POLYTOPES IN THE 0/1-CUBE WITH BOUNDED CHVÁTAL-GOMORY RANK

Yohann Benchetrit, Samuel Fiorini, Tony Huynh Université Libre de Bruxelles

Stefan Weltge ETH Zürich

CUTTING-PLANE PROOFS AND CHVÁTAL-GOMORY CLOSURES

Cutting-plane proofs

Definition

Given linear inequalities

$$a_i^{\mathsf{T}} x \ge b_i \quad (i = 1, \dots, m) \tag{1}$$

an inequality $a^{\mathsf{T}}x \geq b$ with $a \in \mathbb{Z}^n$ is <u>derived</u> from (1) if

$$\cdot a = \sum_{i=1}^{m} \lambda_i a_i$$
 for some $\lambda_1, \ldots, \lambda_m \ge 0$

 $\cdot \left[\sum_{i=1}^{m} \lambda_i b_i\right] \geq b$

Clear: every $x \in \mathbb{Z}^n$ that satsifies (1) also satisfies $a^{\mathsf{T}}x \ge b$

Cutting-plane proofs (2)

Example

 $\begin{aligned} x_1 + x_2 &\leq 1, \ x_2 + x_3 \leq 1, \ x_3 + x_4 \leq 1, \ x_4 + x_5 \leq 1, \ x_1 + x_5 \leq 1 \\ &\Rightarrow 2x_1 + \dots + 2x_5 \leq 5 \\ &\Rightarrow x_1 + \dots + x_5 \leq 2.5 \\ &\Rightarrow x_1 + \dots + x_5 \leq \lfloor 2.5 \rfloor = 2 \end{aligned}$

Cutting-plane proofs (3)

Definition

Given linear inequalities

$$a_i^{\mathsf{T}} x \geq b_i \quad (i = 1, \dots, m)$$

a sequence of linear inequalities

$$a_{m+k}^{\mathsf{T}} x \geq b_{m+k} \quad (k=1,\ldots,M)$$

is a cutting-plane proof for $a^{\mathsf{T}}x \ge b$ if for every $k = 1, \ldots, M$

- $\cdot a_{m+k} \in \mathbb{Z}^n$,
- · $a_{m+k}^{\mathsf{T}} x \ge b_{m+k}$ is derived from the previous inequalities,

and $a^{\mathsf{T}}x \ge b$ is a nonnegative multiple of $a_{m+M}^{\mathsf{T}}x \ge b_{m+M}$.

Its length is M.

Theorem (Gomory)

If $a_i^{\mathsf{T}} \times \geq b_i$ (i = 1, ..., m) define a polytope P, then every linear inequality with integer coefficients that is valid for $P \cap \mathbb{Z}^n$ has a cutting-plane proof of <u>finite</u> length.

How long do cutting-plane proofs need to be?

Chvátal-Gomory

Definition

Given a polytope $P \subseteq \mathbb{R}^n$, the first Chvátal-Gomory (CG) closure of P is

$$P' := \{ x \in \mathbb{R}^n : c^{\mathsf{T}} x \ge \lceil \min_{y \in P} c^{\mathsf{T}} y \rceil \ \forall \ c \in \mathbb{Z}^n \}$$

 $P^{(0)} := P, P^{(t)} := (P^{(t-1)})'$ is the *t*-th CG closure of *P*.

Definition

The smallest t such that $P^{(t)} = \operatorname{conv}(P \cap \mathbb{Z}^n)$ is the <u>CG-rank</u> of P.

Theorem (Chvátal)

The CG-rank of every polytope is finite.

Chvátal-Gomory (2)

Fact

Let $a_i^T x \ge b_i$ (i = 1, ..., m) define a polytope P with CG-rank k. Then every linear inequality with integer coefficients that is valid for $P \cap \mathbb{Z}^n$ has a cutting-plane proof of length at most

 $(n^{k+1}-1)/(n-1).$

Fact

Even in dimension 2, the CG-rank of a polytope can be arbitarily large.

Eisenbrand, Schulz 2003; Rothvoß, Sanità 2013

The CG-rank of any polytope contained in $[0, 1]^n$ is at most $\mathcal{O}(n^2 \log n)$; and this bound is tight up to the log-factor.

Today

Definition

Let $S \subseteq \{0,1\}^n$. A polytope $R \subseteq [0,1]^n$ is a <u>relaxation</u> of S iff $R \cap \mathbb{Z}^n = S$.

Question

Let $S \subseteq \{0,1\}^n$. What properties of S ensure that every relaxation of S has bounded CG rank (by a constant independent of n)?

Constant CG-rank

Fix k to be a constant.

Remark

Polytopes in \mathbb{R}^n with CG-rank k have cutting-plane proofs of length polynomial in n.

Remark

Maximizing/minimizing a linear functional over the integer points of a polytope with CG-rank k is in NP \cap coNP (but not known to be in P).

