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CUTTING-PLANE PROOFS AND
CHVÁTAL-GOMORY CLOSURES



Cutting-plane proofs

Definition

Given linear inequalities

aᵀi x ≥ bi (i = 1, . . . ,m) (1)

an inequality aᵀx ≥ b with a ∈ Zn is derived from (1) if

· a =
∑m

i=1 λiai for some λ1, . . . , λm ≥ 0

· d
∑m

i=1 λibie ≥ b

Clear: every x ∈ Zn that satsifies (1) also satisfies aᵀx ≥ b



Cutting-plane proofs (2)

Example

x1 + x2 ≤ 1, x2 + x3 ≤ 1, x3 + x4 ≤ 1, x4 + x5 ≤ 1, x1 + x5 ≤ 1

⇒ 2x1 + · · ·+ 2x5 ≤ 5

⇒ x1 + · · ·+ x5 ≤ 2.5

⇒ x1 + · · ·+ x5 ≤ b2.5c = 2



Cutting-plane proofs (3)

Definition

Given linear inequalities

aᵀi x ≥ bi (i = 1, . . . ,m)

a sequence of linear inequalities

aᵀm+kx ≥ bm+k (k = 1, . . . ,M)

is a cutting-plane proof for aᵀx ≥ b if for every k = 1, . . . ,M

· am+k ∈ Zn,

· aᵀm+kx ≥ bm+k is derived from the previous inequalities,

and aᵀx ≥ b is a nonnegative multiple of aᵀm+Mx ≥ bm+M .

Its length is M.



Cutting-plane proofs (4)

Theorem (Gomory)

If aᵀi x ≥ bi (i = 1, . . . ,m) define a polytope P, then every linear
inequality with integer coefficients that is valid for P ∩ Zn has a
cutting-plane proof of finite length.

How long do cutting-plane proofs need to be?



Chvátal-Gomory

Definition

Given a polytope P ⊆ Rn, the first Chvátal-Gomory (CG) closure
of P is

P ′ := {x ∈ Rn : cᵀx ≥ dmin
y∈P

cᵀye ∀ c ∈ Zn}

P(0) := P, P(t) := (P(t−1))′ is the t-th CG closure of P.

Definition

The smallest t such that P(t) = conv(P ∩Zn) is the CG-rank of P.

Theorem (Chvátal)

The CG-rank of every polytope is finite.



Chvátal-Gomory (2)

Fact

Let aᵀi x ≥ bi (i = 1, . . . ,m) define a polytope P with CG-rank k.
Then every linear inequality with integer coefficients that is valid
for P ∩ Zn has a cutting-plane proof of length at most

(nk+1 − 1)/(n − 1).

Fact

Even in dimension 2, the CG-rank of a polytope can be arbitarily
large.

Eisenbrand, Schulz 2003; Rothvoß, Sanità 2013

The CG-rank of any polytope contained in [0, 1]n is at most
O(n2 log n); and this bound is tight up to the log-factor.



Today

Definition

Let S ⊆ {0, 1}n. A polytope R ⊆ [0, 1]n is a relaxation of S iff
R ∩ Zn = S .

Question

Let S ⊆ {0, 1}n. What properties of S ensure that every relaxation
of S has bounded CG rank (by a constant independent of n)?



Constant CG-rank

Fix k to be a constant.

Remark

Polytopes in Rn with CG-rank k have cutting-plane proofs of
length polynomial in n.

Remark

Maximizing/minimizing a linear functional over the integer points
of a polytope with CG-rank k is in NP ∩ coNP (but not known to
be in P).



Previous work

· S̄ := {0, 1}n \ S
· H[S̄ ] := undirected graph with vertices S̄ , two vertices are

adjacent iff they differ in one coordinate

Easy

If H[S̄ ] is a stable set, then the CG-rank of any relaxation of S is
at most 1.

Cornuéjols, Lee (2016)

If H[S̄ ] is a forest, then the CG-rank of any relaxation of S is at
most 3.

