The geometry of rank-one tensor completion

Thomas Kahle
Otto-von-Guericke Universität Magdeburg

joint work with Kaie Kubjas, Mario Kummer and Zvi Rosen

Given some of the entries of a tensor, does there exist a rank-one tensor that has the specified entries?

Question

Given some of the entries of a tensor, does there exist a rank-one tensor that has the specified entries?

Example: matrix completion*

Assume given are the diagonal entries of a matrix:

$$
X=\left(\begin{array}{cc}
x_{11} & ? \\
? & x_{22}
\end{array}\right)
$$

Do there exist values for the ? so that the matrix has rank-one?

Question

Given some of the entries of a tensor, does there exist a rank-one tensor that has the specified entries?

Example: matrix completion*

Assume given are the diagonal entries of a matrix:

$$
X=\left(\begin{array}{cc}
x_{11} & ? \\
? & x_{22}
\end{array}\right)
$$

Do there exist values for the ? so that the matrix has rank-one?

Yes!
Pick one value arbitrary, then $x_{11} x_{22}=x_{12} x_{21}$ fixes the fourth.
*see also Kubjas/Rosen
Matrix completion for the independence model.

Answer

This can be answered with computational algebra:

- Rank-one tensors are a binomial algebraic set (Segre variety)
- Use elimination to understand its projections.

Answer

This can be answered with computational algebra:

- Rank-one tensors are a binomial algebraic set (Segre variety)
- Use elimination to understand its projections.

Problem Solved! Except...
 of limineneral form of the main theorem of elimina we shall prove

14.1 Elimination Theory

The following classical result is enormously useful.
Theorem 14.1 (Main Theorem of Elimination Theory). If X is any variety over an algebraically closed field k, and Y is a Zariski closed subset of $X \times \mathbf{P}^{n}$, then the image of Y under projection to X is closed.

We want $k=\mathbb{R}$ and have inequalities too (probabilities are non-negative!).

Example: joint probability distributions

Given the diagonal entries of a two-variate binary distribution

$$
X=\left(\begin{array}{cc}
x_{11} & ? \\
? & x_{22}
\end{array}\right) \quad \text { where } x_{i j}=\operatorname{Prob}\left(X_{1}=i, X_{2}=j\right)
$$

Do there exist values for the ? so that X is the distribution of two independent binary random variables?

Example: joint probability distributions

Given the diagonal entries of a two-variate binary distribution

$$
X=\left(\begin{array}{cc}
x_{11} & ? \\
? & x_{22}
\end{array}\right) \quad \text { where } x_{i j}=\operatorname{Prob}\left(X_{1}=i, X_{2}=j\right)
$$

Do there exist values for the ? so that X is the distribution of two independent binary random variables?

Do there exist marginal distributions $p, q \in \Delta_{1}$ such that $x_{i j}=p_{i} q_{j}$? ($\Delta_{m}=m$-diml. simplex)

The geometric view

Problem

Determine the image of the restricted parametrization map

$$
\begin{aligned}
\Delta_{1} \times \Delta_{1} & \rightarrow[0,1]^{2} \\
\left(p_{1}, p_{2}, q_{1}, q_{2}\right) & \mapsto\left(x_{11}, x_{22}\right)=\left(p_{1} q_{1}, p_{2} q_{2}\right) .
\end{aligned}
$$

Restrictions on the domain $\left(p, q \in \Delta_{1}\right)$ make this problem interesting.

