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Unimodality and real-rootedness

Let ag,...,aq >0 be real numbers.
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Interlacing polynomials

» Proof of Kadison-Singer-Problem from 1959 (Marcus, Spielman,
Srivastava '15)

» Real-rootedness of independence polynomials of claw-free graphs
(Chudnowski, Seymour '07)
compatible polynomials, common interlacers

» Real-rootedness of s-Eulerian polynomials (Savage, Visontai '15)
h*-polynomial of s-Lecture hall polytopes are real-rooted

Further literature: Branden '14, Fisk '08, Braun '15



Lattice zonotopes

Theorem (Schepers, Van Langenhoven '13)
The h*-polynomial of any lattice parallelepiped is unimodal.

Theorem (Beck, J., McCullough '16)

The h*-polynomial of any lattice zonotope is real-rooted.

Matthias Beck Emily McCullough



Dilated lattice polytopes

Theorem (Brenti, Welker '09; Diaconis, Fulman '09; Beck,
Stapledon '10)

Let P be a d-dimensional lattice polytope. Then there is an N such that
the h*-polynomial of rP has only real roots for r > N.

Conjecture (Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope. Then the h*-polynomial of rP
has only distinct real-roots whenever r > d.

Theorem (Higashitani '14)

Let P be a d-dimensional lattice polytope. Then the h*-polynomial of rP
has log-concave coefficients whenever r > deg h*(P).

Theorem (J. '16)

Let P be a d-dimensional lattice polytope. Then the h*-polynomial of rP
has only simple real roots whenever r > max{deg h*(P) +1,d}.



h*-polynomials of IDP-polytopes

Conjecture (Stanley 98; Hibi, Ohsugi '06; Schepers, Van
Langenhoven '13)

If P is IDP then the h*-polynomial of P has unimodal coefficients.

» Parallelepipeds are IDP and zonotopes can be tiled by parallelepipeds

phard ‘74

» Forall r >dimP -1, rP is IDP (Bruns, Gubeladze, Trung '97).
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Interlacing polynomials

Definition
A polynomial f =[]7,(t —s;) interlaces a polynomial g = [T, (t - t;)
and we write f < g if

< <th<s5<th

Properties
» f and g are real-rooted
» f <gifand only if cf < dg for all ¢,d 0.
» degf <degg <degf +1
» af + Bg real-rooted for all o, 5 e R



Interlacing polynomials (schematical :-) )




Polynomials with only nonpositive, real roots

Lemma (Wagner '00)

Let f,g,heR[t] be real-rooted polynomials with only nonpositive, real
roots and positive leading coefficients. Then

(i) iff <hand g < h then f+g<h.
(i) ifh<f and h<g then h<f +g.
(iii) g < f ifand only if f < tg.



Interlacing sequences of polynomials

Definition
A sequence fi,..., fy is called interlacing if
fi<f whenever / < .
Lemma
Let fi,...,f, be an interlacing polynomials with only nonnegative
coefficients. Then
cfi + ofs + - +Cmfm

is real-rooted for all ¢y,...,cm > 0.



Interlacing sequences of polynomials




Constructing interlacing sequences

Proposition (Fisk '08; Savage, Visontai '15)

Let f1,---, f,, be a sequence of interlacing polynomials with only negative
roots and positive leading coefficients. For all 1 << m let

g =th+-+thg+f+-+1f

Then also g1,---,gm are interlacing, have only negative roots and positive
leading coefficients.



Linear operators preserving interlacing sequences

Let F7 the collection of all interlacing sequences of polynomials with only
nonnegative coefficients of length n.
When does a matrix G = (G; j(t)) e R[t]™" map F] to F[ by
G-(f,....f)"7?
Theorem (Brandén '15)
Let G = (G;jj(t)) e R[t]™". Then G:F] — F if and only if
(i) (Gjj(t)) has nonnegative entries for all i € [n],j € [m], and
(i) Forall \,y>0,1<i<j<n 1<k</<n

()\t + ,LL)GkJ(t) + G/J(t) < ()\t + ,u) Gk,,'(f) + G/,,'(t) .



Example
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c R[X](n+1)xn
t t - t t

(i) All entries have nonnegative coefficients v
Submatrices:

i J
M_k(ckﬂ-(t) Gk,,-(t)) ' (1 1) (1 1) (t 1) (t t)
L \NG(t) Gy(t)) 11 t 1 t ot t ot
(II) ()\t+,u)Gk~J-(t) + G/A’j(f) < (>\t+ ,U)ka,'(t) + G/’,'(f)

A+Dt+p=t+p) 1+t (At+p)t+t=(At+p+1)t Vv



Lattice zonotopes



Eulerian polynomials

We call i€ {1,...,d -1} a descent of a permutation o € Sy if
o(i+1)>oc(i). The number of descents of o is denoted by deso and set

a(d, k) = [{o€Sq:deso = k}|
The Eulerian polynomial is

d-1

> a(d, k)th

k=0

12 3
(2 1)€53

123 132 213 231 312 321

A(d,t)

Example:

w

A(3,t) = 1+4t+1t2
Theorem (Frobenius '10)
For all d > 1 the Eulerian polynomial A(d,t) has only real roots.



h*-polynomials

For every lattice polytope P c R? let Ep(n) = |nP nZ7| be the Ehrhart
polynomial of P. The h*-polynomial h*(P)(t) of P is defined by

ZEP(H)I’" — h*('D)(t)

e (1 _ t)dim P+1 "

Half-open unimodular simplices
For a unimodular d-simplex A with facets Fq,..., Fy:1

pan) = (7)< w0 -1

More generally, for 0 < < d

= h*(A)(t) =t

n+d-i
EAxuilek(”) = ( )

d



Unit cubes
Partition of unit cube C? =[0,1]¢

c? = U {xe Cd:xg(l) < Xp(2) S < Xo(d)

€Sy

X2

(12)

X1



Unit cubes
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Refined Eulerian polynomials

For every j € [d] we define the j-Eulerian numbers
aj(d, k) = [{o€Sqg:deso = k,o(1) =}
and the j-Eulerian polynomial
d-1
Ai(d, k) = > aj(d, k)tk
k=0

Example: d=4,j=2

2134 2143 2314 2341 2413 2431

A(3,t) = 4t +2t?



