On the covering radius of lattice polytopes and its relation to view-obstructions and densities of lattice arrangements

Matthias Schymura (né Henze)

Freie Universität Berlin
based on joint work with

Bernardo González Merino
Technische Universität München

Romanos-Diogenes Malikiosis
Technische Universität Berlin

December 12, 2016

Einstein Workshop on Lattice Polytopes
Freie Universität Berlin

Lattices of Convex Bodies

Definition

For a convex body K in \mathbb{R}^{n} and a lattice $\Lambda=A \mathbb{Z}^{n}, A \in G L_{n}(\mathbb{R})$, we say that

$$
K+\Lambda=\bigcup_{z \in \Lambda}(K+z)
$$

is a lattice of translates of K.

Lattices of Convex Bodies

Definition

For a convex body K in \mathbb{R}^{n} and a lattice $\Lambda=A \mathbb{Z}^{n}, A \in G L_{n}(\mathbb{R})$, we say that

$$
K+\Lambda=\bigcup_{z \in \Lambda}(K+z)
$$

is a lattice of translates of K.

Lattices of Convex Bodies

Definition

For a convex body K in \mathbb{R}^{n} and a lattice $\Lambda=A \mathbb{Z}^{n}, A \in \mathrm{GL}_{n}(\mathbb{R})$, we say that

$$
K+\Lambda=\bigcup_{z \in \Lambda}(K+z)
$$

is a lattice of translates of K.

$+$

$$
\mathbb{Z}^{n}
$$

Lattices of Convex Bodies

Definition

For a convex body K in \mathbb{R}^{n} and a lattice $\Lambda=A \mathbb{Z}^{n}, A \in G L_{n}(\mathbb{R})$, we say that

$$
K+\Lambda=\bigcup_{z \in \Lambda}(K+z)
$$

is a lattice of translates of K.

Lattices of Convex Bodies

Definition

For a convex body K in \mathbb{R}^{n} and a lattice $\Lambda=A \mathbb{Z}^{n}, A \in G L_{n}(\mathbb{R})$, we say that

$$
K+\Lambda=\bigcup_{z \in \Lambda}(K+z)
$$

is a lattice of translates of K.

Definition

The lattice of translates $K+\Lambda$ is a lattice covering if $K+\Lambda=\mathbb{R}^{n}$.

Covering Radius

Definition

The covering radius of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu(K, \Lambda)=\min \left\{\mu>0: \mu K+\Lambda=\mathbb{R}^{n}\right\}
$$

We abbreviate $\mu(K)=\mu\left(K, \mathbb{Z}^{n}\right)$.

Covering Radius

Definition

The covering radius of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu(K, \Lambda)=\min \left\{\mu>0: \mu K+\Lambda=\mathbb{R}^{n}\right\}
$$

We abbreviate $\mu(K)=\mu\left(K, \mathbb{Z}^{n}\right)$.

Appearances in the literature:

- Coin Exchange Problem of Frobenius (Kannan '92)
- Transference Theorems, Diophantine Approximation (Kannan \& Lovász '88)
- Flatness Theorem (Khinchin '54; Lagarias, Lenstra \& Schnorr '90; Banaszczyk '96)

Covering Radius

Definition

The covering radius of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu(K, \Lambda)=\min \left\{\mu>0: \mu K+\Lambda=\mathbb{R}^{n}\right\}
$$

We abbreviate $\mu(K)=\mu\left(K, \mathbb{Z}^{n}\right)$.

Appearances in the literature:

- Coin Exchange Problem of Frobenius (Kannan '92)
- Transference Theorems, Diophantine Approximation (Kannan \& Lovász '88)
- Flatness Theorem (Khinchin '54; Lagarias, Lenstra \& Schnorr '90; Banaszczyk '96)

Computationally difficult parameter:

- Kannan '93: Polynomial-time algorithm to compute $\mu(P, \Lambda)$ for rational polytopes P in fixed dimension; triple-exponential in the dimension.
- Haviv \& Regev '06: It is Π_{2}-hard to approximate $\mu\left(B_{p}^{n}, \Lambda\right)$ to within a factor $c_{p}>0$ for all sufficiently large $p \geq 1$.
- (Conjecture) Deciding $\mu\left(B_{2}^{n}, \Lambda\right) \leq \mu$ is NP-hard. (Guruswami et al. '05)

Covering minima

Definition (Kannan \& Lovász '88; G. Fejes Tóth '76)

The ith covering minimum of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as
$\mu_{i}(K, \Lambda)=\min \{\mu>0: \mu K+\Lambda$ intersects every $(n-i)$-dim. affine subspace $\}$.
We abbreviate $\mu_{i}(K)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$.

Covering minima

Definition (Kannan \& Lovász '88; G. Fejes Tóth '76)

The ith covering minimum of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu_{i}(K, \Lambda)=\min \{\mu>0: \mu K+\Lambda \text { intersects every }(n-i) \text {-dim. affine subspace }\} .
$$

We abbreviate $\mu_{i}(K)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$.

Covering minima

Definition (Kannan \& Lovász '88; G. Fejes Tóth '76)

The ith covering minimum of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu_{i}(K, \Lambda)=\min \{\mu>0: \mu K+\Lambda \text { intersects every }(n-i) \text {-dim. affine subspace }\} .
$$

We abbreviate $\mu_{i}(K)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$.

Covering minima

Definition (Kannan \& Lovász '88; G. Fejes Tóth '76)

The ith covering minimum of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu_{i}(K, \Lambda)=\min \{\mu>0: \mu K+\Lambda \text { intersects every }(n-i) \text {-dim. affine subspace }\} .
$$

We abbreviate $\mu_{i}(K)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$.

Covering minima

Definition (Kannan \& Lovász '88; G. Fejes Tóth '76)

The ith covering minimum of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu_{i}(K, \Lambda)=\min \{\mu>0: \mu K+\Lambda \text { intersects every }(n-i) \text {-dim. affine subspace }\} .
$$

We abbreviate $\mu_{i}(K)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$.

Covering minima

Definition (Kannan \& Lovász '88; G. Fejes Tóth '76)

The ith covering minimum of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu_{i}(K, \Lambda)=\min \{\mu>0: \mu K+\Lambda \text { intersects every }(n-i) \text {-dim. affine subspace }\} .
$$

We abbreviate $\mu_{i}(K)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$.

- $\mu_{1}(K) \leq \mu_{2}(K) \leq \ldots \leq \mu_{n}(K)=\mu(K)$
- $\mu_{i}(U K)=\mu_{i}(K)$, for $1 \leq i \leq n$ and $U \in \mathrm{GL}_{n}(\mathbb{Z})$
- $\mu_{i}(r K)=\frac{1}{r} \mu_{i}(K)$, for $1 \leq i \leq n$ and $r>0$
- $\mu_{i}\left(A K, A \mathbb{Z}^{n}\right)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$, for $1 \leq i \leq n$ and $A \in G L_{n}(\mathbb{R})$

$$
\mu_{2}(K)=\frac{4}{3} \text { and } \mu_{1}(K)=1
$$

Covering minima

Definition (Kannan \& Lovász '88; G. Fejes Tóth '76)

The ith covering minimum of $K \subseteq \mathbb{R}^{n}$ with respect to a lattice Λ is defined as

$$
\mu_{i}(K, \Lambda)=\min \{\mu>0: \mu K+\Lambda \text { intersects every }(n-i) \text {-dim. affine subspace }\} .
$$

We abbreviate $\mu_{i}(K)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$.

