On the covering radius of lattice polytopes and its relation to view-obstructions and densities of lattice arrangements

> Matthias Schymura (né Henze) Freie Universität Berlin

> > based on joint work with

Bernardo González Merino

Technische Universität München

Romanos-Diogenes Malikiosis Technische Universität Berlin

December 12, 2016

Einstein Workshop on Lattice Polytopes Freie Universität Berlin

For a convex body K in  $\mathbb{R}^n$  and a lattice  $\Lambda = A\mathbb{Z}^n$ ,  $A \in GL_n(\mathbb{R})$ , we say that

$$K + \Lambda = \bigcup_{z \in \Lambda} (K + z)$$

is a lattice of translates of K.

For a convex body K in  $\mathbb{R}^n$  and a lattice  $\Lambda = A\mathbb{Z}^n$ ,  $A \in GL_n(\mathbb{R})$ , we say that

 $\mathbb{Z}^n$ 

$$K + \Lambda = \bigcup_{z \in \Lambda} (K + z)$$

is a lattice of translates of K.

+



For a convex body K in  $\mathbb{R}^n$  and a lattice  $\Lambda = A\mathbb{Z}^n$ ,  $A \in GL_n(\mathbb{R})$ , we say that

$$K + \Lambda = \bigcup_{z \in \Lambda} (K + z)$$

is a lattice of translates of K.





 $\mathbb{Z}^n$ 

+





For a convex body K in  $\mathbb{R}^n$  and a lattice  $\Lambda = A\mathbb{Z}^n$ ,  $A \in GL_n(\mathbb{R})$ , we say that

$$K + \Lambda = \bigcup_{z \in \Lambda} (K + z)$$

is a lattice of translates of K.



 $\mathbb{Z}^n$ 



For a convex body K in  $\mathbb{R}^n$  and a lattice  $\Lambda = A\mathbb{Z}^n$ ,  $A \in GL_n(\mathbb{R})$ , we say that

$$K + \Lambda = \bigcup_{z \in \Lambda} (K + z)$$

is a lattice of translates of K.





### Definition

The lattice of translates  $K + \Lambda$  is a *lattice covering* if  $K + \Lambda = \mathbb{R}^n$ .

The covering radius of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

$$\mu(K,\Lambda) = \min\{\mu > 0 : \mu K + \Lambda = \mathbb{R}^n\}.$$

The covering radius of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

$$\mu(K,\Lambda) = \min\{\mu > 0 : \mu K + \Lambda = \mathbb{R}^n\}.$$

We abbreviate  $\mu(K) = \mu(K, \mathbb{Z}^n)$ .

Appearances in the literature:

- Coin Exchange Problem of Frobenius (Kannan '92)
- Transference Theorems, Diophantine Approximation (Kannan & Lovász '88)
- Flatness Theorem (Khinchin '54; Lagarias, Lenstra & Schnorr '90; Banaszczyk '96)

The covering radius of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

$$\mu(K,\Lambda) = \min\{\mu > 0 : \mu K + \Lambda = \mathbb{R}^n\}.$$

We abbreviate  $\mu(K) = \mu(K, \mathbb{Z}^n)$ .

Appearances in the literature:

- Coin Exchange Problem of Frobenius (Kannan '92)
- Transference Theorems, Diophantine Approximation (Kannan & Lovász '88)
- Flatness Theorem (Khinchin '54; Lagarias, Lenstra & Schnorr '90; Banaszczyk '96)

### Computationally difficult parameter:

- Kannan '93: Polynomial-time algorithm to compute μ(P, Λ) for rational polytopes P in fixed dimension; triple-exponential in the dimension.
- Haviv & Regev '06: It is Π<sub>2</sub>-hard to approximate μ(B<sup>n</sup><sub>p</sub>, Λ) to within a factor c<sub>p</sub> > 0 for all sufficiently large p ≥ 1.
- (Conjecture) Deciding  $\mu(B_2^n, \Lambda) \leq \mu$  is NP-hard. (Guruswami et al. '05)

### Definition (Kannan & Lovász '88; G. Fejes Tóth '76)

The *i*th *covering minimum* of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

 $\mu_i(K, \Lambda) = \min\{\mu > 0 : \mu K + \Lambda \text{ intersects every } (n-i) \text{-dim. affine subspace}\}.$ 

### Definition (Kannan & Lovász '88; G. Fejes Tóth '76)

The *i*th *covering minimum* of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

 $\mu_i(K, \Lambda) = \min\{\mu > 0 : \mu K + \Lambda \text{ intersects every } (n-i) \text{-dim. affine subspace}\}.$ 



### Definition (Kannan & Lovász '88; G. Fejes Tóth '76)

The *i*th *covering minimum* of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

 $\mu_i(K, \Lambda) = \min\{\mu > 0 : \mu K + \Lambda \text{ intersects every } (n-i) \text{-dim. affine subspace}\}.$ 



### Definition (Kannan & Lovász '88; G. Fejes Tóth '76)

The *i*th *covering minimum* of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

 $\mu_i(K, \Lambda) = \min\{\mu > 0 : \mu K + \Lambda \text{ intersects every } (n-i) \text{-dim. affine subspace}\}.$ 



### Definition (Kannan & Lovász '88; G. Fejes Tóth '76)

The *i*th *covering minimum* of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

 $\mu_i(K, \Lambda) = \min\{\mu > 0 : \mu K + \Lambda \text{ intersects every } (n-i) \text{-dim. affine subspace}\}.$ 



### Definition (Kannan & Lovász '88; G. Fejes Tóth '76)

The *i*th *covering minimum* of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

 $\mu_i(K, \Lambda) = \min\{\mu > 0 : \mu K + \Lambda \text{ intersects every } (n-i) \text{-dim. affine subspace}\}.$ 

• 
$$\mu_1(K) \leq \mu_2(K) \leq \ldots \leq \mu_n(K) = \mu(K)$$

• 
$$\mu_i(UK) = \mu_i(K)$$
, for  $1 \le i \le n$  and  $U \in \operatorname{GL}_n(\mathbb{Z})$ 

• 
$$\mu_i(rK) = rac{1}{r}\mu_i(K)$$
, for  $1 \le i \le n$  and  $r > 0$ 

• 
$$\mu_i(AK, A\mathbb{Z}^n) = \mu_i(K, \mathbb{Z}^n)$$
, for  $1 \leq i \leq n$  and  $A \in \mathsf{GL}_n(\mathbb{R})$ 



### Definition (Kannan & Lovász '88; G. Fejes Tóth '76)

The *i*th *covering minimum* of  $K \subseteq \mathbb{R}^n$  with respect to a lattice  $\Lambda$  is defined as

 $\mu_i(K, \Lambda) = \min\{\mu > 0 : \mu K + \Lambda \text{ intersects every } (n-i) \text{-dim. affine subspace}\}.$ 

We abbreviate  $\mu_i(K) = \mu_i(K, \mathbb{Z}^n)$ .

