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Question

Given some of the entries of a tensor, does there exist a rank-one
tensor that has the specified entries?

Example: matrix completion*

|

Assume given are the diagonal entries of a matrix:

([ T11 ?
X = < ? 3322>

Do there exist values for the ? so that the matrix has rank-one?

Yes!

|

Pick one value arbitrary, then 11290 = x127291 fixes the fourth.

*see also Kubjas/Rosen
Matrix completion for the independence model.



This can be answered with computational algebra:

¢ Rank-one tensors are a binomial algebraic set (Segre variety)

e Use elimination to understand its projections.
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e Use elimination to understand its projections.

Problem Solved! Except...
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We want k£ = R and have inequalities too (probabilities are non-negative!).



Example: joint probability distributions

Given the diagonal entries of a two-variate binary distribution

I11 ? 5 o
X = ( o > where z;; = Prob(X; =i, X5 = j),
8 o9

Do there exist values for the 7 so that X is the distribution of two
independent binary random variables?




Example: joint probability distributions

Given the diagonal entries of a two-variate binary distribution

I11 ? 5 o
X = < o > where z;; = Prob(X; =4, Xo = j),
8 o9

Do there exist values for the 7 so that X is the distribution of two
independent binary random variables?

Do there exist marginal distributions p, ¢ € Ay such that x;; = p;q;?
(A, = m-diml. simplex)




The geometric view

Determine the image of the restricted parametrization map

Al X Al — [0, 1]2
(p1,P2,q1,q2) — (211, 22) = (P11, P2G2)-

Restrictions on the domain (p,q € A1) make this problem interesting.




(p1,02, @1, q2) = (211, 222) = (P11, P2G2)-

subject to

p2=1-p1, ©e=1-q

(211 — 222)® — 2(z11 + T22) +1 > 0.




(p1,P2,q1,92) — (211, T22) = (P1G1,P2G2)-

subject to

p2=1-p1, @@=1-qi, p1=>20, ¢ =0.

-1 0 1 2 3

(z11 — T29)% — 2(z11 + 222) +1 >0,
z11 >0, 1+mz11 > 290.




(p1,P2,q1,92) — (211, T22) = (P1G1,P2G2)-

subject to

p2=1-p1 20, @2=1-¢ >0, p1 >0, q =0.

;oA

-1 0 1 2 3

(5611 — :[,‘22)2 — 2($11 + 3322) +1>0
1>x1 20, 1> x99 > 0.




Tensors

A tensor is an array of numbers from a field F indexed by
D =[dy] x -+ X [dy]

where d; > 2 are fixed integers and [d] = {1,...,d}.

A partial tensor is an array of numbers from F indexed by a subset
E C D. A completion of a partial tensor S € FF is a tensor T' € FP
such that the restriction T}y agrees with S.




Parametrization of rank one tensors

Let IF be one of the two fields R or C. The set of rank-one tensors is
the image of the parametrization

]Fdlx...de”—)FD, (91,,9n)'—>01®®'9n

Convenient fact: A real point in the image has a real preimage.

The set of rank-one tensors is a toric variety (product of simplices),
cut out by quadratic equations; the (2 x 2)-minors of its flattenings.




A remark on field dependence

A tensor with real entries and complex rank one has real rank one.
This is false for partial tensors.

Consider the real 2 x 2 x 2 partial tensor with third coordinate slices

71 1 7 2%2x2
(1) (o 5) eme




! 1 i 2X2x2
<1 ?> ’ <? 1> e R

For a rank-one completion T, can assume T = (1) ® (1) ® (3)-
Yields

bc =1, ac =1, d=1, abd = —1.
Only two solutions:

a==4i, b==%i, c=7Fi, d=1.




The following are equivalent.

e Every real partial tensor T with nonzero entries which is
completable over the complex numbers is also completeable over
the real numbers.

e The index of the lattice spanned by the columns of Ag in its
saturation is odd.

Moreover, given complex-completability, real-completability depends
only on the signs of observed entries.

Idea of the proof

| r

Diagonalize binomial equations
Iy = oy =22 U e, = 07, ec k.

via Smith normal form of A, = (a¢)eckr




Next step

Impose semi-algebraic constraints on the domain of
RY x ... x R% — RP, 01,...,0,) = 01 ® -6,

For example, 6; € Ag,_1 is a probability distribution:
e Non-negativity of entries of 6;.

e Linear constraints on the entries of 6;.




Next step

Impose semi-algebraic constraints on the domain of
RY x ... x R% — RP, 01,...,0,) = 01 ® -6,

For example, 6; € Ag,_1 is a probability distribution:
e Non-negativity of entries of 6;.

e Linear constraints on the entries of 6;.

By the way, the Tarski—Seidenberg theorem yields

Semi-algebraic constraints on the parameters yield only semi-algebraic
constraints on the image. In principle, they can be computed by
eliminating quantifiers from the formula

39171, ey Elen’dn € R such that z; 1 =...




We study first the algebraic boundary of the image of
Ad1,1 X - X Adn,1 — RE

where E C D, and A,, is the probability simplex of dimension m.

The algebraic boundary of a semi-algebraic set S C R" is the Zariski-
closure of the (Euclidean topology) boundary 0S5 = cl(S) \ int(S).




How to compute it

Compute the branch locus, the locus in the image where the rank of
the Jacobian of the parametrization drops.