- $\mu_{1}(K) \leq \mu_{2}(K) \leq \ldots \leq \mu_{n}(K)=\mu(K)$
- $\mu_{i}(U K)=\mu_{i}(K)$, for $1 \leq i \leq n$ and $U \in \mathrm{GL}_{n}(\mathbb{Z})$
- $\mu_{i}(r K)=\frac{1}{r} \mu_{i}(K)$, for $1 \leq i \leq n$ and $r>0$
- $\mu_{i}\left(A K, A \mathbb{Z}^{n}\right)=\mu_{i}\left(K, \mathbb{Z}^{n}\right)$, for $1 \leq i \leq n$ and $A \in G L_{n}(\mathbb{R})$

$\mu_{2}(K)=\frac{4}{3}$ and $\mu_{1}(K)=1$

Lemma (Kannan \& Lovász '88)

$$
\mu_{i}(K, \Lambda)=\max \{\mu(K|L, \Lambda| L): L \text { an i-dimensional subspace }\}
$$

Examples

- For $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$, we have

$$
\mu_{i}\left(C_{n}\right)=1 \text { for each } i=1, \ldots, n .
$$

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Examples

- For $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$, we have

$$
\mu_{i}\left(C_{n}\right)=1 \text { for each } i=1, \ldots, n .
$$

Examples

- For $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$, we have

$$
\mu_{i}\left(C_{n}\right)=1 \text { for each } i=1, \ldots, n .
$$

- For $S_{1}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\}$, we have

$$
\mu_{n}\left(S_{1}\right)=n .
$$

Examples

- For $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$, we have

$$
\mu_{i}\left(C_{n}\right)=1 \text { for each } i=1, \ldots, n .
$$

- For $S_{1}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\}$, we have

$$
\mu_{n}\left(S_{1}\right)=n .
$$

Examples

- For $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$, we have

$$
\mu_{i}\left(C_{n}\right)=1 \text { for each } i=1, \ldots, n .
$$

- For $S_{1}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\}$, we have

$$
\mu_{i}\left(S_{1}\right)=i \text { for each } i=1, \ldots, n .
$$

Examples

- For $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$, we have

$$
\mu_{i}\left(C_{n}\right)=1 \text { for each } i=1, \ldots, n .
$$

- For $S_{1}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\}$, we have

$$
\mu_{i}\left(S_{1}\right)=i \text { for each } i=1, \ldots, n .
$$

- For the Euclidean unit ball B_{2}^{n}, we have

$$
\mu_{i}\left(B_{2}^{n}\right)=\frac{\sqrt{i}}{2} \text { for each } i=1, \ldots, n .
$$

Examples

- For $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$, we have

$$
\mu_{i}\left(C_{n}\right)=1 \text { for each } i=1, \ldots, n .
$$

- For $S_{1}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\}$, we have

$$
\mu_{i}\left(S_{1}\right)=i \text { for each } i=1, \ldots, n .
$$

- For the Euclidean unit ball B_{2}^{n}, we have

$$
\mu_{i}\left(B_{2}^{n}\right)=\frac{\sqrt{i}}{2} \text { for each } i=1, \ldots, n .
$$

Proposition

Let $P \subseteq \mathbb{R}^{n}$ be a lattice polytope. Then

- $\mu_{i}(P) \leq i$, for every $i=1, \ldots, n$, and
- if P is a lattice zonotope, then $\mu_{i}(P) \leq 1$, for every $i=1, \ldots, n$.

What's coming?

We discuss two problems in which the computation / estimation of covering radii of lattice polytopes plays a crucial role:

(1)

Towards a Covering Analog of Minkowski's 2nd Theorem
Rationally Constrained View-Obstruction Problem

Covering analog of Minkowski's 2nd Theorem

Theorem (Minkowski 1896)

For every convex body K in \mathbb{R}^{n} with $K=-K$, we have

$$
\frac{2^{n}}{n!} \leq \lambda_{1}(K) \cdot \ldots \cdot \lambda_{n}(K) \operatorname{vol}(K) \leq 2^{n}
$$

where $\lambda_{i}(K)=\min \left\{\lambda>0: \operatorname{dim}\left(\lambda K \cap \mathbb{Z}^{n}\right) \geq i\right\}$ is the ith successive minimum of K.

Covering analog of Minkowski's 2nd Theorem

Theorem (Minkowski 1896)

For every convex body K in \mathbb{R}^{n} with $K=-K$, we have

$$
\frac{2^{n}}{n!} \leq \lambda_{1}(K) \cdot \ldots \cdot \lambda_{n}(K) \operatorname{vol}(K) \leq 2^{n}
$$

where $\lambda_{i}(K)=\min \left\{\lambda>0: \operatorname{dim}\left(\lambda K \cap \mathbb{Z}^{n}\right) \geq i\right\}$ is the ith successive minimum of K.
Problem: Find best possible lower bound on $\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K)$ vol (K), for K in \mathbb{R}^{n}.

Covering analog of Minkowski's 2nd Theorem

Theorem (Minkowski 1896)

For every convex body K in \mathbb{R}^{n} with $K=-K$, we have

$$
\frac{2^{n}}{n!} \leq \lambda_{1}(K) \cdot \ldots \cdot \lambda_{n}(K) \operatorname{vol}(K) \leq 2^{n}
$$

where $\lambda_{i}(K)=\min \left\{\lambda>0: \operatorname{dim}\left(\lambda K \cap \mathbb{Z}^{n}\right) \geq i\right\}$ is the ith successive minimum of K.
Problem: Find best possible lower bound on $\mu_{1}(K) \cdot \ldots \mu_{n}(K)$ vol (K), for K in \mathbb{R}^{n}.

Theorem (Schnell '95)

For every planar convex body K, we have $\mu_{1}(K) \mu_{2}(K) \operatorname{vol}(K) \geq \frac{3}{4}$.

Covering analog of Minkowski's 2nd Theorem

Theorem (Minkowski 1896)

For every convex body K in \mathbb{R}^{n} with $K=-K$, we have

$$
\frac{2^{n}}{n!} \leq \lambda_{1}(K) \cdot \ldots \cdot \lambda_{n}(K) \operatorname{vol}(K) \leq 2^{n}
$$

where $\lambda_{i}(K)=\min \left\{\lambda>0: \operatorname{dim}\left(\lambda K \cap \mathbb{Z}^{n}\right) \geq i\right\}$ is the ith successive minimum of K.
Problem: Find best possible lower bound on $\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K)$ vol (K), for K in \mathbb{R}^{n}.

Theorem (Schnell '95)

For every planar convex body K, we have $\mu_{1}(K) \mu_{2}(K) \operatorname{vol}(K) \geq \frac{3}{4}$.

Equality holds if and only if K is lattice-equivalent to one of the following:

hexagon

parallelogram

trapezoid

triangle

pentagon

Covering analog of Minkowski's 2nd Theorem

Theorem (Minkowski 1896)

For every convex body K in \mathbb{R}^{n} with $K=-K$, we have

$$
\frac{2^{n}}{n!} \leq \lambda_{1}(K) \cdot \ldots \cdot \lambda_{n}(K) \operatorname{vol}(K) \leq 2^{n}
$$

where $\lambda_{i}(K)=\min \left\{\lambda>0: \operatorname{dim}\left(\lambda K \cap \mathbb{Z}^{n}\right) \geq i\right\}$ is the ith successive minimum of K.
Problem: Find best possible lower bound on $\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K)$ vol (K), for K in \mathbb{R}^{n}.

Theorem (Schnell '95)

For every planar convex body K, we have $\mu_{1}(K) \mu_{2}(K) \operatorname{vol}(K) \geq \frac{3}{4}$.

Equality holds if and only if K is lattice-equivalent to one of the following:

hexagon

parallelogram

trapezoid

triangle

pentagon
\rightarrow Analogous to lattice tiles, that is, K such that $K+\mathbb{Z}^{n}$ is a covering and a packing.

Covering analog of Minkowski's 2nd Theorem

Theorem (González Merino \& H. '16)

i) For every convex body K in \mathbb{R}^{n}, we have

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq \frac{1}{n!}
$$

ii) For every convex body K in \mathbb{R}^{n} that is symmetric with respect to every coordinate hyperplane, we have

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq 1
$$

Equality holds for example for the cube $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$.