• 
$$\mu_1(K) \leq \mu_2(K) \leq \ldots \leq \mu_n(K) = \mu(K)$$

• 
$$\mu_i(UK) = \mu_i(K)$$
, for  $1 \le i \le n$  and  $U \in \operatorname{GL}_n(\mathbb{Z})$ 

• 
$$\mu_i(rK) = rac{1}{r}\mu_i(K)$$
, for  $1 \le i \le n$  and  $r > 0$ 

• 
$$\mu_i(AK, A\mathbb{Z}^n) = \mu_i(K, \mathbb{Z}^n)$$
, for  $1 \leq i \leq n$  and  $A \in \mathsf{GL}_n(\mathbb{R})$ 



#### Lemma (Kannan & Lovász '88)

 $\mu_i(K, \Lambda) = \max\{\mu(K|L, \Lambda|L) : L \text{ an } i\text{-dimensional subspace}\}$ 

• For 
$$C_n = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$$
, we have  
 $\mu_i(C_n) = 1$  for each  $i = 1, \dots, n$ .

| o | ٥ | 0 | o | o |
|---|---|---|---|---|
| 0 | 0 | 0 | o | o |
| ٥ | ٥ | 0 | o | o |

• For 
$$C_n = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$$
, we have  
 $\mu_i(C_n) = 1$  for each  $i = 1, \dots, n$ .

| • | 0 | o | • | o |
|---|---|---|---|---|
| ٥ | 0 | 0 | 0 | 0 |
| 0 | • | 0 | 0 | • |

• For 
$$C_n = [-\frac{1}{2}, \frac{1}{2}]^n$$
, we have  $\mu_i(C_n) = 1$  for each  $i = 1, \dots, n$ .

• For  $S_1 = \operatorname{conv}\{0, e_1, \dots, e_n\}$ , we have

$$\mu_n(S_1)=n.$$



• For 
$$C_n = [-\frac{1}{2}, \frac{1}{2}]^n$$
, we have  $\mu_i(C_n) = 1$  for each  $i = 1, \dots, n$ .

• For  $S_1 = \operatorname{conv}\{0, e_1, \dots, e_n\}$ , we have

$$\mu_n(S_1)=n.$$



 For C<sub>n</sub> = [-<sup>1</sup>/<sub>2</sub>, <sup>1</sup>/<sub>2</sub>]<sup>n</sup>, we have μ<sub>i</sub>(C<sub>n</sub>) = 1 for each i = 1,..., n.
 For S<sub>1</sub> = conv{0, e<sub>1</sub>,..., e<sub>n</sub>}, we have

$$\mu_i(S_1) = i$$
 for each  $i = 1, \ldots, n$ .



 $\mu_i(S_1) = i$  for each  $i = 1, \ldots, n$ .

• For the Euclidean unit ball  $B_2^n$ , we have

$$\mu_i(B_2^n)=rac{\sqrt{i}}{2}$$
 for each  $i=1,\ldots,n.$ 



 $\mu_i(S_1) = i$  for each  $i = 1, \ldots, n$ .

• For the Euclidean unit ball  $B_2^n$ , we have

$$\mu_i(B_2^n) = \frac{\sqrt{i}}{2}$$
 for each  $i = 1, \ldots, n$ .



#### Proposition

Let  $P \subseteq \mathbb{R}^n$  be a lattice polytope. Then

• 
$$\mu_i(P) \leq i$$
, for every  $i = 1, \ldots, n$ , and

• if P is a lattice zonotope, then  $\mu_i(P) \leq 1$ , for every  $i = 1, \ldots, n$ .

We discuss two problems in which the computation / estimation of covering radii of lattice polytopes plays a crucial role:

• Towards a Covering Analog of Minkowski's 2nd Theorem

### 

# Covering analog of Minkowski's 2nd Theorem

#### Theorem (Minkowski 1896)

For every convex body K in  $\mathbb{R}^n$  with K = -K, we have

$$\frac{2^n}{n!} \leq \lambda_1(K) \cdot \ldots \cdot \lambda_n(K) \operatorname{vol}(K) \leq 2^n,$$

where  $\lambda_i(K) = \min\{\lambda > 0 : \dim(\lambda K \cap \mathbb{Z}^n) \ge i\}$  is the *i*th successive minimum of K.

## Covering analog of Minkowski's 2nd Theorem

#### Theorem (Minkowski 1896)

For every convex body K in  $\mathbb{R}^n$  with K = -K, we have

$$\frac{2^n}{n!} \leq \lambda_1(K) \cdot \ldots \cdot \lambda_n(K) \operatorname{vol}(K) \leq 2^n,$$

where  $\lambda_i(K) = \min\{\lambda > 0 : \dim(\lambda K \cap \mathbb{Z}^n) \ge i\}$  is the *i*th successive minimum of K.

<u>Problem</u>: Find best possible lower bound on  $\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K)$ , for K in  $\mathbb{R}^n$ .

### Theorem (Minkowski 1896)

For every convex body K in  $\mathbb{R}^n$  with K = -K, we have

$$\frac{2^n}{n!} \leq \lambda_1(K) \cdot \ldots \cdot \lambda_n(K) \operatorname{vol}(K) \leq 2^n,$$

where  $\lambda_i(K) = \min\{\lambda > 0 : \dim(\lambda K \cap \mathbb{Z}^n) \ge i\}$  is the *i*th successive minimum of K.

<u>Problem</u>: Find best possible lower bound on  $\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K)$ , for K in  $\mathbb{R}^n$ .

Theorem (Schnell '95)

For every planar convex body K, we have  $\mu_1(K)\mu_2(K) \operatorname{vol}(K) \geq \frac{3}{4}$ .

### Theorem (Minkowski 1896)

For every convex body K in  $\mathbb{R}^n$  with K = -K, we have

$$\frac{2^n}{n!} \leq \lambda_1(K) \cdot \ldots \cdot \lambda_n(K) \operatorname{vol}(K) \leq 2^n,$$

where  $\lambda_i(K) = \min\{\lambda > 0 : \dim(\lambda K \cap \mathbb{Z}^n) \ge i\}$  is the *i*th successive minimum of K.

<u>Problem</u>: Find best possible lower bound on  $\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K)$ , for K in  $\mathbb{R}^n$ .

### Theorem (Schnell '95)

For every planar convex body K, we have  $\mu_1(K)\mu_2(K) \operatorname{vol}(K) \geq \frac{3}{4}$ .

Equality holds if and only if K is lattice-equivalent to one of the following:



### Theorem (Minkowski 1896)

For every convex body K in  $\mathbb{R}^n$  with K = -K, we have

$$rac{2^n}{n!} \leq \lambda_1(K) \cdot \ldots \cdot \lambda_n(K) \operatorname{vol}(K) \leq 2^n,$$

where  $\lambda_i(K) = \min\{\lambda > 0 : \dim(\lambda K \cap \mathbb{Z}^n) \ge i\}$  is the *i*th successive minimum of K.

<u>Problem</u>: Find best possible lower bound on  $\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K)$ , for K in  $\mathbb{R}^n$ .

### Theorem (Schnell '95)

For every planar convex body K, we have  $\mu_1(K)\mu_2(K) \operatorname{vol}(K) \geq \frac{3}{4}$ .

Equality holds if and only if K is lattice-equivalent to one of the following:



 $\rightarrow$  Analogous to *lattice tiles*, that is, K such that  $K + \mathbb{Z}^n$  is a covering and a packing.

| Matthias Schymura | Covering radii of lattice polytopes | Dec 12, 2016 | 7 / 21 |
|-------------------|-------------------------------------|--------------|--------|

### Theorem (González Merino & H. '16)

i) For every convex body K in  $\mathbb{R}^n$ , we have

$$\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K) \geq \frac{1}{n!}.$$

ii) For every convex body K in  $\mathbb{R}^n$  that is symmetric with respect to every coordinate hyperplane, we have

 $\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K) \geq 1.$ 

Equality holds for example for the cube  $C_n = [-\frac{1}{2}, \frac{1}{2}]^n$ .