- $\cdot \ \bar{S} := \{0,1\}^n \setminus S$
- $H[\bar{S}] :=$ undirected graph with vertices \bar{S} , two vertices are adjacent iff they differ in one coordinate

Easy

If $H[\bar{S}]$ is a stable set, then the CG-rank of any relaxation of S is at most 1.

Cornuéjols, Lee (2016)

If $H[\overline{S}]$ is a forest, then the CG-rank of any relaxation of S is at most 3.

Cornuéjols, Lee (2016)

If the treewidth of $H[\overline{S}]$ is at most 2, then the CG-rank of any relaxation of S is at most 4.

WHAT MAKES THE CG-RANK LARGE?

A large pitch!

Definition

The pitch of $S \subseteq \{0,1\}^n$ is the smallest number $p \in \mathbb{Z}_{\geq 0}$ such that every *p*-dimensional face of $[0,1]^n$ intersects *S*.

(If the pitch is p, there is a p-1-dimensional face of $[0,1]^n$ disjoint from S)

Fact

Let $S \subseteq \{0,1\}^n$ with pitch p. Then there is a relaxation of S with CG-rank at least p-1.

Large coefficients!

Definition

The gap of $S \subseteq \{0,1\}^n$ is the smallest number $\Delta \in \mathbb{Z}_{\geq 0}$ such that $\operatorname{conv}(S)$ can be described by inequalities of the form

$$\sum_{i\in I}c_ix_i+\sum_{j\in J}c_j(1-x_j)\geq \delta$$

with $I, J \subseteq [n]$ disjoint, $\delta, c_1, \ldots, c_n \in \mathbb{Z}_{\geq 0}$ with $\delta \leq \Delta$.

Fact

Let $S \subseteq \{0,1\}^n$ with gap Δ . Then there is a relaxation of S with CG-rank at least $\frac{\log \Delta}{\log n} - 1$.

Theorem

Let $S \subseteq \{0,1\}^n$ with pitch p and gap Δ . Then the CG-rank of any relaxation of S is at most $p + \Delta - 1$.

Corollary

Let $S \subseteq \{0,1\}^n$ and let t be the treewidth of $H[\overline{S}]$. Then the CG-rank of any relaxation of S is at most $t + 2t^{t/2}$.

Comparing to treewidth

Bounded treewidth implies bounded pitch and gap:

Proposition

Let $S \subseteq \{0,1\}^n$ with pitch p and gap Δ . If t is the treewidth of $H[\overline{S}]$, then we have $p \leq t+1$ and $\Delta \leq 2t^{t/2}$.

- $\cdot\,$ induction on the rhs of the inequality to obtain
- every inequality of the form $\sum_{i \in I} x_i \ge 1$ can be obtained after n + 1 |I| rounds of CG.
- \cdot note that $\textit{n}+1-|\textit{I}| \leq \textit{p}$
- $\cdot \rightsquigarrow$ all inequalities with rhs 1 can be obtained after p rounds.
- $\cdot\,$ for inequalities with larger rhs, proof by example

• suppose that $7x_1 + 3x_2 + 2x_3 \ge 5$ is valid for *S*, then also

are valid for S

- \cdot thus, $(7-arepsilon)x_1+(3-arepsilon)x_2+(2-arepsilon)x_3\geq 4$ is valid for S
- \cdot thus, $7x_1+3x_2+2x_3\geq 4+\varepsilon''$ is valid for S
- \cdot induction ...
- \cdot rounding up the rhs, we obtain the desired inequality

FURTHER PROPERTIES OF SETS WITH BOUNDED PITCH

Proposition

For every $S \subseteq \{0,1\}^n$ with pitch p and every $c \in \mathbb{R}^n$, the problem $\min\{c^{\mathsf{T}}s : s \in S\}$ can be solved using $\mathcal{O}(n^p)$ oracle calls to S.

Why?

- \cdot may assume that $0 \leq c_1 \leq \cdots \leq c_n$
- \cdot note: optimal solution over $\{0,1\}^n$ would be $\mathbb O$
- \cdot claim: only need to check all vectors with support at most p

Bounded pitch allows for fast approximation:

Corollary

Let $S \subseteq \{0,1\}^n$ with pitch p and let R be any relaxation of S. Let $\varepsilon \in (0,1)$ with $p\varepsilon^{-1} \in \mathbb{Z}$. If

$$\sum_{i \in I} c_i x_i + \sum_{j \in J} c_j (1 - x_j) \ge \delta$$

with $\delta \ge c_1, \ldots, c_n \ge 0$ is valid for *S*, then the inequality

$$\sum_{i\in I} c_i x_i + \sum_{j\in J} c_j (1-x_j) \geq (1-arepsilon) \delta$$

is valid for $R^{(p\varepsilon^{-1}-1)}$.

Extended formulations

Theorem

Let $S \subseteq \{0,1\}^n$ with pitch p such that there exists a depth-D Boolean circuit (with AND and OR gates of fan-in 2, and NOT gates of fan-in 1) that decides S.

Then $\operatorname{conv}(S)$ is a linear projection of a polytope with $\mathcal{O}(n \cdot 2^{pD})$ many facets.

