
\mathbb{Q}-Gorenstein deformation families of Fano varieties or

The combinatorics of Mirror Symmetry

Fano manifolds

Smooth varieties, called manifolds, come with a natural notion of curvature, and fall into one of three classes.

Negative curvature General type

Flat
Calabi-Yau

Positive curvature Fano

There are finitely many Fano manifolds in each dimension.

Fano manifolds: Basic building blocks of geometry

Fano manifolds are the building blocks from which other varieties are formed.

- Both from the Minimal Model Program
- And in terms of explicit constructions

Fano manifolds: Classification

The classification of Fano manifolds is known up to dimension 3.

- Dimension 1:
- \mathbb{P}^{1} (i.e. the Reimann sphere)
- Dimension 2 (del Pezzo, 1880s):
- \mathbb{P}^{2}
- $\mathbb{P}^{1} \times \mathbb{P}^{1}$
- The blow-up of \mathbb{P}^{2} in at most 8 points.

These are called del Pezzo surfaces.

- Dimension 3 (Mori-Mukai, 1980s):
- 105 cases

Very little is known in dimension ≥ 4.

Fano polytopes and toric geometry

Fix a lattice $N \cong \mathbb{Z}^{n}$. A convex lattice polytope $P \subset N \otimes \mathbb{Q}=N_{\mathbb{Q}}$ is Fano if:

- $\operatorname{dim}(P)=n$;
- $0 \in \operatorname{int}(P)$;
- each $v \in \operatorname{vert}(P)$ is a primitive lattice point of N.

Two Fano polytopes P and Q are considered to be isomorphic if there exists a change of basis of N sending P to Q. That is,

$$
P \cong Q \quad \Longleftrightarrow \quad \varphi(P)=Q \text {, for some } \varphi \in \operatorname{GL}_{n}(\mathbb{Z})
$$

We consider Fano polytopes only up to isomorphism.

Fano polytopes and toric geometry

To a Fano polytope $P \subset N_{\mathbb{Q}}$ we associate the spanning fan. The spanning fan describes a toric Fano variety X_{P}.

The geometry of X_{P} is encoded in the combinatorics of P. For example, the singularities of X_{P} can be read off P.

Toric Fano manifolds: Classification

A Fano polytope P is smooth if:

- For each facet F of P, $\operatorname{vert}(F)$ are a \mathbb{Z}-basis of N.
n-dimensional toric Fano manifold X

smooth Fano polytope P with $\operatorname{dim}(P)=n$
$\stackrel{\text { toric geometry }}{\longleftrightarrow}$

- Dimension 2:
- $\mathbb{P}^{2} ; \mathbb{P}^{1} \times \mathbb{P}^{1} ;$ the blow-up of \mathbb{P}^{2} in at most 3 points.

Toric Fano manifolds: Classification

Being toric is unusual:

- Dimension 2:
- 5 of the 10 del Pezzo surfaces are toric.
- Dimension 3:
- 18 of the 105 Fano manifolds are toric.

But being toric is good: we can use the combinatorics of lattice polytopes to study them.

For example, Øbro (2007) gave an efficient algorithm for classifying smooth Fano polytopes in any dimension.

Dimension	1	2	3	4	5	6	7	8
Number	1	5	18	124	866	7622	72256	749892

They grow slowly - approximately by a power of 10 per dimension.

Mirror Symmetry

n-dimensional Fano
manifold X

deformation
n-dimensional toric
Fano variety X_{P}

Laurent polynomial f in n variables
$\xrightarrow{\text { Mirror Symmetry }}$

$$
f=x+y+z+\frac{1}{x y z}
$$

Fano polytope P with $\operatorname{dim}(P)=n$

Example: \mathbb{P}^{2}

Illustrate this equivalence in the case of $X=\mathbb{P}^{2}$. We start with the Laurent polynomial

$$
f=x+y+\frac{1}{x y} \in \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right]
$$

Associated with f is its period

$$
\pi_{f}(t)=\left(\frac{1}{2 \pi i}\right)^{2} \int_{|x|=|y|=1} \frac{1}{1-t f} \frac{d x}{x} \frac{d y}{y}, \quad t \in \mathbb{C},|t| \ll \infty .
$$

The Taylor expansion of the period has coefficients given by the constant term of successive powers of f

$$
\begin{aligned}
\pi_{f}(t) & =\sum_{k \geq 0} \operatorname{coeff}_{1}\left(f^{k}\right) t^{k} \\
& =1+6 t^{3}+90 t^{6}+34650 t^{9}+756756 t^{12}+17153136 t^{15}+\ldots \\
& =\sum_{k \geq 0} \frac{(3 k)!}{(k!)^{3}} t^{3 k}
\end{aligned}
$$

Example: \mathbb{P}^{2}

$$
\pi_{f}(t)=1+6 t^{3}+90 t^{6}+34650 t^{9}+756756 t^{12}+17153136 t^{15}+\ldots
$$

