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Bernardo González Merino Romanos-Diogenes Malikiosis
Technische Universität München Technische Universität Berlin

December 12, 2016

Einstein Workshop on Lattice Polytopes

Freie Universität Berlin



Lattices of Convex Bodies

Definition

For a convex body K in Rn and a lattice Λ = AZn, A ∈ GLn(R), we say that

K + Λ =
⋃
z∈Λ

(K + z)

is a lattice of translates of K .

+ Zn =

Definition

The lattice of translates K + Λ is a lattice covering if K + Λ = Rn.
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Covering Radius

Definition

The covering radius of K ⊆ Rn with respect to a lattice Λ is defined as

µ(K ,Λ) = min{µ > 0 : µK + Λ = Rn}.

We abbreviate µ(K) = µ(K ,Zn).

Appearances in the literature:

Coin Exchange Problem of Frobenius (Kannan ’92)

Transference Theorems, Diophantine Approximation (Kannan & Lovász ’88)

Flatness Theorem (Khinchin ’54; Lagarias, Lenstra & Schnorr ’90; Banaszczyk ’96)

Computationally difficult parameter:

Kannan ’93: Polynomial-time algorithm to compute µ(P,Λ) for rational polytopes P
in fixed dimension; triple-exponential in the dimension.

Haviv & Regev ’06: It is Π2-hard to approximate µ(Bn
p ,Λ) to within a factor cp > 0

for all sufficiently large p ≥ 1.

(Conjecture) Deciding µ(Bn
2 ,Λ) ≤ µ is NP-hard. (Guruswami et al. ’05)
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Covering minima

Definition (Kannan & Lovász ’88; G. Fejes Tóth ’76)

The ith covering minimum of K ⊆ Rn with respect to a lattice Λ is defined as

µi (K ,Λ) = min{µ > 0 : µK + Λ intersects every (n−i)-dim. affine subspace}.

We abbreviate µi (K) = µi (K ,Zn).

µ1(K) ≤ µ2(K) ≤ . . . ≤ µn(K) = µ(K)

µi (UK) = µi (K), for 1 ≤ i ≤ n and U ∈ GLn(Z)

µi (rK) = 1
r
µi (K), for 1 ≤ i ≤ n and r > 0

µi (AK ,AZn) = µi (K ,Zn), for 1 ≤ i ≤ n and A ∈ GLn(R)

µ2(K) = 4
3

and µ1(K) = 1

Lemma (Kannan & Lovász ’88)

µi (K ,Λ) = max{µ(K |L,Λ|L) : L an i-dimensional subspace}
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Examples

For Cn = [− 1
2
, 1

2
]n, we have

µi (Cn) = 1 for each i = 1, . . . , n.

For S1 = conv{0, e1, . . . , en}, we have

For the Euclidean unit ball Bn
2 , we have

µi (Bn
2 ) =

√
i

2
for each i = 1, . . . , n.

Proposition

Let P ⊆ Rn be a lattice polytope. Then

µi (P) ≤ i , for every i = 1, . . . , n, and

if P is a lattice zonotope, then µi (P) ≤ 1, for every i = 1, . . . , n.
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What’s coming?

We discuss two problems in which the computation / estimation of covering radii of
lattice polytopes plays a crucial role:

Ê

Towards a Covering Analog of Minkowski’s 2nd Theorem

Ë

Rationally Constrained View-Obstruction Problem

Matthias Schymura Covering radii of lattice polytopes Dec 12, 2016 6 / 21



Covering analog of Minkowski’s 2nd Theorem

Theorem (Minkowski 1896)

For every convex body K in Rn with K = −K, we have

2n

n!
≤ λ1(K) · . . . · λn(K) vol(K) ≤ 2n,

where λi (K) = min{λ > 0 : dim(λK ∩ Zn) ≥ i} is the ith successive minimum of K.

Problem: Find best possible lower bound on µ1(K) · . . . · µn(K) vol(K), for K in Rn.

Theorem (Schnell ’95)

For every planar convex body K, we have µ1(K)µ2(K) vol(K) ≥ 3
4
.

