POLYTOPES IN THE 0/1-CUBE WITH BOUNDED CHVÁTAL-GOMORY RANK

Yohann Benchetrit, Samuel Fiorini, Tony Huynh
Université Libre de Bruxelles
Stefan Weltge
ETH Zürich

CUTTING-PLANE PROOFS AND CHVÁTAL-GOMORY CLOSURES

Cutting-plane proofs

Definition

Given linear inequalities

$$
\begin{equation*}
a_{i}^{\top} x \geq b_{i} \quad(i=1, \ldots, m) \tag{1}
\end{equation*}
$$

an inequality $a^{\top} x \geq b$ with $a \in \mathbb{Z}^{n}$ is derived from (1) if

$$
\begin{aligned}
& \cdot a=\sum_{i=1}^{m} \lambda_{i} a_{i} \text { for some } \lambda_{1}, \ldots, \lambda_{m} \geq 0 \\
& \cdot\left\lceil\sum_{i=1}^{m} \lambda_{i} b_{i}\right\rceil \geq b
\end{aligned}
$$

Clear: every $x \in \mathbb{Z}^{n}$ that satsifies (1) also satisfies $a^{\top} x \geq b$

Cutting-plane proofs (2)

Example

$$
\begin{aligned}
& x_{1}+x_{2} \leq 1, x_{2}+x 3 \leq 1, x_{3}+x_{4} \leq 1, x_{4}+x_{5} \leq 1, x_{1}+x_{5} \leq 1 \\
& \quad \Rightarrow 2 x_{1}+\cdots+2 x_{5} \leq 5 \\
& \quad \Rightarrow x_{1}+\cdots+x_{5} \leq 2.5 \\
& \quad \Rightarrow x_{1}+\cdots+x_{5} \leq\lfloor 2.5\rfloor=2
\end{aligned}
$$

Cutting-plane proofs (3)

Definition

Given linear inequalities

$$
a_{i}^{\top} x \geq b_{i} \quad(i=1, \ldots, m)
$$

a sequence of linear inequalities

$$
a_{m+k}^{\top} x \geq b_{m+k} \quad(k=1, \ldots, M)
$$

is a cutting-plane proof for $a^{\top} x \geq b$ if for every $k=1, \ldots, M$

- $a_{m+k} \in \mathbb{Z}^{n}$,
- $a_{m+k}^{\top} x \geq b_{m+k}$ is derived from the previous inequalities, and $a^{\top} x \geq b$ is a nonnegative multiple of $a_{m+M^{\top}}^{\top} \geq b_{m+M}$. Its length is M.

Cutting-plane proofs (4)

Theorem (Gomory)

If $a_{i}^{\top} x \geq b_{i}(i=1, \ldots, m)$ define a polytope P, then every linear inequality with integer coefficients that is valid for $P \cap \mathbb{Z}^{n}$ has a cutting-plane proof of finite length.

How long do cutting-plane proofs need to be?

Chvátal-Gomory

Definition

Given a polytope $P \subseteq \mathbb{R}^{n}$, the first Chvátal-Gomory (CG) closure of P is

$$
P^{\prime}:=\left\{x \in \mathbb{R}^{n}: c^{\top} x \geq\left\lceil\min _{y \in P} c^{\top} y\right\rceil \forall c \in \mathbb{Z}^{n}\right\}
$$

$P^{(0)}:=P, P^{(t)}:=\left(P^{(t-1)}\right)^{\prime}$ is the t-th CG closure of P.

Definition

The smallest t such that $P^{(t)}=\operatorname{conv}\left(P \cap \mathbb{Z}^{n}\right)$ is the CG-rank of P.

Theorem (Chvátal)

The CG-rank of every polytope is finite.

Chvátal-Gomory (2)

Fact

Let $a_{i}^{\top} x \geq b_{i}(i=1, \ldots, m)$ define a polytope P with CG-rank k. Then every linear inequality with integer coefficients that is valid for $P \cap \mathbb{Z}^{n}$ has a cutting-plane proof of length at most

$$
\left(n^{k+1}-1\right) /(n-1)
$$

Fact

Even in dimension 2, the CG-rank of a polytope can be arbitarily large.

Eisenbrand, Schulz 2003; Rothvoß, Sanità 2013

The CG-rank of any polytope contained in $[0,1]^{n}$ is at most $\mathcal{O}\left(n^{2} \log n\right)$; and this bound is tight up to the log-factor.

Today

Definition

Let $S \subseteq\{0,1\}^{n}$. A polytope $R \subseteq[0,1]^{n}$ is a relaxation of S iff $R \cap \mathbb{Z}^{n}=S$.

Question

Let $S \subseteq\{0,1\}^{n}$. What properties of S ensure that every relaxation of S has bounded CG rank (by a constant independent of n)?

Constant CG-rank

Fix k to be a constant.

Remark

Polytopes in \mathbb{R}^{n} with CG-rank k have cutting-plane proofs of length polynomial in n.

Remark

Maximizing/minimizing a linear functional over the integer points of a polytope with CG-rank k is in NP \cap coNP (but not known to be in P).

Previous work

. $\bar{S}:=\{0,1\}^{n} \backslash S$

- $H[\bar{S}]:=$ undirected graph with vertices \bar{S}, two vertices are adjacent iff they differ in one coordinate

Easy

If $H[\bar{S}]$ is a stable set, then the CG-rank of any relaxation of S is at most 1.

