Minkowski Length of Lattice Polytopes

Einstein Workshop on Lattice Polytopes

Ivan Soprunov (with Jenya Soprunova)

Cleveland State University

December 12, 2016

Tsfasman's Question (1989, Luminy): What is the largest number of \mathbb{F}_q -points on a hypersurface $H \subset \mathbb{P}^d$ of degree t? That is,

$$N_q(t,d) = \max_{\deg f = t} \{ p \in \mathbb{P}^d(\mathbb{F}_q) \mid f(p) = 0 \},$$

over all homogeneous $f \in \mathbb{F}_q[x_0,\ldots,x_d]$ of degree t?

Tsfasman's Question (1989, Luminy): What is the largest number of \mathbb{F}_q -points on a hypersurface $H \subset \mathbb{P}^d$ of degree t? That is,

$$N_q(t,d) = \max_{\deg f = t} \{ p \in \mathbb{P}^d(\mathbb{F}_q) \mid f(p) = 0 \},$$

over all homogeneous $f \in \mathbb{F}_q[x_0, \dots, x_d]$ of degree t?

Serre's Answer (1989): For $q \geq t$, the polynomials that factor the most have the most zeroes over \mathbb{F}_q . Thus we should take f to be a product of linear factors and so

$$N_q(t,d) = t \frac{q^d-1}{q-1} - (t-1) \frac{q^{d-1}-1}{q-1} = tq^{d-1} + q^{d-2} + \cdots + 1.$$

More generally, let X be a toric variety and D is a \mathbb{T} -invariant Cartier divisor on X with polytope $P=P_D$. Then the \mathbb{F}_q -global sections of $\mathcal{O}_X(D)$ can be identified with

$$\mathcal{L}(P) := \bigoplus_{a \in P \cap \mathbb{Z}^d} \mathbb{F}_q x^a.$$

More generally, let X be a toric variety and D is a \mathbb{T} -invariant Cartier divisor on X with polytope $P=P_D$. Then the \mathbb{F}_q -global sections of $\mathcal{O}_X(D)$ can be identified with

$$\mathcal{L}(P) := \bigoplus_{a \in P \cap \mathbb{Z}^d} \mathbb{F}_q x^a.$$

Question: Given P, what is the largest number of zeroes $N_q(P)$ in $(\mathbb{F}_q^*)^d$ a polynomial $f \in \mathcal{L}(P)$ may have?

Example: $N_q(t\Delta) = t(q-1)^{d-1}$, by Serre's argument

More generally, let X be a toric variety and D is a \mathbb{T} -invariant Cartier divisor on X with polytope $P=P_D$. Then the \mathbb{F}_q -global sections of $\mathcal{O}_X(D)$ can be identified with

$$\mathcal{L}(P) := \bigoplus_{a \in P \cap \mathbb{Z}^d} \mathbb{F}_q x^a.$$

Question: Given P, what is the largest number of zeroes $N_q(P)$ in $(\mathbb{F}_q^*)^d$ a polynomial $f \in \mathcal{L}(P)$ may have?

Example: $N_q(t\Delta) = t(q-1)^{d-1}$, by Serre's argument

Easier Questions:

- ▶ What is the largest number of factors a polynomial $f \in \mathcal{L}(P)$ may have?
- ▶ What do the factors in this case look like?

In fact, the easier questions are about the geometry of P.

- ▶ The largest number of factors $f \in \mathcal{L}(P)$ may have is the Minkowski length of P.
- ► The irreducible factors of such *f* have Newton polytopes that are strongly indecomposable.

Minkowski length: Definition

Let P be a lattice polytope in \mathbb{R}^d .

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in *P* is called the Minkowski length:

$$L(P) = \max\{L \in \mathbb{N} \mid Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.$$

Lattice polytopes with L(P) = 1 are strongly indecomposable.

Minkowski length: Definition

Let P be a lattice polytope in \mathbb{R}^d .

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$L(P) = \max\{L \in \mathbb{N} \mid Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.$$

Lattice polytopes with L(P) = 1 are strongly indecomposable.

Example

- ▶ L(P) = 3
- ▶ $L(t\Delta) = t$ for a unimodular simplex Δ and $t \in \mathbb{N}$.

