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Fano manifolds

Smooth varieties, called manifolds, come with a natural notion of
curvature, and fall into one of three classes.

Negative curvature Flat Positive curvature
General type Calabi-Yau Fano

There are finitely many Fano manifolds in each dimension.



Fano manifolds: Basic building blocks of geometry

Fano manifolds are the building blocks from which other
varieties are formed.

o Both from the Minimal Model Program
@ And in terms of explicit constructions

Fano art-by Gemma- Anderson




Fano manifolds: Classification

The classification of Fano manifolds is known up to dimension 3.

o Dimension 1:
o P! (i.e. the Reimann sphere)
o Dimension 2 (del Pezzo, 1880s):
o P?
o P xP!
o The blow-up of P? in at most 8 points.
These are called del Pezzo surfaces.
e Dimension 3 (Mori-Mukai, 1980s):

o 105 cases

Very little is known in dimension > 4.



Fano polytopes and toric geometry

Fix a lattice N =2 Z". A convex lattice polytope P c N® Q = Ng is Fano if:
o dim(P) = n;
e 0eint(P);

@ each v e vert(P) is a primitive lattice point of N.

Two Fano polytopes P and @ are considered to be isomorphic if there
exists a change of basis of N sending P to Q. That is,

P =z Q <~ p(P)=Q, for some ¢ € GL,(Z)

ia e =€
VI :
v € €1 — €

We consider Fano polytopes only up to isomorphism.
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Fano polytopes and toric geometry

To a Fano polytope P c Ng we associate the spanning fan.
The spanning fan describes a toric Fano variety Xp.

p <« PEEEN XP:}P’2

The geometry of Xp is encoded in the combinatorics of P. For example,
the singularities of Xp can be read off P.



Toric Fano manifolds: Classification

A Fano polytope P is smooth if:
o For each facet F of P, vert(F) are a Z-basis of N.

n-dimensional toric Fano smooth Fano polytope P
manifold X with dim(P) = n

toric geometry p
‘<>
o Dimension 2:
o P2, P!xP!; the blow-up of P? in at most 3 points.
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Toric Fano manifolds: Classification

Being toric is unusual:
o Dimension 2:
o 5 of the 10 del Pezzo surfaces are toric.

o Dimension 3:
o 18 of the 105 Fano manifolds are toric.

But being toric is good: we can use the combinatorics of lattice polytopes
to study them.

For example, @bro (2007) gave an efficient algorithm for classifying
smooth Fano polytopes in any dimension.

Dimension |1 2 3 4 5 6 7 8
Number |1 5 18 124 866 7622 72256 749892

They grow slowly — approximately by a power of 10 per dimension.



Mirror Symmetry

n-dimensional Fano Laurent polynomial f
manifold X in n variables
Mirror Symmetry 1
—>  f=x+y+z+—
xyz
deformation| [Newt(f)
n-dimensional toric Fano polytope P
Fano variety Xp with dim(P) = n

)< toric geometry \
‘



Example: P2

lllustrate this equivalence in the case of X = P?. We start with the Laurent
polynomial

1
f=x+y+—eC[x, y*]
Xy
Associated with f is its period

2 1 dxdy
— teC,|t ,
Te(t) = (2771) -/\;<|=IY\11—tfx v €C,lt] oo

The Taylor expansion of the period has coefficients given by the constant
term of successive powers of f

mr(t) = > coeffy (F¥) X
k>0
=1+6¢t3+90t% + 34650t° + 75675612 + 17153136t +

_y BR) [CLILEY

k>0 (k|)3



Example: P2

me(t) = 1+6t3+90t° + 34650¢° + 756756112 + 17153136t%° + ...

The coefficients of mf agree with certain Gromov—Witten invariants of X.
Roughly speaking, they count curves in X with given degree and a certain
constraint on the C-structure. This is called the regularised quantum
period Gx.

f is mirror dual to X if 7tf = GX

The Newton polytope P c Ng of f gives a toric Fano variety Xp
Q-Gorenstein deformation equivalent to X. In this case we recover P2.

1
f=x+y+— P:Newt(f):chQ
Xy




Example: P2

The mirror f for X is typically not unique. One way of transforming f to a
mirror-equivalent Laurent polynomial g is via a mutation.
@ This is a change of variables ¢ : (C*)" -> (C*)" such that g = ¢*f is
a Laurent polynomial with the same period:

mr(t) = mg(t)

1

In the case f =x+y + 5 We can apply the mutation

X

[ay

AS)
< +
<Ix

Then:




Example: P2

I S +(1+§)2

_1+5+1+5 xy
y y

~y(y+x) Jry2+2xy+x2
C y+x xy3

1 2 x 1 41
=y+—+—+— eC[x*, y*]
xy y2 oy

One can compute the period of g:

mg(t) = 1+6t> +90t° + 34650t° + 7567562 + --- = 77 (t)

g is also a mirror for P2




Mutation of a Laurent polynomial

A mutation of f € C[x*'] requires two pieces of data:
@ a grading on monomials;
e a factor F e C[x*!].

