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Polyhedral Problems

* |. Representation Conversion

* |l. Integer Linear Programming

* [ll.Lattice Point Counting & Exact Volumes
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How to use symmetry !
( DFG-Project SCHU 1503/6-1)



Why care!



Polyhedra in Optimization

in mixed integer linear programming (MILP)

* Used in Scheduling, Logistics, etc.

* Standard modeling often introduces symmetries

* Marc Pfetsch and Thomas Rehn (2016+):
At least 209 of 353 MIPLIB 2010 instances have

non-trivial permutation symmetries ( up to group order 10" )

* Bob Bixby (Aussois 201 |, personal communication):

By exploiting symmetry, Gurobi currently has an
average performance improvement of 30% on its test instances.
However, the used methods are only very basic
and there is a lot of potential for future improvement.

CoFounder of
CPLEX and Gurobi



Prelude:

What are Polyhedral Symmetries!?
...ahd how to compute them!

® David Bremner, Mathieu Dutour Sikiric, Dmitrii V. Pasechnik,
Achill Schurmann, Thomas Rehn, Computing Symmetry Groups of

Polyhedra, LMS Journal of Computation and Mathematics, 17 (2014), 565 - 581



Symmetry Groups

® Combinatorial, Linear, or Geometric Symmetries

O O

6 X C2 6 X C2 6 X C2
trivial Ce X (> Ce X (>
trivial Cr Xy Ce X ()

DEF: A linear automorphism of {vy,...,v,,} CR"isa

regular matrix A € R"*" with Av; = v4(;) for some 6 €



Detecting Linear Automorphisms

THM: The group of linear automorphisms 1s equal to

the automorphism group of the complete graph K,

with edge labels viQ ™!y i, where Q = Z vt
=1

l

Sym uses PermLib or NAUTY by Brendan McKay

Pol for computing automorphisms of colored graphs




A C++ Tool

also available through polymake 4’(

® helps to compute linear automorphism groups

® converts representations using Recursive Decompositions

H-representation permutation group
begin 9
316 17 integer 35,7 9,11 14,13 16,19 21,23 25,27 30,29 32,
1000000000000 0O e
4
end 33 17 49 308
Getting the group: V-representation
. * UP TO SYMMETRY
sympol —-—-automorphisms-only begin
. . end
Getting vertices up to symmetry : permutation group

* order 11520
* w.r.t. to the original 1inequalities/vertices

sympol --adm 40 1input-file



Detecting Linear
Lattice Automorphisms!?

fixed space

PROB: We have no good general tools to compute linear
lattice point preserving automorphisms of polytopes

or GL,(”Z)-symmetries of a polytope P
IM <€ GL,(Z) : MP =P}

( coming with nice geometric properties )

EX: Among the 50 smallest MIPLIB instances (with n < [500)
six have GL,(Z)-symmetries that are no signed permutations!



Examples

(of Linear Lattice Automorphisms)

0 —I
O (I | > € GLy(Z)  order 6

fixed space {0}

o o € GL,(2)

fixed space (ep)

‘ \ (0
()
order 2(n-1)



Frontier I:

Exploiting Polyhedral Symmetries
in Integer Convex Optimization

e Katrin Herr, Thomas Rehn and Achill Schurmann, Exploiting Symmetry in

Integer Convex Optimization using Core Points, Operations Research Letters,
41 (2013), 298-304

® Katrin Herr, Thomas Rehn and Achill Schurmann, On Lattice-Free Orbit
Polytopes, Discrete & Computational Geometry, 53 (2015), 144-172



Convex Optimization

without integralit with integralit
g Y g Y

Optimum attained within Optimum not necessarily

fixed subspace attained in fixed subspace

... with integrality constraints



Core Points

( see Bodi, Herr, Joswig, Math. Program. Ser.A,2013 for I' = §,)

DEF: z € 7Z" is a core point for I' < GL,(Z) if
(convIl'z)NZ" =Tz &

fixed space

THM: If a I'-invariant convex integer optimization problem
has a solution, then a core point attains the optimal value.

( even a representative w.r.t. 1)



Core Points of Symmetric Groups

e For I' = §, acting on coordinates of R", all core points

are 0/ -vectors up to translations by multiples of T
® Core points of direct products are direct products of core points

® Forl' =35, X ---Xx§, core points are 0/|-vectors

up to translations of integral vectors from the fixed space

® Even naive enumeration approach beats commercial software

1. project polytope and Z" onto

\ P e - / fixed space
. N : : | | 2. enumerate projected integer
/ / sQQ’C/ | points in projected polytope
F° : : :
Q\/ | : : : 3. check feasibility of fibers by
/ : : : : core sets




Rehn’s reformulation idea

Core set-V
Let c1, ..., cy be core set representatives. Then:

N N
core(F) = {C:()]l + ZC,’C,‘ : C() -~ Z, C,' - {O, 1}, ZC, < 1}
i=1 i=1

Thomas Rehn ® new |P-variables (o, (1, ..., (N
(PhD 2014) ® for S, or direct products thereof:
same number of variables, N = n — 1

Solves “toll-1like”

open problem from MIPLIB 2010 collection
2883 binary variables, 4408 constraints

automorphism group contains (S, )%3° as a subgroup

after variable transformation and presolving there are 230 less variables and
460 less constraints

® transformed instance is solved by Gurobi 5.0 with 16 threads in about 18 Toll-like receptor
hours (from Wikipedia)



Transitive Permutation Groups

( with all coordinates in the same orbit )

k
® coming with a decomposition R" = 69 V,

i=I

with the V; being I'-invariant irreducible subspaces ( V, = (T) )