Minkowski length: Definition

Let P be a lattice polytope in \mathbb{R}^d .

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is contained in P is called the Minkowski length:

$$L(P) = \max\{L \in \mathbb{N} \mid Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0\}.$$

Lattice polytopes with L(P) = 1 are strongly indecomposable.

Example

- ▶ L(P) = 3
- ▶ $L(t\Delta) = t$ for a unimodular simplex Δ and $t \in \mathbb{N}$.

Minkowski length: Properties

Simple Properties:

- ▶ Invariance: L(P) is $AGL(d, \mathbb{Z})$ -invariant,
- ▶ Monotonicity: $L(Q) \le L(P)$ if $Q \subseteq P$,
- ▶ Superadditivity: $L(P) + L(Q) \le L(P + Q)$,

Minkowski length: Properties

Simple Properties:

- ▶ Invariance: L(P) is $AGL(d, \mathbb{Z})$ -invariant,
- ▶ Monotonicity: $L(Q) \le L(P)$ if $Q \subseteq P$,
- ▶ Superadditivity: $L(P) + L(Q) \le L(P + Q)$,
- ► Bound:

$$|P \cap \mathbb{Z}^d| \leq (L(P)+1)^d$$

In particular, if P is strongly indecomposable then

$$|P \cap \mathbb{Z}^d| \leq 2^d$$
.

...Think about $P \cap (\mathbb{Z}/2\mathbb{Z})^d$...

Strongly indecomposable lattice polytopes in small dimension

 $\dim P = 1$ primitive lattice segments $\dim P = 2$ two classes of triangles

Strongly indecomposable lattice polytopes in small dimension

 $\dim P = 1$ primitive lattice segments $\dim P = 2$ two classes of triangles

Theorem (Josh Whitney, 2010)

Let P be strongly indecomposable, dim P = 3. Then

- ▶ P may have 4, 5, or 6 vertices only
- There are infinite families of such P:
 - empty and clean tetrahedra
 - empty clean and non-clean double pyramids
 - empty clean and non-clean 6 vertex polytopes
- ▶ There are 38 + 56 + 13 = 107 classes of non-empty P

Back to counting rational points on hypersurfaces

Theorem (S-Soprunova, '08)

Let P be a lattice polygon with L = L(P). Then

$$N_q(P) \leq L(q-1) + 2\sqrt{q} - 1$$

for $q > \alpha(P)$.

Back to counting rational points on hypersurfaces

Theorem (S-Soprunova, '08)

Let P be a lattice polygon with L = L(P). Then

$$N_q(P) \leq L(q-1) + 2\sqrt{q} - 1$$

for $q > \alpha(P)$.

Theorem (Whitney, '10)

Let P be a lattice polytope in \mathbb{R}^3 with L = L(P). Then for $q > \beta(P)$

$$N_q(P) \leq N_q(Q_1) + \cdots + N_q(Q_L),$$

for any $Q_1 + \cdots + Q_L \subseteq P$ and $N_q(Q_i)$ have explicit formulas based on the classification of 3-dim strongly indecomposable polytopes.

Back to counting rational points on hypersurfaces

Theorem (S-Soprunova, '08)

Let P be a lattice polygon with L = L(P). Then

$$N_q(P) \leq L(q-1) + 2\sqrt{q} - 1$$

for $q > \alpha(P)$.

Theorem (Whitney, '10)

Let P be a lattice polytope in \mathbb{R}^3 with L = L(P). Then for $q > \beta(P)$

$$N_q(P) \leq N_q(Q_1) + \cdots + N_q(Q_L),$$

for any $Q_1 + \cdots + Q_L \subseteq P$ and $N_q(Q_i)$ have explicit formulas based on the classification of 3-dim strongly indecomposable polytopes.

Theorem (Beckwith-Grimm-Soprunova-Weaver, '12)

The total number of interior points in the Q_i in any maximal decomposition is at most 4.

How to compute L(P)?

Let L = L(P). The maximal decompositions $Q_1 + \cdots + Q_L \subseteq P$ form a poset with respect to inclusion (up to a lattice translation). Minimal elements are smallest maximal decompositions.