Covering analog of Minkowski's 2nd Theorem

Theorem (González Merino \& H. '16)

i) For every convex body K in \mathbb{R}^{n}, we have

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq \frac{1}{n!}
$$

ii) For every convex body K in \mathbb{R}^{n} that is symmetric with respect to every coordinate hyperplane, we have

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq 1
$$

Equality holds for example for the cube $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$.

Conjecture

For every convex body K in \mathbb{R}^{n}, we have

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq \frac{n+1}{2^{n}}
$$

Covering analog of Minkowski's 2nd Theorem

Theorem (González Merino \& H. '16)

i) For every convex body K in \mathbb{R}^{n}, we have

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq \frac{1}{n!}
$$

ii) For every convex body K in \mathbb{R}^{n} that is symmetric with respect to every coordinate hyperplane, we have

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq 1
$$

Equality holds for example for the cube $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$.

Conjecture

For every convex body K in \mathbb{R}^{n}, we have

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq \frac{n+1}{2^{n}}
$$

\rightarrow extremal example should be $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$

Covering Minima of T_{n}

Proposition

Let $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$. Then
i) $\mu_{i}\left(T_{n}\right) \leq i$, for each $1 \leq i \leq n$,

Covering Minima of T_{n}

Proposition

Let $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$. Then
i) $\mu_{i}\left(T_{n}\right) \leq i$, for each $1 \leq i \leq n$,
ii) $\mu_{n}\left(T_{n}\right)=\frac{n}{2}$,

Covering Minima of T_{n}

Proposition

Let $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$. Then
i) $\mu_{i}\left(T_{n}\right) \leq i$, for each $1 \leq i \leq n$,
ii) $\mu_{n}\left(T_{n}\right)=\frac{n}{2}$,
iii) $\mu_{1}\left(T_{n}\right) \cdot \ldots \cdot \mu_{n}\left(T_{n}\right) \operatorname{vol}\left(T_{n}\right) \leq \frac{n+1}{(2 / \sqrt{e})^{n}} \approx \frac{n+1}{1.213^{n}}$, and

Covering Minima of T_{n}

Proposition

Let $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$. Then
i) $\mu_{i}\left(T_{n}\right) \leq i$, for each $1 \leq i \leq n$,
ii) $\mu_{n}\left(T_{n}\right)=\frac{n}{2}$,
iii) $\mu_{1}\left(T_{n}\right) \cdot \ldots \cdot \mu_{n}\left(T_{n}\right) \operatorname{vol}\left(T_{n}\right) \leq \frac{n+1}{(2 / \sqrt{e})^{n}} \approx \frac{n+1}{1.213^{n}}$, and
iv) (Conjecture) $\mu_{i}\left(T_{n}\right)=\frac{i}{2}$, for each $1 \leq i \leq n$.

Covering Minima of T_{n}

Proposition

Let $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$. Then
i) $\mu_{i}\left(T_{n}\right) \leq i$, for each $1 \leq i \leq n$,
ii) $\mu_{n}\left(T_{n}\right)=\frac{n}{2}$,
iii) $\mu_{1}\left(T_{n}\right) \cdot \ldots \cdot \mu_{n}\left(T_{n}\right) \operatorname{vol}\left(T_{n}\right) \leq \frac{n+1}{(2 / \sqrt{e})^{n}} \approx \frac{n+1}{1.213^{n}}$, and
iv) (Conjecture) $\mu_{i}\left(T_{n}\right)=\frac{i}{2}$, for each $1 \leq i \leq n$.

Let $A=\left(a_{i j}\right) \in \mathbb{Z}^{n \times n}$ be with $a_{i j}=\left\{\begin{array}{ll}n & , \text { if } i=j \\ -1 & , \text { otherwise, }\end{array}\right.$ and $S_{1}=\left\{x \in \mathbb{R}_{\geq 0}^{n}: \mathbf{1}^{\top} x \leq 1\right\}$.

Covering Minima of T_{n}

Proposition

Let $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$. Then
i) $\mu_{i}\left(T_{n}\right) \leq i$, for each $1 \leq i \leq n$,
ii) $\mu_{n}\left(T_{n}\right)=\frac{n}{2}$,
iii) $\mu_{1}\left(T_{n}\right) \cdot \ldots \cdot \mu_{n}\left(T_{n}\right) \operatorname{vol}\left(T_{n}\right) \leq \frac{n+1}{(2 / \sqrt{e})^{n}} \approx \frac{n+1}{1.213^{n}}$, and
iv) (Conjecture) $\mu_{i}\left(T_{n}\right)=\frac{i}{2}$, for each $1 \leq i \leq n$.

Let $A=\left(a_{i j}\right) \in \mathbb{Z}^{n \times n}$ be with $a_{i j}=\left\{\begin{array}{ll}n & , \text { if } i=j \\ -1 & , \text { otherwise, }\end{array}\right.$ and $S_{1}=\left\{x \in \mathbb{R}_{\geq 0}^{n}: \mathbf{1}^{\top} x \leq 1\right\}$.

- $A T_{n}=(n+1) S_{1}-\mathbf{1}$

Covering Minima of T_{n}

Proposition

Let $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$. Then
i) $\mu_{i}\left(T_{n}\right) \leq i$, for each $1 \leq i \leq n$,
ii) $\mu_{n}\left(T_{n}\right)=\frac{n}{2}$,
iii) $\mu_{1}\left(T_{n}\right) \cdot \ldots \cdot \mu_{n}\left(T_{n}\right) \operatorname{vol}\left(T_{n}\right) \leq \frac{n+1}{(2 / \sqrt{e})^{n}} \approx \frac{n+1}{1.213^{n}}$, and
iv) (Conjecture) $\mu_{i}\left(T_{n}\right)=\frac{i}{2}$, for each $1 \leq i \leq n$.

Let $A=\left(a_{i j}\right) \in \mathbb{Z}^{n \times n}$ be with $a_{i j}=\left\{\begin{array}{ll}n & , \text { if } i=j \\ -1 & , \text { otherwise, }\end{array}\right.$ and $S_{1}=\left\{x \in \mathbb{R}_{\geq 0}^{n}: \mathbf{1}^{\top} x \leq 1\right\}$.

- $A T_{n}=(n+1) S_{1}-\mathbf{1}$
- $\Lambda_{n}=A \mathbb{Z}^{n}=\bigcup_{i=0}^{n}\left(i \cdot \mathbf{1}+(n+1) \mathbb{Z}^{n}\right) \subseteq \mathbb{Z}^{n}$

Covering Minima of T_{n}

Proposition

Let $T_{n}=\operatorname{conv}\left\{e_{1}, \ldots, e_{n},-\mathbf{1}\right\}$. Then
i) $\mu_{i}\left(T_{n}\right) \leq i$, for each $1 \leq i \leq n$,
ii) $\mu_{n}\left(T_{n}\right)=\frac{n}{2}$,
iii) $\mu_{1}\left(T_{n}\right) \cdot \ldots \cdot \mu_{n}\left(T_{n}\right) \operatorname{vol}\left(T_{n}\right) \leq \frac{n+1}{(2 / \sqrt{e})^{n}} \approx \frac{n+1}{1.213^{n}}$, and
iv) (Conjecture) $\mu_{i}\left(T_{n}\right)=\frac{i}{2}$, for each $1 \leq i \leq n$.

Let $A=\left(a_{i j}\right) \in \mathbb{Z}^{n \times n}$ be with $a_{i j}=\left\{\begin{array}{ll}n & , \text { if } i=j \\ -1 & , \text { otherwise, }\end{array}\right.$ and $S_{1}=\left\{x \in \mathbb{R}_{\geq 0}^{n}: \mathbf{1}^{\top} x \leq 1\right\}$.