The grading is a map w : x? —» w(a) from monomials to Z.
The factor is a Laurent polynomial with w(F) = {0} such that

fo=F ",
for all h <0, where r, € C[x*1]. Here
fp = “the terms of f in graded piece h", i.e. w(fy)={h}.
Then ¢ : x? > x?F%(2) is a mutation of f with

g=p"f=Y rm+ Y fuF"
h<0 h>0



Example: P2

Mutation is a combinatorial operation on the Newton
polytopes

At the level of Newton polytopes we have transformed the Fano polygon
for P2 into the Fano polygon for P(1,1,4):

Newt(x+y+$):p — :Newt(y+$+%+}%)

Notice that P(1,1,4) is a singular toric Fano variety. It has two smooth
cones, and one singular cone corresponding to a %(1, 1) singularity.



Mutation of P c Ny

A mutation of P c Ng requires two pieces of data:
@ a grading on N,
o a factor of P.

The grading is given by a primitive lattice vector w € M = Hom(N,Z).
The factor is a convex lattice polytope F c w* c Ng such that

{vevert(P)|w(v)=h}c(=h)F+Ryc P,
for all h <0, where R, c Ng is a convex lattice polytope. Here
Pp=conv(ve PnN|w(v)=h).

The the mutation of P is

Q- ConV(U Ryu (P + hF))

h<0 h>0



Mutation of P c Ny

In the example of P? we pick
w=(-1,-1) e M, F = conv{(0,0),(1,-1)} c w" c Ng.

Then mutation adds or subtracts dilates of F depending on height:

-8



Example: P2
Now consider the dual polytope to P c Ng:
P* ={ueMg|u(v)>-1forall veP}

No Mq

I

dual

P(1,1,4): —




Mutation of P* c Mg
Mutation acts via a piecewise GL,(Z) map on M:
ur— u—wmin{w(v) | v evert(F)}

Ng Mg

pp w20
I !

dual

P(1,1,4): —




Mutation of P* c Mg

Px-: — :Q*

Mutation has straightened out the bottom-left corner of Q@*. Since this is
a piecewise GL,(Z) map on M, we have that:

Vol(P*) = Vol(Q"), Ehr(P*) =Ehr(Q")
Equivalently:

(=Kx,)" = (=Kx,)", Hilb(Xp, -Kx,) = Hilb(Xq, -Kx,)



Mutation of Markov triples

We can continue mutating P2, moving from Fano triangle to Fano triangle:

(1,1,1)
|

(1,1,2)
|

(1,2,5)

/ \
(2,5,29) (1,5,13)
PN PN
(5,29,433) (2,29,169) (5,13,194) (1,13,34)

The vertices (a, b, ¢) correspond to the Fano triangles for P(a%, b2, c?).
The vertices (a, b, c) correspond to solutions to the Markov equation:

2’ +b%+c? = 3abc



Mutation of Markov triples

A solution (a, b, c) € Z3, of the Markov equation
a2+ b% + % = 3abc

is called a Markov triple. All Markov triples can be obtained from (1,1,1)
via mutation:

(a,b,c) — (3bc-a,b,c)

Mutations of the Markov triples correspond to mutations of the Fano
triangles arising from P2



Quiver mutation

We can associate a quiver Qp to a Fano polygon P c Np.
@ We have a vertex v; for each edge E; of P.

o Let w; € M be the primitive (inner) normal vector to E;. Then the
number of arrows between vertices v; and v; is given by

W
W,-/\Wj:det( '),
wj

where the sign determines the orientation. For P? we get:

Wl:(_la_l) 3 .
B e

=(2,-1 v

w3 = ( ) 1.3\501)3



Quiver mutation

We can mutate Qp about a vertex v;.
@ For every path v; — v; — v, add in a new edge v; — v;
@ Reverse the direction of every arrow that starts or ends at v;;
@ Cancel opposing edges.

We recover the quiver for P(1,1,4):

v
2
5 )
]P)Z: — / \3
v, L]
3\‘“}3

I

pa: (1| /\



Mirrors for P2

o’ 0V2
3 3
Pz:p: /\3 s /\6{ , =P(1,1,4)
v]03\> v]0‘3\

o; oV;

Notice that the quiver for P(1,1,4) isn't balanced.

We re-balance by adding multiplicities for to vertices v; given by the edge
lengths E; of the Fano polygon.

(1).v2 (1).v2
3 3
Quiy: ) / \3 — (2)/ \: 1 Q(1,1,2)
v, [ ] vl [ J -~
3\‘ oV; 3 oY%
(1) (1)

This re-balancing condition is the Markov equation.



Mirrors for P2

We obtain a tree of quiver mutations
Quvo Lo
I I
Q(ﬂ,h,c’)_ Qa,z, 5 Q(/,z,,s)_ Q(a,b,a}
AN s/

(1,1,2)

Q
Q(a,h,c) Q(L L1)
/

AN AN
Q(I,Z,j)_ Qu, 12) Q(I, 12" Q(1,2 5
4 | |

(a,b,c)

©7° N ©

(a,b,c) Q(/,l 5) (1,2.5) (a,b,c)
P ~

Q
Q(a,h,c) \ / Q(a,b,n}
Q(a‘ be) Q

(a,b,c)

where the quiver Q, 5 ) corresponding to P(a?, b?, c?) is balanced via
assigning weights a, b, ¢ to the vertices vy, v, v3.

Here (a, b, c) is a solution to the Markov equation a° + b? + c? = 3abc.
This corresponds to the space of mirrors for P? via Mirror Symmetry.