$$
\left(p_{1}, p_{2}, q_{1}, q_{2}\right) \mapsto\left(x_{11}, x_{22}\right)=\left(p_{1} q_{1}, p_{2} q_{2}\right)
$$

subject to

$$
p_{2}=1-p_{1}, \quad q_{2}=1-q_{1}
$$

$$
\left(x_{11}-x_{22}\right)^{2}-2\left(x_{11}+x_{22}\right)+1 \geq 0
$$

$$
\begin{aligned}
\left(p_{1}, p_{2}, q_{1}, q_{2}\right) \mapsto & \left(x_{11}, x_{22}\right)=\left(p_{1} q_{1}, p_{2} q_{2}\right) \\
& \text { subject to }
\end{aligned}
$$

$$
p_{2}=1-p_{1}, \quad q_{2}=1-q_{1}, \quad p_{1} \geq 0, \quad q_{1} \geq 0
$$

$$
\begin{gathered}
\left(x_{11}-x_{22}\right)^{2}-2\left(x_{11}+x_{22}\right)+1 \geq 0 \\
x_{11} \geq 0, \quad 1+x_{11} \geq x_{22}
\end{gathered}
$$

$$
\begin{aligned}
&\left(p_{1}, p_{2}, q_{1}, q_{2}\right) \mapsto\left(x_{11}, x_{22}\right)=\left(p_{1} q_{1}, p_{2} q_{2}\right) . \\
& \text { subject to } \\
& p_{2}=1-p_{1} \geq 0, \quad q_{2}=1-q_{1} \geq 0, \quad p_{1} \geq 0, \quad q_{1} \geq 0
\end{aligned}
$$

$$
\begin{gathered}
\left(x_{11}-x_{22}\right)^{2}-2\left(x_{11}+x_{22}\right)+1 \geq 0 \\
1 \geq x_{11} \geq 0, \quad 1 \geq x_{22} \geq 0
\end{gathered}
$$

Tensors

A tensor is an array of numbers from a field \mathbb{F} indexed by

$$
D=\left[d_{1}\right] \times \cdots \times\left[d_{n}\right]
$$

where $d_{i} \geq 2$ are fixed integers and $[d]=\{1, \ldots, d\}$.

A partial tensor is an array of numbers from \mathbb{F} indexed by a subset $E \subseteq D$. A completion of a partial tensor $S \in \mathbb{F}^{E}$ is a tensor $T \in \mathbb{F}^{D}$ such that the restriction $T_{\mid E}$ agrees with S.

Parametrization of rank one tensors

Let \mathbb{F} be one of the two fields \mathbb{R} or \mathbb{C}. The set of rank-one tensors is the image of the parametrization

$$
\mathbb{F}^{d_{1}} \times \cdots \times \mathbb{F}^{d_{n}} \rightarrow \mathbb{F}^{D}, \quad\left(\theta_{1}, \ldots, \theta_{n}\right) \mapsto \theta_{1} \otimes \cdots \otimes \theta_{n}
$$

Convenient fact: A real point in the image has a real preimage.

The set of rank-one tensors is a toric variety (product of simplices), cut out by quadratic equations; the (2×2)-minors of its flattenings.

A remark on field dependence

A tensor with real entries and complex rank one has real rank one. This is false for partial tensors.

Consider the real $2 \times 2 \times 2$ partial tensor with third coordinate slices

$$
\left(\begin{array}{cc}
? & 1 \\
1 & ?
\end{array}\right), \quad\left(\begin{array}{cc}
1 & ? \\
? & -1
\end{array}\right) \quad \in \mathbb{R}^{2 \times 2 \times 2}
$$

$$
\left(\begin{array}{ll}
? & 1 \\
1 & ?
\end{array}\right), \quad\left(\begin{array}{cc}
1 & ? \\
? & -1
\end{array}\right) \quad \in \mathbb{R}^{2 \times 2 \times 2} .
$$

For a rank-one completion T, can assume $T=\binom{1}{a} \otimes\binom{1}{b} \otimes\binom{c}{d}$. Yields

$$
b c=1, \quad a c=1, \quad d=1, \quad a b d=-1 .
$$

Only two solutions:

$$
a= \pm i, \quad b= \pm i, \quad c=\mp i, \quad d=1
$$

Proposition

The following are equivalent.

- Every real partial tensor T_{E} with nonzero entries which is completable over the complex numbers is also completeable over the real numbers.
- The index of the lattice spanned by the columns of A_{E} in its saturation is odd.
Moreover, given complex-completability, real-completability depends only on the signs of observed entries.

