Minkowski Length of Lattice Polytopes

Einstein Workshop on Lattice Polytopes

Ivan Soprunov
(with Jenya Soprunova)

Cleveland State University
December 12, 2016

Counting rational points on hypersurfaces

Tsfasman's Question (1989, Luminy): What is the largest number of \mathbb{F}_{q}-points on a hypersurface $H \subset \mathbb{P}^{d}$ of degree t ? That is,

$$
N_{q}(t, d)=\max _{\operatorname{deg} f=t}\left\{p \in \mathbb{P}^{d}\left(\mathbb{F}_{q}\right) \mid f(p)=0\right\},
$$

over all homogeneous $f \in \mathbb{F}_{q}\left[x_{0}, \ldots, x_{d}\right]$ of degree t ?

Counting rational points on hypersurfaces

Tsfasman's Question (1989, Luminy): What is the largest number of $\mathbb{F}_{q^{-}}$-points on a hypersurface $H \subset \mathbb{P}^{d}$ of degree t ? That is,

$$
N_{q}(t, d)=\max _{\operatorname{deg} f=t}\left\{p \in \mathbb{P}^{d}\left(\mathbb{F}_{q}\right) \mid f(p)=0\right\},
$$

over all homogeneous $f \in \mathbb{F}_{q}\left[x_{0}, \ldots, x_{d}\right]$ of degree t ?
Serre's Answer (1989): For $q \geq t$, the polynomials that factor the most have the most zeroes over \mathbb{F}_{q}. Thus we should take f to be a product of linear factors and so

$$
N_{q}(t, d)=t \frac{q^{d}-1}{q-1}-(t-1) \frac{q^{d-1}-1}{q-1}=t q^{d-1}+q^{d-2}+\cdots+1 .
$$

Counting rational points on hypersurfaces

More generally, let X be a toric variety and D is a \mathbb{T}-invariant Cartier divisor on X with polytope $P=P_{D}$. Then the \mathbb{F}_{q}-global sections of $\mathcal{O}_{X}(D)$ can be identified with

$$
\mathcal{L}(P):=\bigoplus_{a \in P \cap \mathbb{Z}^{d}} \mathbb{F}_{q^{2}} x^{a}
$$

Counting rational points on hypersurfaces

More generally, let X be a toric variety and D is a \mathbb{T}-invariant Cartier divisor on X with polytope $P=P_{D}$. Then the \mathbb{F}_{q}-global sections of $\mathcal{O}_{X}(D)$ can be identified with

$$
\mathcal{L}(P):=\bigoplus_{a \in P \cap \mathbb{Z}^{d}} \mathbb{F}_{q^{\prime}} x^{a}
$$

Question: Given P, what is the largest number of zeroes $N_{q}(P)$ in $\left(\mathbb{F}_{q}^{*}\right)^{d}$ a polynomial $f \in \mathcal{L}(P)$ may have?
Example: $N_{q}(t \Delta)=t(q-1)^{d-1}$, by Serre's argument

Counting rational points on hypersurfaces

More generally, let X be a toric variety and D is a \mathbb{T}-invariant Cartier divisor on X with polytope $P=P_{D}$. Then the \mathbb{F}_{q}-global sections of $\mathcal{O}_{X}(D)$ can be identified with

$$
\mathcal{L}(P):=\bigoplus_{a \in P \cap \mathbb{Z}^{d}} \mathbb{F}_{q} x^{a}
$$

Question: Given P, what is the largest number of zeroes $N_{q}(P)$ in $\left(\mathbb{F}_{q}^{*}\right)^{d}$ a polynomial $f \in \mathcal{L}(P)$ may have?
Example: $N_{q}(t \Delta)=t(q-1)^{d-1}$, by Serre's argument

Easier Questions:

- What is the largest number of factors a polynomial $f \in \mathcal{L}(P)$ may have?
- What do the factors in this case look like?

Counting rational points on hypersurfaces

In fact, the easier questions are about the geometry of P.

- The largest number of factors $f \in \mathcal{L}(P)$ may have is the Minkowski length of P.
- The irreducible factors of such f have Newton polytopes that are strongly indecomposable.

Minkowski length: Definition

Let P be a lattice polytope in \mathbb{R}^{d}.
Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$
L(P)=\max \left\{L \in \mathbb{N} \mid Q=Q_{1}+\cdots+Q_{L} \subseteq P, \operatorname{dim} Q_{i}>0\right\}
$$

Lattice polytopes with $L(P)=1$ are strongly indecomposable.

