.4) in polar coordinates with the pole at g2:

r
∂

∂r

(
r
∂u

∂r

)
+

∂2u

∂ω2
= r2f(ω, r) (0 < ω < 2π, r > 0).

Applying formally the Mellin transformation, we get

d2ũ

dω2
− λ2ũ = F̃ (λ, ω) (0 < ω < 2π),

where ũ and F̃ are the Mellin transforms of u and r2f with respect to r.
Introduce the corresponding operator–valued function

L̃2(λ) =
d2

dω2 − λ2 : W 2
2π(0, 2π) → L2(0, 2π).

Let us suppose, additionally to Condition 3.1, that there is the only
eigenvector ϕ2(ω) corresponding to the eigenvalue λ2 (a1−1 < Im λ2 < a−1)
of L̃2(λ) and there are no associated vectors.

Then, by Theorem 3.1, we have

u(y) = c2u2(y) + û(y)
(
y ∈ V(g2)

)
. (7.5)

Here c2 is a scalar constant, u2 = riλ2ϕ2(ω) is a power solution for homoge-
neous equation (7.4); (ω, r) are polar coordinates with the pole at g2 and
the polar axis being, for definiteness, tangent to the curve Ω1(Υ1) at g2;
û ∈ H2

a1

(V(g2)
)
.

Now we consider the asymptotics of the solution u for problem (7.1),
(7.2) in the neighborhood V(g1) of the point g1. Let Ω1(y) (y ∈ V(g1)) be a
rotation with respect to g1 (with no expansion for simplicity) and the shift
by the vector −−→g1g2. Let Ω2(y) (y ∈ V(g1)) coincide with the operator G2

of a rotation by an angle ω2 (b1 < b2 + ω2 < b2) and an expansion with a
coefficient β2 > 0.
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According to section 3 and assumption (7.3), the asymptotics of u in
V(g1) coincides with the asymptotics of a solution for the problem

∆u = f̂(y) (y ∈ V(0) ∩K), (7.6)

u|V(0)∩γ1 = f̂1 − c2f12 (y ∈ V(0) ∩ γ1),

u|V(0)∩γ2 + e2u(G2y)|V(0)∩γ2 = f2 (y ∈ V(0) ∩ γ2).
(7.7)

Here f̂ ∈ H0
a1

(V(0) ∩K),

f̂1 = f1 − e1û
(
Ω1(y)

)|V(0)∩γ1 ∈ H3/2
a1

(V(0) ∩ γ1),

f12 = e1u2

(
Ω1(y)

)|V(0)∩γ1 = e1r
iλ2ϕ2(0)12.

Similarly to the above we obtain the corresponding operator–valued func-
tion L̃1(λ) : W 2

2 (b1, b2) → L2(b1, b2)× C2 given by

L̃1(λ)ϕ =
{d2ϕ

dω2 − λ2ϕ, ϕ(ω)|ω=b1 , ϕ(ω)|ω=b2 + e2e
iλ ln β2ϕ(ω + ω2)|ω=b2

}
.

(7.8)

Let us suppose, additionally to Condition 3.1, that there is the only
eigenvector ϕ1(ω) corresponding to the eigenvalue λ1 (a1−1 < Im λ1 < a−1)
of L̃1(λ) and there are no associated vectors.

Then, by Theorem 3.18, we have

u(y) = c1u1(y) + c2u12(y) + û(y) (y ∈ V(g1)). (7.9)

Here c1 is some scalar constant, c2 is the constant appearing in (7.5); u12 =
riλ2ϕ12(ω) (ϕ12 ∈ W 2

2 (b1, b2)) is a particular solution for the following prob-
lem in the angle K with the “special” right–hand side (cf. (3.19), (3.20)):

∆u = 0 (y ∈ K), (7.10)

u|γ1 = −f12, u|γ2 + e2u(G2y)|γ2 = 0; (7.11)

u1 = riλ1ϕ1(ω) is a solution for homogeneous problem (7.10), (7.11); (ω, r)
are polar coordinates with the pole at the point g1 = 0; û ∈ H2

a1

(V(g1)
)
.

To write the asymptotics in the whole domain G, we introduce the func-
tions U1 = η1u1, U2 = η2u2 + η1u12. Then (7.5) and (7.9) imply:

12 We calculate ϕ2(ω) for ω = 0 because of the special choice of polar coordinates (see
above).
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Let u ∈ H2
a(G) be a solution for problem (7.1), (7.2) with a right–hand

side {f, fσ} ∈ H0
a1

(G, Υ), 0 < a− a1 < 1. Then we have

u ≡
(
c1U1 + c2U2

) (
mod H2

a1
(G)

)
, (7.12)

where c1, c2 are some scalar constants.