- $A T_{n}=(n+1) S_{1}-\mathbf{1}$
- $\Lambda_{n}=A \mathbb{Z}^{n}=\bigcup_{i=0}^{n}\left(i \cdot \mathbf{1}+(n+1) \mathbb{Z}^{n}\right) \subseteq \mathbb{Z}^{n}$
- $\mu_{n}\left(T_{n}\right)=\mu_{n}\left(A T_{n}, A \mathbb{Z}^{n}\right)=\frac{1}{n+1} \mu_{n}\left(S_{1}, \Lambda_{n}\right)$

Diameters of Quotient Lattice Graphs

standard lattice graph LG_{n}^{+}

- vertex set \mathbb{Z}^{n}
- directed edge $\left(x, x+e_{i}\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$

Diameters of Quotient Lattice Graphs

standard lattice graph LG_{n}^{+}

- vertex set \mathbb{Z}^{n}
- directed edge $\left(x, x+e_{i}\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$ quotient lattice graph $\mathrm{LG}_{n}^{+} / \Lambda$ of a sublattice $\Lambda \subseteq \mathbb{Z}^{n}$
- vertex set \mathbb{Z}^{n} / Λ
- directed edge $\left(x+\Lambda, x+e_{i}+\Lambda\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$

Diameters of Quotient Lattice Graphs

standard lattice graph LG_{n}^{+}

- vertex set \mathbb{Z}^{n}
- directed edge $\left(x, x+e_{i}\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$ quotient lattice graph $\mathrm{LG}_{n}^{+} / \Lambda$ of a sublattice $\Lambda \subseteq \mathbb{Z}^{n}$
- vertex set \mathbb{Z}^{n} / Λ
- directed edge $\left(x+\Lambda, x+e_{i}+\Lambda\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$

Diameters of Quotient Lattice Graphs

standard lattice graph LG_{n}^{+}

- vertex set \mathbb{Z}^{n}
- directed edge $\left(x, x+e_{i}\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$ quotient lattice graph $\mathrm{LG}_{n}^{+} / \Lambda$ of a sublattice $\Lambda \subseteq \mathbb{Z}^{n}$
- vertex set \mathbb{Z}^{n} / Λ
- directed edge $\left(x+\Lambda, x+e_{i}+\Lambda\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$
distance in $\mathrm{LG}_{n}^{+} / \Lambda$: For $x, y \in \mathbb{Z}^{n}$, let

$$
\mathrm{d}(x+\Lambda, y+\Lambda)=\min _{z \in(y-x+\Lambda) \cap \mathbb{Z}_{\geq 0}^{n}} \mathbf{1}^{\top} z
$$

Diameters of Quotient Lattice Graphs

standard lattice graph LG_{n}^{+}

- vertex set \mathbb{Z}^{n}
- directed edge $\left(x, x+e_{i}\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$ quotient lattice graph $\mathrm{LG}_{n}^{+} / \Lambda$ of a sublattice $\Lambda \subseteq \mathbb{Z}^{n}$
- vertex set \mathbb{Z}^{n} / Λ
- directed edge $\left(x+\Lambda, x+e_{i}+\Lambda\right)$, for every $x \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$
distance in $\mathrm{LG}_{n}^{+} / \Lambda$: For $x, y \in \mathbb{Z}^{n}$, let

$$
\mathrm{d}(x+\Lambda, y+\Lambda)=\min _{z \in(y-x+\Lambda) \cap \mathbb{Z}_{\geq 0}^{n}} \mathbf{1}^{\top} z
$$

diameter of $\mathrm{LG}_{n}^{+} / \Lambda$ is

$$
\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)=\max _{x, y \in \mathbb{Z}^{n}} \mathrm{~d}(x+\Lambda, y+\Lambda)
$$

Diameters of Quotient Lattice Graphs

Theorem (Marklof \& Strömbergsson '13)
Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice. Then,

$$
\mu_{n}\left(S_{1}, \Lambda\right)=\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)+n .
$$

Diameters of Quotient Lattice Graphs

Theorem (Marklof \& Strömbergsson '13)
Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice. Then,

$$
\mu_{n}\left(S_{1}, \Lambda\right)=\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)+n .
$$

Hence, $\mu_{n}\left(T_{n}\right)=\frac{1}{n+1} \mu_{n}\left(S_{1}, \Lambda_{n}\right)=\frac{n}{2}$ if and only if diam $\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right)=\binom{n}{2}$.

Diameters of Quotient Lattice Graphs

Theorem (Marklof \& Strömbergsson '13)
Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice. Then,

$$
\mu_{n}\left(S_{1}, \Lambda\right)=\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)+n .
$$

Hence, $\mu_{n}\left(T_{n}\right)=\frac{1}{n+1} \mu_{n}\left(S_{1}, \Lambda_{n}\right)=\frac{n}{2}$ if and only if diam $\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right)=\binom{n}{2}$.
Sketch for $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right) \leq\binom{ n}{2}$:

Diameters of Quotient Lattice Graphs

Theorem (Marklof \& Strömbergsson '13)
Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice. Then,

$$
\mu_{n}\left(S_{1}, \Lambda\right)=\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)+n .
$$

Hence, $\mu_{n}\left(T_{n}\right)=\frac{1}{n+1} \mu_{n}\left(S_{1}, \Lambda_{n}\right)=\frac{n}{2}$ if and only if diam $\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right)=\binom{n}{2}$.
Sketch for $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right) \leq\binom{ n}{2}$:

- vertices of $\mathrm{LG}_{n}^{+} / \Lambda_{n}$ correspond to $\{0,1, \ldots, n\}^{n-1}$

Diameters of Quotient Lattice Graphs

Theorem (Marklof \& Strömbergsson '13)

Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice. Then,

$$
\mu_{n}\left(S_{1}, \Lambda\right)=\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)+n
$$

Hence, $\mu_{n}\left(T_{n}\right)=\frac{1}{n+1} \mu_{n}\left(S_{1}, \Lambda_{n}\right)=\frac{n}{2}$ if and only if $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right)=\binom{n}{2}$.
Sketch for $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right) \leq\binom{ n}{2}$:

- vertices of $\mathrm{LG}_{n}^{+} / \Lambda_{n}$ correspond to $\{0,1, \ldots, n\}^{n-1}$
- show that, for every $w \in\{0,1, \ldots, n\}^{n-1}$, we have $\mathrm{d}\left(0+\Lambda_{n}, w+\Lambda_{n}\right) \leq\binom{ n}{2}$

Diameters of Quotient Lattice Graphs

Theorem (Marklof \& Strömbergsson '13)

Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice. Then,

$$
\mu_{n}\left(S_{1}, \Lambda\right)=\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)+n
$$

Hence, $\mu_{n}\left(T_{n}\right)=\frac{1}{n+1} \mu_{n}\left(S_{1}, \Lambda_{n}\right)=\frac{n}{2}$ if and only if $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right)=\binom{n}{2}$.
Sketch for $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right) \leq\binom{ n}{2}$:

- vertices of $\mathrm{LG}_{n}^{+} / \Lambda_{n}$ correspond to $\{0,1, \ldots, n\}^{n-1}$
- show that, for every $w \in\{0,1, \ldots, n\}^{n-1}$, we have $\mathrm{d}\left(0+\Lambda_{n}, w+\Lambda_{n}\right) \leq\binom{ n}{2}$
- edges in $\mathrm{LG}_{n}^{+} / \Lambda_{n}$ have directions e_{1}, \ldots, e_{n-1}, and $-\mathbf{1}$

Diameters of Quotient Lattice Graphs

Theorem (Marklof \& Strömbergsson '13)

Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice. Then,

$$
\mu_{n}\left(S_{1}, \Lambda\right)=\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)+n
$$

Hence, $\mu_{n}\left(T_{n}\right)=\frac{1}{n+1} \mu_{n}\left(S_{1}, \Lambda_{n}\right)=\frac{n}{2}$ if and only if $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right)=\binom{n}{2}$.
Sketch for $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right) \leq\binom{ n}{2}$:

- vertices of $\mathrm{LG}_{n}^{+} / \Lambda_{n}$ correspond to $\{0,1, \ldots, n\}^{n-1}$
- show that, for every $w \in\{0,1, \ldots, n\}^{n-1}$, we have $\mathrm{d}\left(0+\Lambda_{n}, w+\Lambda_{n}\right) \leq\binom{ n}{2}$
- edges in $\mathrm{LG}_{n}^{+} / \Lambda_{n}$ have directions e_{1}, \ldots, e_{n-1}, and $-\mathbf{1}$
- we need to find a representation

$$
w=r_{1} e_{1}+\ldots+r_{n-1} e_{n-1}-r_{n} \mathbf{1}
$$

for some $r_{1}, \ldots, r_{n} \in \mathbb{Z}$ such that $\sum_{i=1}^{n}\left(r_{i} \bmod n+1\right) \leq\binom{ n}{2}$

Diameters of Quotient Lattice Graphs

Theorem (Marklof \& Strömbergsson '13)

Let $\Lambda \subseteq \mathbb{Z}^{n}$ be a sublattice. Then,

$$
\mu_{n}\left(S_{1}, \Lambda\right)=\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda\right)+n
$$

Hence, $\mu_{n}\left(T_{n}\right)=\frac{1}{n+1} \mu_{n}\left(S_{1}, \Lambda_{n}\right)=\frac{n}{2}$ if and only if $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right)=\binom{n}{2}$.
Sketch for $\operatorname{diam}\left(\mathrm{LG}_{n}^{+} / \Lambda_{n}\right) \leq\binom{ n}{2}$:

- vertices of $\mathrm{LG}_{n}^{+} / \Lambda_{n}$ correspond to $\{0,1, \ldots, n\}^{n-1}$
- show that, for every $w \in\{0,1, \ldots, n\}^{n-1}$, we have $\mathrm{d}\left(0+\Lambda_{n}, w+\Lambda_{n}\right) \leq\binom{ n}{2}$
- edges in $\mathrm{LG}_{n}^{+} / \Lambda_{n}$ have directions e_{1}, \ldots, e_{n-1}, and $-\mathbf{1}$
- we need to find a representation

$$
w=r_{1} e_{1}+\ldots+r_{n-1} e_{n-1}-r_{n} \mathbf{1}
$$

for some $r_{1}, \ldots, r_{n} \in \mathbb{Z}$ such that $\sum_{i=1}^{n}\left(r_{i} \bmod n+1\right) \leq\binom{ n}{2}$

- averaging argument + elementary number theory

Open Problems

Problem 1

Prove or disprove an exponential lower bound on the covering product. More precisely, find some $0<c<1$ such that

$$
\mu_{1}(K) \cdot \ldots \cdot \mu_{n}(K) \operatorname{vol}(K) \geq c^{n}
$$

for every convex body K in \mathbb{R}^{n}.

Problem 2

Find a method to show that $\mu_{i}\left(T_{n}\right)=\frac{i}{2}$, for $1 \leq i \leq n$.

Problem 3

Extend the approach of Marklof \& Strömbergsson to the computation of $\mu_{i}\left(S_{1}, \Lambda\right)$, $1 \leq i \leq n$, for sublattices $\Lambda \subseteq \mathbb{Z}^{n}$ via generalized diameters of quotient lattice graphs.

Reboot..

View-Obstructions and Billiard Ball Motions

View-Obstructions: (Cusick '73)
Let $\operatorname{view}(s, \alpha)=s+\mathbb{R} \alpha$, with $s, \alpha \in \mathbb{R}^{n}$, and let $\delta \geq 0$ (obstruction parameter).

View-Obstructions and Billiard Ball Motions

View-Obstructions: (Cusick '73)
Let $\operatorname{view}(s, \alpha)=s+\mathbb{R} \alpha$, with $s, \alpha \in \mathbb{R}^{n}$, and let $\delta \geq 0$ (obstruction parameter).

The view from s in direction α is δ-obstructed if

$$
\operatorname{view}(s, \alpha) \cap\left(\left[\frac{1}{2}-\frac{1}{2} \delta, \frac{1}{2}+\frac{1}{2} \delta\right]^{n}+\mathbb{Z}^{n}\right) \neq \emptyset .
$$

View-Obstructions and Billiard Ball Motions

View-Obstructions: (Cusick '73)
Let $\operatorname{view}(s, \alpha)=s+\mathbb{R} \alpha$, with $s, \alpha \in \mathbb{R}^{n}$, and let $\delta \geq 0$ (obstruction parameter).

The view from s in direction α is δ-obstructed if

$$
\operatorname{view}(s, \alpha) \cap\left(\left[\frac{1}{2}-\frac{1}{2} \delta, \frac{1}{2}+\frac{1}{2} \delta\right]^{n}+\mathbb{Z}^{n}\right) \neq \emptyset
$$

Billiard Ball Motions: (Schoenberg '76)
For $s \in[0,1]^{n}$ and $\alpha \in \mathbb{R}^{n}$, let $\operatorname{bbm}(s, \alpha) \subseteq[0,1]^{n}$ be the trajectory of the motion starting with $s+\lambda \alpha, \lambda \geq 0$, and which is reflected naturally in the boundary of the cube $[0,1]^{n}$.

View-Obstructions and Billiard Ball Motions

View-Obstructions: (Cusick '73)
Let $\operatorname{view}(s, \alpha)=s+\mathbb{R} \alpha$, with $s, \alpha \in \mathbb{R}^{n}$, and let $\delta \geq 0$ (obstruction parameter).

The view from s in direction α is δ-obstructed if

$$
\operatorname{view}(s, \alpha) \cap\left(\left[\frac{1}{2}-\frac{1}{2} \delta, \frac{1}{2}+\frac{1}{2} \delta\right]^{n}+\mathbb{Z}^{n}\right) \neq \emptyset
$$

Billiard Ball Motions: (Schoenberg '76)
For $s \in[0,1]^{n}$ and $\alpha \in \mathbb{R}^{n}$, let $\operatorname{bbm}(s, \alpha) \subseteq[0,1]^{n}$ be the trajectory of the motion starting with $s+\lambda \alpha, \lambda \geq 0$, and which is reflected naturally in the boundary of the cube $[0,1]^{n}$.

The billiard ball motion starting at s in direction α is δ-central if

$$
\operatorname{bbm}(s, \alpha) \cap\left[\frac{1}{2}-\frac{1}{2} \delta, \frac{1}{2}+\frac{1}{2} \delta\right]^{n} \neq \emptyset
$$

View-Obstructions and Billiard Ball Motions

View-Obstructions: (Cusick '73)
Let $\operatorname{view}(s, \alpha)=s+\mathbb{R} \alpha$, with $s, \alpha \in \mathbb{R}^{n}$, and let $\delta \geq 0$ (obstruction parameter).

The view from s in direction α is δ-obstructed if

$$
\operatorname{view}(s, \alpha) \cap\left(\left[\frac{1}{2}-\frac{1}{2} \delta, \frac{1}{2}+\frac{1}{2} \delta\right]^{n}+\mathbb{Z}^{n}\right) \neq \emptyset
$$

Billiard Ball Motions: (Schoenberg '76)
For $s \in[0,1]^{n}$ and $\alpha \in \mathbb{R}^{n}$, let $\operatorname{bbm}(s, \alpha) \subseteq[0,1]^{n}$ be the trajectory of the motion starting with $s+\lambda \alpha, \lambda \geq 0$, and which is reflected naturally in the boundary of the cube $[0,1]^{n}$.

The billiard ball motion starting at s in direction α is δ-central if

$$
\operatorname{bbm}(s, \alpha) \cap\left[\frac{1}{2}-\frac{1}{2} \delta, \frac{1}{2}+\frac{1}{2} \delta\right]^{n} \neq \emptyset .
$$

- $\operatorname{view}(s, \alpha)$ is δ-obstructed $\Longleftrightarrow \operatorname{bbm}(s, \alpha)$ is δ-central

Schoenberg's Theorem

A direction vector $\alpha \in \mathbb{R}^{n}$ is non-trivial if it is not parallel to a facet of $[0,1]^{n}$, or equivalently, $\alpha \in(\mathbb{R} \backslash\{0\})^{n}$.