Minkowski length: Definition

Let P be a lattice polytope in \mathbb{R}^{d}.
Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$
L(P)=\max \left\{L \in \mathbb{N} \mid Q=Q_{1}+\cdots+Q_{L} \subseteq P, \operatorname{dim} Q_{i}>0\right\}
$$

Lattice polytopes with $L(P)=1$ are strongly indecomposable.
Example

- $L(P)=3$
- $L(t \Delta)=t$ for a unimodular simplex Δ and $t \in \mathbb{N}$.

Minkowski length: Definition

Let P be a lattice polytope in \mathbb{R}^{d}.
Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$
L(P)=\max \left\{L \in \mathbb{N} \mid Q=Q_{1}+\cdots+Q_{L} \subseteq P, \operatorname{dim} Q_{i}>0\right\}
$$

Lattice polytopes with $L(P)=1$ are strongly indecomposable.
Example

- $L(P)=3$
- $L(t \Delta)=t$ for a unimodular simplex Δ and $t \in \mathbb{N}$.

Minkowski length: Properties

Simple Properties:

- Invariance: $L(P)$ is $A G L(d, \mathbb{Z})$-invariant,
- Monotonicity: $L(Q) \leq L(P)$ if $Q \subseteq P$,
- Superadditivity: $L(P)+L(Q) \leq L(P+Q)$,

Minkowski length: Properties

Simple Properties:

- Invariance: $L(P)$ is $A G L(d, \mathbb{Z})$-invariant,
- Monotonicity: $L(Q) \leq L(P)$ if $Q \subseteq P$,
- Superadditivity: $L(P)+L(Q) \leq L(P+Q)$,
- Bound:

$$
\left|P \cap \mathbb{Z}^{d}\right| \leq(L(P)+1)^{d}
$$

In particular, if P is strongly indecomposable then

$$
\left|P \cap \mathbb{Z}^{d}\right| \leq 2^{d}
$$

...Think about $P \cap(\mathbb{Z} / 2 \mathbb{Z})^{d} \ldots$

Strongly indecomposable lattice polytopes in small dimension

$\operatorname{dim} P=1$ primitive lattice segments $\operatorname{dim} P=2$ two classes of triangles

Strongly indecomposable lattice polytopes in small dimension

$\operatorname{dim} P=1$ primitive lattice segments $\operatorname{dim} P=2$ two classes of triangles

Theorem (Josh Whitney, 2010)
Let P be strongly indecomposable, $\operatorname{dim} P=3$. Then

- P may have 4,5 , or 6 vertices only
- There are infinite families of such P:
- empty and clean tetrahedra
- empty clean and non-clean double pyramids
- empty clean and non-clean 6 vertex polytopes
- There are $38+56+13=107$ classes of non-empty P

Back to counting rational points on hypersurfaces

Theorem (S-Soprunova, '08)
Let P be a lattice polygon with $L=L(P)$. Then

$$
N_{q}(P) \leq L(q-1)+2 \sqrt{q}-1
$$

for $q>\alpha(P)$.

Back to counting rational points on hypersurfaces

Theorem (S-Soprunova, '08)
Let P be a lattice polygon with $L=L(P)$. Then

$$
N_{q}(P) \leq L(q-1)+2 \sqrt{q}-1
$$

for $q>\alpha(P)$.
Theorem (Whitney, '10)
Let P be a lattice polytope in \mathbb{R}^{3} with $L=L(P)$. Then for $q>\beta(P)$

$$
N_{q}(P) \leq N_{q}\left(Q_{1}\right)+\cdots+N_{q}\left(Q_{L}\right),
$$

for any $Q_{1}+\cdots+Q_{L} \subseteq P$ and $N_{q}\left(Q_{i}\right)$ have explicit formulas based on the classification of 3-dim strongly indecomposable polytopes.

Back to counting rational points on hypersurfaces

Theorem (S-Soprunova, '08)
Let P be a lattice polygon with $L=L(P)$. Then

$$
N_{q}(P) \leq L(q-1)+2 \sqrt{q}-1
$$

for $q>\alpha(P)$.
Theorem (Whitney, '10)
Let P be a lattice polytope in \mathbb{R}^{3} with $L=L(P)$. Then for $q>\beta(P)$

$$
N_{q}(P) \leq N_{q}\left(Q_{1}\right)+\cdots+N_{q}\left(Q_{L}\right),
$$

for any $Q_{1}+\cdots+Q_{L} \subseteq P$ and $N_{q}\left(Q_{i}\right)$ have explicit formulas based on the classification of 3-dim strongly indecomposable polytopes.

Theorem (Beckwith-Grimm-Soprunova-Weaver, '12)
The total number of interior points in the Q_{i} in any maximal decomposition is at most 4.

How to compute $L(P)$?

