Q-Gorenstein deformation families of Fano varieties

The combinatorics of Mirror Symmetry

or

Alexander Kasprzyk

Fano manifolds

Smooth varieties, called *manifolds*, come with a natural notion of curvature, and fall into one of three classes.

There are finitely many Fano manifolds in each dimension.

Fano manifolds: Basic building blocks of geometry

Fano manifolds are the building blocks from which other varieties are formed.

- Both from the Minimal Model Program
- And in terms of explicit constructions

Fano art by Gemma Anderson

The classification of Fano manifolds is known up to dimension 3.

- Dimension 1:
 - \mathbb{P}^1 (i.e. the Reimann sphere)
- Dimension 2 (del Pezzo, 1880s):
 - \mathbb{P}^2
 - $\mathbb{P}^1 \times \mathbb{P}^1$
 - $\bullet\,$ The blow-up of \mathbb{P}^2 in at most 8 points.

These are called *del Pezzo* surfaces.

- Dimension 3 (Mori–Mukai, 1980s):
 - 105 cases

Very little is known in dimension \geq 4.

Fano polytopes and toric geometry

Fix a lattice $N \cong \mathbb{Z}^n$. A convex lattice polytope $P \subset N \otimes \mathbb{Q} = N_{\mathbb{Q}}$ is *Fano* if:

- $\dim(P) = n;$
- $0 \in int(P);$
- each $v \in vert(P)$ is a primitive lattice point of N.

Two Fano polytopes P and Q are considered to be isomorphic if there exists a change of basis of N sending P to Q. That is,

We consider Fano polytopes only up to isomorphism.

Fano polytopes and toric geometry

To a Fano polytope $P \subset N_{\mathbb{Q}}$ we associate the spanning fan. The spanning fan describes a *toric* Fano variety X_P .

The geometry of X_P is encoded in the combinatorics of P. For example, the singularities of X_P can be read off P.

Toric Fano manifolds: Classification

A Fano polytope *P* is *smooth* if:

• For each facet F of P, vert(F) are a \mathbb{Z} -basis of N.

n-dimensional toric Fano manifold X

toric geometry

smooth Fano polytope P

• Dimension 2:

• \mathbb{P}^2 ; $\mathbb{P}^1 \times \mathbb{P}^1$; the blow-up of \mathbb{P}^2 in at most 3 points.

Toric Fano manifolds: Classification

Being toric is *unusual*:

• Dimension 2:

- 5 of the 10 del Pezzo surfaces are toric.
- Dimension 3:
 - 18 of the 105 Fano manifolds are toric.

But being toric is *good*: we can use the combinatorics of lattice polytopes to study them.

For example, Øbro (2007) gave an efficient algorithm for classifying smooth Fano polytopes in any dimension.

Dimension	1	2	3	4	5	6	7	8
Number	1	5	18	124	866	7 622	72 256	749 892

They grow slowly – approximately by a power of 10 per dimension.

Mirror Symmetry

 π

Illustrate this equivalence in the case of $X = \mathbb{P}^2$. We start with the Laurent polynomial

$$f = x + y + \frac{1}{xy} \in \mathbb{C}[x^{\pm 1}, y^{\pm 1}]$$

Associated with f is its *period*

$$\pi_f(t) = \left(\frac{1}{2\pi i}\right)^2 \int_{|x|=|y|=1} \frac{1}{1-tf} \frac{dx}{x} \frac{dy}{y}, \quad t \in \mathbb{C}, |t| \ll \infty.$$

The Taylor expansion of the period has coefficients given by the constant term of successive powers of f

$$f(t) = \sum_{k \ge 0} \operatorname{coeff}_1(f^k) t^k$$

= 1 + 6t³ + 90t⁶ + 34650t⁹ + 756756t¹² + 17153136t¹⁵ + ...
= $\sum_{k \ge 0} \frac{(3k)!}{(k!)^3} t^{3k}$

 $\pi_f(t) = 1 + 6t^3 + 90t^6 + 34650t^9 + 756756t^{12} + 17153136t^{15} + \dots$

The coefficients of π_f agree with certain Gromov–Witten invariants of X. Roughly speaking, they count curves in X with given degree and a certain constraint on the \mathbb{C} -structure. This is called the *regularised quantum period* \widehat{G}_X .

f is mirror dual to X if
$$\pi_f = \widehat{G}_X$$

The Newton polytope $P \subset N_{\mathbb{Q}}$ of f gives a toric Fano variety X_P Q-Gorenstein deformation equivalent to X. In this case we recover \mathbb{P}^2 .

$$f = x + y + \frac{1}{xy}$$
 $P = \operatorname{Newt}(f) = \bigcap \subset N_{\mathbb{Q}}$

The mirror f for X is typically not unique. One way of transforming f to a mirror-equivalent Laurent polynomial g is via a *mutation*.

