Einstein Workshop on Lattice Polytopes

Berlin, December IIth-I5th, 2016

Exploiting Symmetries of Lattice Polytopes

Achill Schürmann (Universität Rostock)

(with parts based on work with David Bremner, Mathieu Dutour Sikirić, Erik Friese, Katrin Herr, Dima Pasechnik and Thomas Rehn)

Polyhedral Problems

- I. Representation Conversion
- II. Integer Linear Programming

- III. Lattice Point Counting \& Exact Volumes

III.

How to use symmetry?
(DFG-Project SCHU I503/6-I)

Why care?

Polyhedra in Optimization

 in mixed integer linear programming (MILP)- Used in Scheduling, Logistics, etc.

- Standard modeling often introduces symmetries
- Marc Pfetsch and Thomas Rehn (2016+):

At least 209 of 353 MIPLIB 2010 instances have non-trivial permutation symmetries (up to group order 10^{68000})

- Bob Bixby (Aussois 201I, personal communication):

By exploiting symmetry, Gurobi currently has an average performance improvement of 30% on its test instances.

However, the used methods are only very basic and there is a lot of potential for future improvement.

CoFounder of CPLEX and Gurobi

Prelude:

What are Polyhedral Symmetries? ...and how to compute them?

- David Bremner, Mathieu Dutour Sikiric, Dmitrii V. Pasechnik, Achill Schürmann, Thomas Rehn, Computing Symmetry Groups of Polyhedra, LMS Journal of Computation and Mathematics, I7 (2014), 565-58I

Symmetry Groups

- Combinatorial, Linear, or Geometric Symmetries

$C_{6} \rtimes C_{2}$ trivial trivial

$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$
$C_{2} \rtimes C_{2}$

$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$
$C_{6} \rtimes C_{2}$

DEF: A linear automorphism of $\left\{v_{1}, \ldots, v_{m}\right\} \subset \mathbb{R}^{n}$ is a regular matrix $A \in \mathbb{R}^{n \times n}$ with $A v_{i}=v_{\sigma(i)}$ for some $\sigma \in S_{m}$

Detecting Linear Automorphisms

THM: The group of linear automorphisms is equal to the automorphism group of the complete graph K_{m} with edge labels $v_{i}^{t} Q^{-1} v_{j}$, where $Q=\sum_{i=1}^{m} v_{i} v_{i}^{t}$

$$
Q=\left(\begin{array}{cc}
4 & -2 \\
-2 & 4
\end{array}\right)
$$

A C++ Tool

 also available through polymake- helps to compute linear automorphism groups
- converts representations using Recursive Decompositions

```
H-representation
begin
316 17 integer
0100000000000000000
end
```

Getting the group:
sympol --automorphisms-only
Getting vertices up to symmetry :
sympol --adm 40 input-file

```
permutation group
9
    3 5,7 9,11 14,13 16,19 21,23 25,27 30,29 32,
    4
    331749308
    V-representation
    * UP TO SYMMETRY
    begin
...
end
permutation group
* order }1152
* w.r.t. to the original inequalities/vertices
```


Detecting Linear Lattice Automorphisms?

fixed space

PROB: We have no good general tools to compute linear lattice point preserving automorphisms of polytopes

$$
\begin{aligned}
& \text { or } \mathrm{GL}_{n}(\mathbb{Z}) \text {-symmetries of a polytope } P \\
& \qquad\left\{M \in \mathrm{GL}_{n}(\mathbb{Z}): M P=P\right\}
\end{aligned}
$$

(coming with nice geometric properties)

EX: Among the 50 smallest MIPLIB instances (with $n \leq 1500$) six have $G L_{n}(\mathbb{Z})$-symmetries that are no signed permutations!

Examples

(of Linear Lattice Automorphisms)

- $\left(\begin{array}{cc}0 & -\mathrm{I} \\ \mathrm{I} & \mathrm{I}\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Z}) \quad$ order 6 fixed space $\{0\}$

$$
-\left(\begin{array}{cccc}
0 & \cdots & -I & 0 \\
I & 0 & \cdots & 0 \\
& \ddots & & \\
0 & \cdots & I & I
\end{array}\right) \in \operatorname{GL}_{n}(\mathbb{Z}) \quad \text { order } 2(\mathrm{n}-\mathrm{I})
$$

fixed space $\left\langle e_{n}\right\rangle$

Frontier I:

Exploiting Polyhedral Symmetries in Integer Convex Optimization

- Katrin Herr, Thomas Rehn and Achill Schürmann, Exploiting Symmetry in Integer Convex Optimization using Core Points, Operations Research Letters, 41 (20I3), 298-304
- Katrin Herr, Thomas Rehn and Achill Schürmann, On Lattice-Free Orbit Polytopes, Discrete \& Computational Geometry, 53 (20I5), I44-I72