Idea of the proof

Diagonalize binomial equations

$$
T_{e}=\theta_{1, e_{1}} \cdots \theta_{n, e_{n}}=\theta^{a_{e}}, \quad e \in E
$$

via Smith normal form of $A_{e}=\left(a_{e}\right)_{e \in E}$

Next step

Impose semi-algebraic constraints on the domain of

$$
\mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}^{D}, \quad\left(\theta_{1}, \ldots, \theta_{n}\right) \mapsto \theta_{1} \otimes \cdots \otimes \theta_{n}
$$

For example, $\theta_{i} \in \Delta_{d_{i}-1}$ is a probability distribution:

- Non-negativity of entries of θ_{i}.
- Linear constraints on the entries of θ_{i}.

Next step

Impose semi-algebraic constraints on the domain of

$$
\mathbb{R}^{d_{1}} \times \cdots \times \mathbb{R}^{d_{n}} \rightarrow \mathbb{R}^{D}, \quad\left(\theta_{1}, \ldots, \theta_{n}\right) \mapsto \theta_{1} \otimes \cdots \otimes \theta_{n}
$$

For example, $\theta_{i} \in \Delta_{d_{i}-1}$ is a probability distribution:

- Non-negativity of entries of θ_{i}.
- Linear constraints on the entries of θ_{i}.

By the way, the Tarski-Seidenberg theorem yields

Semi-algebraic constraints on the parameters yield only semi-algebraic constraints on the image. In principle, they can be computed by eliminating quantifiers from the formula

$$
\exists \theta_{1,1}, \ldots, \exists \theta_{n, d_{n}} \in \mathbb{R} \text { such that } x_{1 \ldots 1}=\ldots
$$

We study first the algebraic boundary of the image of

$$
\Delta_{d_{1}-1} \times \cdots \times \Delta_{d_{n}-1} \rightarrow \mathbb{R}^{E}
$$

where $E \subseteq D$, and Δ_{m} is the probability simplex of dimension m.

The algebraic boundary of a semi-algebraic set $S \subseteq \mathbb{R}^{n}$ is the Zariskiclosure of the (Euclidean topology) boundary $\partial S=\mathrm{cl}(S) \backslash \operatorname{int}(S)$.

How to compute it
Compute the branch locus, the locus in the image where the rank of the Jacobian of the parametrization drops.

Assume now

- the number of observations equals the number of parameters (i.e. Jacobian is square)
- every maximal-dimensional slice is observed

Approach

- Sinn's Lemma: If a semi-algebraic set $S \subseteq \mathbb{R}^{k}$ is nonempty and contained in the closure of its interior and the same holds for $\mathbb{R}^{k} \backslash S$, then its algebraic boundary is of pure codimension one.
- Implicit function theorem: If an interior parameter point maps to a boundary tensor, the Jacobian determinant vanishes there.
- Argue that remaining components are all contained in coordinate hyperplanes.

Assume the observed entries of a $2 \times 2 \times 2$ tensor are $x_{211}, x_{121}, x_{112}$. Denote $l_{i}=1-\theta_{i}$ for $i=1,2,3$. The graph of the map is defined by

$$
I=\left\langle x_{211}-l_{1} \theta_{2} \theta_{3}, x_{121}-\theta_{1} l_{2} \theta_{3}, x_{112}-\theta_{1} \theta_{2} l_{3}\right\rangle .
$$

The Jacobian matrix of the parametrization map equals

$$
J=\left(\begin{array}{ccc}
-\theta_{2} \theta_{3} & l_{1} \theta_{3} & l_{1} \theta_{2} \\
l_{2} \theta_{3} & -\theta_{1} \theta_{3} & \theta_{1} l_{2} \\
\theta_{2} l_{3} & \theta_{1} l_{3} & -\theta_{1} \theta_{2}
\end{array}\right)
$$

and has determinant

$$
\theta_{1}^{2} \theta_{2} \theta_{3}+\theta_{1} \theta_{2}^{2} \theta_{3}+\theta_{1} \theta_{2} \theta_{3}^{2}-2 \theta_{1} \theta_{2} \theta_{3}=\theta_{1} \theta_{2} \theta_{3}\left(-\theta_{1}-\theta_{2}-\theta_{3}+2\right) .
$$

\rightarrow Jacobian determinant is a monomial times a linear polynomial.