; RA*‘W

Tauk
drop ot Jocl)




Assume now

e the number of observations equals the number of parameters
(i.e. Jacobian is square)

e every maximal-dimensional slice is observed

\.

Approach

e Sinn's Lemma: If a semi-algebraic set S C R* is nonempty and
contained in the closure of its interior and the same holds for
R* \ S, then its algebraic boundary is of pure codimension one.

e Implicit function theorem: If an interior parameter point maps
to a boundary tensor, the Jacobian determinant vanishes there.

e Argue that remaining components are all contained in
coordinate hyperplanes.




Assume the observed entries of a 2 x 2 X 2 tensor are x211, 121, T112-
Denote I; =1 —6; for i = 1,2,3. The graph of the map is defined by

I = (w211 — 110203, 2121 — 011203, 112 — 010213).
The Jacobian matrix of the parametrization map equals

—0205 1103 11607
J = l293 —«9193 0112
0513 01l3 —010-

and has determinant
020203 + 016303 + 010202 — 20,0505 = 010503(—6 — Oy — O3 + 2).

— Jacobian determinant is a monomial times a linear polynomial.




Explanation of the linear polynomial

030263 + 616305 + 010202 — 20,0505 = 010203(—6 — 62 — 63 + 2).

Consider the matrix
01 1 1
Bg=[101 1],
1 1 01

encoding in its columns which parameters 6; contribute to a given
observed entry, plus an extra column of ones.

The kernel of By is spanned by v = (-1, —1,—1,2), which yields
the coefficients.




I+ (lp) = (w211 — 1160203, 2121 — 011203, w112 — 010213, —01 — 02 — 03 + 2).
Eliminating 61,05, and 03 yields a prime ideal generated by

T3112501 — 203112551 + 25112001 — 20511 T121%112 + 20511 T 112 + 20511 T a1 T112
— 2&021135‘1121&0112 +$42111$?12 +2x311$1212ﬁ12 - 60031130%2190%12 + 21‘2111'%211'%12 +IE41121I%12
— 2w, 2510 + 20511 T121 25 10 + 20118701 510 — 203912510 + 112110 — 22211 T 12121 1
+ 23012t 1e — 205112701 — 205112001 + 823111217112 — 42311271 112 + 8T2118 501 T112
- 21’31@?12 - 4333115012133%12 - 45521133%2155%12 - 22@?2155?12 - 23@31155?12 + 830211;512130‘;’12
— 207012 10 + 25112701 — 102511 2121112 — 1022112321 T112 + 5118712 — 102211 T121 2715
+ 317512 + AT211T121 2112

Observation: Eliminating from
I+ <010203(*01 — 0y — 03 + 2)>

yields the same (much later).



. and this is how it looks

e The surface is singular in dimension 1 (all along the boundary)

e The interior extends into negative coordinates



Let

I = {(x.—1]]0,...) be the graph ideal of the parametrization.
I be the linear polynomial factor of the Jacobian determinant.

|E| be equal to the number of parameters.

e F C D meet every maximal-dimensional slice.

.

Algebraic boundary theorem

Eliminating the parameter variables from [+ (I) yields a non-zero prin-
cipal ideal generated by a non-constant irreducible polynomial f. The
polynomial ¢ that defines the algebraic boundary of the completable
region is the product of f with some coordinates.




Open Problems

e Determine the degree of f.

e How much do we know from the
algebraic boundary?

¢ Non-square Jacobians (|E| small)

Have some answers for diagonal observations...



Observing diagonal entries

e Consider d x d X - -- X d tensor of order n.

e Let E consists only of the d diagonal entries (much fewer than
number of parameters).

o Let S), 4 be the set of diagonal entries that admit a completion
to a rank-one “probability tensor” (independent multivariate
discrete distribution).

Theorem (Kubjas/Rosen)

Sh.a is a semi-algebraic set and its algebraic boundary is known.
Furthermore

d 1
Snd={z € R%O 2 in" <1}
i=1




There are explicitly described polynomials P, 4;(z), i =0, ... ,nd=T

such that x € R%O is an element of .S,, 4 if and only if P, 4,(x) > 0 for
all0 <i<ndl Ifnisodd, then S, 4= {z € R‘éo : Ppao(z) >0},




Let e; 4 denote the ith elementary symmetric polynomial in z1,...

7

S3.2 (2 x 2 x 2 tensors) is defined by

x1,x2 20
(1 - 6172)3 - 276272 Z 0.

S2.3 (3 X 3 matrices) is defined by

T1,T9,x3 >0

1—-e132>0

3(1—e13)* —4ea3 >0

(1—e13)((1— 6173) —4deg3) — 16e33 > 0
(1 —e13)% — dea3)?

- 646373 > 0.




For d = n = 2 the two analyzed classes overlap. We get

r1,22 20
1—2(z; +22) + (x1 —22)2>0
]-_Il_'TQZO?

The algebraic boundary misses 1 — x1 — 22 > 0 and is thus not the
final answer, even in the easiest case.




Conclusion

The set of partial multi-variate independent probability
distributions is semi-algebraic.

e In some cases we can find the algebraic boundary.

We do want complete semi-algebraic descriptions.

Semi-algebraic statistics is fun!




Conclusion

The set of partial multi-variate independent probability
distributions is semi-algebraic.

e In some cases we can find the algebraic boundary.

We do want complete semi-algebraic descriptions.

Semi-algebraic statistics is fun!

Thank you.