Schoenberg's Theorem

A direction vector $\alpha \in \mathbb{R}^{n}$ is non-trivial if it is not parallel to a facet of $[0,1]^{n}$, or equivalently, $\alpha \in(\mathbb{R} \backslash\{0\})^{n}$.

Theorem (Schoenberg '76)

Every non-trivial billiard ball motion bbm (s, α) in $[0,1]^{n}$ is δ-central if and only if $\delta \geq(n-1) / n$.

Schoenberg's Theorem

A direction vector $\alpha \in \mathbb{R}^{n}$ is non-trivial if it is not parallel to a facet of $[0,1]^{n}$, or equivalently, $\alpha \in(\mathbb{R} \backslash\{0\})^{n}$.

Theorem (Schoenberg '76)

Every non-trivial billiard ball motion bbm (s, α) in $[0,1]^{n}$ is δ-central if and only if $\delta \geq(n-1) / n$.

Extremal example:

$$
\begin{aligned}
s & =\frac{1}{n}(0,1, \ldots, n-1)^{\top} \\
\alpha & =(1, \ldots, 1)^{\top}
\end{aligned}
$$

Schoenberg's Theorem

A direction vector $\alpha \in \mathbb{R}^{n}$ is non-trivial if it is not parallel to a facet of $[0,1]^{n}$, or equivalently, $\alpha \in(\mathbb{R} \backslash\{0\})^{n}$.

Theorem (Schoenberg '76)

Every non-trivial billiard ball motion bbm (s, α) in $[0,1]^{n}$ is δ-central if and only if $\delta \geq(n-1) / n$.

Extremal example:

$$
\begin{aligned}
s & =\frac{1}{n}(0,1, \ldots, n-1)^{\top} \\
\alpha & =(1, \ldots, 1)^{\top}
\end{aligned}
$$

If $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is linearly independent over \mathbb{Q}, then $\operatorname{bbm}(s, \alpha)$ is dense in $[0,1]^{n}$.

Rationally Uniform Directions

Definition

The rational dimension of $\alpha \in \mathbb{R}^{n}$ is defined by $\operatorname{dim}_{\mathbb{Q}}(\alpha)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$.

Rationally Uniform Directions

Definition

The rational dimension of $\alpha \in \mathbb{R}^{n}$ is defined by $\operatorname{dim}_{\mathbb{Q}}(\alpha)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$.

Definition

A vector $\alpha \in \mathbb{R}^{n}$ is called rationally uniform if every $\operatorname{dim}_{\mathbb{Q}}(\alpha)$ coordinates of α are linearly independent over \mathbb{Q}.

Rationally Uniform Directions

Definition

The rational dimension of $\alpha \in \mathbb{R}^{n}$ is defined by $\operatorname{dim}_{\mathbb{Q}}(\alpha)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$.

Definition

A vector $\alpha \in \mathbb{R}^{n}$ is called rationally uniform if every $\operatorname{dim}_{\mathbb{Q}}(\alpha)$ coordinates of α are linearly independent over \mathbb{Q}.

Examples:

- $\alpha=(1, \sqrt{2}, 1+\sqrt{2})$ has rational dimension $\operatorname{dim}_{\mathbb{Q}}(\alpha)=2$ and is rationally uniform

Rationally Uniform Directions

Definition

The rational dimension of $\alpha \in \mathbb{R}^{n}$ is defined by $\operatorname{dim}_{\mathbb{Q}}(\alpha)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$.

Definition

A vector $\alpha \in \mathbb{R}^{n}$ is called rationally uniform if every $\operatorname{dim}_{\mathbb{Q}}(\alpha)$ coordinates of α are linearly independent over \mathbb{Q}.

Examples:

- $\alpha=(1, \sqrt{2}, 1+\sqrt{2})$ has rational dimension $\operatorname{dim}_{\mathbb{Q}}(\alpha)=2$ and is rationally uniform
- $\alpha=(1,2, \sqrt{3},-\sqrt{3})$ has rational dimension $\operatorname{dim}_{\mathbb{Q}}(\alpha)=2$ but is not rationally uniform

Rationally Uniform Directions

Definition

The rational dimension of $\alpha \in \mathbb{R}^{n}$ is defined by $\operatorname{dim}_{\mathbb{Q}}(\alpha)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$.

Definition

A vector $\alpha \in \mathbb{R}^{n}$ is called rationally uniform if every $\operatorname{dim}_{\mathbb{Q}}(\alpha)$ coordinates of α are linearly independent over \mathbb{Q}.

Examples:

- $\alpha=(1, \sqrt{2}, 1+\sqrt{2})$ has rational dimension $\operatorname{dim}_{\mathbb{Q}}(\alpha)=2$ and is rationally uniform
- $\alpha=(1,2, \sqrt{3},-\sqrt{3})$ has rational dimension $\operatorname{dim}_{\mathbb{Q}}(\alpha)=2$ but is not rationally uniform

$$
\begin{aligned}
\delta(k, n)=\inf \{\delta \geq 0 & : \text { every rationally uniform } \operatorname{bbm}(s, \alpha) \subseteq[0,1]^{n} \\
& \text { with } \left.\operatorname{dim}_{\mathbb{Q}}(\alpha) \geq n-k \text { is } \delta \text {-central }\right\}
\end{aligned}
$$

Rationally Uniform Directions

Definition

The rational dimension of $\alpha \in \mathbb{R}^{n}$ is defined by $\operatorname{dim}_{\mathbb{Q}}(\alpha)=\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)$.

Definition

A vector $\alpha \in \mathbb{R}^{n}$ is called rationally uniform if every $\operatorname{dim}_{\mathbb{Q}}(\alpha)$ coordinates of α are linearly independent over \mathbb{Q}.

Examples:

- $\alpha=(1, \sqrt{2}, 1+\sqrt{2})$ has rational dimension $\operatorname{dim}_{\mathbb{Q}}(\alpha)=2$ and is rationally uniform
- $\alpha=(1,2, \sqrt{3},-\sqrt{3})$ has rational dimension $\operatorname{dim}_{\mathbb{Q}}(\alpha)=2$ but is not rationally uniform

$$
\begin{aligned}
\delta(k, n)=\inf \{\delta \geq 0 & : \text { every rationally uniform } \operatorname{bbm}(s, \alpha) \subseteq[0,1]^{n} \\
& \text { with } \left.\operatorname{dim}_{\mathbb{Q}}(\alpha) \geq n-k \text { is } \delta \text {-central }\right\}
\end{aligned}
$$

For every $n \in \mathbb{N}$, we have $0=\delta(0, n) \leq \delta(1, n) \leq \ldots \leq \delta(n-1, n)=(n-1) / n$.