II. From asymptotics formula (7.12) and Theorem 4.1 we can derive the
connection between the indices of the operators

La = {P(y, Dy), Bσ} : H2
a(G) → H0

a(G, Υ),

La1 = {P(y, Dy), Bσ} : H2
a1

(G) → H0
a1

(G, Υ)

corresponding to problem (7.1), (7.2), but acting in different weighted spaces.
Since the sum of full multiplicities of eigenvalues λ1 and λ2 is equal to 2 in
our case, the connection between the indices is as follows:

indLa = indLa1 + 2.

III. To calculate the coefficients cν in formula (7.12), we will study the
asymptotics of solutions for the adjoint nonlocal problem.

Consider the operator L∗ : H0
a1

(G, Υ)∗ → H2
a1

(G)∗, adjoint to L =
{P(y, Dy), Bσ} : H2

a1
(G) → H0

a1
(G, Υ). The operator L∗ is given by

< u, L∗{v, wσ} >=< P(y, Dy)u, v >G +
∑
σ=1,2

< Bσu, wσ >Υσ ,

where {v, wσ} ∈ H0
a1

(G, Υ)∗, u ∈ H2
a1

(G).

Let us study the asymptotics of a solution {v, wσ} ∈ H0
a1

(G, Υ)∗ for
the problem

L∗{v, wσ} = Ψ, (7.13)

where Ψ ∈ H2
a(G)∗.

In [12] it is shown that λ̄ν is an eigenvalue of the operator L̃∗ν(λ), adjoint
to L̃ν(λ̄). Denote by {ψ1, χ1,σ} ∈ L2(b1, b2)×C2 (ψ2 ∈ L2(0, 2π)) the eigen-
vector of L̃∗1(λ) (L̃∗2(λ)) corresponding to the eigenvalue λ̄1 (λ̄2). Conditions
of biorthogonality and normalization (5.12) and (5.18) assume the form

< −2λνϕν , ψν >= 113. (7.14)
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Put {v1, w1,σ} = {riλ̄1ψ1, riλ̄1−1χ1,σ} (v2 = riλ̄2ψ2), where (ω, r) are polar
coordinates with the pole at g1 (with the pole at g2 and with the polar axis
being tangent to the curve Ω1(Υ1) at g2).

Further, by Theorem 5.1, we have

η1{v, wσ} ≡ d1η1{v1, w1,σ}
(
mod H0

a(G, Υ)∗
)
, (7.15)

where d1 is some scalar constant. By Theorem 5.2, we have

η2v ≡
(
d2η2v2 + d1η2v21

) (
mod H0

a(G)∗
)
. (7.16)

Here d2 is some scalar constant, d1 is the constant appearing in (7.15); v21 =
riλ̄1ψ21; (ω, r) are polar coordinates with the pole at g2 and the polar axis
being tangent to the curve Ω1(Υ1) at g2; ψ21 ∈ L2(0, 2π). Moreover, the
distribution v21 is a particular solution for the following adjoint equation in
R2 \ {g2} with the “special” right–hand side (cf. (5.20)):

∫

R2

∆u · v̄ dy =

∞∫

0

u(0, r) · (−ē1χ1,1riλ̄1−1)dr for all u ∈ C∞
0 (R2 \ {g2})14.

Put {V2, W2,σ} = η2{v2, 0}, {V1, W1,σ} = η1{v1, w1,σ}+ η2{v21, 0}.
Then (7.15) and (7.16) imply:
Let {v, wσ} ∈ H0

a1
(G, Υ)∗ be a solution for problem (7.13) with a right–

hand side Ψ ∈ H2
a(G)∗. Then we have

{v, wσ} ≡
(
d1{V1, W1,σ}+ d2{V2, W2,σ}

) (
mod H2

a(G, Υ)∗
)
, (7.17)

where d1, d2 are some constants.

IV. Now let us calculate the coefficients cν appearing in (7.12). Formu-
las (6.1) and (6.3) assume the form

c2 =< ∆(η2u), iv2 >R2 ,

c1 =< {∆u′, u′|γ1 , u′|γ2 + e2u
′(G2y)|γ2}, i{v1, w1,σ} >,

where u′ = η1(u− c2u12).

13 One can show that λν 6= 0 whenever there are no associated vectors corresponding to
the eigenvalue λν . Hence there always exist vectors {ψ1, χ1,σ} and ψ2 satisfying (7.14).