### Theorem (González Merino & H. '16)

i) For every convex body K in  $\mathbb{R}^n$ , we have

$$\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K) \geq \frac{1}{n!}.$$

ii) For every convex body K in  $\mathbb{R}^n$  that is symmetric with respect to every coordinate hyperplane, we have

 $\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K) \geq 1.$ 

Equality holds for example for the cube  $C_n = [-\frac{1}{2}, \frac{1}{2}]^n$ .

#### Conjecture

For every convex body K in  $\mathbb{R}^n$ , we have

$$\mu_1(K)\cdot\ldots\cdot\mu_n(K)\operatorname{vol}(K)\geq rac{n+1}{2^n}.$$

### Theorem (González Merino & H. '16)

i) For every convex body K in  $\mathbb{R}^n$ , we have

$$\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K) \geq \frac{1}{n!}.$$

ii) For every convex body K in  $\mathbb{R}^n$  that is symmetric with respect to every coordinate hyperplane, we have

 $\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K) \geq 1.$ 

Equality holds for example for the cube  $C_n = \left[-\frac{1}{2}, \frac{1}{2}\right]^n$ .

#### Conjecture

For every convex body K in  $\mathbb{R}^n$ , we have

$$\mu_1(K)\cdot\ldots\cdot\mu_n(K)\operatorname{vol}(K)\geq rac{n+1}{2^n}.$$

ightarrow extremal example should be  ${\mathcal T}_n={
m conv}\{e_1,\ldots,e_n,-{f 1}\}$ 

### Proposition

Let  $T_n = \operatorname{conv} \{e_1, \dots, e_n, -1\}$ . Then i)  $\mu_i(T_n) \leq i$ , for each  $1 \leq i \leq n$ ,

### Proposition

Let  $T_n = \operatorname{conv}\{e_1, \ldots, e_n, -1\}$ . Then i)  $\mu_i(T_n) \leq i$ , for each  $1 \leq i \leq n$ , ii)  $\mu_n(T_n) = \frac{n}{2}$ ,

## Proposition

Let 
$$T_n = \text{conv}\{e_1, ..., e_n, -1\}$$
. Then  
i)  $\mu_i(T_n) \le i$ , for each  $1 \le i \le n$ ,  
ii)  $\mu_n(T_n) = \frac{n}{2}$ ,  
iii)  $\mu_1(T_n) \cdot ... \cdot \mu_n(T_n) \operatorname{vol}(T_n) \le \frac{n+1}{(2/\sqrt{e})^n} \approx \frac{n+1}{1.213^n}$ , and

## Proposition

Let 
$$T_n = \operatorname{conv}\{e_1, \dots, e_n, -1\}$$
. Then  
i)  $\mu_i(T_n) \leq i$ , for each  $1 \leq i \leq n$ ,  
ii)  $\mu_n(T_n) = \frac{n}{2}$ ,  
iii)  $\mu_1(T_n) \cdot \dots \cdot \mu_n(T_n) \operatorname{vol}(T_n) \leq \frac{n+1}{(2/\sqrt{e})^n} \approx \frac{n+1}{1.213^n}$ , and  
iv) (Conjecture)  $\mu_i(T_n) = \frac{i}{2}$ , for each  $1 \leq i \leq n$ .
Let 
$$T_n = \operatorname{conv}\{e_1, \dots, e_n, -1\}$$
. Then  
i)  $\mu_i(T_n) \leq i$ , for each  $1 \leq i \leq n$ ,  
ii)  $\mu_n(T_n) = \frac{n}{2}$ ,  
iii)  $\mu_1(T_n) \cdot \dots \cdot \mu_n(T_n) \operatorname{vol}(T_n) \leq \frac{n+1}{(2/\sqrt{e})^n} \approx \frac{n+1}{1.213^n}$ , and  
iv) (Conjecture)  $\mu_i(T_n) = \frac{i}{2}$ , for each  $1 \leq i \leq n$ .

Let 
$$A = (a_{ij}) \in \mathbb{Z}^{n \times n}$$
 be with  $a_{ij} = \begin{cases} n & , \text{ if } i = j \\ -1 & , \text{ otherwise,} \end{cases}$  and  $S_1 = \{x \in \mathbb{R}^n_{\geq 0} : \mathbf{1}^\intercal x \leq 1\}.$ 

Let 
$$T_n = \operatorname{conv}\{e_1, \dots, e_n, -1\}$$
. Then  
i)  $\mu_i(T_n) \leq i$ , for each  $1 \leq i \leq n$ ,  
ii)  $\mu_n(T_n) = \frac{n}{2}$ ,  
iii)  $\mu_1(T_n) \cdot \dots \cdot \mu_n(T_n) \operatorname{vol}(T_n) \leq \frac{n+1}{(2/\sqrt{e})^n} \approx \frac{n+1}{1.213^n}$ , and  
iv) (Conjecture)  $\mu_i(T_n) = \frac{i}{2}$ , for each  $1 \leq i \leq n$ .

Let 
$$A = (a_{ij}) \in \mathbb{Z}^{n \times n}$$
 be with  $a_{ij} = \begin{cases} n & , \text{ if } i = j \\ -1 & , \text{ otherwise,} \end{cases}$  and  $S_1 = \{x \in \mathbb{R}^n_{\geq 0} : \mathbf{1}^\intercal x \leq 1\}.$ 

• 
$$AT_n = (n+1)S_1 - 1$$

Let 
$$T_n = \operatorname{conv} \{e_1, \dots, e_n, -1\}$$
. Then  
i)  $\mu_i(T_n) \leq i$ , for each  $1 \leq i \leq n$ ,  
ii)  $\mu_n(T_n) = \frac{n}{2}$ ,  
iii)  $\mu_1(T_n) \cdot \dots \cdot \mu_n(T_n) \operatorname{vol}(T_n) \leq \frac{n+1}{(2/\sqrt{e})^n} \approx \frac{n+1}{1.213^n}$ , and  
iv) (Conjecture)  $\mu_i(T_n) = \frac{i}{2}$ , for each  $1 \leq i \leq n$ .

Let 
$$A = (a_{ij}) \in \mathbb{Z}^{n \times n}$$
 be with  $a_{ij} = \begin{cases} n & , \text{ if } i = j \\ -1 & , \text{ otherwise,} \end{cases}$  and  $S_1 = \{x \in \mathbb{R}^n_{\geq 0} : \mathbf{1}^\mathsf{T} x \leq 1\}.$   
•  $AT_n = (n+1)S_1 - \mathbf{1}$   
•  $\Lambda_n = A\mathbb{Z}^n = \bigcup_{i=0}^n (i \cdot \mathbf{1} + (n+1)\mathbb{Z}^n) \subseteq \mathbb{Z}^n$ 

Let 
$$T_n = \operatorname{conv} \{e_1, \dots, e_n, -1\}$$
. Then  
i)  $\mu_i(T_n) \leq i$ , for each  $1 \leq i \leq n$ ,  
ii)  $\mu_n(T_n) = \frac{n}{2}$ ,  
iii)  $\mu_1(T_n) \cdot \dots \cdot \mu_n(T_n) \operatorname{vol}(T_n) \leq \frac{n+1}{(2/\sqrt{e})^n} \approx \frac{n+1}{1.213^n}$ , and  
iv) (Conjecture)  $\mu_i(T_n) = \frac{i}{2}$ , for each  $1 \leq i \leq n$ .