Cornuéjols, Lee (2016)

If $H[\bar{S}]$ is a forest, then the CG-rank of any relaxation of S is at most 3.

Cornuéjols, Lee (2016)

If the treewidth of $H[\bar{S}]$ is at most 2 , then the CG-rank of any relaxation of S is at most 4 .

WHAT MAKES THE CG-RANK LARGE?

A large pitch!

Definition

The pitch of $S \subseteq\{0,1\}^{n}$ is the smallest number $p \in \mathbb{Z}_{\geq 0}$ such that every p-dimensional face of $[0,1]^{n}$ intersects S.
(If the pitch is p, there is a p-1-dimensional face of $[0,1]^{n}$ disjoint from S)

Fact

Let $S \subseteq\{0,1\}^{n}$ with pitch p. Then there is a relaxation of S with CG-rank at least $p-1$.

Large coefficients!

Definition

The gap of $S \subseteq\{0,1\}^{n}$ is the smallest number $\Delta \in \mathbb{Z}_{\geq 0}$ such that conv (S) can be described by inequalities of the form

$$
\sum_{i \in I} c_{i} x_{i}+\sum_{j \in J} c_{j}\left(1-x_{j}\right) \geq \delta
$$

with $I, J \subseteq[n]$ disjoint, $\delta, c_{1}, \ldots, c_{n} \in \mathbb{Z}_{\geq 0}$ with $\delta \leq \Delta$.

Fact

Let $S \subseteq\{0,1\}^{n}$ with gap Δ. Then there is a relaxation of S with CG-rank at least $\frac{\log \Delta}{\log n}-1$.

Main result

Theorem

Let $S \subseteq\{0,1\}^{n}$ with pitch p and gap Δ. Then the CG-rank of any relaxation of S is at most $p+\Delta-1$.

Corollary

Let $S \subseteq\{0,1\}^{n}$ and let t be the treewidth of $H[\bar{S}]$. Then the CG-rank of any relaxation of S is at most $t+2 t^{t / 2}$.

Comparing to treewidth

Bounded treewidth implies bounded pitch and gap:

Proposition

Let $S \subseteq\{0,1\}^{n}$ with pitch p and gap Δ. If t is the treewidth of $H[\bar{S}]$, then we have $p \leq t+1$ and $\Delta \leq 2 t^{t / 2}$.

Proof idea

- induction on the rhs of the inequality to obtain
- every inequality of the form $\sum_{i \in I} x_{i} \geq 1$ can be obtained after $n+1-|I|$ rounds of CG.
- note that $n+1-|I| \leq p$
- \rightsquigarrow all inequalities with rhs 1 can be obtained after p rounds.
- for inequalities with larger rhs, proof by example

Proof idea (2)

- suppose that $7 x_{1}+3 x_{2}+2 x_{3} \geq 5$ is valid for S, then also

$$
\begin{array}{rlrl}
(7-1) x_{1}+ & 3 x_{2}+ & 2 x_{3} & \geq 4 \\
7 x_{1}+(3-1) x_{2}+ & 2 x_{3} & \geq 4 \\
7 x_{1}+3 x_{2}+(2-1) x_{3} & \geq 4
\end{array}
$$

are valid for S

- thus, $(7-\varepsilon) x_{1}+(3-\varepsilon) x_{2}+(2-\varepsilon) x_{3} \geq 4$ is valid for S
- thus, $7 x_{1}+3 x_{2}+2 x_{3} \geq 4+\varepsilon^{\prime \prime}$ is valid for S
. induction ...
- rounding up the rhs, we obtain the desired inequality

FURTHER PROPERTIES OF SETS WITH BOUNDED PITCH

Optimizing

Proposition

For every $S \subseteq\{0,1\}^{n}$ with pitch p and every $c \in \mathbb{R}^{n}$, the problem $\min \left\{c^{\top} s: s \in S\right\}$ can be solved using $\mathcal{O}\left(n^{p}\right)$ oracle calls to S.

Why?

- may assume that $0 \leq c_{1} \leq \cdots \leq c_{n}$
- note: optimal solution over $\{0,1\}^{n}$ would be $(\mathbb{O}$
- claim: only need to check all vectors with support at most p

Approximating

Bounded pitch allows for fast approximation:

Corollary

Let $S \subseteq\{0,1\}^{n}$ with pitch p and let R be any relaxation of S. Let $\varepsilon \in(0,1)$ with $p \varepsilon^{-1} \in \mathbb{Z}$. If

$$
\sum_{i \in I} c_{i} x_{i}+\sum_{j \in J} c_{j}\left(1-x_{j}\right) \geq \delta
$$

with $\delta \geq c_{1}, \ldots, c_{n} \geq 0$ is valid for S, then the inequality

$$
\sum_{i \in I} c_{i} x_{i}+\sum_{j \in J} c_{j}\left(1-x_{j}\right) \geq(1-\varepsilon) \delta
$$

is valid for $R^{\left(p \varepsilon^{-1}-1\right)}$.

Extended formulations

Theorem

Let $S \subseteq\{0,1\}^{n}$ with pitch p such that there exists a depth- D Boolean circuit (with AND and OR gates of fan-in 2, and NOT gates of fan-in 1) that decides S.
Then $\operatorname{conv}(S)$ is a linear projection of a polytope with $\mathcal{O}\left(n \cdot 2^{p D}\right)$ many facets.