14 We calculate u(ω, r) for ω = 0 because of the special choice of polar coordinates (see
above).
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Now let us write the formulas allowing to calculate the coefficients cν only
in terms of a right–hand side {f, fσ} of problem (7.1), (7.2) (i.e., independent
of a solution u).

Following section 6, we assume for simplicity that any solution to ho-
mogeneous problem (7.1), (7.2) from the space H2

a(G) necessarily belongs to
the space H2

a1
(G). Then there exist solutions Y1, Y2 ∈ H0

a1
(G, Υ)∗ for the

equation L∗Y = 0, linearly independent modulo H0
a(G, Υ)∗ such that

Yν ≡ {Vν , Wν,σ}
(
mod H0

a(G, Υ)∗
)
, ν = 1, 2.

Let ην,ε be the functions defined in section 6.

Then from Theorem 6.1 we obtain the following result.

Let u ∈ H2
a(G) be a solution for problem (7.1), (7.2) with a right–hand

side {f, fσ} ∈ H0
a1

(G, Υ). Then the function u ∈ H2
a(G) has asymp-

totics (7.12). The constants cν (ν = 1, 2) are calculated by the formulas

c2 =< {f, fσ}, iY1 >,

c1 =< {f, fσ}, i(Y1 − A12Y2) > .

Here A12 is a scalar constant given by

A12 = lim
ε→0

< ∆(η2,εu2), iv21 > + < {∆(η1,εu12), η1,εu12|γ1 + η1,εf12|γ1 ,

η1,εu12|γ2 + e2(η1,εu12)(G2y)|γ2}, i{v1, w1,σ} >, (7.18)

where the limit does exist.

Remark 7.1. The function u2 (u12) is a solution for homogeneous
equation (7.4) (a solution for problem (7.10), (7.11) with the special right–
hand side {0, −f12, 0}). Therefore, similarly to section 6, one can easily
check that A12 = lim

ε→0
const · εi(λ2−λ1). From this and from the existence of the

limit in (7.18), it follows that A12 = 0 whenever λ1 6= λ2.

The author is grateful to Professor Alexander Skubachevskii for attention
to this work and valuable advice.
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theorem and the theorem of Rouché, Mat. Sb., 84 (126) (1971), 607-629; English
transl. in Math. USSR Sb., 13 (1971).

[9] P.L. Gurevich, Nonlocal elliptic problems in dihedral angles and the Green formula
Dokl. Akad. Nauk, 379 (2001), 735-738; English transl. in Russian Acad. Sci.
Dokl. Math., (2001).

[10] P.L. Gurevich, Nonlocal problems for elliptic equations in dihedral angles and the
Green formula, Mitteilungen aus dem Math. Seminar Giessen, Math. Inst. Univ.
Giessen, Germany, 247 (2001), 1-74.

[11] P.L. Gurevich, Solvability of nonlocal elliptic problems in dihedral angles, Mat. Za-
metki, 72 (2002), 178-197; English transl. in Math. Notes, 72 (2002).

[12] P.L. Gurevich, Asymptotics of solutions for nonlocal elliptic problems in plane angles,
Tr. semin. im. I.G. Petrovskogo, 23 (2003); Engilsh transl. in J. Math. Sci., New
York (2004).

[13] A.K. Gushchin and V.P. Mikhailov, On solvability of nonlocal problems for elliptic
equations of second order, Mat. sb., 185 (1994), 121-160; English transl. in Math.
Sb., (1994).

[14] K.Yu. Kishkis, The index of a Bitsadze–Samarskii problem for harmonic functions,
Differentsial’nye Uravneniya, 24 (1988), 105-110; English transl. in Differential
Equations, 24 (1988), 83–87.

[15] V.A. Kondrat’ev, Boundary value problems for elliptic equations in domains with
conical or angular points, Trudy Moskov. Mat. Obshch., 16 (1967), 209-292;
English transl. in Trans. Moscow Math. Soc., 16 (1967).

[16] O.A. Kovaleva and A.L. Skubachevskii, Solvability of nonlocal elliptic problems in
weighted spaces, Mat. Zametki, 67 (2000), 882-898; English transl. in Math.
Notes, 67 (2000).

[17] J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applica-
tions, Vol. I, Springler, Berlin, 1972.

[18] S.A. Nazarov and B.A. Plamenevskii, Elliptic Problems in Domains with Piecewise
Smooth Boundaries, Moscow: Nauka, 1991; English transl. in De Gruyter Expo-
sitions in Mathematics, 13. Walter de Gruyter Publichers, Berlin – New York,
1994.

[19] M. Picone, Equazione integrale traducente il più generale problema lineare per le
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