Let 
$$A = (a_{ij}) \in \mathbb{Z}^{n \times n}$$
 be with  $a_{ij} = \begin{cases} n & \text{, if } i = j \\ -1 & \text{, otherwise,} \end{cases}$  and  $S_1 = \{x \in \mathbb{R}^n_{\geq 0} : \mathbf{1}^\mathsf{T} x \leq 1\}.$   
•  $AT_n = (n+1)S_1 - \mathbf{1}$   
•  $\Lambda_n = A\mathbb{Z}^n = \bigcup_{i=0}^n (i \cdot \mathbf{1} + (n+1)\mathbb{Z}^n) \subseteq \mathbb{Z}^n$   
•  $\mu_n(T_n) = \mu_n(AT_n, A\mathbb{Z}^n) = \frac{1}{n+1}\mu_n(S_1, \Lambda_n)$ 

standard lattice graph  $LG_n^+$ 

- vertex set  $\mathbb{Z}^n$
- directed edge  $(x, x + e_i)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$

standard lattice graph  $LG_n^+$ 

- vertex set  $\mathbb{Z}^n$
- directed edge  $(x, x + e_i)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$

quotient lattice graph  $LG_n^+/\Lambda$  of a sublattice  $\Lambda \subseteq \mathbb{Z}^n$ 

- vertex set  $\mathbb{Z}^n/\Lambda$
- directed edge  $(x + \Lambda, x + e_i + \Lambda)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$

standard lattice graph  $LG_n^+$ 

- vertex set  $\mathbb{Z}^n$
- directed edge  $(x, x + e_i)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$

quotient lattice graph  $LG_n^+/\Lambda$  of a sublattice  $\Lambda \subseteq \mathbb{Z}^n$ 

- vertex set  $\mathbb{Z}^n/\Lambda$
- directed edge  $(x + \Lambda, x + e_i + \Lambda)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$



standard lattice graph  $LG_n^+$ 

- vertex set  $\mathbb{Z}^n$
- directed edge  $(x, x + e_i)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$

quotient lattice graph  $LG_n^+/\Lambda$  of a sublattice  $\Lambda \subseteq \mathbb{Z}^n$ 

• vertex set  $\mathbb{Z}^n/\Lambda$ 

• directed edge  $(x + \Lambda, x + e_i + \Lambda)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$ 

distance in  $\mathrm{LG}_n^+/\Lambda$ : For  $x, y \in \mathbb{Z}^n$ , let  $\mathrm{d}(x + \Lambda, y + \Lambda) = \min_{z \in (y - x + \Lambda) \cap \mathbb{Z}_{\geq 0}^n} \mathbf{1}^{\mathsf{T}} z$ 



standard lattice graph  $LG_n^+$ 

- vertex set  $\mathbb{Z}^n$
- directed edge  $(x, x + e_i)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$

quotient lattice graph  $LG_n^+/\Lambda$  of a sublattice  $\Lambda \subseteq \mathbb{Z}^n$ 

- vertex set  $\mathbb{Z}^n/\Lambda$
- directed edge  $(x + \Lambda, x + e_i + \Lambda)$ , for every  $x \in \mathbb{Z}^n$  and  $1 \le i \le n$

distance in 
$$\mathrm{LG}_n^+/\Lambda$$
: For  $x, y \in \mathbb{Z}^n$ , let  
$$\mathrm{d}(x + \Lambda, y + \Lambda) = \min_{z \in (y - x + \Lambda) \cap \mathbb{Z}_{\geq 0}^n} \mathbf{1}^{\mathsf{T}} z$$

diameter of  $LG_n^+/\Lambda$  is

$$\operatorname{diam}(\operatorname{LG}_n^+/\Lambda) = \max_{x,y \in \mathbb{Z}^n} \operatorname{d}(x + \Lambda, y + \Lambda)$$



Let  $\Lambda \subseteq \mathbb{Z}^n$  be a sublattice. Then,

$$\mu_n(S_1, \Lambda) = \operatorname{diam}(\operatorname{LG}_n^+/\Lambda) + n.$$

Let  $\Lambda \subseteq \mathbb{Z}^n$  be a sublattice. Then,

$$\mu_n(S_1,\Lambda) = \operatorname{diam}(\operatorname{LG}_n^+/\Lambda) + n.$$

Hence,  $\mu_n(T_n) = \frac{1}{n+1}\mu_n(S_1, \Lambda_n) = \frac{n}{2}$  if and only if diam $(LG_n^+/\Lambda_n) = \binom{n}{2}$ .

Let  $\Lambda \subseteq \mathbb{Z}^n$  be a sublattice. Then,

$$u_n(S_1,\Lambda) = \operatorname{diam}(\operatorname{LG}_n^+/\Lambda) + n.$$

Hence,  $\mu_n(T_n) = \frac{1}{n+1}\mu_n(S_1, \Lambda_n) = \frac{n}{2}$  if and only if diam $(LG_n^+/\Lambda_n) = \binom{n}{2}$ . Sketch for diam $(LG_n^+/\Lambda_n) \le \binom{n}{2}$ :

Let  $\Lambda \subseteq \mathbb{Z}^n$  be a sublattice. Then,

$$\mu_n(S_1,\Lambda) = \operatorname{diam}(\operatorname{LG}_n^+/\Lambda) + n.$$

Hence,  $\mu_n(T_n) = \frac{1}{n+1}\mu_n(S_1, \Lambda_n) = \frac{n}{2}$  if and only if diam $(LG_n^+/\Lambda_n) = \binom{n}{2}$ . Sketch for diam $(LG_n^+/\Lambda_n) \le \binom{n}{2}$ :

• vertices of  $\mathrm{LG}_n^+/\Lambda_n$  correspond to  $\{0,1,\ldots,n\}^{n-1}$ 

Let  $\Lambda \subseteq \mathbb{Z}^n$  be a sublattice. Then,

$$\mu_n(S_1,\Lambda) = \operatorname{diam}(\operatorname{LG}_n^+/\Lambda) + n.$$

Hence,  $\mu_n(T_n) = \frac{1}{n+1}\mu_n(S_1, \Lambda_n) = \frac{n}{2}$  if and only if diam $(LG_n^+/\Lambda_n) = \binom{n}{2}$ . Sketch for diam $(LG_n^+/\Lambda_n) \le \binom{n}{2}$ :

- vertices of  $\mathrm{LG}_n^+/\Lambda_n$  correspond to  $\{0,1,\ldots,n\}^{n-1}$
- show that, for every  $w \in \{0, 1, \dots, n\}^{n-1}$ , we have  $d(0 + \Lambda_n, w + \Lambda_n) \leq {n \choose 2}$

Let  $\Lambda \subseteq \mathbb{Z}^n$  be a sublattice. Then,

$$\mu_n(S_1,\Lambda) = \operatorname{diam}(\operatorname{LG}_n^+/\Lambda) + n.$$

Hence,  $\mu_n(T_n) = \frac{1}{n+1}\mu_n(S_1, \Lambda_n) = \frac{n}{2}$  if and only if diam $(LG_n^+/\Lambda_n) = \binom{n}{2}$ . Sketch for diam $(LG_n^+/\Lambda_n) \le \binom{n}{2}$ :

- vertices of  $LG_n^+/\Lambda_n$  correspond to  $\{0, 1, \ldots, n\}^{n-1}$
- show that, for every  $w \in \{0, 1, \dots, n\}^{n-1}$ , we have  $d(0 + \Lambda_n, w + \Lambda_n) \leq {n \choose 2}$
- edges in  $LG_n^+/\Lambda_n$  have directions  $e_1, \ldots, e_{n-1}$ , and -1