Convex Optimization

Optimum attained within fixed subspace
with integrality

Optimum not necessarily attained in fixed subspace

Core Points

(see Bödi, Herr, Joswig, Math. Program. Ser.A, 2013 for $\Gamma=S_{n}$)
DEF: $\quad z \in \mathbb{Z}^{n}$ is a core point for $\Gamma \leq \mathrm{GL}_{n}(\mathbb{Z})$ if

$$
\underline{(\operatorname{conv} \Gamma z)} \cap \mathbb{Z}^{n}=\Gamma z
$$

THM: If a Γ-invariant convex integer optimization problem has a solution, then a core point attains the optimal value.
(even a representative w.r.t. Γ)

Core Points of Symmetric Groups

- For $\Gamma=S_{n}$ acting on coordinates of \mathbb{R}^{n}, all core points are $0 / I$-vectors up to translations by multiples of $\mathbb{1}$
- Core points of direct products are direct products of core points
- For $\Gamma=S_{n_{1}} \times \cdots \times S_{n_{k}}$ core points are $0 / I$-vectors up to translations of integral vectors from the fixed space
- Even naive enumeration approach beats commercial software

1. project polytope and \mathbb{Z}^{n} onto fixed space
2. enumerate projected integer points in projected polytope
3. check feasibility of fibers by core sets

Rehn's reformulation idea

Thomas Rehn
(PhD 2014)

Core set- \mathcal{V}
Let c_{1}, \ldots, c_{N} be core set representatives. Then:

$$
\operatorname{core}(\Gamma) \cong\left\{\zeta_{0} \mathbb{1}+\sum_{i=1}^{N} \zeta_{i} c_{i}: \zeta_{0} \in \mathbb{Z}, \zeta_{i} \in\{0,1\}, \sum_{i=1}^{N} \zeta_{i} \leq 1\right\}
$$

- new IP-variables $\zeta_{0}, \zeta_{1}, \ldots, \zeta_{N}$
- for \mathcal{S}_{n} or direct products thereof: same number of variables, $N=n-1$

Solves "toll-like"

- open problem from MIPLIB 2010 collection
- 2883 binary variables, 4408 constraints
- automorphism group contains $\left(\mathcal{S}_{2}\right)^{230}$ as a subgroup
- after variable transformation and presolving there are 230 less variables and 460 less constraints
- transformed instance is solved by Gurobi 5.0 with 16 threads in about 18 hours

Transitive Permutation Groups

(with all coordinates in the same orbit)

- coming with a decomposition $\mathbb{R}^{n}=\bigoplus_{i=1}^{k} v_{i}$
with the V_{i} being Γ-invariant irreducible subspaces $\left(V_{1}=\langle\mathbb{I}\rangle\right)$

THM: For $\Gamma \leq S_{n}$ acting transitive on coordinates of \mathbb{R}^{n} there exists a constant $C(n)$, such that for every core point $z \in \mathbb{Z}^{n}$ there is a Γ-invariant subspace $V \neq\langle\mathbb{I}\rangle$
with $\left\|\left.z\right|_{v}\right\| \leq C(n)$.

Finite vs. Infinite

(for transitive permutation groups)
COR: If Γ acts \mathbb{R}-irreducibly on $\mathbb{1}^{\perp}$, there exist only finitely many core points
= 2-homogeneous
(Peter Cameron, 1972) (up to translations by multiples of \mathbb{I})

CONJECTURE:

All other transitive permutation groups have infinitely many core points up to translations by multiples of $\mathbb{1}$

- true for all groups with irrational invariant subspaces
- true for all imprimitive groups (with rational inv. subspaces)
- true for all primitive groups up to degree $n=127$

Creating difficult IP-instances

using primitive permutation groups with infinite core sets

Table 7.2.: IP feasibility for orbit polytopes of primitive groups

		Gurobi			polymake \& Gurobi		
Id	$\max \left\|A_{i j}^{-}\right\|$	\#nodes $\left(10^{6}\right)$	time (s)		\#nodes $\left(10^{6}\right)$	time (s)	\#subp.
$15(5)$	2851	252.0	6017.5		0.0	10.7	29
$15(5)$	11101	387.6	>10800.0		0.3	16.9	29
$15(9)$	2053	0.0	0.7		0.0	54.3	456
$15(9)$	7993	0.3	23.8	0.0	63.4	456	
$16(6)$	2749	102.1	1905.2	0.0	6.4	24	
$16(6)$	10681	548.7	>10800.0	0.0	6.5	24	
$16(9)$	2713	0.4	21.9		0.0	38.2	280
$16(9)$	6013	3.3	96.9		0.0	39.3	280
$21(8)$	9352	35.7	1609.1		3.3	120.6	22
$21(8)$	36847	216.4	>10800.0		200.2	6765.7	22
$21(8)$	36847	216.4	>10800.0		69.6	1944.0	27
$21(12)$	287	1.0	57.1		0.2	34.8	150
$21(12)$	2155	242.9	>10800.0		74.8	3368.5	150
$21(12)$	2155	242.9	>10800.0		29.5	828.9	349

using Gurobi 5.5 .0 on Intel Core-i7 with eight logical CPUs at 2.8 GHz and 16 GB RAM

Frontier II:

Exploiting Polyhedral Symmetries in Lattice Point Counting and Computing Exact Volumes

