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Why care?



Polyhedra in Optimization

•  Used in Scheduling, Logistics, etc.

•  Standard modeling often introduces symmetries 

in mixed integer linear programming (MILP)

•  Marc Pfetsch and Thomas Rehn (2016+):     
       At least 209 of 353 MIPLIB 2010 instances have  
       non-trivial permutation symmetries     ( up to group order 1068000 )

•  Bob Bixby (Aussois 2011, personal communication):
         

CoFounder of  
CPLEX and Gurobi

By exploiting symmetry, Gurobi currently has an  
average performance improvement of 30% on its test instances.  

However, the used methods are only very basic 
and there is a lot of potential for future improvement.



What are Polyhedral Symmetries?

Prelude:

...and how to compute them?

• David Bremner, Mathieu Dutour Sikiric, Dmitrii V. Pasechnik,  
Achill Schürmann, Thomas Rehn, Computing Symmetry Groups of 
Polyhedra, LMS Journal of Computation and Mathematics, 17 (2014), 565 - 581       



Symmetry Groups

• Combinatorial,  Linear,  or Geometric Symmetries

DEF: A linear automorphism of {v
1

, . . . ,vm}⇢ Rn
is a

regular matrix A 2 Rn⇥n
with Avi = vs(i) for some s 2 Sm
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Detecting Linear Automorphisms

THM: The group of linear automorphisms is equal to

the automorphism group of the complete graph Km

with edge labels vt
iQ
�1v j, where Q =

m
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uses PermLib or NAUTY by Brendan McKay
for computing automorphisms of colored graphs



A C++ Tool 

• helps to compute linear automorphism groups 

• converts representations using Recursive Decompositions 

also available through polymake

Getting the group:

Getting vertices up to symmetry :



Detecting Linear  
Lattice Automorphisms?

PROB:  We have no good general tools to compute linear
                  lattice point preserving automorphisms of polytopes

six have GLn(Z)-symmetries
EX:  Among the 50 smallest MIPLIB instances 
                                                   that are no signed permutations! 
         

(with n � 1500)

fixed space

or GLn(Z)-symmetries of a polytope P
{M � GLn(Z) : MP = P}

( coming with nice geometric properties )



Examples 
(of Linear Lattice Automorphisms)
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Exploiting Polyhedral Symmetries
in Integer Convex Optimization

Frontier I:

• Katrin Herr,  Thomas Rehn and Achill Schürmann, Exploiting Symmetry in 
Integer Convex Optimization using Core Points, Operations Research Letters, 
41 (2013), 298-304       

• Katrin Herr,  Thomas Rehn and Achill Schürmann, On Lattice-Free Orbit 
Polytopes, Discrete & Computational Geometry, 53 (2015), 144-172       



The general convex case

restriction to fixed space { � R : � = for all � � �}
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Convex Optimization

Optimum attained within  
        fixed subspace  

Integrality restrictions. . .

. . . break everything.
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  Optimum not necessarily  
  attained in fixed subspace  

... with integrality constraints

without integrality with integrality



Core set

Symmetries of a convex optimization problem with integer restrictions:

• in general: � ⇥ (Z, )

• here: only permutation symmetries � ⇥ S

Definition (Core set)
• ⇤ Z is a core point for � if

( � ) ⇧ Z = �

• The core set (�) of a group � is the set of all core points.

August 20, 2012 c� 2013 UNIVERSITÄT ROSTOCK | FACULTY OF MATHEMATICS AND NATURAL SCIENCES, INSTITUTE OF MATHEMATICS 9 / 17

Core Points

DEF:
(conv �z) � Zn = �z

Core sets

How can we test feasibility of a fiber efficiently?

I LP: Barycenters (convex combinations of orbit points) are characteristic for the
feasibility of their fibers

I ILP: In general, barycenters are not integral� not feasible!

� Look for integral convex combinations of orbit points!

Core point
A point z ⇥ Zn is called a core point w.r.t. a
group � if conv(�z) ⇤ Zn = �z.

Core set
Given a set S, the core set core�(S) is the
set of all core points in conv(�S).

x1 + x2 + x3 = 1

July 11, 2011 | TU Darmstadt | Alg. Disc. Math. | Katrin Herr | 10

z � Zn is a core point for � � GLn(Z) if
Core set and optimization
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THM: If a �-invariant convex integer optimization problem
has a solution, then a core point attains the optimal value.

( even a representative            )w.r.t. �

fixed space

( see Bödi, Herr, Joswig, Math. Program. Ser. A, 2013 for            )� = Sn



Core Points of Symmetric Groups

Naïve enumeration approach

1. project polytope and Z onto
fixed space

2. enumerate projected integer
points in projected polytope

3. check feasibility of fibers by
core sets

BÖDI, HERR, JOSWIG 2012, S
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• Even naive enumeration approach beats commercial software    
Naïve enumeration approach

1. project polytope and Z onto
fixed space

2. enumerate projected integer
points in projected polytope

3. check feasibility of fibers by
core sets

BÖDI, HERR, JOSWIG 2012, S
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fixe
d sp

ace

•  For � = Sn acting on coordinates of Rn, all core points

are 0/1-vectors up to translations by multiples of I

•     Core points of direct products are direct products of core points

up to translations of integral vectors from the fixed space 
•     For � = Sn1 � · · · � Snk core points are 0/1-vectors



Core set-V
Let , . . . , be core set representatives. Then:

(�) ⌅=

�
� +

⇤

=

� : � ⇧ Z, � ⇧ { , },
⇤

=

� ⇤
⇥

• new IP-variables � , � , . . . , �
• for S or direct products thereof:

same number of variables, = �
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Solves “ ”

• open problem from MIPLIB 2010 collection

• 2883 binary variables, 4408 constraints

• automorphism group contains (S ) as a subgroup

• after variable transformation and presolving there are 230 less variables and
460 less constraints

• transformed instance is solved by Gurobi 5.0 with 16 threads in about 18
hours

August 20, 2012 c� 2013 UNIVERSITÄT ROSTOCK | FACULTY OF MATHEMATICS AND NATURAL SCIENCES, INSTITUTE OF MATHEMATICS 16 / 17

Thomas Rehn
( PhD 2014 )  

 

Rehn’s reformulation idea

Toll-like receptor
(from Wikipedia)

Solves “ ”

• open problem from MIPLIB 2010 collection

• 2883 binary variables, 4408 constraints

• automorphism group contains (S ) as a subgroup

• after variable transformation and presolving there are 230 less variables and
460 less constraints

• transformed instance is solved by Gurobi 5.0 with 16 threads in about 18
hours
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Transitive Permutation Groups
( with all coordinates in the same orbit )

• coming with a decomposition Rn =
k�

i=1

Vi

with the Vi being �-invariant irreducible subspaces ( V1 = �I� )

THM:



Finite vs. Infinite
( for transitive permutation groups )

COR:

CONJECTURE:

All other transitive permutation groups have infinitely  
 many core points up to translations by multiples of  

• true for all groups with irrational invariant subspaces

• true for all imprimitive groups (with rational inv. subspaces)

• true for all primitive groups up to degree 

( Peter Cameron, 1972 )

= 2-homogeneous



Creating difficult IP-instances
using primitive permutation groups with infinite core sets  

using Gurobi 5.5.0 on Intel Core-i7 with eight logical CPUs at 2.8GHz and 16 GB RAM



Exploiting Polyhedral Symmetries
in Lattice Point Counting

and Computing Exact Volumes

Frontier II:

• Erik Friese, William V. Gehrlein, Dominique Lepelley and Achill 
Schürmann, The impact of dependence among voters’ 
preferences with partial indifference, Quality & Quantity, 2016+       

• Achill Schürmann, Exploiting Polyhedral Symmetry in Social 
Choice, Social Choice and Welfare, 40 (2013), 1097-1110       



Polyhedral Model in Social Choice
• Impartial Anonymous Culture (IAC) assumption:

every voting situation is equally likely 

• for three candidates a, b and c, let  

nba number of voters with choice b > a > c

nab number of voters with choice a > b > c

nac number of voters with choice a > c > b

...

N = nab + nac + nba + nbc + nca + ncb

is total number of voters

N

N

N

(nab, nac, nba, nbc, nca, ncb) describes a voting situation



Counting Lattice Points

• Candidate a is a Condorcet winner if

( a beats b )nab + nac + nca > nba + nbc + ncb

and ( a beats c )nab + nac + nba > nca + ncb + nbc

(1)

(2)

That is:   (nab, nac, nba, nbc, nca, ncb) 2 Z6
�0

is in the polyhedron

P
N

=

(
n ⇥ R6 | N =

X

xy

n
xy

, n
xy

� 0 and (1), (2)

)



Likeliness of Condorcet paradox

Quasi-polynomial for #(PN \ Z6) can be obtained

using  barvinok, Latte or Normaliz

( Number of voting situations with N voters and candidate a as Condorcet winner )

1� 3
q-poly�N+5

5

�
Likeliness of 
Condorcet 
Paradox

For large elections              :

1� 3 1/384
1/120 = 1

16 = 0.0625

(N ! 1)



N = nab + nac + nba + nca + nbc + ncb

nab + nac + nca > nba + nbc + ncb

nab + nac + nba > nca + ncb + nbc

Grouping of variables

(na, nba, nca, nR) describes (na + 1)(nR + 1) voting situations

(former lattice points)

na nR

na nR

nR

nR

na

na

THUS:  the polytope decomposes into fibers of 
  simplotopes (cross products of simplices)
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The next generation Ehrhart theory 
Counting with polynomial weights

Baldoni, Berline, Vergne, 2009

• Two methods:  

• via local Euler-Maclaurin formula 

• via rational generating functions 

• “experimental” implementation  
      available in barvinok  

• since May 2013 in Normaliz and 

since Aug 2013 in LattE integrale  

Verdoolaege  Bruns

Köppe DeLoera



Using local formulas

#(P � Zn) =
�

F face of P

�(P, F) · relvol(F)

with �(P, F) depending only on the outer normal cone of P at F

(Morelli, McMullen, 1993)

• Pommersheim and Thomas, 2004 

There are many different choices for �:

•  On(Z) invariant, Berline and Vergne, 2007 Maren

•  invariant with respect to a given group � � GLn(Z)



Conclusions?



• EXTEND THEORY  
classify / approximate core points for interesting groups;  
obtain symmetric decompositions and invariant local formulas

• NEW ALGORITHMS  
create new algorithms and heuristics that exploit knowledge 
about core points, respectively symmetric decompositions 

… a lot TODOs

• ANALYZE GROUPS  
compute and analyze more (mixed) integer linear symmetry 
groups of symmetric lattice polytope problems 