Let  $\Lambda \subseteq \mathbb{Z}^n$  be a sublattice. Then,

$$\mu_n(S_1,\Lambda) = \operatorname{diam}(\operatorname{LG}_n^+/\Lambda) + n.$$

Hence,  $\mu_n(T_n) = \frac{1}{n+1}\mu_n(S_1, \Lambda_n) = \frac{n}{2}$  if and only if diam $(LG_n^+/\Lambda_n) = \binom{n}{2}$ . Sketch for diam $(LG_n^+/\Lambda_n) \le \binom{n}{2}$ :

- vertices of  $LG_n^+/\Lambda_n$  correspond to  $\{0, 1, \ldots, n\}^{n-1}$
- show that, for every  $w \in \{0, 1, \dots, n\}^{n-1}$ , we have  $d(0 + \Lambda_n, w + \Lambda_n) \leq {n \choose 2}$
- edges in  $\mathrm{LG}_n^+/\Lambda_n$  have directions  $e_1,\ldots,e_{n-1}$ , and  $-\mathbf{1}$
- we need to find a representation

$$w=r_1e_1+\ldots+r_{n-1}e_{n-1}-r_n\mathbf{1},$$

for some  $r_1, \ldots, r_n \in \mathbb{Z}$  such that  $\sum_{i=1}^n (r_i \mod n+1) \leq \binom{n}{2}$ 

Let  $\Lambda \subseteq \mathbb{Z}^n$  be a sublattice. Then,

$$\mu_n(S_1,\Lambda) = \operatorname{diam}(\operatorname{LG}_n^+/\Lambda) + n.$$

Hence,  $\mu_n(T_n) = \frac{1}{n+1}\mu_n(S_1, \Lambda_n) = \frac{n}{2}$  if and only if diam $(LG_n^+/\Lambda_n) = \binom{n}{2}$ . Sketch for diam $(LG_n^+/\Lambda_n) \le \binom{n}{2}$ :

- vertices of  $\mathrm{LG}_n^+/\Lambda_n$  correspond to  $\{0,1,\ldots,n\}^{n-1}$
- show that, for every  $w \in \{0, 1, \dots, n\}^{n-1}$ , we have  $d(0 + \Lambda_n, w + \Lambda_n) \leq {n \choose 2}$
- edges in  $\mathrm{LG}_n^+/\Lambda_n$  have directions  $e_1,\ldots,e_{n-1}$ , and  $-\mathbf{1}$
- we need to find a representation

$$w=r_1e_1+\ldots+r_{n-1}e_{n-1}-r_n\mathbf{1},$$

for some  $r_1, \ldots, r_n \in \mathbb{Z}$  such that  $\sum_{i=1}^n (r_i \mod n+1) \leq \binom{n}{2}$ 

• averaging argument + elementary number theory

#### Problem 1

Prove or disprove an exponential lower bound on the covering product. More precisely, find some 0 < c < 1 such that

$$\mu_1(K) \cdot \ldots \cdot \mu_n(K) \operatorname{vol}(K) \geq c^n,$$

for every convex body K in  $\mathbb{R}^n$ .

#### Problem 2

Find a method to show that  $\mu_i(T_n) = \frac{i}{2}$ , for  $1 \le i \le n$ .

#### Problem 3

Extend the approach of Marklof & Strömbergsson to the computation of  $\mu_i(S_1, \Lambda)$ ,  $1 \le i \le n$ , for sublattices  $\Lambda \subseteq \mathbb{Z}^n$  via generalized diameters of quotient lattice graphs.

# Reboot..

Let view $(s, \alpha) = s + \mathbb{R}\alpha$ , with  $s, \alpha \in \mathbb{R}^n$ , and let  $\delta \ge 0$  (obstruction parameter).

# View-Obstructions and Billiard Ball Motions

## View-Obstructions: (Cusick '73)

Let view $(s, \alpha) = s + \mathbb{R}\alpha$ , with  $s, \alpha \in \mathbb{R}^n$ , and let  $\delta \ge 0$  (obstruction parameter).

The view from *s* in direction  $\alpha$  is  $\delta$ -obstructed if

 $\mathsf{view}(\boldsymbol{s},\alpha) \cap \left( \left[ \frac{1}{2} - \frac{1}{2}\delta, \frac{1}{2} + \frac{1}{2}\delta \right]^n + \mathbb{Z}^n \right) \neq \emptyset.$ 



Let view $(s, \alpha) = s + \mathbb{R}\alpha$ , with  $s, \alpha \in \mathbb{R}^n$ , and let  $\delta \ge 0$  (obstruction parameter).

The view from *s* in direction  $\alpha$  is  $\delta$ -obstructed if

 $\mathsf{view}(\boldsymbol{s},\alpha) \cap \left( \left[ \frac{1}{2} - \frac{1}{2}\delta, \frac{1}{2} + \frac{1}{2}\delta \right]^n + \mathbb{Z}^n \right) \neq \emptyset.$ 



Billiard Ball Motions: (Schoenberg '76)

For  $s \in [0,1]^n$  and  $\alpha \in \mathbb{R}^n$ , let  $bbm(s,\alpha) \subseteq [0,1]^n$  be the trajectory of the motion starting with  $s + \lambda \alpha$ ,  $\lambda \ge 0$ , and which is reflected naturally in the boundary of the cube  $[0,1]^n$ .

Let view $(s, \alpha) = s + \mathbb{R}\alpha$ , with  $s, \alpha \in \mathbb{R}^n$ , and let  $\delta \ge 0$  (obstruction parameter).

The view from *s* in direction  $\alpha$  is  $\delta$ -obstructed if

 $\mathsf{view}(\boldsymbol{s},\alpha) \cap \left( \left[ \frac{1}{2} - \frac{1}{2}\delta, \frac{1}{2} + \frac{1}{2}\delta \right]^n + \mathbb{Z}^n \right) \neq \emptyset.$ 



Billiard Ball Motions: (Schoenberg '76)

For  $s \in [0, 1]^n$  and  $\alpha \in \mathbb{R}^n$ , let  $bbm(s, \alpha) \subseteq [0, 1]^n$  be the trajectory of the motion starting with  $s + \lambda \alpha$ ,  $\lambda \ge 0$ , and which is reflected naturally in the boundary of the cube  $[0, 1]^n$ .

```
The billiard ball motion starting at s in direction \alpha is \delta-central if bbm(s, \alpha) \cap \left[\frac{1}{2} - \frac{1}{2}\delta, \frac{1}{2} + \frac{1}{2}\delta\right]^n \neq \emptyset.
```



Let view $(s, \alpha) = s + \mathbb{R}\alpha$ , with  $s, \alpha \in \mathbb{R}^n$ , and let  $\delta \ge 0$  (obstruction parameter).

The view from *s* in direction  $\alpha$  is  $\delta$ -obstructed if

 $\mathsf{view}(\boldsymbol{s},\alpha) \cap \left( \left[ \frac{1}{2} - \frac{1}{2}\delta, \frac{1}{2} + \frac{1}{2}\delta \right]^n + \mathbb{Z}^n \right) \neq \emptyset.$ 



Billiard Ball Motions: (Schoenberg '76)

For  $s \in [0,1]^n$  and  $\alpha \in \mathbb{R}^n$ , let  $bbm(s,\alpha) \subseteq [0,1]^n$  be the trajectory of the motion starting with  $s + \lambda \alpha$ ,  $\lambda \ge 0$ , and which is reflected naturally in the boundary of the cube  $[0,1]^n$ .

```
The billiard ball motion starting at s in direction \alpha is \delta-central if
```

$$\mathsf{bbm}(s,\alpha) \cap [\frac{1}{2} - \frac{1}{2}\delta, \frac{1}{2} + \frac{1}{2}\delta]^n \neq \emptyset.$$



• view $(s, \alpha)$  is  $\delta$ -obstructed  $\iff$  bbm $(s, \alpha)$  is  $\delta$ -central

A direction vector  $\alpha \in \mathbb{R}^n$  is *non-trivial* if it is not parallel to a facet of  $[0,1]^n$ , or equivalently,  $\alpha \in (\mathbb{R} \setminus \{0\})^n$ .

