Matroids From Hypersimplex Splits

Michael Joswig

TU Berlin

Berlin, 15 December 2016

joint w/ Benjamin Schröter

1 Polytopes and Their Splits

Regular subdivisions Phylogenetics and DNA sequences

2 Matroids

Matroids polytopes Split matroids

3 Tropical Plücker Vectors

Dressians and their rays

Polytopes and Their Splits

Regular Subdivisions

• polytopal subdivision: cells meet face-to-face

Regular Subdivisions

- polytopal subdivision: cells meet face-to-face
- regular: induced by weight/lifting function

Regular Subdivisions

- polytopal subdivision: cells meet face-to-face
- regular: induced by weight/lifting function
- tight span = dual (polytopal) complex

Let P be a polytope.

Let P be a polytope.

Let P be a polytope.

Let *P* be a polytope.

Let P be a polytope.

split = (regular) subdivision of P with exactly two maximal cells

$$w_1 = (0, 0, 1, 1, 0, 0) w_2 = (0, 0, 2, 3, 2, 0)$$

• coherent or weakly compatible: common refinement exists

Let P be a polytope.

$$w_1 = (0, 0, 1, 1, 0, 0) w_2 = (0, 0, 2, 3, 2, 0)$$

- coherent or weakly compatible: common refinement exists
- compatible: split hyperplanes do not meet in relint *P*

Let P be a polytope.

$$w_1 = (0, 0, 1, 1, 0, 0) w_2 = (0, 0, 2, 3, 2, 0)$$

- coherent or weakly compatible: common refinement exists
- compatible: split hyperplanes do not meet in relint *P*

Split Decomposition

Theorem (Bandelt & Dress 1992; Hirai 2006; Herrmann & J. 2008) Each height function w on P has a unique decomposition $w = w_0 + \sum_{\substack{S \text{ split of } P}} \lambda_S w_S,$ such that $\sum \lambda_S w_S$ weakly compatible and w_0 split prime.

Split Decomposition

Theorem (Bandelt & Dress 1992; Hirai 2006; Herrmann & J. 2008) Each height function w on P has a unique decomposition $w = w_0 + \sum \lambda_S w_S,$ S split of P such that $\sum \lambda_5 w_5$ weakly compatible and w_0 split prime. Example $(0,0,3,4,2,0) = 0 + 1 \cdot (0,0,1,1,0,0) + 1 \cdot (0,0,2,3,2,0)$ Wn Ws Ws1 w

Finite Metric Spaces in Phylogenetics

Algorithmic problem

- input = finitely many DNA sequences (possibly only short)
- output = tree reflecting ancestral relations

Finite Metric Spaces in Phylogenetics

Algorithmic problem

- input = finitely many DNA sequences (possibly only short)
- output = tree reflecting ancestral relations
- biology: too simplististic view on evolution
- naive optimization problem "find best tree" ill-posed

Finite Metric Spaces in Phylogenetics

Algorithmic problem

- input = finitely many DNA sequences (possibly only short)
- output = tree reflecting ancestral relations
- biology: too simplististic view on evolution
- naive optimization problem "find best tree" ill-posed

Key insight: think in terms of "spaces of trees"!

- Dress 1984: tight spans of finite metric spaces
 - software SplitsTree by Huson and Bryant
- Isbell 1963: universal properties of metric spaces
- Billera, Holmes & Vogtmann 2001
- Sturmfels & Yu 2004: polyhedral interpretation

N/latroids	

Matroids and Their Polytopes

Definition (matroids via bases axioms) (d, n)-matroid = subset of $\binom{[n]}{d}$ subject to an exchange condition

• generalizes bases of column space of rank-d-matrix with n cols

Matroids and Their Polytopes

Definition (matroids via bases axioms) (d, n)-matroid = subset of $\binom{[n]}{d}$ subject to an exchange condition

• generalizes bases of column space of rank-d-matrix with n cols

Example (uniform matroid) $U_{d,n} = {[n] \choose d}$

Example (d = 2, n = 4) $M_5 = \{12, 13, 14, 23, 24\}$

Matroids and Their Polytopes

Definition (matroids via bases axioms) (d, n)-matroid = subset of $\binom{[n]}{d}$ subject to an exchange condition

generalizes bases of column space of rank-d-matrix with n cols

```
Definition (matroid polytope)P(M) = \text{convex hull of char. vectors of bases of matroid } MExample (uniform matroid)U_{d,n} = {[n] \choose d}P(U_{d,n}) = \Delta(d, n)P(M_5) = \text{pyramid}
```

Matroids Explained via Polytopes

Proposition (Gel'fand et al. 1987) A polytope P is a (d, n)-matroid polytope if and only if it is a subpolytope of $\Delta(d, n)$ whose edges are parallel to $e_i - e_j$.