Explanation of the linear polynomial

$\theta_{1}^{2} \theta_{2} \theta_{3}+\theta_{1} \theta_{2}^{2} \theta_{3}+\theta_{1} \theta_{2} \theta_{3}^{2}-2 \theta_{1} \theta_{2} \theta_{3}=\theta_{1} \theta_{2} \theta_{3}\left(-\theta_{1}-\theta_{2}-\theta_{3}+2\right)$.
Consider the matrix

$$
B_{E}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

encoding in its columns which parameters θ_{i} contribute to a given observed entry, plus an extra column of ones.
The kernel of B_{E} is spanned by $v=(-1,-1,-1,2)^{T}$, which yields the coefficients.

$$
I+\left\langle l_{p}\right\rangle=\left\langle x_{211}-l_{1} \theta_{2} \theta_{3}, x_{121}-\theta_{1} l_{2} \theta_{3}, x_{112}-\theta_{1} \theta_{2} l_{3},-\theta_{1}-\theta_{2}-\theta_{3}+2\right\rangle .
$$

Eliminating θ_{1}, θ_{2}, and θ_{3} yields a prime ideal generated by

$$
\begin{array}{r}
x_{211}^{4} x_{121}^{2}-2 x_{211}^{3} x_{121}^{3}+x_{211}^{2} x_{121}^{4}-2 x_{211}^{4} x_{121} x_{112}+2 x_{211}^{3} x_{121}^{2} x_{112}+2 x_{211}^{2} x_{121}^{3} x_{112} \\
-2 x_{211} x_{121}^{4} x_{112}+x_{211}^{4} x_{112}^{2}+2 x_{211}^{3} x_{121} x_{112}^{2}-6 x_{211}^{2} x_{121}^{2} x_{112}^{2}+2 x_{211} x_{121}^{3} x_{112}^{2}+x_{121}^{4} x_{112}^{2} \\
-2 x_{211}^{3} x_{112}^{3}+2 x_{211}^{2} x_{121} x_{112}^{3}+2 x_{211} x_{121}^{2} x_{112}^{3}-2 x_{121}^{3} x_{112}^{3}+x_{211}^{2} x_{112}^{4}-2 x_{211} x_{121} x_{112}^{4} \\
+x_{121}^{2} x_{112}^{4}-2 x_{211}^{3} x_{121}^{2}-2 x_{211}^{2} x_{121}^{3}+8 x_{211}^{3} x_{121} x_{112}-4 x_{211}^{2} x_{121}^{2} x_{112}+8 x_{211} x_{121}^{3} x_{112} \\
-2 x_{211}^{3} x_{112}^{2}-4 x_{211}^{2} x_{121}^{2} x_{112}^{2}-4 x_{211} x_{121}^{2} x_{112}^{2}-2 x_{121}^{3} x_{112}^{2}-2 x_{211}^{2} x_{112}^{3}+8 x_{211} x_{121} x_{112}^{3} \\
-2 x_{121}^{2} x_{112}^{3}+x_{211}^{2} x_{121}^{2}-10 x_{211}^{2} x_{121} x_{112}-10 x_{211} x_{121}^{2} x_{112}+x_{211}^{2} x_{112}^{2}-10 x_{211} x_{121} x_{112}^{2} \\
+x_{121}^{2} x_{112}^{2}+4 x_{211} x_{121} x_{112} .
\end{array}
$$

Observation: Eliminating from

$$
I+\left\langle\theta_{1} \theta_{2} \theta_{3}\left(-\theta_{1}-\theta_{2}-\theta_{3}+2\right)\right\rangle
$$

... and this is how it looks

- The surface is singular in dimension 1 (all along the boundary)
- The interior extends into negative coordinates

Let

- $I=\left\langle x_{e}-\prod \theta, \ldots\right\rangle$ be the graph ideal of the parametrization.
- l be the linear polynomial factor of the Jacobian determinant.
- $|E|$ be equal to the number of parameters.
- $E \subseteq D$ meet every maximal-dimensional slice.