A direction vector  $\alpha \in \mathbb{R}^n$  is *non-trivial* if it is not parallel to a facet of  $[0,1]^n$ , or equivalently,  $\alpha \in (\mathbb{R} \setminus \{0\})^n$ .

#### Theorem (Schoenberg '76)

Every non-trivial billiard ball motion  $bbm(s, \alpha)$  in  $[0, 1]^n$  is  $\delta$ -central if and only if  $\delta \ge (n-1)/n$ .

A direction vector  $\alpha \in \mathbb{R}^n$  is *non-trivial* if it is not parallel to a facet of  $[0,1]^n$ , or equivalently,  $\alpha \in (\mathbb{R} \setminus \{0\})^n$ .

#### Theorem (Schoenberg '76)

Every non-trivial billiard ball motion  $bbm(s, \alpha)$  in  $[0, 1]^n$  is  $\delta$ -central if and only if  $\delta \ge (n-1)/n$ .

#### Extremal example:

$$s = \frac{1}{n} (0, 1, \dots, n-1)^{\mathsf{T}}$$
  
 $\alpha = (1, \dots, 1)^{\mathsf{T}}$ 



A direction vector  $\alpha \in \mathbb{R}^n$  is *non-trivial* if it is not parallel to a facet of  $[0,1]^n$ , or equivalently,  $\alpha \in (\mathbb{R} \setminus \{0\})^n$ .

#### Theorem (Schoenberg '76)

Every non-trivial billiard ball motion  $bbm(s, \alpha)$  in  $[0, 1]^n$  is  $\delta$ -central if and only if  $\delta \ge (n-1)/n$ .

#### Extremal example:

$$egin{aligned} oldsymbol{s} &= rac{1}{n} (0, 1, \dots, n-1)^{\mathsf{T}} \ lpha &= (1, \dots, 1)^{\mathsf{T}} \end{aligned}$$



If  $\{\alpha_1, \ldots, \alpha_n\}$  is linearly independent over  $\mathbb{Q}$ , then bbm $(s, \alpha)$  is dense in  $[0, 1]^n$ .

The rational dimension of  $\alpha \in \mathbb{R}^n$  is defined by  $\dim_{\mathbb{Q}}(\alpha) = \dim(\operatorname{span}_{\mathbb{Q}}\{\alpha_1, \ldots, \alpha_n\})$ .

The rational dimension of  $\alpha \in \mathbb{R}^n$  is defined by  $\dim_{\mathbb{Q}}(\alpha) = \dim(\operatorname{span}_{\mathbb{Q}}\{\alpha_1, \ldots, \alpha_n\})$ .

### Definition

A vector  $\alpha \in \mathbb{R}^n$  is called *rationally uniform* if every dim<sub>Q</sub>( $\alpha$ ) coordinates of  $\alpha$  are linearly independent over  $\mathbb{Q}$ .

The rational dimension of  $\alpha \in \mathbb{R}^n$  is defined by  $\dim_{\mathbb{Q}}(\alpha) = \dim(\operatorname{span}_{\mathbb{Q}}\{\alpha_1, \ldots, \alpha_n\})$ .

## Definition

A vector  $\alpha \in \mathbb{R}^n$  is called *rationally uniform* if every dim<sub>Q</sub>( $\alpha$ ) coordinates of  $\alpha$  are linearly independent over  $\mathbb{Q}$ .

### Examples:

•  $\alpha = (1,\sqrt{2},1+\sqrt{2})$  has rational dimension dim $_{\mathbb{Q}}(\alpha) = 2$  and is rationally uniform

The rational dimension of  $\alpha \in \mathbb{R}^n$  is defined by  $\dim_{\mathbb{Q}}(\alpha) = \dim(\operatorname{span}_{\mathbb{Q}}\{\alpha_1, \ldots, \alpha_n\})$ .

## Definition

A vector  $\alpha \in \mathbb{R}^n$  is called *rationally uniform* if every dim<sub>Q</sub>( $\alpha$ ) coordinates of  $\alpha$  are linearly independent over  $\mathbb{Q}$ .

## Examples:

- $\alpha = (1,\sqrt{2},1+\sqrt{2})$  has rational dimension dim $_{\mathbb{Q}}(\alpha) = 2$  and is rationally uniform
- $\alpha = (1, 2, \sqrt{3}, -\sqrt{3})$  has rational dimension dim<sub>Q</sub>( $\alpha$ ) = 2 but is not rationally uniform

The rational dimension of  $\alpha \in \mathbb{R}^n$  is defined by  $\dim_{\mathbb{Q}}(\alpha) = \dim(\operatorname{span}_{\mathbb{Q}}\{\alpha_1, \ldots, \alpha_n\})$ .

### Definition

A vector  $\alpha \in \mathbb{R}^n$  is called *rationally uniform* if every dim<sub>Q</sub>( $\alpha$ ) coordinates of  $\alpha$  are linearly independent over  $\mathbb{Q}$ .

### Examples:

- $\alpha = (1,\sqrt{2},1+\sqrt{2})$  has rational dimension dim $_{\mathbb{Q}}(\alpha) = 2$  and is rationally uniform
- $\alpha = (1, 2, \sqrt{3}, -\sqrt{3})$  has rational dimension dim<sub>Q</sub>( $\alpha$ ) = 2 but is not rationally uniform

$$\begin{split} \delta(k,n) &= \inf\{\delta \geq 0 : \text{every rationally uniform bbm}(s,\alpha) \subseteq [0,1]^n \\ &\quad \text{with } \dim_{\mathbb{Q}}(\alpha) \geq n-k \text{ is } \delta\text{-central}\} \end{split}$$

The rational dimension of  $\alpha \in \mathbb{R}^n$  is defined by  $\dim_{\mathbb{Q}}(\alpha) = \dim(\operatorname{span}_{\mathbb{Q}}\{\alpha_1, \ldots, \alpha_n\})$ .

## Definition

A vector  $\alpha \in \mathbb{R}^n$  is called *rationally uniform* if every dim<sub>Q</sub>( $\alpha$ ) coordinates of  $\alpha$  are linearly independent over  $\mathbb{Q}$ .

#### Examples:

- $\alpha = (1,\sqrt{2},1+\sqrt{2})$  has rational dimension dim $_{\mathbb{Q}}(\alpha) = 2$  and is rationally uniform
- $\alpha = (1, 2, \sqrt{3}, -\sqrt{3})$  has rational dimension dim<sub>Q</sub>( $\alpha$ ) = 2 but is not rationally uniform

$$\begin{split} \delta(k,n) &= \inf\{\delta \geq 0 : \text{every rationally uniform } bbm(s,\alpha) \subseteq [0,1]^n \\ & \text{with } \dim_{\mathbb{Q}}(\alpha) \geq n-k \text{ is } \delta\text{-central}\} \end{split}$$

For every  $n \in \mathbb{N}$ , we have  $0 = \delta(0, n) \leq \delta(1, n) \leq \ldots \leq \delta(n - 1, n) = (n - 1)/n$ .

