Real-rooted h^{*}-polynomials

Katharina Jochemko

TU Wien

Einstein Workshop on Lattice Polytopes, December 15, 2016

TECHNISCHE
UNIVERSITÄT
WIEN
Vienna|Austria

Unimodality and real-rootedness

Let $a_{0}, \ldots, a_{d} \geq 0$ be real numbers.

\[

\]

Unimodality and real-rootedness

Let $a_{0}, \ldots, a_{d} \geq 0$ be real numbers.

\[

\]

\Downarrow

$$
\begin{gathered}
\text { Log-concavity } \\
a_{i}^{2} \geq a_{i-1} a_{i+1} \text { for all } 0 \leq i \leq d
\end{gathered}
$$

\Downarrow

> | Unimodality | | | |
| :---: | :---: | :---: | :---: |
| $a_{0} \leq \cdots \leq a_{i} \geq \cdots \geq a_{d}$ for some $0 \leq i \leq d$ | | | |

Interlacing polynomials

- Proof of Kadison-Singer-Problem from 1959 (Marcus, Spielman, Srivastava '15)
- Real-rootedness of independence polynomials of claw-free graphs (Chudnowski, Seymour '07) compatible polynomials, common interlacers
- Real-rootedness of s-Eulerian polynomials (Savage, Visontai '15) h^{*}-polynomial of s-Lecture hall polytopes are real-rooted

Further literature: Bränden '14, Fisk '08, Braun '15

Lattice zonotopes

Theorem (Schepers, Van Langenhoven '13)
The h^{*}-polynomial of any lattice parallelepiped is unimodal.
Theorem (Beck, J., McCullough '16)
The h^{*}-polynomial of any lattice zonotope is real-rooted.

Matthias Beck

Emily McCullough

Dilated lattice polytopes

Theorem (Brenti, Welker '09; Diaconis, Fulman '09; Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope. Then there is an N such that the h^{*}-polynomial of $r P$ has only real roots for $r \geq N$.
Conjecture (Beck, Stapledon '10)
Let P be a d-dimensional lattice polytope. Then the h^{*}-polynomial of $r P$ has only distinct real-roots whenever $r \geq d$.

Theorem (Higashitani '14)
Let P be a d-dimensional lattice polytope. Then the h^{*}-polynomial of $r P$ has log-concave coefficients whenever $r \geq \operatorname{deg} h^{*}(P)$.

Theorem (J. '16)
Let P be a d-dimensional lattice polytope. Then the h^{*}-polynomial of $r P$ has only simple real roots whenever $r \geq \max \left\{\operatorname{deg} h^{*}(P)+1, d\right\}$.

h^{*}-polynomials of IDP-polytopes

Conjecture (Stanley 98; Hibi, Ohsugi '06; Schepers, Van Langenhoven '13)
If P is IDP then the h^{*}-polynomial of P has unimodal coefficients.

- Parallelepipeds are IDP and zonotopes can be tiled by parallelepipeds

- For all $r \geq \operatorname{dim} P-1, r P$ is IDP (Bruns, Gubeladze, Trung '97).

Outline

Interlacing polynomials

Lattice zonotopes

Dilated lattice polytopes

Interlacing polynomials

Interlacing polynomials

Definition

A polynomial $f=\prod_{i=1}^{m}\left(t-s_{i}\right)$ interlaces a polynomial $g=\prod_{i=1}^{n}\left(t-t_{i}\right)$ and we write $f \leq g$ if

$$
\cdots \leq s_{2} \leq t_{2} \leq s_{1} \leq t_{1}
$$

Properties

- f and g are real-rooted
- $f \leq g$ if and only if $c f \leq d g$ for all $c, d \neq 0$.
- $\operatorname{deg} f \leq \operatorname{deg} g \leq \operatorname{deg} f+1$
- $\alpha f+\beta g$ real-rooted for all $\alpha, \beta \in \mathbb{R}$

Interlacing polynomials (schematical :-))

Polynomials with only nonpositive, real roots

Lemma (Wagner '00)
Let $f, g, h \in \mathbb{R}[t]$ be real-rooted polynomials with only nonpositive, real roots and positive leading coefficients. Then
(i) if $f \leq h$ and $g \leq h$ then $f+g \leq h$.
(ii) if $h \leq f$ and $h \leq g$ then $h \leq f+g$.
(iii) $g \leq f$ if and only if $f \leq t g$.

