math_groups_discgeom

Tverberg plus constraints

Pavle Blagojević, Florian Frick, Günter M. Ziegler— 2014

Focus Area 3: Topological connectivity and diameter of Discrete Structures Many of the strengthenings and extensions of the topological Tverberg theorem can be derived with surprising ease directly from the original theorem: For this we introduce a proof technique that combines a concept of "Tverberg unavoidable subcomplexes" with the observation that Tverberg points that equalize the distance from such a subcomplex can be obtained from maps to an extended target space. Thus we obtain simple proofs for many variants of the topological Tverberg theorem, such as the colored Tverberg theorem of Zivaljevic and Vrecica (1992). We also get a new strengthened version of the generalized van Kampen-Flores theorem by Sarkaria (1991) and Volovikov (1996), an affine version of their "j-wise disjoint" Tverberg theorem, and a topological version of Soberon's (2013) result on Tverberg points with equal barycentric coordinates.

TitleTverberg plus constraints
AuthorPavle Blagojević, Florian Frick, Günter M. Ziegler
Date201401
Source(s)
TypeText