# Zonotopal Interpretation I

For  $\alpha \in \mathbb{R}^n$  define

$$\Lambda_{\alpha} = \{\ell \in \mathbb{Z}^n : \alpha^{\mathsf{T}} \ell = 0\}, \quad V_{\alpha} = \operatorname{span}(\Lambda_{\alpha}) \quad \text{and} \quad d = \dim(V_{\alpha}) = n - \dim_{\mathbb{Q}}(\alpha).$$

For  $\alpha \in \mathbb{R}^n$  define

$$\Lambda_{\alpha} = \{\ell \in \mathbb{Z}^n : \alpha^{\mathsf{T}} \ell = 0\}, \quad V_{\alpha} = \operatorname{span}(\Lambda_{\alpha}) \quad \text{and} \quad d = \dim(V_{\alpha}) = n - \dim_{\mathbb{Q}}(\alpha).$$

the rows of a basis  $(b_1, \ldots, b_d) \in \mathbb{Z}^{n \times d}$  of  $\Lambda_{\alpha}$  generate a lattice zonotope  $Z_{\alpha} \subseteq \mathbb{R}^d$
$$\Lambda_{\alpha} = \{\ell \in \mathbb{Z}^n : \alpha^{\mathsf{T}} \ell = 0\}, \quad V_{\alpha} = \operatorname{span}(\Lambda_{\alpha}) \quad \text{and} \quad d = \dim(V_{\alpha}) = n - \dim_{\mathbb{Q}}(\alpha).$$

the rows of a basis  $(b_1, \ldots, b_d) \in \mathbb{Z}^{n \times d}$  of  $\Lambda_{\alpha}$  generate a lattice zonotope  $Z_{\alpha} \subseteq \mathbb{R}^d$ 

• view $(s, \alpha)$  is  $\delta$ -obstructed  $\iff ((s' + \mathbb{R}\alpha) + \mathbb{Z}^n) \cap \delta[0, 1]^n \neq \emptyset$ 

 $\Lambda_{\alpha} = \{\ell \in \mathbb{Z}^n : \alpha^{\mathsf{T}} \ell = 0\}, \quad V_{\alpha} = \operatorname{span}(\Lambda_{\alpha}) \quad \text{and} \quad d = \dim(V_{\alpha}) = n - \dim_{\mathbb{Q}}(\alpha).$ 

the rows of a basis  $(b_1,\ldots,b_d)\in\mathbb{Z}^{n imes d}$  of  $\Lambda_lpha$  generate a lattice zonotope  $Z_lpha\subseteq\mathbb{R}^d$ 

- view $(s, \alpha)$  is  $\delta$ -obstructed  $\iff ((s' + \mathbb{R}\alpha) + \mathbb{Z}^n) \cap \delta[0, 1]^n \neq \emptyset$
- projecting  $[0,1]^n$  onto  $V_{lpha}$  gives a lattice zonotope with vertices in  $\mathbb{Z}^n|V_{lpha}$

 $\Lambda_{\alpha} = \{\ell \in \mathbb{Z}^n : \alpha^{\mathsf{T}} \ell = 0\}, \quad V_{\alpha} = \operatorname{span}(\Lambda_{\alpha}) \quad \text{and} \quad d = \dim(V_{\alpha}) = n - \dim_{\mathbb{Q}}(\alpha).$ 

the rows of a basis  $(b_1, \ldots, b_d) \in \mathbb{Z}^{n \times d}$  of  $\Lambda_{\alpha}$  generate a lattice zonotope  $Z_{\alpha} \subseteq \mathbb{R}^d$ 

• view $(s, \alpha)$  is  $\delta$ -obstructed  $\iff ((s' + \mathbb{R}\alpha) + \mathbb{Z}^n) \cap \delta[0, 1]^n \neq \emptyset$ 

• projecting  $[0,1]^n$  onto  $V_{lpha}$  gives a lattice zonotope with vertices in  $\mathbb{Z}^n|V_{lpha}$ 

Example:  $\alpha = (1, ..., 1) \in \mathbb{R}^n$  corresponds to  $Z_{\alpha} = [0, 1]^{n-1} + [0, -1] \subseteq \mathbb{R}^{n-1}$ 

 $\Lambda_{\alpha} = \{\ell \in \mathbb{Z}^n : \alpha^{\mathsf{T}} \ell = 0\}, \quad V_{\alpha} = \operatorname{span}(\Lambda_{\alpha}) \quad \text{and} \quad d = \dim(V_{\alpha}) = n - \dim_{\mathbb{Q}}(\alpha).$ 

the rows of a basis  $(b_1, \ldots, b_d) \in \mathbb{Z}^{n \times d}$  of  $\Lambda_{\alpha}$  generate a lattice zonotope  $Z_{\alpha} \subseteq \mathbb{R}^d$ 

• view $(s, \alpha)$  is  $\delta$ -obstructed  $\iff ((s' + \mathbb{R}\alpha) + \mathbb{Z}^n) \cap \delta[0, 1]^n \neq \emptyset$ 

• projecting  $[0,1]^n$  onto  $V_{lpha}$  gives a lattice zonotope with vertices in  $\mathbb{Z}^n|V_{lpha}$ 

Example:  $\alpha = (1, \dots, 1) \in \mathbb{R}^n$  corresponds to  $Z_{\alpha} = [0, 1]^{n-1} + [0, -1] \subseteq \mathbb{R}^{n-1}$ 

Theorem (H. & Malikiosis '16)

Let  $\delta \geq 0$ , let  $s, \alpha \in \mathbb{R}^n$ , and let  $d = n - \dim_{\mathbb{Q}}(\alpha)$ . Then,

view $(s, \alpha)$  is  $\delta$ -obstructed  $\iff (\delta Z_{\alpha} + \overline{s}) \cap \mathbb{Z}^d \neq \emptyset$ .

 $\mu(\mathcal{K}) = \min\{\mu \ge 0 : (\mu\mathcal{K} + t) \cap \mathbb{Z}^d \neq \emptyset, \forall t \in \mathbb{R}^d\} = \min\{\mu \ge 0 : \mu\mathcal{K} + \mathbb{Z}^d = \mathbb{R}^d\}.$ 

 $\mu(K) = \min\{\mu \ge 0 : (\mu K + t) \cap \mathbb{Z}^d \neq \emptyset, \forall t \in \mathbb{R}^d\} = \min\{\mu \ge 0 : \mu K + \mathbb{Z}^d = \mathbb{R}^d\}.$ 

 $\rightarrow$  view $(s, \alpha)$  is  $\delta$ -obstructed, for every  $s \in \mathbb{R}^n \quad \Longleftrightarrow \quad \mu(Z_\alpha) \leq \delta$ 

 $\mu(\mathcal{K}) = \min\{\mu \ge 0 : (\mu \mathcal{K} + t) \cap \mathbb{Z}^d \neq \emptyset, \forall t \in \mathbb{R}^d\} = \min\{\mu \ge 0 : \mu \mathcal{K} + \mathbb{Z}^d = \mathbb{R}^d\}.$ 

 $\rightarrow$  view $(s, \alpha)$  is  $\delta$ -obstructed, for every  $s \in \mathbb{R}^n \quad \Longleftrightarrow \quad \mu(Z_\alpha) \leq \delta$ 

A zonotope  $Z = \sum_{i=1}^{m} [0, z_i] \subseteq \mathbb{R}^d$  is called *cubical* if any *d* of its generators are linearly independent. Every facet of a cubical zonotope is a parallelepiped.