Let $L=L(P)$. The maximal decompositions $Q_{1}+\cdots+Q_{L} \subseteq P$ form a poset with respect to inclusion (up to a lattice translation). Minimal elements are smallest maximal decompositions.

How to compute $L(P)$?

Let $L=L(P)$. The maximal decompositions $Q_{1}+\cdots+Q_{L} \subseteq P$ form a poset with respect to inclusion (up to a lattice translation). Minimal elements are smallest maximal decompositions.

Proposition

Every smallest maximal decomposition is a lattice zonotope $Z_{\min } \subseteq P$ with at most $2^{d}-1$ distinct direction vectors.

How to compute $L(P)$?

Let $L=L(P)$. The maximal decompositions $Q_{1}+\cdots+Q_{L} \subseteq P$ form a poset with respect to inclusion (up to a lattice translation). Minimal elements are smallest maximal decompositions.

Proposition

Every smallest maximal decomposition is a lattice zonotope $Z_{\min } \subseteq P$ with at most $2^{d}-1$ distinct direction vectors.

Reason: The direction vectors v_{1}, \ldots, v_{k} are non-zero $\bmod 2$. If $k \geq 2^{d}$ then $v_{i}+v_{j}=2 v$ for some $i<j$.

Relation to Lattice Diameter

Let P be a lattice polytope in \mathbb{R}^{d}.
Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is at most n-dimensional and is contained in P is called the n-th Minkowski length:
$L_{n}(P)=\max \left\{L \in \mathbb{N} \mid Q=Q_{1}+\cdots+Q_{L} \subseteq P, \operatorname{dim} Q_{i}>0, \operatorname{dim} Q \leq n\right\}$.
Clearly $L_{1}(P) \leq L_{2}(P) \leq \cdots \leq L_{d}(P)=L(P)$.
Note that $L_{1}(P)=$ lattice diameter of P.

Relation to Lattice Diameter

Let P be a lattice polytope in \mathbb{R}^{d}.
Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is at most n-dimensional and is contained in P is called the n-th Minkowski length:
$L_{n}(P)=\max \left\{L \in \mathbb{N} \mid Q=Q_{1}+\cdots+Q_{L} \subseteq P, \operatorname{dim} Q_{i}>0, \operatorname{dim} Q \leq n\right\}$.
Clearly $L_{1}(P) \leq L_{2}(P) \leq \cdots \leq L_{d}(P)=L(P)$.
Note that $L_{1}(P)=$ lattice diameter of P.
Example

- $L_{1}(P)=2, L_{2}(P)=3$
- $L_{n}(t \Delta)=t$ for any $n \in \mathbb{N}$

Rational Minkowski length

Main Question: How does $L_{n}(t P)$ behave as a function of $t \in \mathbb{N}$?

Rational Minkowski length

Main Question: How does $L_{n}(t P)$ behave as a function of $t \in \mathbb{N}$?
Definition: Define rational (asymptotic) Minkowski length:

$$
\lambda_{n}(P):=\sup _{t \in \mathbb{N}} \frac{L_{n}(t P)}{t}
$$

We put $\lambda(P)=\lambda_{d}(P)$.

Rational Minkowski length

Main Question: How does $L_{n}(t P)$ behave as a function of $t \in \mathbb{N}$?
Definition: Define rational (asymptotic) Minkowski length:

$$
\lambda_{n}(P):=\sup _{t \in \mathbb{N}} \frac{L_{n}(t P)}{t}
$$

We put $\lambda(P)=\lambda_{d}(P)$.
In particular, $\lambda_{1}(P)$ is the rational diameter, that is

$$
\lambda_{1}(P)=\max \left\{s_{P}(v) \mid \text { primitive } v \in \mathbb{Z}^{d}\right\},
$$

where $s_{P}(v)$ is the diameter of P in the direction of v (relative to $v \mathbb{Z} \subset \mathbb{Z}^{d}$). This implies

$$
L_{1}(t P)=\left\lfloor\lambda_{1}(t P)\right\rfloor=\left\lfloor\lambda_{1}(P) t\right\rfloor,
$$

which is quasi-linear (i.e. quasi-polynomial in t with linear constituencies).

Rational Minkowski length

Theorem (S-Soprunova '16)
Let P be a lattice polytope in \mathbb{R}^{d}. There exists $k \in \mathbb{N}$ such that

$$
\lambda(P)=\frac{L(k P)}{k}
$$

The smallest such k is the period of P.
Corollary: $\lambda(t P)=t \lambda(P)$ for any $t \in \mathbb{N}$.