The coefficients of π_{f} agree with certain Gromov-Witten invariants of X. Roughly speaking, they count curves in X with given degree and a certain constraint on the \mathbb{C}-structure. This is called the regularised quantum period \widehat{G}_{X}.

f is mirror dual to X if $\pi_{f}=\widehat{G}_{X}$

The Newton polytope $P \subset N_{\mathbb{Q}}$ of f gives a toric Fano variety X_{P} \mathbb{Q}-Gorenstein deformation equivalent to X. In this case we recover \mathbb{P}^{2}.

$$
f=x+y+\frac{1}{x y}
$$

$$
P=\operatorname{Newt}(f)=\square \subset N_{\mathbb{Q}}
$$

Example: \mathbb{P}^{2}

The mirror f for X is typically not unique. One way of transforming f to a mirror-equivalent Laurent polynomial g is via a mutation.

- This is a change of variables $\varphi:\left(\mathbb{C}^{\times}\right)^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$ such that $g=\varphi^{*} f$ is a Laurent polynomial with the same period:

$$
\pi_{f}(t)=\pi_{g}(t)
$$

In the case $f=x+y+\frac{1}{x y}$ we can apply the mutation

$$
\varphi: \begin{aligned}
& x \mapsto \frac{x}{1+\frac{x}{y}} \\
& y \mapsto \frac{y^{\prime}}{1+\frac{x}{y}}
\end{aligned}
$$

Then:

$$
g=\varphi^{*} f=\varphi^{*}\left(x+y+\frac{1}{x y}\right)=\frac{x}{1+\frac{x}{y}}+\frac{y}{1+\frac{x}{y}}+\frac{\left(1+\frac{x}{y}\right)^{2}}{x y}
$$

Example: \mathbb{P}^{2}

$$
\begin{aligned}
g=\varphi^{*} f & =\frac{x}{1+\frac{x}{y}}+\frac{y}{1+\frac{x}{y}}+\frac{\left(1+\frac{x}{y}\right)^{2}}{x y} \\
& =\frac{y(y+x)}{y+x}+\frac{y^{2}+2 x y+x^{2}}{x y^{3}} \\
& =y+\frac{1}{x y}+\frac{2}{y^{2}}+\frac{x}{y^{3}} \in \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}\right]
\end{aligned}
$$

One can compute the period of g :

$$
\pi_{g}(t)=1+6 t^{3}+90 t^{6}+34650 t^{9}+756756 t^{12}+\cdots=\pi_{f}(t)
$$

g is also a mirror for \mathbb{P}^{2}

Mutation of a Laurent polynomial

A mutation of $f \in \mathbb{C}\left[\underline{x}^{ \pm 1}\right]$ requires two pieces of data:

- a grading on monomials;
- a factor $F \in \mathbb{C}\left[\underline{x}^{ \pm 1}\right]$.

The grading is a map $w: \underline{x}^{a} \mapsto w(a)$ from monomials to \mathbb{Z}.
The factor is a Laurent polynomial with $w(F)=\{0\}$ such that

$$
f_{h}=F^{-h} r_{h},
$$

for all $h<0$, where $r_{h} \in \mathbb{C}\left[\underline{x}^{ \pm 1}\right]$. Here

$$
f_{h}=\text { "the terms of } f \text { in graded piece } h \text { ", } \quad \text { i.e. } w\left(f_{h}\right)=\{h\} .
$$

Then $\varphi: \underline{x}^{a} \mapsto \underline{x}^{a} F^{w(a)}$ is a mutation of f with

$$
g=\varphi^{*} f=\sum_{h<0} r_{h}+\sum_{h \geq 0} f_{h} F^{h}
$$

Example: \mathbb{P}^{2}

Mutation is a combinatorial operation on the Newton polytopes

At the level of Newton polytopes we have transformed the Fano polygon for \mathbb{P}^{2} into the Fano polygon for $\mathbb{P}(1,1,4)$:

$$
\operatorname{Newt}\left(x+y+\frac{1}{x y}\right)=\square \longmapsto N=\operatorname{Newt}\left(y+\frac{1}{x y}+\frac{2}{y^{2}}+\frac{x}{y^{3}}\right)
$$

Notice that $\mathbb{P}(1,1,4)$ is a singular toric Fano variety. It has two smooth cones, and one singular cone corresponding to a $\frac{1}{4}(1,1)$ singularity.

Mutation of $P \subset N_{\mathbb{Q}}$

A mutation of $P \subset N_{\mathbb{Q}}$ requires two pieces of data:

- a grading on N;
- a factor of P.