• This is a change of variables $\varphi : (\mathbb{C}^{\times})^n \to (\mathbb{C}^{\times})^n$ such that $g = \varphi^* f$ is a Laurent polynomial with the same period:

$$\pi_f(t) = \pi_g(t)$$

In the case $f = x + y + \frac{1}{xy}$ we can apply the mutation

$$\varphi: \begin{array}{c} x \mapsto \frac{x}{1 + \frac{x}{y}} \\ y \mapsto \frac{y}{1 + \frac{x}{y}} \end{array}$$

Then:

$$g = \varphi^* f = \varphi^* \left(x + y + \frac{1}{xy} \right) = \frac{x}{1 + \frac{x}{y}} + \frac{y}{1 + \frac{x}{y}} + \frac{\left(1 + \frac{x}{y}\right)^2}{xy}$$

$$g = \varphi^* f = \frac{x}{1 + \frac{x}{y}} + \frac{y}{1 + \frac{x}{y}} + \frac{\left(1 + \frac{x}{y}\right)^2}{xy}$$
$$= \frac{y(y+x)}{y+x} + \frac{y^2 + 2xy + x^2}{xy^3}$$
$$= y + \frac{1}{xy} + \frac{2}{y^2} + \frac{x}{y^3} \in \mathbb{C}[x^{\pm 1}, y^{\pm 1}]$$

1

One can compute the period of g:

$$\pi_g(t) = 1 + 6t^3 + 90t^6 + 34650t^9 + 756756t^{12} + \dots = \pi_f(t)$$

g is also a mirror for \mathbb{P}^2

Mutation of a Laurent polynomial

A mutation of $f \in \mathbb{C}[\underline{x}^{\pm 1}]$ requires two pieces of data:

- a grading on monomials;
- a factor $F \in \mathbb{C}[\underline{x}^{\pm 1}]$.

The grading is a map $w : \underline{x}^a \mapsto w(a)$ from monomials to \mathbb{Z} . The factor is a Laurent polynomial with $w(F) = \{0\}$ such that

$$f_h = F^{-h} r_h,$$

for all h < 0, where $r_h \in \mathbb{C}[\underline{x}^{\pm 1}]$. Here

 f_h = "the terms of f in graded piece h", i.e. $w(f_h) = \{h\}$.

Then $\varphi : \underline{x}^a \mapsto \underline{x}^a F^{w(a)}$ is a *mutation* of f with

$$g = \varphi^* f = \sum_{h < 0} r_h + \sum_{h \ge 0} f_h F^h$$

Mutation is a combinatorial operation on the Newton polytopes

At the level of Newton polytopes we have transformed the Fano polygon for \mathbb{P}^2 into the Fano polygon for $\mathbb{P}(1, 1, 4)$:

$$\operatorname{Newt}\left(x+y+\frac{1}{xy}\right) = \longrightarrow \qquad \longrightarrow \qquad = \operatorname{Newt}\left(y+\frac{1}{xy}+\frac{2}{y^2}+\frac{x}{y^3}\right)$$

Notice that $\mathbb{P}(1,1,4)$ is a singular toric Fano variety. It has two smooth cones, and one singular cone corresponding to a $\frac{1}{4}(1,1)$ singularity.

Mutation of $P \subset N_{\mathbb{Q}}$

A mutation of $P \subset N_{\mathbb{Q}}$ requires two pieces of data:

- a grading on N;
- a *factor* of *P*.

