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Polytopes and Their Splits



Regular Subdivisions

• polytopal subdivision:
cells meet face-to-face

• regular: induced by
weight/lifting function

• tight span = dual (polytopal)
complex
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Splits and Their Compatibility

Let P be a polytope.
split = (regular) subdivision of P with exactly two maximal cells

w1 = (0, 0, 1, 1, 0, 0)
w2 = (0, 0, 2, 3, 2, 0)

• coherent or weakly compatible:
common refinement exists

• compatible: split hyperplanes do
not meet in relintP

Lemma

The tight span ΣP(·)∗ of a sum of
compatible splits is a tree.
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Split Decomposition

Theorem (Bandelt & Dress 1992; Hirai 2006; Herrmann & J. 2008)

Each height function w on P has a unique decomposition

w = w0 +
∑

S split of P

λSwS ,

such that
∑
λSwS weakly compatible and w0 split prime.

Example

(0, 0, 3, 4, 2, 0)︸ ︷︷ ︸
w

= 0︸︷︷︸
w0

+1 · (0, 0, 1, 1, 0, 0)︸ ︷︷ ︸
wS

+1 · (0, 0, 2, 3, 2, 0)︸ ︷︷ ︸
wS′
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Finite Metric Spaces in Phylogenetics

Algorithmic problem

• input = finitely many DNA sequences (possibly only short)

• output = tree reflecting ancestral relations

• biology: too simplististic view on evolution

• naive optimization problem “find best tree” ill-posed

Key insight: think in terms of “spaces of trees”!

• Dress 1984: tight spans of finite metric spaces
• software SplitsTree by Huson and Bryant

• Isbell 1963: universal properties of metric spaces

• Billera, Holmes & Vogtmann 2001

• Sturmfels & Yu 2004: polyhedral interpretation
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Matroids



Matroids and Their Polytopes

Definition (matroids via bases axioms)

(d , n)-matroid = subset of
([n]
d

)
subject to an exchange condition

• generalizes bases of column space of rank-d-matrix with n cols

Definition (matroid polytope)

P(M) = convex hull of char. vectors of bases of matroid M

Example (uniform matroid)

Ud ,n =
([n]
d

)

P(Ud ,n) = ∆(d , n)

Example (d = 2, n = 4)

M5 = {12, 13, 14, 23, 24}

P(M5) = pyramid
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Matroids Explained via Polytopes

Proposition (Gel′fand et al. 1987)

A polytope P is a (d , n)-matroid polytope if and only if it is a
subpolytope of ∆(d , n) whose edges are parallel to ei − ej .

Proposition (Feichtner & Sturmfels 2005)

P(M) =

{
x ∈ ∆(d , n)

∣∣∣∣∣ ∑
i∈F

xi ≤ rank(F ), for F flat

}
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and Definition

d = 2, n = 4, M5 = {12, 13, 14, 23, 24}
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lattice of flats

Definition

flacet = flat which is non-redundant for exterior description
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Split Matroids

Definition

M split matroid :⇐⇒ flacets of P(M) form
compatible set of hypersimplex splits

• J. & Schröter 2016+: each flacet
spans a split hyperplane

• J. & Herrmann 2008: classification
of hypersimplex splits

• paving matroids (and their duals)
are of this type

• conjecture: asymptotically almost
all matroids are paving
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Percentage of Paving Matroids

d\n 4 5 6 7 8 9 10 11 12

2 57 46 43 38 36 33 32 30 29
3 50 31 24 21 21 30 52 78 91
4 100 40 22 17 34 77 − − −
5 100 33 14 12 63 − − −
6 100 29 10 14 − − −
7 100 25 7 17 − −
8 100 22 5 19 −
9 100 20 4 16
10 100 18 3
11 100 17

isomorphism classes of (d , n)-matroids:
Matsumoto, Moriyama, Imai & Bremner 2012



Percentage of Split Matroids

d\n 4 5 6 7 8 9 10 11 12

2 100 100 100 100 100 100 100 100 100
3 100 100 89 75 60 52 61 80 91
4 100 100 100 75 60 82 − − −
5 100 100 100 60 82 − − −
6 100 100 100 52 − − −
7 100 100 100 61 − −
8 100 100 100 80 −
9 100 100 100 91
10 100 100 100
11 100 100

isomorphism classes of (d , n)-matroids:
Matsumoto, Moriyama, Imai & Bremner 2012



Forbidden Minors

Lemma

The class of split matroids is minor closed.