Zonotopal Interpretation I

For $\alpha \in \mathbb{R}^{n}$ define

$$
\Lambda_{\alpha}=\left\{\ell \in \mathbb{Z}^{n}: \alpha^{\top} \ell=0\right\}, \quad V_{\alpha}=\operatorname{span}\left(\Lambda_{\alpha}\right) \quad \text { and } \quad d=\operatorname{dim}\left(V_{\alpha}\right)=n-\operatorname{dim}_{\mathbb{Q}}(\alpha)
$$

Zonotopal Interpretation I

For $\alpha \in \mathbb{R}^{n}$ define
$\Lambda_{\alpha}=\left\{\ell \in \mathbb{Z}^{n}: \alpha^{\top} \ell=0\right\}, \quad V_{\alpha}=\operatorname{span}\left(\Lambda_{\alpha}\right) \quad$ and $\quad d=\operatorname{dim}\left(V_{\alpha}\right)=n-\operatorname{dim}_{\mathbb{Q}}(\alpha)$.
the rows of a basis $\left(b_{1}, \ldots, b_{d}\right) \in \mathbb{Z}^{n \times d}$ of Λ_{α} generate a lattice zonotope $Z_{\alpha} \subseteq \mathbb{R}^{d}$

Zonotopal Interpretation I

For $\alpha \in \mathbb{R}^{n}$ define
$\Lambda_{\alpha}=\left\{\ell \in \mathbb{Z}^{n}: \alpha^{\top} \ell=0\right\}, \quad V_{\alpha}=\operatorname{span}\left(\Lambda_{\alpha}\right) \quad$ and $\quad d=\operatorname{dim}\left(V_{\alpha}\right)=n-\operatorname{dim}_{\mathbb{Q}}(\alpha)$.
the rows of a basis $\left(b_{1}, \ldots, b_{d}\right) \in \mathbb{Z}^{n \times d}$ of Λ_{α} generate a lattice zonotope $Z_{\alpha} \subseteq \mathbb{R}^{d}$

- $\operatorname{view}(s, \alpha)$ is δ-obstructed $\Longleftrightarrow\left(\left(s^{\prime}+\mathbb{R} \alpha\right)+\mathbb{Z}^{n}\right) \cap \delta[0,1]^{n} \neq \emptyset$

Zonotopal Interpretation I

For $\alpha \in \mathbb{R}^{n}$ define

$$
\Lambda_{\alpha}=\left\{\ell \in \mathbb{Z}^{n}: \alpha^{\top} \ell=0\right\}, \quad V_{\alpha}=\operatorname{span}\left(\Lambda_{\alpha}\right) \quad \text { and } \quad d=\operatorname{dim}\left(V_{\alpha}\right)=n-\operatorname{dim}_{\mathbb{Q}}(\alpha)
$$

the rows of a basis $\left(b_{1}, \ldots, b_{d}\right) \in \mathbb{Z}^{n \times d}$ of Λ_{α} generate a lattice zonotope $Z_{\alpha} \subseteq \mathbb{R}^{d}$

- $\operatorname{view}(s, \alpha)$ is δ-obstructed $\Longleftrightarrow\left(\left(s^{\prime}+\mathbb{R} \alpha\right)+\mathbb{Z}^{n}\right) \cap \delta[0,1]^{n} \neq \emptyset$
- projecting $[0,1]^{n}$ onto V_{α} gives a lattice zonotope with vertices in $\mathbb{Z}^{n} \mid V_{\alpha}$

Zonotopal Interpretation I

For $\alpha \in \mathbb{R}^{n}$ define

$$
\Lambda_{\alpha}=\left\{\ell \in \mathbb{Z}^{n}: \alpha^{\top} \ell=0\right\}, \quad V_{\alpha}=\operatorname{span}\left(\Lambda_{\alpha}\right) \quad \text { and } \quad d=\operatorname{dim}\left(V_{\alpha}\right)=n-\operatorname{dim}_{\mathbb{Q}}(\alpha)
$$

the rows of a basis $\left(b_{1}, \ldots, b_{d}\right) \in \mathbb{Z}^{n \times d}$ of Λ_{α} generate a lattice zonotope $Z_{\alpha} \subseteq \mathbb{R}^{d}$

- $\operatorname{view}(s, \alpha)$ is δ-obstructed $\Longleftrightarrow\left(\left(s^{\prime}+\mathbb{R} \alpha\right)+\mathbb{Z}^{n}\right) \cap \delta[0,1]^{n} \neq \emptyset$
- projecting $[0,1]^{n}$ onto V_{α} gives a lattice zonotope with vertices in $\mathbb{Z}^{n} \mid V_{\alpha}$

Example: $\alpha=(1, \ldots, 1) \in \mathbb{R}^{n}$ corresponds to $Z_{\alpha}=[0,1]^{n-1}+[0,-1] \subseteq \mathbb{R}^{n-1}$

Zonotopal Interpretation I

For $\alpha \in \mathbb{R}^{n}$ define

$$
\Lambda_{\alpha}=\left\{\ell \in \mathbb{Z}^{n}: \alpha^{\top} \ell=0\right\}, \quad V_{\alpha}=\operatorname{span}\left(\Lambda_{\alpha}\right) \quad \text { and } \quad d=\operatorname{dim}\left(V_{\alpha}\right)=n-\operatorname{dim}_{\mathbb{Q}}(\alpha)
$$

the rows of a basis $\left(b_{1}, \ldots, b_{d}\right) \in \mathbb{Z}^{n \times d}$ of Λ_{α} generate a lattice zonotope $Z_{\alpha} \subseteq \mathbb{R}^{d}$

- $\operatorname{view}(s, \alpha)$ is δ-obstructed $\Longleftrightarrow\left(\left(s^{\prime}+\mathbb{R} \alpha\right)+\mathbb{Z}^{n}\right) \cap \delta[0,1]^{n} \neq \emptyset$
- projecting $[0,1]^{n}$ onto V_{α} gives a lattice zonotope with vertices in $\mathbb{Z}^{n} \mid V_{\alpha}$

Example: $\alpha=(1, \ldots, 1) \in \mathbb{R}^{n}$ corresponds to $Z_{\alpha}=[0,1]^{n-1}+[0,-1] \subseteq \mathbb{R}^{n-1}$

Theorem (H. \& Malikiosis '16)

Let $\delta \geq 0$, let $s, \alpha \in \mathbb{R}^{n}$, and let $d=n-\operatorname{dim}_{\mathbb{Q}}(\alpha)$. Then,

$$
\operatorname{view}(s, \alpha) \text { is } \delta \text {-obstructed } \Longleftrightarrow\left(\delta Z_{\alpha}+\bar{s}\right) \cap \mathbb{Z}^{d} \neq \emptyset
$$

Zonotopal Interpretation II

The covering radius of a convex body $K \subseteq \mathbb{R}^{d}$ is equivalently given by

$$
\mu(K)=\min \left\{\mu \geq 0:(\mu K+t) \cap \mathbb{Z}^{d} \neq \emptyset, \forall t \in \mathbb{R}^{d}\right\}=\min \left\{\mu \geq 0: \mu K+\mathbb{Z}^{d}=\mathbb{R}^{d}\right\} .
$$

Zonotopal Interpretation II

The covering radius of a convex body $K \subseteq \mathbb{R}^{d}$ is equivalently given by

$$
\mu(K)=\min \left\{\mu \geq 0:(\mu K+t) \cap \mathbb{Z}^{d} \neq \emptyset, \forall t \in \mathbb{R}^{d}\right\}=\min \left\{\mu \geq 0: \mu K+\mathbb{Z}^{d}=\mathbb{R}^{d}\right\}
$$

$\rightarrow \operatorname{view}(s, \alpha)$ is δ-obstructed, for every $s \in \mathbb{R}^{n} \Longleftrightarrow \mu\left(Z_{\alpha}\right) \leq \delta$

Zonotopal Interpretation II

The covering radius of a convex body $K \subseteq \mathbb{R}^{d}$ is equivalently given by

$$
\mu(K)=\min \left\{\mu \geq 0:(\mu K+t) \cap \mathbb{Z}^{d} \neq \emptyset, \forall t \in \mathbb{R}^{d}\right\}=\min \left\{\mu \geq 0: \mu K+\mathbb{Z}^{d}=\mathbb{R}^{d}\right\}
$$

$\rightarrow \operatorname{view}(s, \alpha)$ is δ-obstructed, for every $s \in \mathbb{R}^{n} \Longleftrightarrow \mu\left(Z_{\alpha}\right) \leq \delta$
A zonotope $Z=\sum_{i=1}^{m}\left[0, z_{i}\right] \subseteq \mathbb{R}^{d}$ is called cubical if any d of its generators are linearly independent. Every facet of a cubical zonotope is a parallelepiped.