Rational Minkowski length

Theorem (S-Soprunova '16)
Let P be a lattice polytope in \mathbb{R}^{d}. There exists $k \in \mathbb{N}$ such that

$$
\lambda(P)=\frac{L(k P)}{k}
$$

The smallest such k is the period of P.
Corollary: $\lambda(t P)=t \lambda(P)$ for any $t \in \mathbb{N}$.
Sketch of the proof:

- $\lambda(P)$ equals the supremum of the "normalized perimeter" $p(Z)$ of all rational zonotopes $Z \subseteq P$.
- The number of directions for the summands of $Z_{\text {min }}$ is bounded by $2^{d}-1$

Rational Minkowski length

Theorem (S-Soprunova '16)
Let P be a lattice polytope in \mathbb{R}^{d}. There exists $k \in \mathbb{N}$ such that

$$
\lambda(P)=\frac{L(k P)}{k}
$$

The smallest such k is the period of P.
Corollary: $\lambda(t P)=t \lambda(P)$ for any $t \in \mathbb{N}$.
Sketch of the proof:

- There are only finitely many collections of directions for $Z_{\text {min }}$ for which $p(Z)$ is "close" to $\lambda(P)$
- $p(Z)$ is the maximum of a linear function on a finite set of rational polytopes

Eventual Quasi-linearity of Minkowski length

Theorem (S-Soprunova '16)
Let P be a lattice polytope in \mathbb{R}^{d} with period k. Then $L(t P)$ is eventually quasi-linear in t, that is, there exist $c_{r} \in \mathbb{Z}$ for $0 \leq r<k$ such that for all $t \gg 0$

$$
L(t P)=k \lambda(P)\left\lfloor\frac{t}{k}\right\rfloor+c_{r}, \text { whenever } t \equiv r \bmod k .
$$

Moreover, $L(r P) \leq c_{r} \leq r \lambda(P)$.
Remark: The same statement holds for $L_{n}(t P)$ for any $n \in \mathbb{N}$.

Example

1-st Minkowski length (lattice diameter)

- We have $L_{1}(P)=2$ and $\lambda_{1}(P)=\frac{5}{2}$
- $L_{1}(t P)=\left\lfloor t \lambda_{1}(P)\right\rfloor=5\left\lfloor\frac{t}{2}\right\rfloor+\{0,2\}$

Example

1-st Minkowski length (lattice diameter)

- We have $L_{1}(P)=2$ and $\lambda_{1}(P)=\frac{5}{2}$
- $L_{1}(t P)=\left\lfloor t \lambda_{1}(P)\right\rfloor=5\left\lfloor\frac{t}{2}\right\rfloor+\{0,2\}$

2-nd Minkowski length

- We have $\lambda(P) \leq \frac{2 V{ }_{2}(P)}{w(P)}$ for any polygon P
- Here $\lambda(P)=\frac{10}{3}$ and P has period $k=3$.
- $L(t P)=10\left\lfloor\frac{t}{3}\right\rfloor+\{0,3,6\}$

Questions

1. As we saw earlier $L_{n}(t \Delta)=L_{1}(t \Delta)$ for any $n \in \mathbb{N}$. It turns out that $L_{n}(T)=L_{1}(T)$ for any triangle in \mathbb{R}^{2}. Does this hold for simplices in any dimension?

Questions

1. As we saw earlier $L_{n}(t \Delta)=L_{1}(t \Delta)$ for any $n \in \mathbb{N}$. It turns out that $L_{n}(T)=L_{1}(T)$ for any triangle in \mathbb{R}^{2}. Does this hold for simplices in any dimension?
2. Can the bound $\left|P \cap \mathbb{Z}^{d}\right| \leq(L(P)+1)^{d}$ be improved?

Questions

1. As we saw earlier $L_{n}(t \Delta)=L_{1}(t \Delta)$ for any $n \in \mathbb{N}$. It turns out that $L_{n}(T)=L_{1}(T)$ for any triangle in \mathbb{R}^{2}. Does this hold for simplices in any dimension?
2. Can the bound $\left|P \cap \mathbb{Z}^{d}\right| \leq(L(P)+1)^{d}$ be improved?
3. The above bound is sharp for strongly indecomposable polytopes P. What is the largest number of interior lattice points in strongly indecomposable P ? Is it $2^{d}-(d+1)$?

Questions

1. As we saw earlier $L_{n}(t \Delta)=L_{1}(t \Delta)$ for any $n \in \mathbb{N}$. It turns out that $L_{n}(T)=L_{1}(T)$ for any triangle in \mathbb{R}^{2}. Does this hold for simplices in any dimension?
2. Can the bound $\left|P \cap \mathbb{Z}^{d}\right| \leq(L(P)+1)^{d}$ be improved?
3. The above bound is sharp for strongly indecomposable polytopes P. What is the largest number of interior lattice points in strongly indecomposable P ? Is it $2^{d}-(d+1)$?

- The End -