Theorem (Cameron & Myhew 2016+)

The only disconnected forbidden minor is S0 = M5 ⊕M5, and
there are precisely four connected forbidden minors:

S1 S2 S3 S4
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Tropical Plücker Vectors



Tropical Plücker Vectors
a.k.a. “valuated matroids”

Definition

Let π :
([n]
d

)
→ R.

π (d , n)-tropical Plücker vector

:⇐⇒ Σ∆(d ,n)(π) matroidal
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• subdivision matroidal: all cells are matroid polytopes

Lemma

Each split of any matroid polytope yields matroid subdivision.

[Dress & Wenzel 1992] [Kapranov 1992] [Speyer & Sturmfels 2004]
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Constructing a Class of Tropical Plücker Vectors

Let M be a (d , n)-matroid.

• series-free lift sf M := free extension followed by parallel
co-extension yields (d + 1, n + 2)-matroid

Theorem (J. & Schröter 2016+)

If M is a split matroid then the map

ρ :

(
[n + 2]

d + 1

)
→ R , S 7→ d − ranksf M(S)

is a tropical Plücker vector which
corresponds to a most degenerate
tropical linear space.

The matroid M is
realizable if and only if ρ is.

d = 2, n = 6: snowflake
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Dressians

• Dressian Dr(d , n) := subfan of secondary fan of ∆(d , n)
corresponding to matroidal subdivisions

• Dr(2, n) = space of metric trees with n marked leaves

• tropical Grassmannian TGrp(d , n) := tropical variety defined
by (d , n)-Plücker ideal over algebraically closed field of
characteristic p ≥ 0

• contains tropical Plücker vectors which are realizable
• TGr(d , n) ⊂ Dr(d , n) as sets

Corollary (J. & Schröter 2016+)

There are many rays of Dr(d , n) which are not contained in
TGrp(d , n) for any p.

[Speyer & Sturmfels 2004] [Herrmann, J. & Speyer 2012] [Fink & Rincón 2015]
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Conclusion

• new class of matroids, which is large

• suffices to answer previously open questions
on Dressians and tropical Grassmannians

• simple characterization in terms of forbidden minors

J. & Schröter:
Matroids from hypersimplex splits, arXiv:1607.06291

http://arxiv.org/abs/1607.06291


Dr(2, 5) = TGr(2, 5)

135|24

124|35

12|345

123|45 13|245

15|234

14|235

125|34

145|23 134|25
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5 2
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Tight Spans of Finest Matroid Subdivisions of ∆(3, 6)

[3, 4; 2, 56](1)

[12; 4, 5, 6](3) [1, 2; 34, 5](6)

{1, 256, 3, 4}

{124, 3, 5, 6} {1, 2, 345, 6}

EEEG:

[12, 5; 3, 4](6)

[1, 2; 3, 4](56)

[1, 2; 34, 6](5)

{12, 34, 5, 6}

{125, 3, 4, 6}{1, 2, 346, 5}

EEFF(a):

[12, 6; 3, 4](5)

[1, 2; 3, 4](56)

[1, 2; 34, 6](5)

{12, 34, 5, 6}

{126, 3, 4, 5}{1, 2, 346, 5}

EEFF(b):

{145, 2, 3, 6}

{123, 4, 5, 6}

{1, 246, 3, 5}

{1, 2, 356, 4}

〈3; 4; (1, 2, 5, 6)〉

EEEE:

{12, 34, 5, 6}

[1, 2; 34, 6](5)

[3, 4; 1, 56](2)

[3, 4; 5, 6](12)

{1, 2, 346, 5}

{156, 23, 4}EEFG:

{1, 2, 34, 56} [3, 4; 5, 6](12)

[12, 6; 3, 4](5)

{12, 34, 5, 6}

[1, 2; 5, 6](34)
{126, 3, 4, 5}

EFFG:
[1, 2; 3, 4](56){1, 2, 34, 56}

[1, 2; 5, 6](34)

{12, 34, 5, 6}[3, 4; 5, 6](12)

{12, 3, 4, 56}
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