THM: For ' <'§, acting transitive on coordinates of R"
there exists a constant C(n), such that for every core point z € Z"
there is a '-invariant subspace V # (T)
with ||z|y|| < C(n). v




Finite vs. Infinite

( for transitive permutation groups )

COR: If I" acts R-irreducibly on T+, = 2-homogeneous
there exist only finitely many core points ( Peter Cameron, 1972 )
(up to translations by multiples of T)

CONJECTURE:

All other transitive permutation groups have infinitely
many core points up to translations by multiples of T

e true for all groups with irrational invariant subspaces

® true for all imprimitive groups (with rational inv. subspaces)

® true for all primitive groups up to degree n = |27



Creating difficult IP-instances

using primitive permutation groups with infinite core sets

Table 7.2.: IP feasibility for orbit polytopes of primitive groups

Gurobi polymake & Gurobi
Id max |~1,_J #nodes (10°) time (s) #nodes (10°) time(s)  #subp.
15(5) 2851 252.0 6017.5 0.0 10.7 29
15(5) 11101 387.6  >10800.0 0.3 16.9 29
15(9) 2053 0.0 0.7 0.0 54.3 456
15(9) 7993 0.3 23.8 0.0 63.4 456
16(6) 2749 102.1 1905.2 0.0 6.4 24
16(6) 10681 548.7 >10800.0 0.0 6.5 24
16(9) 2713 0.4 21.9 0.0 38.2 280
16(9) 6013 3.3 96.9 0.0 39.3 280
21(8) 9352 35.7 1609.1 33 120.6 22
21(8) 36847 216.4 >10800.0 200.2 6765.7 22
21(8) 36847 216.4 >10800.0 69.6 1944.0 27
21(12) 287 1.0 57.1 0.2 34.8 150
21(12) 2155 242.9 >10800.0 74.8 3368.5 150
21(12) 2155 242.9 >10800.0 29.5 828.9 349

using Gurobi 5.5.0 on Intel Core-i7 with eight logical CPUs at 2.8GHz and 16 GB RAM



Frontier ll:

Exploiting Polyhedral Symmetries
in Lattice Point Counting
and Computing Exact Volumes

® Achill Schurmann, Exploiting Polyhedral Symmetry in Social
Choice, Social Choice and Welfare, 40 (2013), 1097-1110

® Erik Friese,William V. Gehrlein, Dominique Lepelley and Achill
Schurmann, The impact of dependence among voters’
preferences with partial indifference, Quality & Quantity, 2016+



Polyhedral Model in Social Choice

* |mpartial Anonymous Culture (IAC) assumption:
every voting situation is equally likely

e for three candidates a, b and c, let

n., humber of voters with choice a > b > ¢
n.. humber of voters with choice a >c > b
nL,s humber of voters with choice b > a > ¢

(Mab, Mac, Mbas Mhe, Tea, Neb) deSCribes a voting situation

N = Nab + Mac + Npa + Npe + Neca + Neb

IS total number of voters

.,L. g



Counting Lattice Points

e Candidate a is a Condorcet winner if
:

N
N

Nab T Mac + Nca > MNpa T Npc + Ncb ( a beats b )

N
N

and 7ab + NMac + Mba > Neca + Neb + Nbe ( a beats ¢ )

0

That is: (naba Nacs Mbay Nbey Tleas ncb) = Zgo

is in the polyhedron ﬁ

Py = {nER6 | N:any, ngy > 0 and (1),(2)}

Xy




Likeliness of Condorcet paradox

Quasi-polynomial for #(Px N Z°) can be obtained

using barvinok, Latte or Normaliz

1/384 x N™5

( -1/64 % {( 1/2 *x N + @ )} + 3/64 ) x N4

( -19/96 % {( 1/2 * N + 0 )} + 31/96 ) % N~3
( -29/32 % {( 1/2 *x N + @ )} + 17/16 ) *x N™2
( -343/192 x {( 1/2 x N+ ©0 ) } +5/3 ) x N
( -83/64 x {( 1/2 *x N+ 0 )} + 1)

+ + + + +

( Number of voting situations with N voters and candidate a as Condorcet winner )

Likeliness of ) Sq—poly For large elections (N — o0):

Condorcet 1 (N+5)

Paradox 5 1_31/384 = 1 = 0.0625

1/120 16




Grouping of variables

na _|_ nca > nba _|_ nR

Tl + Npa > MNea T+ nR

N — T _I_ M b3 _l_ T3 _|_ TR

N4 "R

(na, Npa, Nca, Nr) describes (n, + 1)(ng + 1) voting situations

(former lattice points)

THUS: the polytope decomposes into fibers of
simplotopes (cross products of simplices)



The next generation Ehrhart theory
Counting with polynomial weights

® Two methods:

* via rational generating functions

e via local Euler-Maclaurin formula

® “experimental”’ implementation

available in barvinok

® since May 2013 in Normaliz and
since Aug 2013 in LattE integrale




Using local formulas

#(PNZ") = Y  6(PF)-relvol(F)

F face of P

with 6(P, F) depending only on the outer normal cone of P at F

(Morelli, McMullen, 1993)

There are many different choices for 6:

® Pommersheim and Thomas, 2004

e O,(Z) invariant, Berline and Vergne, 2007

Maren

e invariant with respect to a given group I' < GL,(Z)



Conclusions?



... alot TODOs

o ANALYZE GROUPS
compute and analyze more (mixed) integer linear symmetry

groups of symmetric lattice polytope problems

e EXTEND THEORY
classify / approximate core points for interesting groups;
obtain symmetric decompositions and invariant local formulas

e NEW ALGORITHMS
create new algorithms and heuristics that exploit knowledge

about core points, respectively symmetric decompositions