Equality holds if and only if K is lattice-equivalent to one of the following:

hexagon parallelogram trapezoid triangle pentagon

→ Analogous to lattice tiles, that is, K such that K + Zn is a covering and a packing.
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Covering analog of Minkowski’s 2nd Theorem

Theorem (González Merino & H. ’16)

i) For every convex body K in Rn, we have

µ1(K) · . . . · µn(K) vol(K) ≥ 1

n!
.

ii) For every convex body K in Rn that is symmetric with respect to every coordinate
hyperplane, we have

µ1(K) · . . . · µn(K) vol(K) ≥ 1.

Equality holds for example for the cube Cn = [− 1
2
, 1

2
]n.

Conjecture

For every convex body K in Rn, we have

µ1(K) · . . . · µn(K) vol(K) ≥ n + 1

2n
.

→ extremal example should be Tn = conv{e1, . . . , en,−1}
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Covering Minima of Tn

Proposition

Let Tn = conv{e1, . . . , en,−1}. Then

i) µi (Tn) ≤ i , for each 1 ≤ i ≤ n,

ii)

iii) µ1(Tn) · . . . · µn(Tn) vol(Tn) ≤ n+1
(2/
√

e)n
≈ n+1

1.213n
, and

iv) (Conjecture) µi (Tn) = i
2
, for each 1 ≤ i ≤ n.

Let A = (aij) ∈ Zn×n be with aij =

{
n , if i = j

−1 , otherwise,
and S1 =

{
x ∈ Rn

≥0 : 1ᵀx ≤ 1
}

.

ATn = (n + 1)S1 − 1

Λn = AZn =
⋃n

i=0(i · 1 + (n + 1)Zn) ⊆ Zn

µn(Tn) = µn(ATn,AZn) = 1
n+1

µn(S1,Λn)
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e)n
≈ n+1

1.213n
, and

iv) (Conjecture) µi (Tn) = i
2
, for each 1 ≤ i ≤ n.

Let A = (aij) ∈ Zn×n be with aij =

{
n , if i = j

−1 , otherwise,
and S1 =

{
x ∈ Rn

≥0 : 1ᵀx ≤ 1
}

.

ATn = (n + 1)S1 − 1

Λn = AZn =
⋃n

i=0(i · 1 + (n + 1)Zn) ⊆ Zn

µn(Tn) = µn(ATn,AZn) = 1
n+1

µn(S1,Λn)
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Diameters of Quotient Lattice Graphs

standard lattice graph LG+
n

vertex set Zn

directed edge (x , x + ei ), for every x ∈ Zn and 1 ≤ i ≤ n

quotient lattice graph LG+
n /Λ of a sublattice Λ ⊆ Zn

vertex set Zn/Λ

directed edge (x + Λ, x + ei + Λ), for every x ∈ Zn and 1 ≤ i ≤ n

distance in LG+
n /Λ: For x , y ∈ Zn, let

d(x + Λ, y + Λ) = min
z∈(y−x+Λ)∩Zn

≥0

1ᵀz

diameter of LG+
n /Λ is

diam(LG+
n /Λ) = max

x,y∈Zn
d(x + Λ, y + Λ)

0 e1 2e1 3e1 0

0 e1 2e1 3e1 0

e2

2e2

3e2

e2

2e2

3e2

LG+
3 /Λ3
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Diameters of Quotient Lattice Graphs

Theorem (Marklof & Strömbergsson ’13)

Let Λ ⊆ Zn be a sublattice. Then,

µn(S1,Λ) = diam(LG+
n /Λ) + n.

Hence, µn(Tn) = 1
n+1

µn(S1,Λn) = n
2

if and only if diam(LG+
n /Λn) =

(
n
2

)
.