Zonotopal Interpretation II

The covering radius of a convex body $K \subseteq \mathbb{R}^{d}$ is equivalently given by

$$
\mu(K)=\min \left\{\mu \geq 0:(\mu K+t) \cap \mathbb{Z}^{d} \neq \emptyset, \forall t \in \mathbb{R}^{d}\right\}=\min \left\{\mu \geq 0: \mu K+\mathbb{Z}^{d}=\mathbb{R}^{d}\right\} .
$$

$\rightarrow \operatorname{view}(s, \alpha)$ is δ-obstructed, for every $s \in \mathbb{R}^{n} \Longleftrightarrow \mu\left(Z_{\alpha}\right) \leq \delta$
A zonotope $Z=\sum_{i=1}^{m}\left[0, z_{i}\right] \subseteq \mathbb{R}^{d}$ is called cubical if any d of its generators are linearly independent. Every facet of a cubical zonotope is a parallelepiped.

Lemma

$$
\alpha \text { is rationally uniform } \Longleftrightarrow Z_{\alpha} \text { is a cubical lattice zonotope }
$$

Zonotopal Interpretation II

The covering radius of a convex body $K \subseteq \mathbb{R}^{d}$ is equivalently given by

$$
\mu(K)=\min \left\{\mu \geq 0:(\mu K+t) \cap \mathbb{Z}^{d} \neq \emptyset, \forall t \in \mathbb{R}^{d}\right\}=\min \left\{\mu \geq 0: \mu K+\mathbb{Z}^{d}=\mathbb{R}^{d}\right\}
$$

$\rightarrow \operatorname{view}(s, \alpha)$ is δ-obstructed, for every $s \in \mathbb{R}^{n} \quad \Longleftrightarrow \mu\left(Z_{\alpha}\right) \leq \delta$
A zonotope $Z=\sum_{i=1}^{m}\left[0, z_{i}\right] \subseteq \mathbb{R}^{d}$ is called cubical if any d of its generators are linearly independent. Every facet of a cubical zonotope is a parallelepiped.

Lemma

α is rationally uniform $\Longleftrightarrow Z_{\alpha}$ is a cubical lattice zonotope

Consequently,

$$
\left.\begin{array}{rl}
\delta(k, n)= & \inf \{\delta \geq 0:
\end{array}\right) \text { every rationally uniform view }(s, \alpha) \subseteq \mathbb{R}^{n} .
$$

Asymptotic Upper Bound

Theorem (Flatness Theorem for Zonotopes; Banaszczyk '96)

Let $Z \subseteq \mathbb{R}^{d}$ be a zonotope such that $\operatorname{int}(Z+t) \cap \mathbb{Z}^{d}=\emptyset$, for some $t \in \mathbb{R}^{d}$. Then there exists $v \in \mathbb{Z}^{d} \backslash\{0\}$ and an absolute constant $c>0$ such that

$$
w(Z, v):=\max _{x \in Z}\left(x^{\top} v\right)-\min _{x \in Z}\left(x^{\top} v\right) \leq c d \log d
$$

Asymptotic Upper Bound

Theorem (Flatness Theorem for Zonotopes; Banaszczyk '96)

Let $Z \subseteq \mathbb{R}^{d}$ be a zonotope such that $\operatorname{int}(Z+t) \cap \mathbb{Z}^{d}=\emptyset$, for some $t \in \mathbb{R}^{d}$. Then there exists $v \in \mathbb{Z}^{d} \backslash\{0\}$ and an absolute constant $c>0$ such that

$$
w(Z, v):=\max _{x \in Z}\left(x^{\top} v\right)-\min _{x \in Z}\left(x^{\top} v\right) \leq c d \log d
$$

If a cubical lattice zonotope $Z \subseteq \mathbb{R}^{d}$ has n generators, then $w(Z, v) \geq n-(d-1)$, for every $v \in \mathbb{Z}^{d} \backslash\{0\}$.

Asymptotic Upper Bound

Theorem (Flatness Theorem for Zonotopes; Banaszczyk '96)

Let $Z \subseteq \mathbb{R}^{d}$ be a zonotope such that $\operatorname{int}(Z+t) \cap \mathbb{Z}^{d}=\emptyset$, for some $t \in \mathbb{R}^{d}$. Then there exists $v \in \mathbb{Z}^{d} \backslash\{0\}$ and an absolute constant $c>0$ such that

$$
w(Z, v):=\max _{x \in Z}\left(x^{\top} v\right)-\min _{x \in Z}\left(x^{\top} v\right) \leq c d \log d
$$

If a cubical lattice zonotope $Z \subseteq \mathbb{R}^{d}$ has n generators, then $w(Z, v) \geq n-(d-1)$, for every $v \in \mathbb{Z}^{d} \backslash\{0\}$. Thus, $\mu(Z) \leq \frac{c d \log d}{n-d+1}$, and

Theorem (H. \& Malikiosis '16)

For every $1 \leq k \leq n$, we have

$$
\frac{1}{n-k+1} \leq \delta(k, n)=\sup _{Z \subseteq \mathbb{R}^{d}, d \leq k} \mu(Z) \leq \frac{c k \log k}{n-k+1}
$$

Asymptotic Upper Bound

Theorem (Flatness Theorem for Zonotopes; Banaszczyk '96)

Let $Z \subseteq \mathbb{R}^{d}$ be a zonotope such that $\operatorname{int}(Z+t) \cap \mathbb{Z}^{d}=\emptyset$, for some $t \in \mathbb{R}^{d}$. Then there exists $v \in \mathbb{Z}^{d} \backslash\{0\}$ and an absolute constant $c>0$ such that

$$
w(Z, v):=\max _{x \in Z}\left(x^{\top} v\right)-\min _{x \in Z}\left(x^{\top} v\right) \leq c d \log d
$$

If a cubical lattice zonotope $Z \subseteq \mathbb{R}^{d}$ has n generators, then $w(Z, v) \geq n-(d-1)$, for every $v \in \mathbb{Z}^{d} \backslash\{0\}$. Thus, $\mu(Z) \leq \frac{c d \log d}{n-d+1}$, and

Theorem (H. \& Malikiosis '16)

For every $1 \leq k \leq n$, we have

$$
\frac{1}{n-k+1} \leq \delta(k, n)=\sup _{Z \subseteq \mathbb{R}^{d}, d \leq k} \mu(Z) \leq \frac{c k \log k}{n-k+1}
$$

Conjecture

For every cubical lattice zonotope $Z \subseteq \mathbb{R}^{k}$ with n generators holds $\mu(Z) \leq \frac{k}{n}$. (True for $k \in\{1, n-1, n\}$.)

Open Problems

Problem 1

Find a zonotopal proof of Schoenberg's Theorem, that is, $\mu(Z) \leq \frac{n}{n+1}$, for every cubical lattice zonotope $Z \subseteq \mathbb{R}^{n}$ with $n+1$ generators.

Problem 2

Identify examples of cubical lattice zonotopes in \mathbb{R}^{k} with n generators and $\mu(Z)=\frac{k}{n}$.

Problem 3

Is there a theory to relate the covering radius of lattice parallelepipeds to certain graph parameters of quotient lattice graphs (analogous to Marklof \& Strömbergsson for lattice simplices)?

Some literature

Rernardo González Merino and Matthias Henze, On densities of lattice arrangements intersecting every i-dimensional affine subspace, arXiv:1605.00443, (2016), submitted.

Matthias Henze and Romanos-Diogenes Malikiosis, On the covering radius of lattice zonotopes and its relation to view-obstructions and the lonely runner conjecture, Aequationes Math. (2016), accepted for publication.Ravi Kannan and László Lovász, Covering minima and lattice-point-free convex bodies, Ann. of Math. (2) 128 (1988), no. 3, 577-602.
目
Jens Marklof and Andreas Strömbergsson, Diameters of random circulant graphs, Combinatorica 33 (2013), no. 4, 429-466.

Isaac J. Schoenberg, Extremum problems for the motions of a billiard ball. II. The L_{∞} norm, Nederl. Akad. Wetensch. Proc. Ser. A 79 = Indag. Math. 38 (1976), no. 3, 263-279.

Thank you very much!