How to compute L(P)?

Let L = L(P). The maximal decompositions $Q_1 + \cdots + Q_L \subseteq P$ form a poset with respect to inclusion (up to a lattice translation). Minimal elements are smallest maximal decompositions.

Proposition

Every smallest maximal decomposition is a lattice zonotope $Z_{min} \subseteq P$ with at most $2^d - 1$ distinct direction vectors.

How to compute L(P)?

Let L = L(P). The maximal decompositions $Q_1 + \cdots + Q_L \subseteq P$ form a poset with respect to inclusion (up to a lattice translation). Minimal elements are smallest maximal decompositions.

Proposition

Every smallest maximal decomposition is a lattice zonotope $Z_{min} \subseteq P$ with at most $2^d - 1$ distinct direction vectors.

Reason: The direction vectors v_1, \ldots, v_k are non-zero mod 2.

If $k \ge 2^d$ then $v_i + v_j = 2v$ for some i < j.

Relation to Lattice Diameter

Let P be a lattice polytope in \mathbb{R}^d .

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is at most n-dimensional and is contained in P is called the n-th Minkowski length:

$$L_n(P) = \max\{L \in \mathbb{N} \mid Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0, \dim Q \le n\}.$$

Clearly
$$L_1(P) \le L_2(P) \le \cdots \le L_d(P) = L(P)$$
.
Note that $L_1(P) =$ lattice diameter of P .

Relation to Lattice Diameter

Let P be a lattice polytope in \mathbb{R}^d .

Definition: The largest number of lattice polytopes of positive dimension whose Minkowski sum is at most n-dimensional and is contained in P is called the n-th Minkowski length:

$$L_n(P) = \max\{L \in \mathbb{N} \mid Q = Q_1 + \cdots + Q_L \subseteq P, \dim Q_i > 0, \dim Q \le n\}.$$

Clearly
$$L_1(P) \le L_2(P) \le \cdots \le L_d(P) = L(P)$$
.
Note that $L_1(P) =$ lattice diameter of P .

Example

- $L_1(P) = 2, L_2(P) = 3$
- ▶ $L_n(t\Delta) = t$ for any $n \in \mathbb{N}$

Main Question: How does $L_n(tP)$ behave as a function of $t \in \mathbb{N}$?

Main Question: How does $L_n(tP)$ behave as a function of $t \in \mathbb{N}$?

Definition: Define rational (asymptotic) Minkowski length:

$$\lambda_n(P) := \sup_{t \in \mathbb{N}} \frac{L_n(tP)}{t}.$$

We put $\lambda(P) = \lambda_d(P)$.

Main Question: How does $L_n(tP)$ behave as a function of $t \in \mathbb{N}$?

Definition: Define rational (asymptotic) Minkowski length:

$$\lambda_n(P) := \sup_{t \in \mathbb{N}} \frac{L_n(tP)}{t}.$$

We put $\lambda(P) = \lambda_d(P)$.

In particular, $\lambda_1(P)$ is the rational diameter, that is

$$\lambda_1(P) = \max\{s_P(v) \mid \text{ primitive } v \in \mathbb{Z}^d\},$$

where $s_P(v)$ is the diameter of P in the direction of v (relative to $v\mathbb{Z}\subset\mathbb{Z}^d$). This implies

$$L_1(tP) = \lfloor \lambda_1(tP) \rfloor = \lfloor \lambda_1(P)t \rfloor,$$

which is quasi-linear (i.e. quasi-polynomial in *t* with linear constituencies).

Theorem (S-Soprunova '16)

Let P be a lattice polytope in \mathbb{R}^d . There exists $k \in \mathbb{N}$ such that

$$\lambda(P) = \frac{L(kP)}{k}.$$

The smallest such k is the period of P.

Corollary: $\lambda(tP) = t\lambda(P)$ for any $t \in \mathbb{N}$.

Theorem (S-Soprunova '16)

Let P be a lattice polytope in \mathbb{R}^d . There exists $k \in \mathbb{N}$ such that

$$\lambda(P) = \frac{L(kP)}{k}.$$

The smallest such k is the period of P.