Refined Eulerian polynomials

Lemma (Brenti, Welker '08)
Foralld>1andall1<j<d+1

Ai(d+1,t) = Y tA(d,t)+ > A(d,t).

k<i k>i
Thus, Agi1 = G- Ay, where
111 1
t 1 1
Ag=(A(d,t),...,Aq(d,t))T and |t 1 1
t t - t t

Theorem (Brenti, Welker '08, Savage, Visontai '15)
For all 1 < j < d the j-Eulerian polynomial A;(d,t) is real-rooted.



Half-open unit cubes
Partition of half-open unit cube C7 =[0,1]7~ {x, =0,...,x = 0}
G = W {xe G SXo@) € < o),

J
€Sy

X (i) < Xo(i+1), if i descent of o'}
X2

id
“(12)

X1

deso+1 if o(1) <,

h* Cd t) = tde5ja h des: o =
( g (1) = Xoes, where &9 {descr otherwise.



Refined Eulerian numbers

Claim:
{0 € Sq:desjo = k} 2 {0 € Sqs1:deso = k,0(1) = j + 1}
Proof by example: d =5, j =3

24351 +— 424351 — 425361

Theorem (Beck, J., McCullough '16)

h*(C)(t) = Aja(d +1,t).



Half-open parallelepipeds

For vi,...,vq € Z9 linear independent and / ¢ [d]

O (vi,...,vq) _{Z Avii0< A <1,0< ) ifiel}

7

l=g /_{1} I={Li,2}




Half-open parallelepipeds and zonotopes

For K c [d] we denote
b(K) = |relint(¢({v;}iex) N Z7|
Theorem (Beck, J., McCullough '16+)

b (®i(viyova)) () = Y b(K)Ajukpsa(d +1,t).
Kc[d]

In particular, the h*-vector of every half-open parallelepiped is
real-rooted.



Zonotopes

Theorem (Beck, J., McCullough '16)

The h*-polynomial of every lattice zonotope is real-rooted.

Theorem (Beck, J., McCullough '16)

Let d > 1. Then the convex hull of the set of all h*-polynomials of lattice
zonotopes/parallelepipeds equals

Al(d + ]., t) +R20A2(d + 1, t) + e +R20Ad+1(d + 17 t) .



Dilated lattice polytopes



Dilation operator

For f e R[t] and an integer r > 1 there are uniquely determined
fo,...,f—1 € R[t] such that

F(t) = fo(t") + tA(t") +-+ " 1 ().
For 0 <i<r—1 we define
Firi) = f,.

Example: r=2
1+3t+5t2+75+ t°

Then
fo=1+5t f=3+Tt+t2

In particular, for all lattice polytopes P and all integers r > 1

(r.0)
S Ep(n)t” = (Z Ep(n)(n)t”)

n=0 n=0



h*-polynomials of dilated polytopes

Lemma (Beck, Stapledon '10)
Let P be a d-dimensional lattice polytope and r > 1. Then

B (rP)(t) = (h*(P)(£)(1+ t+ -+ 1)) "D

Equivalently,

* (rP)(t) = h(r,O)agr@) + t(h(r,l)agr,rfl) . h(r,r—l)a‘(jr,l))

9

where _ .
aﬁf")(t) =((L+t+o+ t“l)d)(r,,)

forallr>1andall0<i<r-1.



Another operator preserving interlacing...

Proposition (Fisk '08)
Let f be a polynomial such that f

sequence. Let
g(t)=(1L+t+--+t"Hf(t).

(rr=1) . Fol) £ s an interlacing

Then also gt~ =1, ... g{r1) g{O s an interlacing sequence.
Observation:
{ror-1) 11 1\ ptrr-n)
& 11 (™
g:r,li = t 1 § 1 fir,l)
r,0 . r,0

£ t ot YA
Corollary
The polynomials ad (),. r’l)(t), aff’O)(t) form an interlacing

sequence of polynomials.



Putting the pieces together...

For all d-dimensional lattice polytopes P

h*(rP)(t) = h(r,O)agr,O) i t(h(r,l)agr,r—l) R h<r’r_1>a§[’1>)

Key observation: For r > deg h*(P)(t)
RO = h >0

Theorem (J. '16)

Let P be a d-dimensional lattice polytope. Then h*(rP)(t) has only real
roots whenever r > deg h*(P)(t).



Concluding remarks

» Crucial: Coefficients of h*-polynomial are nonnegative. Other
applications
» Combinatorial positive valuations
> Hilbert series of Cohen-Macaulay domains
» Bounds are optimal

» For Ehrhart polynomials: Only for deg h*(P)(t) < X (using result
by Batyrev and Hofscheier '10)
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Matthias Beck, Katharina Jochemko, Emily McCullough:
h*-polynomials of zonotopes, http://arxiv.org/abs/1609.08596.

Katharina Jochemko: On the real-rootedness of the Veronese

construction for rational formal power series,
http://arxiv.org/abs/1602.09139.
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