Interlacing sequences of polynomials

Definition

A sequence f_{1}, \ldots, f_{m} is called interlacing if

$$
f_{i} \leq f_{j} \quad \text { whenever } i \leq j .
$$

Lemma
Let f_{1}, \ldots, f_{m} be an interlacing polynomials with only nonnegative coefficients. Then

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{m} f_{m}
$$

is real-rooted for all $c_{1}, \ldots, c_{m} \geq 0$.

Interlacing sequences of polynomials

Constructing interlacing sequences

Proposition (Fisk '08; Savage, Visontai '15)

Let f_{1}, \cdots, f_{m} be a sequence of interlacing polynomials with only negative roots and positive leading coefficients. For all $1 \leq I \leq m$ let

$$
g_{l}=t f_{1}+\cdots+t f_{l-1}+f_{l}+\cdots+f_{m} .
$$

Then also g_{1}, \cdots, g_{m} are interlacing, have only negative roots and positive leading coefficients.

Linear operators preserving interlacing sequences

Let \mathcal{F}_{+}^{n} the collection of all interlacing sequences of polynomials with only nonnegative coefficients of length n.
When does a matrix $G=\left(G_{i, j}(t)\right) \in \mathbb{R}[t]^{m \times n}$ map \mathcal{F}_{+}^{n} to \mathcal{F}_{+}^{m} by $G \cdot\left(f_{1}, \ldots, f_{n}\right)^{T}$?
Theorem (Brändén '15)
Let $G=\left(G_{i, j}(t)\right) \in \mathbb{R}[t]^{m \times n}$. Then $G: \mathcal{F}_{+}^{n} \rightarrow \mathcal{F}_{+}^{m}$ if and only if
(i) $\left(G_{i, j}(t)\right)$ has nonnegative entries for all $i \in[n], j \in[m]$, and
(ii) For all $\lambda, \mu>0,1 \leq i<j \leq n, 1 \leq k<I \leq n$

$$
(\lambda t+\mu) G_{k, j}(t)+G_{l, j}(t) \leq(\lambda t+\mu) G_{k, i}(t)+G_{l, i}(t) .
$$

Example

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
t & 1 & 1 & \cdots & 1 \\
t & t & 1 & \cdots & 1 \\
\vdots & \vdots & & & \vdots \\
t & t & \cdots & t & t
\end{array}\right) \quad \in \mathbb{R}[x]^{(n+1) \times n}
$$

(i) All entries have nonnegative coefficients

Submatrices:

$$
M={ }_{l}^{k}\left(\begin{array}{cc}
i & j \\
G_{k, i}(t) & G_{k, j}(t) \\
G_{l, i}(t) & G_{l, j}(t)
\end{array}\right): \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 1 \\
t & 1
\end{array}\right) \quad\left(\begin{array}{ll}
t & 1 \\
t & t
\end{array}\right) \quad\left(\begin{array}{ll}
t & t \\
t & t
\end{array}\right)
$$

(ii) $(\lambda t+\mu) G_{k, j}(t)+G_{l, j}(t) \leq(\lambda t+\mu) G_{k, i}(t)+G_{l, i}(t)$

$$
(\lambda+1) t+\mu=(\lambda t+\mu) \cdot 1+t \leq(\lambda t+\mu) t+t=(\lambda t+\mu+1) t
$$

Lattice zonotopes

Eulerian polynomials

We call $i \in\{1, \ldots, d-1\}$ a descent of a permutation $\sigma \in S_{d}$ if $\sigma(i+1)>\sigma(i)$. The number of descents of σ is denoted by $\operatorname{des} \sigma$ and set

$$
a(d, k)=\left|\left\{\sigma \in S_{d}: \operatorname{des} \sigma=k\right\}\right|
$$

The Eulerian polynomial is

$$
A(d, t)=\sum_{k=0}^{d-1} a(d, k) t^{k}
$$

Example:

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \in S_{3} \\
123 \quad 132 \quad 213 \quad 231 \quad 312 \quad 321 \\
A(3, t)=1+4 t+t^{2}
\end{gathered}
$$