 $\mu(\mathcal{K}) = \min\{\mu \ge 0 : (\mu \mathcal{K} + t) \cap \mathbb{Z}^d \neq \emptyset, \forall t \in \mathbb{R}^d\} = \min\{\mu \ge 0 : \mu \mathcal{K} + \mathbb{Z}^d = \mathbb{R}^d\}.$ 

 $\rightarrow$  view $(s, \alpha)$  is  $\delta$ -obstructed, for every  $s \in \mathbb{R}^n \quad \Longleftrightarrow \quad \mu(Z_\alpha) \leq \delta$ 

A zonotope  $Z = \sum_{i=1}^{m} [0, z_i] \subseteq \mathbb{R}^d$  is called *cubical* if any *d* of its generators are linearly independent. Every facet of a cubical zonotope is a parallelepiped.

### Lemma

 $\alpha$  is rationally uniform  $\iff$   $Z_{\alpha}$  is a cubical lattice zonotope

 $\mu(\mathcal{K}) = \min\{\mu \ge 0 : (\mu \mathcal{K} + t) \cap \mathbb{Z}^d \neq \emptyset, \forall t \in \mathbb{R}^d\} = \min\{\mu \ge 0 : \mu \mathcal{K} + \mathbb{Z}^d = \mathbb{R}^d\}.$ 

 $\rightarrow$  view $(s, \alpha)$  is  $\delta$ -obstructed, for every  $s \in \mathbb{R}^n \quad \Longleftrightarrow \quad \mu(Z_\alpha) \leq \delta$ 

A zonotope  $Z = \sum_{i=1}^{m} [0, z_i] \subseteq \mathbb{R}^d$  is called *cubical* if any *d* of its generators are linearly independent. Every facet of a cubical zonotope is a parallelepiped.

### Lemma

 $\alpha$  is rationally uniform  $\iff$   $Z_{\alpha}$  is a cubical lattice zonotope

Consequently,

$$\begin{split} \delta(k,n) &= \inf\{\delta \geq 0 : \text{every rationally uniform view}(s,\alpha) \subseteq \mathbb{R}^n \\ & \text{with } \dim_{\mathbb{Q}}(\alpha) \geq n-k \text{ is } \delta\text{-obstructed}\} \\ &= \sup\{\mu(Z) : Z \subseteq \mathbb{R}^d \text{ a cubical lattice zonotope with } n \text{ generators}, d \leq k\}. \end{split}$$

Let  $Z \subseteq \mathbb{R}^d$  be a zonotope such that  $int(Z + t) \cap \mathbb{Z}^d = \emptyset$ , for some  $t \in \mathbb{R}^d$ . Then there exists  $v \in \mathbb{Z}^d \setminus \{0\}$  and an absolute constant c > 0 such that

$$w(Z, v) := \max_{x \in Z} (x^{\mathsf{T}} v) - \min_{x \in Z} (x^{\mathsf{T}} v) \le c d \log d.$$

Let  $Z \subseteq \mathbb{R}^d$  be a zonotope such that  $int(Z + t) \cap \mathbb{Z}^d = \emptyset$ , for some  $t \in \mathbb{R}^d$ . Then there exists  $v \in \mathbb{Z}^d \setminus \{0\}$  and an absolute constant c > 0 such that

$$w(Z, v) := \max_{x \in Z} (x^{\mathsf{T}} v) - \min_{x \in Z} (x^{\mathsf{T}} v) \leq c d \log d.$$

If a cubical lattice zonotope  $Z \subseteq \mathbb{R}^d$  has *n* generators, then  $w(Z, v) \ge n - (d - 1)$ , for every  $v \in \mathbb{Z}^d \setminus \{0\}$ .

Let  $Z \subseteq \mathbb{R}^d$  be a zonotope such that  $int(Z + t) \cap \mathbb{Z}^d = \emptyset$ , for some  $t \in \mathbb{R}^d$ . Then there exists  $v \in \mathbb{Z}^d \setminus \{0\}$  and an absolute constant c > 0 such that

$$w(Z, v) := \max_{x \in Z} (x^{\mathsf{T}} v) - \min_{x \in Z} (x^{\mathsf{T}} v) \leq c d \log d.$$

If a cubical lattice zonotope  $Z \subseteq \mathbb{R}^d$  has *n* generators, then  $w(Z, v) \ge n - (d - 1)$ , for every  $v \in \mathbb{Z}^d \setminus \{0\}$ . Thus,  $\mu(Z) \le \frac{c \, d \log d}{n - d + 1}$ , and

# Theorem (H. & Malikiosis '16)

For every  $1 \le k \le n$ , we have

$$\frac{1}{n-k+1} \leq \delta(k,n) = \sup_{Z \subseteq \mathbb{R}^d, d \leq k} \mu(Z) \leq \frac{c \, k \log k}{n-k+1}.$$

Let  $Z \subseteq \mathbb{R}^d$  be a zonotope such that  $int(Z + t) \cap \mathbb{Z}^d = \emptyset$ , for some  $t \in \mathbb{R}^d$ . Then there exists  $v \in \mathbb{Z}^d \setminus \{0\}$  and an absolute constant c > 0 such that

$$w(Z, v) := \max_{x \in Z} (x^{\mathsf{T}} v) - \min_{x \in Z} (x^{\mathsf{T}} v) \le c d \log d.$$

If a cubical lattice zonotope  $Z \subseteq \mathbb{R}^d$  has *n* generators, then  $w(Z, v) \ge n - (d - 1)$ , for every  $v \in \mathbb{Z}^d \setminus \{0\}$ . Thus,  $\mu(Z) \le \frac{c \ d \log d}{n - d + 1}$ , and

# Theorem (H. & Malikiosis '16)

For every  $1 \le k \le n$ , we have

$$\frac{1}{n-k+1} \leq \delta(k,n) = \sup_{Z \subseteq \mathbb{R}^d, d \leq k} \mu(Z) \leq \frac{c \, k \log k}{n-k+1}.$$

# Conjecture

For every cubical lattice zonotope  $Z \subseteq \mathbb{R}^k$  with n generators holds  $\mu(Z) \leq \frac{k}{n}$ . (True for  $k \in \{1, n-1, n\}$ .)

Matthias Schymura

### Problem 1

Find a zonotopal proof of Schoenberg's Theorem, that is,  $\mu(Z) \leq \frac{n}{n+1}$ , for every cubical lattice zonotope  $Z \subseteq \mathbb{R}^n$  with n+1 generators.

# Problem 2

Identify examples of cubical lattice zonotopes in  $\mathbb{R}^k$  with *n* generators and  $\mu(Z) = \frac{k}{n}$ .

### Problem 3

Is there a theory to relate the covering radius of lattice parallelepipeds to certain graph parameters of quotient lattice graphs (analogous to Marklof & Strömbergsson for lattice simplices)?

# Some literature

- Bernardo González Merino and Matthias Henze, *On densities of lattice arrangements intersecting every i-dimensional affine subspace*, arXiv:1605.00443, (2016), submitted.
- Matthias Henze and Romanos-Diogenes Malikiosis, *On the covering radius of lattice zonotopes and its relation to view-obstructions and the lonely runner conjecture,* Aequationes Math. (2016), accepted for publication.
- Ravi Kannan and László Lovász, Covering minima and lattice-point-free convex bodies, Ann. of Math. (2) 128 (1988), no. 3, 577–602.
  - Jens Marklof and Andreas Strömbergsson, *Diameters of random circulant graphs*, Combinatorica **33** (2013), no. 4, 429–466.
- Isaac J. Schoenberg, *Extremum problems for the motions of a billiard ball. II. The*  $L_{\infty}$  *norm*, Nederl. Akad. Wetensch. Proc. Ser. A **79** = Indag. Math. **38** (1976), no. 3, 263–279.