Algebraic boundary theorem

Eliminating the parameter variables from $I+\langle l\rangle$ yields a non-zero principal ideal generated by a non-constant irreducible polynomial f. The polynomial q that defines the algebraic boundary of the completable region is the product of f with some coordinates.

Open Problems

- Determine the degree of f.
- How much do we know from the algebraic boundary?
- Non-square Jacobians ($|E|$ small)

Have some answers for diagonal observations...

Observing diagonal entries

- Consider $d \times d \times \cdots \times d$ tensor of order n.
- Let E consists only of the d diagonal entries (much fewer than number of parameters).
- Let $S_{n, d}$ be the set of diagonal entries that admit a completion to a rank-one "probability tensor" (independent multivariate discrete distribution).

Theorem (Kubjas/Rosen)

$S_{n, d}$ is a semi-algebraic set and its algebraic boundary is known.
Furthermore

$$
S_{n, d}=\left\{x \in \mathbb{R}_{\geq 0}^{d}: \sum_{i=1}^{d} x_{i}^{\frac{1}{n}} \leq 1\right\}
$$

Theorem

There are explicitly described polynomials $P_{n, d, i}(x), i=0, \ldots, n^{d-1}$ such that $x \in \mathbb{R}_{\geq 0}^{d}$ is an element of $S_{n, d}$ if and only if $P_{n, d, i}(x) \geq 0$ for all $0 \leq i<n^{d-1}$. If n is odd, then $S_{n, d}=\left\{x \in \mathbb{R}_{\geq 0}^{d}: P_{n, d, 0}(x) \geq 0\right\}$.

Let $e_{i, d}$ denote the i th elementary symmetric polynomial in x_{1}, \ldots, x_{d}.
$S_{3,2}(2 \times 2 \times 2$ tensors $)$ is defined by

$$
\begin{aligned}
x_{1}, x_{2} & \geq 0 \\
\left(1-e_{1,2}\right)^{3}-27 e_{2,2} & \geq 0 .
\end{aligned}
$$

$S_{2,3}(3 \times 3$ matrices $)$ is defined by

$$
\begin{aligned}
x_{1}, x_{2}, x_{3} & \geq 0 \\
1-e_{1,3} & \geq 0 \\
3\left(1-e_{1,3}\right)^{2}-4 e_{2,3} & \geq 0 \\
\left(1-e_{1,3}\right)\left(\left(1-e_{1,3}\right)^{2}-4 e_{2,3}\right)-16 e_{3,3} & \geq 0 \\
\left(\left(1-e_{1,3}\right)^{2}-4 e_{2,3}\right)^{2}-64 e_{3,3} & \geq 0
\end{aligned}
$$

For $d=n=2$ the two analyzed classes overlap. We get

$$
\begin{aligned}
x_{1}, x_{2} & \geq 0 \\
1-2\left(x_{1}+x_{2}\right)+\left(x_{1}-x_{2}\right)^{2} & \geq 0 \\
1-x_{1}-x_{2} & \geq 0
\end{aligned}
$$

The algebraic boundary misses $1-x_{1}-x_{2} \geq 0$ and is thus not the final answer, even in the easiest case.

Conclusion

- The set of partial multi-variate independent probability distributions is semi-algebraic.
- In some cases we can find the algebraic boundary.
- We do want complete semi-algebraic descriptions.
- Semi-algebraic statistics is fun!

Conclusion

- The set of partial multi-variate independent probability distributions is semi-algebraic.
- In some cases we can find the algebraic boundary.
- We do want complete semi-algebraic descriptions.
- Semi-algebraic statistics is fun!