Theorem (Frobenius '10)
For all $d \geq 1$ the Eulerian polynomial $A(d, t)$ has only real roots.

h^{*}-polynomials

For every lattice polytope $P \subset \mathbb{R}^{d}$ let $\mathrm{E}_{P}(n)=\left|n P \cap \mathbb{Z}^{d}\right|$ be the Ehrhart polynomial of P. The h^{*}-polynomial $h^{*}(P)(t)$ of P is defined by

$$
\sum_{n \geq 0} E_{P}(n) t^{n}=\frac{h^{*}(P)(t)}{(1-t)^{\operatorname{dim} P+1}} .
$$

Half-open unimodular simplices
For a unimodular d-simplex Δ with facets F_{1}, \ldots, F_{d+1}

$$
\mathrm{E}_{\Delta}(n)=\binom{n+d}{d} \Rightarrow h^{*}(\Delta)(t)=1
$$

More generally, for $0 \leq i \leq d$

$$
\mathrm{E}_{\Delta \backslash \cup_{k=1}^{i} F_{k}}(n)=\binom{n+d-i}{d} \Rightarrow h^{*}(\Delta)(t)=t^{i}
$$

Unit cubes

Partition of unit cube $C^{d}=[0,1]^{d}$

$$
C^{d}=\bigcup_{\sigma \in S_{d}}\left\{\mathbf{x} \in C^{d}: x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)}\right\}
$$

Unit cubes

Partition of unit cube $C^{d}=[0,1]^{d}$

$$
\begin{aligned}
C^{d}=\biguplus_{\sigma \in S_{d}}\left\{\mathbf{x} \in C^{d}:\right. & x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)} \\
& \left.x_{\sigma(i)}<x_{\sigma(i+1)}, \text { if } i \text { descent of } \sigma\right\}
\end{aligned}
$$

Unit cubes

Partition of unit cube $C^{d}=[0,1]^{d}$

$$
\begin{aligned}
C^{d}=\biguplus_{\sigma \in S_{d}}\left\{\mathbf{x} \in C^{d}:\right. & x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)} \\
& \left.x_{\sigma(i)}<x_{\sigma(i+1)}, \text { if } i \text { descent of } \sigma\right\}
\end{aligned}
$$

$$
h^{*}\left(C^{d}\right)(t)=\sum_{\sigma \in S_{d}} t^{\text {des } \sigma}=A(d, t)
$$

Refined Eulerian polynomials

For every $j \in[d]$ we define the j-Eulerian numbers

$$
a_{j}(d, k)=\left|\left\{\sigma \in S_{d}: \operatorname{des} \sigma=k, \sigma(1)=j\right\}\right|
$$

and the j-Eulerian polynomial

$$
A_{j}(d, k)=\sum_{k=0}^{d-1} a_{j}(d, k) t^{k}
$$

Example: $d=4, j=2$

$$
\left.\begin{array}{clllll}
2134 & 2143 & 2314 & 2341 & 2413 & 2431
\end{array}\right] \begin{array}{ll}
A(3, t)=4 t+2 t^{2}
\end{array}
$$

Refined Eulerian polynomials

Lemma (Brenti, Welker '08)
For all $d \geq 1$ and all $1 \leq j \leq d+1$

$$
A_{j}(d+1, t)=\sum_{k<i} t A_{k}(d, t)+\sum_{k \geq i} A_{k}(d, t)
$$

Thus, $A_{d+1}=G \cdot A_{d}$, where

$$
A_{d}=\left(A_{1}(d, t), \ldots, A_{d}(d, t)\right)^{T} \quad \text { and } \quad\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
t & 1 & 1 & \cdots & 1 \\
t & t & 1 & \cdots & 1 \\
\vdots & \vdots & & & \vdots \\
t & t & \cdots & t & t
\end{array}\right)
$$

Theorem (Brenti, Welker '08, Savage, Visontai '15)
For all $1 \leq j \leq d$ the j-Eulerian polynomial $A_{j}(d, t)$ is real-rooted.