Cornuéjols, Lee (2016)

If the treewidth of H[S̄ ] is at most 2, then the CG-rank of any
relaxation of S is at most 4.



WHAT MAKES THE CG-RANK LARGE?



A large pitch!

Definition

The pitch of S ⊆ {0, 1}n is the smallest number p ∈ Z≥0 such that
every p-dimensional face of [0, 1]n intersects S .

(If the pitch is p, there is a p − 1-dimensional face of [0, 1]n

disjoint from S)

Fact

Let S ⊆ {0, 1}n with pitch p. Then there is a relaxation of S with
CG-rank at least p − 1.



Large coefficients!

Definition

The gap of S ⊆ {0, 1}n is the smallest number ∆ ∈ Z≥0 such that
conv(S) can be described by inequalities of the form∑

i∈I
cixi +

∑
j∈J

cj(1− xj) ≥ δ

with I , J ⊆ [n] disjoint, δ, c1, . . . , cn ∈ Z≥0 with δ ≤ ∆.

Fact

Let S ⊆ {0, 1}n with gap ∆. Then there is a relaxation of S with
CG-rank at least log ∆

log n − 1.



Main result

Theorem

Let S ⊆ {0, 1}n with pitch p and gap ∆. Then the CG-rank of any
relaxation of S is at most p + ∆− 1.

Corollary

Let S ⊆ {0, 1}n and let t be the treewidth of H[S̄ ]. Then the
CG-rank of any relaxation of S is at most t + 2tt/2.



Comparing to treewidth

Bounded treewidth implies bounded pitch and gap:

Proposition

Let S ⊆ {0, 1}n with pitch p and gap ∆. If t is the treewidth of
H[S̄ ], then we have p ≤ t + 1 and ∆ ≤ 2tt/2.



Proof idea

· induction on the rhs of the inequality to obtain

· every inequality of the form
∑

i∈I xi ≥ 1 can be obtained after
n + 1− |I | rounds of CG.

· note that n + 1− |I | ≤ p

·  all inequalities with rhs 1 can be obtained after p rounds.

· for inequalities with larger rhs, proof by example



Proof idea (2)

· suppose that 7x1 + 3x2 + 2x3 ≥ 5 is valid for S , then also

(7− 1)x1 + 3x2 + 2x3 ≥ 4

7x1 + (3− 1)x2 + 2x3 ≥ 4

7x1 + 3x2 + (2− 1)x3 ≥ 4

are valid for S

· thus, (7− ε)x1 + (3− ε)x2 + (2− ε)x3 ≥ 4 is valid for S

· thus, 7x1 + 3x2 + 2x3 ≥ 4 + ε′′ is valid for S

· induction ...

· rounding up the rhs, we obtain the desired inequality



FURTHER PROPERTIES OF SETS
WITH BOUNDED PITCH



Optimizing

Proposition

For every S ⊆ {0, 1}n with pitch p and every c ∈ Rn, the problem
min{cᵀs : s ∈ S} can be solved using O(np) oracle calls to S .

Why?

· may assume that 0 ≤ c1 ≤ · · · ≤ cn

· note: optimal solution over {0, 1}n would be O
· claim: only need to check all vectors with support at most p



Approximating

Bounded pitch allows for fast approximation:

Corollary

Let S ⊆ {0, 1}n with pitch p and let R be any relaxation of S . Let
ε ∈ (0, 1) with pε−1 ∈ Z. If∑

i∈I
cixi +

∑
j∈J

cj(1− xj) ≥ δ

with δ ≥ c1, . . . , cn ≥ 0 is valid for S , then the inequality∑
i∈I

cixi +
∑
j∈J

cj(1− xj) ≥ (1− ε)δ

is valid for R(pε−1−1).



Extended formulations

Theorem

Let S ⊆ {0, 1}n with pitch p such that there exists a depth-D
Boolean circuit (with AND and OR gates of fan-in 2, and NOT
gates of fan-in 1) that decides S .

Then conv(S) is a linear projection of a polytope with O(n · 2pD)
many facets.