Sketch for diam(LG+
n /Λn) ≤

(
n
2

)
:

vertices of LG+
n /Λn correspond to {0, 1, . . . , n}n−1

show that, for every w ∈ {0, 1, . . . , n}n−1, we have d(0 + Λn,w + Λn) ≤
(
n
2

)
edges in LG+

n /Λn have directions e1, . . . , en−1, and −1
we need to find a representation

w = r1e1 + . . .+ rn−1en−1 − rn1,

for some r1, . . . , rn ∈ Z such that
∑n

i=1(ri mod n + 1) ≤
(
n
2

)
averaging argument + elementary number theory
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Open Problems

Problem 1

Prove or disprove an exponential lower bound on the covering product. More precisely,
find some 0 < c < 1 such that

µ1(K) · . . . · µn(K) vol(K) ≥ cn,

for every convex body K in Rn.

Problem 2

Find a method to show that µi (Tn) = i
2
, for 1 ≤ i ≤ n.

Problem 3

Extend the approach of Marklof & Strömbergsson to the computation of µi (S1,Λ),
1 ≤ i ≤ n, for sublattices Λ ⊆ Zn via generalized diameters of quotient lattice graphs.
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Reboot..
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View-Obstructions and Billiard Ball Motions

View-Obstructions: (Cusick ’73)

Let view(s, α) = s + Rα, with s, α ∈ Rn, and let δ ≥ 0 (obstruction parameter).

The view from s in direction α is
δ-obstructed if

view(s, α) ∩
(
[ 1

2
− 1

2
δ, 1

2
+ 1

2
δ]n + Zn) 6= ∅. δs

α

Billiard Ball Motions: (Schoenberg ’76)

For s ∈ [0, 1]n and α ∈ Rn, let bbm(s, α) ⊆ [0, 1]n be the trajectory of the motion starting
with s + λα, λ ≥ 0, and which is reflected naturally in the boundary of the cube [0, 1]n.

The billiard ball motion starting at s in
direction α is δ-central if

bbm(s, α) ∩ [ 1
2
− 1

2
δ, 1

2
+ 1

2
δ]n 6= ∅.

s
α

δ

view(s, α) is δ-obstructed ⇐⇒ bbm(s, α) is δ-central
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Schoenberg’s Theorem

A direction vector α ∈ Rn is non-trivial if it is not parallel to a facet of [0, 1]n, or
equivalently, α ∈ (R \ {0})n.

Theorem (Schoenberg ’76)

Every non-trivial billiard ball motion bbm(s, α) in [0, 1]n is δ-central if and only if
δ ≥ (n − 1)/n.

Extremal example:

s =
1

n
(0, 1, . . . , n − 1)ᵀ

α = (1, . . . , 1)ᵀ
(0, 12)

1
2

If {α1, . . . , αn} is linearly independent over Q, then bbm(s, α) is dense in [0, 1]n.
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Rationally Uniform Directions

Definition

The rational dimension of α ∈ Rn is defined by dimQ(α) = dim(spanQ{α1, . . . , αn}).

Definition

A vector α ∈ Rn is called rationally uniform if every dimQ(α) coordinates of α are linearly
independent over Q.

Examples:

α = (1,
√

2, 1 +
√

2) has rational dimension dimQ(α) = 2 and is rationally uniform

α = (1, 2,
√

3,−
√

3) has rational dimension dimQ(α) = 2 but is not rationally
uniform

δ(k, n) = inf{δ ≥ 0 : every rationally uniform bbm(s, α) ⊆ [0, 1]n

with dimQ(α) ≥ n − k is δ-central}

For every n ∈ N, we have 0 = δ(0, n) ≤ δ(1, n) ≤ . . . ≤ δ(n − 1, n) = (n − 1)/n.
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Zonotopal Interpretation I

For α ∈ Rn define

Λα = {` ∈ Zn : αᵀ` = 0}, Vα = span(Λα) and d = dim(Vα) = n − dimQ(α).

the rows of a basis (b1, . . . , bd) ∈ Zn×d of Λα generate a lattice zonotope Zα ⊆ Rd

view(s, α) is δ-obstructed ⇐⇒ ((s ′ + Rα) + Zn) ∩ δ[0, 1]n 6= ∅
projecting [0, 1]n onto Vα gives a lattice zonotope with vertices in Zn|Vα