Corollary: $\lambda(tP) = t\lambda(P)$ for any $t \in \mathbb{N}$.

Sketch of the proof:

- ▶ $\lambda(P)$ equals the supremum of the "normalized perimeter" p(Z) of all rational zonotopes $Z \subseteq P$.
- ▶ The number of directions for the summands of Z_{\min} is bounded by $2^d 1$

Theorem (S-Soprunova '16)

Let P be a lattice polytope in \mathbb{R}^d . There exists $k \in \mathbb{N}$ such that

$$\lambda(P) = \frac{L(kP)}{k}.$$

The smallest such k is the period of P.

Corollary: $\lambda(tP) = t\lambda(P)$ for any $t \in \mathbb{N}$.

Sketch of the proof:

- ▶ There are only finitely many collections of directions for Z_{\min} for which p(Z) is "close" to $\lambda(P)$
- \triangleright p(Z) is the maximum of a linear function on a finite set of rational polytopes

Eventual Quasi-linearity of Minkowski length

Theorem (S-Soprunova '16)

Let P be a lattice polytope in \mathbb{R}^d with period k. Then L(tP) is eventually quasi-linear in t, that is, there exist $c_r \in \mathbb{Z}$ for $0 \le r < k$ such that for all $t \gg 0$

$$L(tP) = k\lambda(P) \left\lfloor \frac{t}{k} \right\rfloor + c_r$$
, whenever $t \equiv r \mod k$.

Moreover, $L(rP) \leq c_r \leq r\lambda(P)$.

Remark: The same statement holds for $L_n(tP)$ for any $n \in \mathbb{N}$.

Example

Р

$$L_1(tP) = \lfloor t\lambda_1(P) \rfloor = 5\lfloor \frac{t}{2} \rfloor + \{0,2\}$$

Example

Ρ

1-st Minkowski length (lattice diameter)

- We have $L_1(P)=2$ and $\lambda_1(P)=\frac{5}{2}$
- $L_1(tP) = \lfloor t\lambda_1(P) \rfloor = 5\lfloor \frac{t}{2} \rfloor + \{0,2\}$

2-nd Minkowski length

- ▶ We have $\lambda(P) \leq \frac{2Vol_2(P)}{w(P)}$ for any polygon P
- ▶ Here $\lambda(P) = \frac{10}{3}$ and P has period k = 3.
- $L(tP) = 10\lfloor \frac{t}{3} \rfloor + \{0,3,6\}$

1. As we saw earlier $L_n(t\Delta) = L_1(t\Delta)$ for any $n \in \mathbb{N}$. It turns out that $L_n(T) = L_1(T)$ for any triangle in \mathbb{R}^2 . Does this hold for simplices in any dimension?

- 1. As we saw earlier $L_n(t\Delta) = L_1(t\Delta)$ for any $n \in \mathbb{N}$. It turns out that $L_n(T) = L_1(T)$ for any triangle in \mathbb{R}^2 . Does this hold for simplices in any dimension?
- 2. Can the bound $|P \cap \mathbb{Z}^d| \leq (L(P) + 1)^d$ be improved?

- 1. As we saw earlier $L_n(t\Delta) = L_1(t\Delta)$ for any $n \in \mathbb{N}$. It turns out that $L_n(T) = L_1(T)$ for any triangle in \mathbb{R}^2 . Does this hold for simplices in any dimension?
- 2. Can the bound $|P \cap \mathbb{Z}^d| \leq (L(P) + 1)^d$ be improved?
- 3. The above bound is sharp for strongly indecomposable polytopes P. What is the largest number of interior lattice points in strongly indecomposable P? Is it $2^d (d+1)$?

- 1. As we saw earlier $L_n(t\Delta) = L_1(t\Delta)$ for any $n \in \mathbb{N}$. It turns out that $L_n(T) = L_1(T)$ for any triangle in \mathbb{R}^2 . Does this hold for simplices in any dimension?
- 2. Can the bound $|P \cap \mathbb{Z}^d| \leq (L(P) + 1)^d$ be improved?
- 3. The above bound is sharp for strongly indecomposable polytopes P. What is the largest number of interior lattice points in strongly indecomposable P? Is it $2^d (d+1)$?

— The End —