- Achill Schürmann, Exploiting Polyhedral Symmetry in Social Choice, Social Choice and Welfare, 40 (2013), I097-I I IO
- Erik Friese,William V. Gehrlein, Dominique Lepelley and Achill Schürmann, The impact of dependence among voters' preferences with partial indifference, Quality \& Quantity, 2016+

Polyhedral Model in Social Choice

- Impartial Anonymous Culture (IAC) assumption: every voting situation is equally likely
- for three candidates a, b and c, let
n_{ab} number of voters with choice $\mathrm{a}>\mathrm{b}>\mathrm{c}$
n_{ac} number of voters with choice $\mathrm{a}>\mathrm{c}>\mathrm{b}$
$n_{\text {ba }}$ number of voters with choice $\mathrm{b}>\mathrm{a}>\mathrm{c}$
$\left(n_{\mathrm{ab}}, n_{\mathrm{ac}}, n_{\mathrm{ba}}, n_{\mathrm{bc}}, n_{\mathrm{ca}}, n_{\mathrm{cb}}\right)$ describes a voting situation

$$
N=n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{ca}}+n_{\mathrm{cb}}
$$

is total number of voters

Counting Lattice Points

- Candidate a is a Condorcet winner if
(1) $\quad n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ca}}>n_{\mathrm{ba}}+n_{\mathrm{bc}}+n_{\mathrm{cb}} \quad$ (a beats b$)$
$\underline{(2)}$ and $n_{\mathrm{ab}}+n_{\mathrm{ac}}+n_{\mathrm{ba}}>n_{\mathrm{ca}}+n_{\mathrm{cb}}+n_{\mathrm{bc}} \quad$ (a beats c$)$

That is: $\quad\left(n_{\mathrm{ab}}, n_{\mathrm{ac}}, n_{\mathrm{ba}}, n_{\mathrm{bc}}, n_{\mathrm{ca}}, n_{\mathrm{cb}}\right) \in \mathbb{Z}_{\geq 0}^{6}$
is in the polyhedron
$P_{N}=\left\{n \in \mathbb{R}^{6} \mid N=\sum_{x y} n_{x y}, n_{x y} \geq 0\right.$ and $\left.\underline{(1),(2)}\right\}$

Likeliness of Condorcet paradox

Quasi-polynomial for $\#\left(P_{N} \cap \mathbb{Z}^{6}\right)$ can be obtained using barvinok, Latte or Normaliz

$$
\begin{aligned}
& 1 / 384 * N^{\wedge} 5 \\
+ & (-1 / 64 *\{(1 / 2 * N+0)\}+3 / 64) * N^{\wedge} 4 \\
+ & (-19 / 96 *\{(1 / 2 * N+0)\}+31 / 96) * N^{\wedge} 3 \\
+ & (-29 / 32 *\{(1 / 2 * N+0)\}+17 / 16) * N^{\wedge} 2 \\
+ & (-343 / 192 *\{(1 / 2 * N+0)\}+5 / 3) * N \\
+ & (-83 / 64 *\{(1 / 2 * N+0)\}+1)
\end{aligned}
$$

(Number of voting situations with N voters and candidate a as Condorcet winner)

Likeliness of
Condorcet Paradox

$$
1-3 \frac{\text { q-poly }}{\binom{N+5}{5}}
$$

For large elections $(N \rightarrow \infty)$:

$$
1-3 \frac{1 / 384}{1 / 120}=\frac{1}{16}=0.0625
$$

Grouping of variables

$$
n_{\mathrm{a}}
$$

n_{R}
$\left(n_{\mathrm{a}}, n_{\mathrm{ba}}, n_{\mathrm{ca}}, n_{\mathrm{R}}\right)$ describes $\left(n_{\mathrm{a}}+1\right)\left(n_{\mathrm{R}}+1\right)$ voting situations
(former lattice points)

THUS: the polytope decomposes into fibers of simplotopes (cross products of simplices)

The next generation Ehrhart theory Counting with polynomial weights

- Two methods:
- via rational generating functions
- via local Euler-Maclaurin formula
- "experimental" implementation available in barvinok
- since May 2013 in Normaliz and since Aug 2013 in LattE integrale

Baldoni, Berline,Vergne, 2009

Using local formulas

$$
\#\left(P \cap \mathbb{Z}^{n}\right)=\sum_{F \text { face of } P} \theta(P, F) \cdot \operatorname{relvol}(F)
$$

with $\theta(P, F)$ depending only on the outer normal cone of P at F

> (Morelli, McMullen, I 993)

There are many different choices for θ :

- Pommersheim and Thomas, 2004
- $O_{n}(\mathbb{Z})$ invariant, Berline and Vergne, 2007

- invariant with respect to a given group $\Gamma \leq \mathrm{GL}_{n}(\mathbb{Z})$

Conclusions?

... a lot TODOs

- ANALYZE GROUPS
compute and analyze more (mixed) integer linear symmetry groups of symmetric lattice polytope problems
- EXTENDTHEORY
classify / approximate core points for interesting groups; obtain symmetric decompositions and invariant local formulas
- NEW ALGORITHMS
create new algorithms and heuristics that exploit knowledge about core points, respectively symmetric decompositions