Matroids Explained via Polytopes

Proposition (Feichtner & Sturmfels 2005)

$$P(M) = \left\{ x \in \Delta(d, n) \mid \sum_{i \in F} x_i \leq \operatorname{rank}(F), \text{ for } F \text{ flat} \right\}$$

Example

$$d = 2, n = 4, M_5 = \{12, 13, 14, 23, 24\}$$

Example and Definition

Split Matroids

 J. & Schröter 2016+: each flacet spans a split hyperplane

Split Matroids

- J. & Schröter 2016+: each flacet spans a split hyperplane
- J. & Herrmann 2008: classification of hypersimplex splits

Split Matroids

- J. & Schröter 2016+: each flacet spans a split hyperplane
- J. & Herrmann 2008: classification of hypersimplex splits
- paving matroids (and their duals) are of this type
- conjecture: asymptotically almost all matroids are paving

Percentage of Paving Matroids

$d \setminus n$	4	5	6	7	8	9	10	11	12
2	57	46	43	38	36	33	32	30	29
3	50	31	24	21	21	30	52	78	91
4	100	40	22	17	34	77	_	_	_
5		100	33	14	12	63	_	_	_
6			100	29	10	14	_	_	_
7				100	25	7	17	_	_
8					100	22	5	19	_
9						100	20	4	16
10							100	18	3
11								100	17

isomorphism classes of (d, n)-matroids: Matsumoto, Moriyama, Imai & Bremner 2012

Percentage of Split Matroids

$d \setminus n$	4	5	6	7	8	9	10	11	12
2	100	100	100	100	100	100	100	100	100
3	100	100	89	75	60	52	61	80	91
4	100	100	100	75	60	82	_	_	_
5		100	100	100	60	82	_	_	_
6			100	100	100	52	_	_	_
7				100	100	100	61	_	_
8					100	100	100	80	_
9						100	100	100	91
10							100	100	100
11								100	100

isomorphism classes of (d, n)-matroids: Matsumoto, Moriyama, Imai & Bremner 2012

Forbidden Minors

¦ Lemma	
The class of split matroids is minor closed.	

Forbidden Minors

Lemma	
The class of split matroids is minor closed.	

```
Theorem (Cameron & Myhew 2016+)
```

```
The only disconnected forbidden minor is S_0 = M_5 \oplus M_5,
```

Forbidden Minors

Lemma	
The class of split matroids is minor closed.	

Tropical Plücker Vectors

Tropical Plücker Vectors

a.k.a. "valuated matroids"

 $\begin{array}{l} \text{Definition} \\ \text{Let } \pi : {[n] \atop d} \to \mathbb{R}. \\ \\ \pi \ (d, n) \text{-tropical Plücker vector} \\ \\ \vdots \Longleftrightarrow \ \Sigma_{\Delta(d,n)}(\pi) \text{ matroidal} \end{array}$

subdivision matroidal: all cells are matroid polytopes

[Dress & Wenzel 1992] [Kapranov 1992] [Speyer & Sturmfels 2004]

Tropical Plücker Vectors

a.k.a. "valuated matroids"

 $\begin{array}{l} \mbox{Definition} \\ \mbox{Let } \pi: {[n] \atop d} \to \mathbb{R}. \\ \\ \pi \ (d, n) \mbox{-tropical Plücker vector} \\ \\ \vdots \Longleftrightarrow \ \Sigma_{\Delta(d,n)}(\pi) \ \mbox{matroidal} \end{array}$

• subdivision matroidal: all cells are matroid polytopes

[Dress & Wenzel 1992] [Kapranov 1992] [Speyer & Sturmfels 2004]

Constructing a Class of Tropical Plücker Vectors

Let M be a (d, n)-matroid.

 series-free lift sf M := free extension followed by parallel co-extension yields (d + 1, n + 2)-matroid

Constructing a Class of Tropical Plücker Vectors

Let M be a (d, n)-matroid.

 series-free lift sf M := free extension followed by parallel co-extension yields (d + 1, n + 2)-matroid

```
Theorem (J. & Schröter 2016+)
 If M is a split matroid then the map

ho: igg( rac{[n+2]}{d+1} igg) 	o \mathbb{R} \,, \,\, S \mapsto d - \operatorname{rank}_{\operatorname{sf} M}(S)
is a tropical Plücker vector which
 corresponds to a most degenerate
tropical linear space. The matroid M is
realizable if and only if \rho is.
```


Dressians

- Dressian Dr(d, n) := subfan of secondary fan of Δ(d, n) corresponding to matroidal subdivisions
 - Dr(2, n) = space of metric trees with n marked leaves

[Speyer & Sturmfels 2004] [Herrmann, J. & Speyer 2012] [Fink & Rincón 2015]

Dressians

- Dressian Dr(d, n) := subfan of secondary fan of Δ(d, n) corresponding to matroidal subdivisions
 - Dr(2, n) = space of metric trees with n marked leaves
- tropical Grassmannian TGr_p(d, n) := tropical variety defined by (d, n)-Plücker ideal over algebraically closed field of characteristic p ≥ 0
 - contains tropical Plücker vectors which are realizable
 - TGr(d, n) ⊂ Dr(d, n) as sets

Dressians

- Dressian Dr(d, n) := subfan of secondary fan of Δ(d, n) corresponding to matroidal subdivisions
 - Dr(2, n) = space of metric trees with n marked leaves
- tropical Grassmannian TGr_p(d, n) := tropical variety defined by (d, n)-Plücker ideal over algebraically closed field of characteristic p ≥ 0
 - contains tropical Plücker vectors which are realizable
 - TGr(d, n) ⊂ Dr(d, n) as sets

```
Corollary (J. & Schröter 2016+)
There are many rays of Dr(d, n) which are not contained in TGr_p(d, n) for any p.
```

[Speyer & Sturmfels 2004] [Herrmann, J. & Speyer 2012] [Fink & Rincón 2015]

Conclusion

- new class of matroids, which is large
- suffices to answer previously open questions on Dressians and tropical Grassmannians
- simple characterization in terms of forbidden minors

J. & Schröter: Matroids from hypersimplex splits, arXiv:1607.06291 $\mathsf{Dr}(2,5) = \mathsf{TGr}(2,5)$

Tight Spans of Finest Matroid Subdivisions of $\Delta(3,6)$