Half-open unit cubes

Partition of half-open unit cube $C_{j}^{d}=[0,1]^{d} \backslash\left\{x_{1}=0, \ldots, x_{j}=0\right\}$

$$
\begin{aligned}
C_{j}^{d}=\biguplus_{\sigma \in S_{d}}\left\{\mathbf{x} \in C_{j}^{d}: x_{\sigma(1)} \leq x_{\sigma(2)} \leq\right. & \cdots \leq x_{\sigma(d)} \\
& \left.x_{\sigma(i)}<x_{\sigma(i+1)}, \text { if } i \text { descent of } \sigma\right\}
\end{aligned}
$$

$h^{*}\left(C_{j}^{d}\right)(t)=\sum_{\sigma \in S_{d}} t^{\operatorname{des}_{j} \sigma} \quad$ where $\quad \operatorname{des}_{j} \sigma= \begin{cases}\operatorname{des} \sigma+1 & \text { if } \sigma(1) \leq j, \\ \operatorname{des} \sigma & \text { otherwise. }\end{cases}$

Refined Eulerian numbers

Claim:

$$
\left\{\sigma \in S_{d}: \operatorname{des}_{j} \sigma=k\right\} \cong\left\{\sigma \in S_{d+1}: \operatorname{des} \sigma=k, \sigma(1)=j+1\right\}
$$

Proof by example: $d=5, j=3$

$$
24351 \mapsto 424351 \mapsto 425361
$$

Theorem (Beck, J., McCullough '16)

$$
h^{*}\left(C_{j}^{d}\right)(t)=A_{j+1}(d+1, t) .
$$

Half-open parallelepipeds

For $v_{1}, \ldots, v_{d} \in \mathbb{Z}^{d}$ linear independent and $I \subseteq[d]$

$$
\diamond_{l}\left(v_{1}, \ldots, v_{d}\right):=\left\{\sum_{i \in[d]} \lambda_{i} v_{i}: 0 \leq \lambda_{i} \leq 1,0<\lambda_{i} \text { if } i \in I\right\}
$$

Half-open parallelepipeds and zonotopes

For $K \subseteq[d]$ we denote

$$
b(K)=\mid \operatorname{relint}\left(\diamond\left(\left\{v_{i}\right\}_{i \epsilon K}\right) \cap \mathbb{Z}^{d} \mid\right.
$$

Theorem (Beck, J., McCullough '16+)

$$
h^{*}\left(\boldsymbol{\nabla}_{/}\left(v_{1}, \ldots, v_{d}\right)\right)(t)=\sum_{K \subseteq[d]} b(K) A_{|/ \cup K|+1}(d+1, t) .
$$

In particular, the h^{*}-vector of every half-open parallelepiped is real-rooted.

Zonotopes

Theorem (Beck, J., McCullough '16)
The h^{*}-polynomial of every lattice zonotope is real-rooted.
Theorem (Beck, J., McCullough '16)
Let $d \geq 1$. Then the convex hull of the set of all h^{*}-polynomials of lattice zonotopes/parallelepipeds equals

$$
A_{1}(d+1, t)+\mathbb{R}_{\geq 0} A_{2}(d+1, t)+\cdots+\mathbb{R}_{\geq 0} A_{d+1}(d+1, t)
$$

Dilated lattice polytopes

Dilation operator

For $f \in \mathbb{R} \llbracket t \rrbracket$ and an integer $r \geq 1$ there are uniquely determined $\left.f_{0}, \ldots, f_{r-1} \in \mathbb{R} \llbracket t\right]$ such that

$$
f(t)=f_{0}\left(t^{r}\right)+t f_{1}\left(t^{r}\right)+\cdots+t^{r-1} f_{r-1}\left(t^{r}\right)
$$

For $0 \leq i \leq r-1$ we define

$$
f^{\langle r, i\rangle}=f_{i}
$$

Example: $r=2$

$$
1+3 t+5 t^{2}+7 t^{3}+t^{5}
$$

Then

$$
f_{0}=1+5 t \quad f_{1}=3+7 t+t^{2}
$$

In particular, for all lattice polytopes P and all integers $r \geq 1$

$$
\sum_{n \geq 0} \mathrm{E}_{r P}(n) t^{n}=\left(\sum_{n \geq 0} \mathrm{E}_{P}(n)(n) t^{n}\right)^{\langle r, 0\rangle}
$$

h^{*}-polynomials of dilated polytopes

Lemma (Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope and $r \geq 1$. Then

$$
h^{*}(r P)(t)=\left(h^{*}(P)(t)\left(1+t+\cdots+t^{r-1}\right)^{d}\right)^{\langle r, 0\rangle}
$$