The grading is given by a primitive lattice vector $w \in M=\operatorname{Hom}(N, \mathbb{Z})$. The factor is a convex lattice polytope $F \subset w^{\perp} \subset N_{\mathbb{Q}}$ such that

$$
\{v \in \operatorname{vert}(P) \mid w(v)=h\} \subset(-h) F+R_{h} \subset P_{h},
$$

for all $h<0$, where $R_{h} \subset N_{\mathbb{Q}}$ is a convex lattice polytope. Here

$$
P_{h}=\operatorname{conv}(v \in P \cap N \mid w(v)=h) .
$$

The the mutation of P is

$$
Q=\operatorname{conv}\left(\bigcup_{h<0} R_{h} \cup \bigcup_{h \geq 0}\left(P_{h}+h F\right)\right)
$$

Mutation of $P \subset N_{\mathbb{Q}}$

In the example of \mathbb{P}^{2} we pick

$$
w=(-1,-1) \in M, \quad F=\operatorname{conv}\{(0,0),(1,-1)\} \subset w^{\perp} \subset N_{\mathbb{Q}} .
$$

Then mutation adds or subtracts dilates of F depending on height:

Example: \mathbb{P}^{2}

Now consider the dual polytope to $P \subset N_{\mathbb{Q}}$:

$$
P^{*}=\left\{u \in M_{\mathbb{Q}} \mid u(v) \geq-1 \text { for all } v \in P\right\}
$$

Mutation of $P^{*} \subset M_{\mathbb{Q}}$
Mutation acts via a piecewise $\mathrm{GL}_{n}(\mathbb{Z})$ map on M :

$$
u \longmapsto u-w \min \{w(v) \mid v \in \operatorname{vert}(F)\}
$$

Mutation of $P^{*} \subset M_{\mathbb{Q}}$

Mutation has straightened out the bottom-left corner of Q^{*}. Since this is a piecewise $G L_{n}(\mathbb{Z})$ map on M, we have that:

$$
\operatorname{Vol}\left(P^{*}\right)=\operatorname{Vol}\left(Q^{*}\right), \quad \operatorname{Ehr}\left(P^{*}\right)=\operatorname{Ehr}\left(Q^{*}\right)
$$

Equivalently:

$$
\left(-K_{X_{P}}\right)^{n}=\left(-K_{X_{Q}}\right)^{n}, \quad \operatorname{Hilb}\left(X_{P},-K_{X_{P}}\right)=\operatorname{Hilb}\left(X_{Q},-K_{X_{Q}}\right)
$$

Mutation of Markov triples

We can continue mutating \mathbb{P}^{2}, moving from Fano triangle to Fano triangle:

The vertices (a, b, c) correspond to the Fano triangles for $\mathbb{P}\left(a^{2}, b^{2}, c^{2}\right)$. The vertices (a, b, c) correspond to solutions to the Markov equation:

$$
a^{2}+b^{2}+c^{2}=3 a b c
$$

Mutation of Markov triples

A solution $(a, b, c) \in \mathbb{Z}_{>0}^{3}$ of the Markov equation

$$
a^{2}+b^{2}+c^{2}=3 a b c
$$

is called a Markov triple. All Markov triples can be obtained from $(1,1,1)$ via mutation:

$$
(a, b, c) \longmapsto(3 b c-a, b, c)
$$

Mutations of the Markov triples correspond to mutations of the Fano triangles arising from \mathbb{P}^{2}.

Quiver mutation

We can associate a quiver \mathcal{Q}_{P} to a Fano polygon $P \subset N_{\mathbb{Q}}$.

- We have a vertex v_{i} for each edge E_{i} of P.
- Let $w_{i} \in M$ be the primitive (inner) normal vector to E_{i}. Then the number of arrows between vertices v_{i} and v_{j} is given by

$$
w_{i} \wedge w_{j}=\operatorname{det}\binom{w_{i}}{w_{j}}
$$

where the sign determines the orientation. For \mathbb{P}^{2} we get:

$$
\begin{aligned}
& w_{1}=(-1,-1) \\
& w_{2}=(-1,2) \\
& w_{3}=(2,-1)
\end{aligned}
$$

Quiver mutation

We can mutate \mathcal{Q}_{P} about a vertex v_{i}.

- For every path $v_{j} \longrightarrow v_{i} \longrightarrow v_{k}$ add in a new edge $v_{j} \longrightarrow v_{k}$;
- Reverse the direction of every arrow that starts or ends at v_{i};
- Cancel opposing edges.

We recover the quiver for $\mathbb{P}(1,1,4)$:

Mirrors for \mathbb{P}^{2}

Notice that the quiver for $\mathbb{P}(1,1,4)$ isn't balanced.
We re-balance by adding multiplicities for to vertices v_{i} given by the edge lengths E_{i} of the Fano polygon.

This re-balancing condition is the Markov equation.

Mirrors for \mathbb{P}^{2}

We obtain a tree of quiver mutations

where the quiver $\mathcal{Q}_{(a, b, c)}$ corresponding to $\mathbb{P}\left(a^{2}, b^{2}, c^{2}\right)$ is balanced via assigning weights a, b, c to the vertices v_{1}, v_{2}, v_{3}. Here (a, b, c) is a solution to the Markov equation $a^{2}+b^{2}+c^{2}=3 a b c$. This corresponds to the space of mirrors for \mathbb{P}^{2} via Mirror Symmetry.