Example: α = (1, . . . , 1) ∈ Rn corresponds to Zα = [0, 1]n−1 + [0,−1] ⊆ Rn−1

Theorem (H. & Malikiosis ’16)

Let δ ≥ 0, let s, α ∈ Rn, and let d = n − dimQ(α). Then,

view(s, α) is δ-obstructed ⇐⇒ (δZα + s̄) ∩ Zd 6= ∅.
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Zonotopal Interpretation II

The covering radius of a convex body K ⊆ Rd is equivalently given by

µ(K) = min{µ ≥ 0 : (µK + t) ∩ Zd 6= ∅, ∀t ∈ Rd} = min{µ ≥ 0 : µK + Zd = Rd}.

→ view(s, α) is δ-obstructed, for every s ∈ Rn ⇐⇒ µ(Zα) ≤ δ

A zonotope Z =
∑m

i=1[0, zi ] ⊆ Rd is called cubical if any d of its generators are linearly
independent. Every facet of a cubical zonotope is a parallelepiped.

Lemma

α is rationally uniform ⇐⇒ Zα is a cubical lattice zonotope

Consequently,

δ(k, n) = inf{δ ≥ 0 : every rationally uniform view(s, α) ⊆ Rn

with dimQ(α) ≥ n − k is δ-obstructed}

= sup{µ(Z) : Z ⊆ Rd a cubical lattice zonotope with n generators, d ≤ k}.
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Asymptotic Upper Bound

Theorem (Flatness Theorem for Zonotopes; Banaszczyk ’96)

Let Z ⊆ Rd be a zonotope such that int(Z + t) ∩ Zd = ∅, for some t ∈ Rd . Then there
exists v ∈ Zd \ {0} and an absolute constant c > 0 such that

w(Z , v) := max
x∈Z

(xᵀv)−min
x∈Z

(xᵀv) ≤ c d log d .

If a cubical lattice zonotope Z ⊆ Rd has n generators, then w(Z , v) ≥ n − (d − 1), for
every v ∈ Zd \ {0}. Thus, µ(Z) ≤ c d log d

n−d+1
, and

Theorem (H. & Malikiosis ’16)

For every 1 ≤ k ≤ n, we have

1

n − k + 1
≤ δ(k, n) = sup

Z⊆Rd ,d≤k

µ(Z) ≤ c k log k

n − k + 1
.

Conjecture

For every cubical lattice zonotope Z ⊆ Rk with n generators holds µ(Z) ≤ k
n

.
(True for k ∈ {1, n − 1, n}.)
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Let Z ⊆ Rd be a zonotope such that int(Z + t) ∩ Zd = ∅, for some t ∈ Rd . Then there
exists v ∈ Zd \ {0} and an absolute constant c > 0 such that

w(Z , v) := max
x∈Z

(xᵀv)−min
x∈Z

(xᵀv) ≤ c d log d .

If a cubical lattice zonotope Z ⊆ Rd has n generators, then w(Z , v) ≥ n − (d − 1), for
every v ∈ Zd \ {0}. Thus, µ(Z) ≤ c d log d

n−d+1
, and

Theorem (H. & Malikiosis ’16)

For every 1 ≤ k ≤ n, we have

1

n − k + 1
≤ δ(k, n) = sup

Z⊆Rd ,d≤k

µ(Z) ≤ c k log k

n − k + 1
.

Conjecture

For every cubical lattice zonotope Z ⊆ Rk with n generators holds µ(Z) ≤ k
n

.
(True for k ∈ {1, n − 1, n}.)
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Open Problems

Problem 1

Find a zonotopal proof of Schoenberg’s Theorem, that is, µ(Z) ≤ n
n+1

, for every cubical
lattice zonotope Z ⊆ Rn with n + 1 generators.

Problem 2

Identify examples of cubical lattice zonotopes in Rk with n generators and µ(Z) = k
n

.

Problem 3

Is there a theory to relate the covering radius of lattice parallelepipeds to certain graph
parameters of quotient lattice graphs (analogous to Marklof & Strömbergsson for lattice
simplices)?
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Thank you very
much!
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