The grading is given by a primitive lattice vector $w \in M = Hom(N, \mathbb{Z})$. The factor is a convex lattice polytope $F \subset w^{\perp} \subset N_{\mathbb{Q}}$ such that

$$\{v \in \operatorname{vert}(P) \mid w(v) = h\} \subset (-h)F + R_h \subset P_h,$$

for all h < 0, where $R_h \subset N_{\mathbb{Q}}$ is a convex lattice polytope. Here

$$P_h = \operatorname{conv}(v \in P \cap N \mid w(v) = h).$$

The the *mutation* of P is

$$Q = \operatorname{conv}\left(\bigcup_{h < 0} R_h \cup \bigcup_{h \ge 0} (P_h + hF)\right)$$

Mutation of $P \subset N_{\mathbb{Q}}$

In the example of \mathbb{P}^2 we pick

$$w=(-1,-1)\in M,\qquad F=\operatorname{conv}\{(0,0),(1,-1)\}\subset w^{\perp}\subset N_{\mathbb{Q}}.$$

Then mutation adds or subtracts dilates of F depending on height:

Now consider the dual polytope to $P \subset N_{\mathbb{Q}}$:

 $P^* = \{ u \in M_{\mathbb{Q}} \mid u(v) \ge -1 \text{ for all } v \in P \}$

Mutation of $P^* \subset M_{\mathbb{Q}}$

Mutation acts via a piecewise $GL_n(\mathbb{Z})$ map on M:

Mutation of $P^* \subset M_{\mathbb{Q}}$

Mutation has straightened out the bottom-left corner of Q^* . Since this is a piecewise $GL_n(\mathbb{Z})$ map on M, we have that:

$$\operatorname{Vol}(P^*) = \operatorname{Vol}(Q^*), \qquad \operatorname{Ehr}(P^*) = \operatorname{Ehr}(Q^*)$$

Equivalently:

$$(-K_{X_P})^n = (-K_{X_Q})^n$$
, $\operatorname{Hilb}(X_P, -K_{X_P}) = \operatorname{Hilb}(X_Q, -K_{X_Q})$

Mutation of Markov triples

We can continue mutating \mathbb{P}^2 , moving from Fano triangle to Fano triangle:

The vertices (a, b, c) correspond to the Fano triangles for $\mathbb{P}(a^2, b^2, c^2)$. The vertices (a, b, c) correspond to solutions to the *Markov equation*:

$$a^2 + b^2 + c^2 = 3abc$$

A solution $(a, b, c) \in \mathbb{Z}^3_{>0}$ of the Markov equation

$$a^2 + b^2 + c^2 = 3abc$$

is called a *Markov triple*. All Markov triples can be obtained from (1,1,1) via *mutation*:

$$(a, b, c) \mapsto (3bc - a, b, c)$$

Mutations of the Markov triples correspond to mutations of the Fano triangles arising from \mathbb{P}^2 .

Quiver mutation

We can associate a quiver Q_P to a Fano polygon $P \subset N_Q$.

- We have a vertex v_i for each edge E_i of P.
- Let w_i ∈ M be the primitive (inner) normal vector to E_i. Then the number of arrows between vertices v_i and v_j is given by

$$w_i \wedge w_j = \det \begin{pmatrix} w_i \\ w_j \end{pmatrix},$$

where the sign determines the orientation. For \mathbb{P}^2 we get:

Quiver mutation

We can *mutate* Q_P about a vertex v_i .

- For every path $v_j \longrightarrow v_i \longrightarrow v_k$ add in a new edge $v_j \longrightarrow v_k$;
- Reverse the direction of every arrow that starts or ends at v_i;
- Cancel opposing edges.

We recover the quiver for $\mathbb{P}(1,1,4)$:

Mirrors for \mathbb{P}^2

Notice that the quiver for $\mathbb{P}(1,1,4)$ isn't *balanced*.

We re-balance by adding multiplicities for to vertices v_i given by the edge lengths E_i of the Fano polygon.

This re-balancing condition *is* the Markov equation.

Mirrors for \mathbb{P}^2

We obtain a tree of quiver mutations

where the quiver $Q_{(a,b,c)}$ corresponding to $\mathbb{P}(a^2, b^2, c^2)$ is balanced via assigning weights a, b, c to the vertices v_1, v_2, v_3 . Here (a, b, c) is a solution to the Markov equation $a^2 + b^2 + c^2 = 3abc$. This corresponds to the space of mirrors for \mathbb{P}^2 via Mirror Symmetry.