Equivalently,

$$
h^{*}(r P)(t)=h^{\langle r, 0\rangle} a_{d}^{\langle r, 0\rangle}+t\left(h^{\langle r, 1\rangle} a_{d}^{\langle r, r-1\rangle}+\cdots+h^{\langle r, r-1\rangle} a_{d}^{\langle r, 1\rangle}\right)
$$

where

$$
a_{d}^{\langle r, i\rangle}(t):=\left(\left(1+t+\cdots+t^{r-1}\right)^{d}\right)^{\langle r, i\rangle}
$$

for all $r \geq 1$ and all $0 \leq i \leq r-1$.

Another operator preserving interlacing...

Proposition (Fisk '08)

Let f be a polynomial such that $f^{\langle r, r-1\rangle}, \ldots, f^{\langle r, 1\rangle}, f^{\langle r, 0\rangle}$ is an interlacing sequence. Let

$$
g(t)=\left(1+t+\cdots+t^{r-1}\right) f(t) .
$$

Then also $g^{\langle r, r-1\rangle}, \ldots, g^{\langle r, 1\rangle}, g^{\langle r, 0\rangle}$ is an interlacing sequence.

Observation:

$$
\left(\begin{array}{c}
g^{\langle r, r-1\rangle} \\
\vdots \\
g^{\langle r, 1\rangle} \\
g^{\langle r, 0\rangle}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
t & 1 & 1 & \cdots & 1 \\
t & t & 1 & \cdots & 1 \\
\vdots & \vdots & & \ddots & \vdots \\
t & t & \cdots & t & 1
\end{array}\right)\left(\begin{array}{c}
f^{\langle r, r-1\rangle} \\
\vdots \\
f^{\langle r, 1\rangle} \\
f^{\langle r, 0\rangle}
\end{array}\right)
$$

Corollary
The polynomials $a_{d}^{\langle r, r-1\rangle}(t), \ldots, a_{d}^{\langle r, 1\rangle}(t), a_{d}^{\langle r, 0\rangle}(t)$ form an interlacing sequence of polynomials.

Putting the pieces together...

For all d-dimensional lattice polytopes P

$$
h^{*}(r P)(t)=h^{\langle r, 0\rangle} a_{d}^{\langle r, 0\rangle}+t\left(h^{\langle r, 1\rangle} a_{d}^{\langle r, r-1\rangle}+\cdots+h^{\langle r, r-1\rangle} a_{d}^{\langle r, 1\rangle}\right)
$$

Key observation: For $r>\operatorname{deg} h^{*}(P)(t)$

$$
h^{\langle r, i\rangle}=h_{i} \geq 0!
$$

Theorem (J. '16)
Let P be a d-dimensional lattice polytope. Then $h^{*}(r P)(t)$ has only real roots whenever $r \geq \operatorname{deg} h^{*}(P)(t)$.

Concluding remarks

- Crucial: Coefficients of h^{*}-polynomial are nonnegative. Other applications
- Combinatorial positive valuations
- Hilbert series of Cohen-Macaulay domains
- Bounds are optimal
- For Ehrhart polynomials: Only for $\operatorname{deg} h^{*}(P)(t) \leq \frac{d+1}{2}$ (using result by Batyrev and Hofscheier '10)

Concluding remarks

- Crucial: Coefficients of h^{*}-polynomial are nonnegative. Other applications
- Combinatorial positive valuations
- Hilbert series of Cohen-Macaulay domains
- Bounds are optimal
- For Ehrhart polynomials: Only for $\operatorname{deg} h^{*}(P)(t) \leq \frac{d+1}{2}$ (using result by Batyrev and Hofscheier '10)

Matthias Beck, Katharina Jochemko, Emily McCullough: h^{*}-polynomials of zonotopes, http://arxiv.org/abs/1609.08596.

Katharina Jochemko: On the real-rootedness of the Veronese construction for rational formal power series, http://arxiv.org/abs/1602.09139.

Thank you

