Real-rooted h^* -polynomials

Katharina Jochemko

TU Wien

Einstein Workshop on Lattice Polytopes, December 15, 2016

Unimodality and real-rootedness

Let $a_0, \ldots, a_d \ge 0$ be real numbers.

Unimodality $a_0 \leq \cdots \leq a_i \geq \cdots \geq a_d$ for some $0 \leq i \leq d$

Unimodality and real-rootedness

Let $a_0, \ldots, a_d \ge 0$ be real numbers.

Real-rootedness of

$$a_d t^d + a_{d-1} t^{d-1} + \cdots + a_1 t + a_0$$

↓

↓

Unimodality $a_0 \leq \cdots \leq a_i \geq \cdots \geq a_d$ for some $0 \leq i \leq d$

Interlacing polynomials

- Proof of Kadison-Singer-Problem from 1959 (Marcus, Spielman, Srivastava '15)
- Real-rootedness of independence polynomials of claw-free graphs (Chudnowski, Seymour '07) compatible polynomials, common interlacers
- Real-rootedness of s-Eulerian polynomials (Savage, Visontai '15)
 h*-polynomial of s-Lecture hall polytopes are real-rooted

Further literature: Bränden '14, Fisk '08, Braun '15

Lattice zonotopes

Theorem (Schepers, Van Langenhoven '13) The h*-polynomial of any lattice parallelepiped is unimodal.

Theorem (Beck, J., McCullough '16)

The h*-polynomial of any lattice zonotope is real-rooted.

Matthias Beck

Emily McCullough

Dilated lattice polytopes

Theorem (Brenti, Welker '09; Diaconis, Fulman '09; Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope. Then there is an N such that the h^* -polynomial of rP has only real roots for $r \ge N$.

Conjecture (Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope. Then the h^* -polynomial of rP has only distinct real-roots whenever $r \ge d$.

Theorem (Higashitani '14)

Let P be a d-dimensional lattice polytope. Then the h^* -polynomial of rP has log-concave coefficients whenever $r \ge \deg h^*(P)$.

Theorem (J. '16)

Let P be a d-dimensional lattice polytope. Then the h^* -polynomial of rP has only simple real roots whenever $r \ge \max\{\deg h^*(P) + 1, d\}$.

h*-polynomials of IDP-polytopes

Conjecture (Stanley 98; Hibi, Ohsugi '06; Schepers, Van Langenhoven '13)

If P is IDP then the h^* -polynomial of P has unimodal coefficients.

Parallelepipeds are IDP and zonotopes can be tiled by parallelepipeds

▶ For all $r \ge \dim P - 1$, rP is IDP (Bruns, Gubeladze, Trung '97).

Outline

Interlacing polynomials

Lattice zonotopes

Dilated lattice polytopes

Interlacing polynomials

Interlacing polynomials

Definition

A polynomial $f = \prod_{i=1}^{m} (t - s_i)$ interlaces a polynomial $g = \prod_{i=1}^{n} (t - t_i)$ and we write $f \le g$ if

 $\cdots \leq s_2 \leq t_2 \leq s_1 \leq t_1$

Properties

- f and g are real-rooted
- $f \leq g$ if and only if $cf \leq dg$ for all $c, d \neq 0$.
- $\deg f \leq \deg g \leq \deg f + 1$
- $\alpha f + \beta g$ real-rooted for all $\alpha, \beta \in \mathbb{R}$

Interlacing polynomials (schematical :-))

Polynomials with only nonpositive, real roots

Lemma (Wagner '00)

Let $f, g, h \in \mathbb{R}[t]$ be real-rooted polynomials with only nonpositive, real roots and positive leading coefficients. Then

(i) if $f \leq h$ and $g \leq h$ then $f + g \leq h$.

(ii) if
$$h \le f$$
 and $h \le g$ then $h \le f + g$.

(iii) $g \leq f$ if and only if $f \leq tg$.

Interlacing sequences of polynomials

Definition

A sequence f_1, \ldots, f_m is called interlacing if

 $f_i \leq f_j$ whenever $i \leq j$.

Lemma

Let f_1, \ldots, f_m be an interlacing polynomials with only nonnegative coefficients. Then

$$c_1f_1 + c_2f_2 + \cdots + c_mf_m$$

is real-rooted for all $c_1, \ldots, c_m \ge 0$.

Interlacing sequences of polynomials

Constructing interlacing sequences

Proposition (Fisk '08; Savage, Visontai '15)

Let f_1, \dots, f_m be a sequence of interlacing polynomials with only negative roots and positive leading coefficients. For all $1 \le l \le m$ let

$$g_l = tf_1 + \cdots + tf_{l-1} + f_l + \cdots + f_m.$$

Then also g_1, \dots, g_m are interlacing, have only negative roots and positive leading coefficients.

Linear operators preserving interlacing sequences

Let \mathcal{F}_{+}^{n} the collection of all interlacing sequences of polynomials with only nonnegative coefficients of length n. When does a matrix $G = (G_{i,j}(t)) \in \mathbb{R}[t]^{m \times n} \mod \mathcal{F}_{+}^{n}$ to \mathcal{F}_{+}^{m} by $G \cdot (f_{1}, \ldots, f_{n})^{T}$? Theorem (Brändén '15) Let $G = (G_{i,j}(t)) \in \mathbb{R}[t]^{m \times n}$. Then $G: \mathcal{F}_{+}^{n} \to \mathcal{F}_{+}^{m}$ if and only if (i) $(G_{i,j}(t))$ has nonnegative entries for all $i \in [n], j \in [m]$, and (ii) For all $\lambda, \mu > 0, 1 \le i < j \le n, 1 \le k < l \le n$

 $(\lambda t + \mu)G_{k,j}(t) + G_{l,j}(t) \leq (\lambda t + \mu)G_{k,i}(t) + G_{l,i}(t).$

Example

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ t & 1 & 1 & \cdots & 1 \\ t & t & 1 & \cdots & 1 \\ \vdots & \vdots & & & \vdots \\ t & t & \cdots & t & t \end{pmatrix} \in \mathbb{R}[x]^{(n+1) \times n}$$

(i) All entries have nonnegative coefficients \checkmark Submatrices:

$$M = {k \atop l} \begin{pmatrix} G_{k,i}(t) & G_{k,j}(t) \\ G_{l,i}(t) & G_{l,j}(t) \end{pmatrix} : \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ t & 1 \end{pmatrix} \begin{pmatrix} t & 1 \\ t & t \end{pmatrix} \begin{pmatrix} t & t \\ t & t \end{pmatrix}$$

(ii)
$$(\lambda t + \mu)G_{k,j}(t) + G_{l,j}(t) \leq (\lambda t + \mu)G_{k,i}(t) + G_{l,i}(t)$$

 $(\lambda + 1)t + \mu = (\lambda t + \mu) \cdot 1 + t \leq (\lambda t + \mu)t + t = (\lambda t + \mu + 1)t$

Lattice zonotopes

Eulerian polynomials

We call $i \in \{1, ..., d-1\}$ a **descent** of a permutation $\sigma \in S_d$ if $\sigma(i+1) > \sigma(i)$. The number of descents of σ is denoted by des σ and set

$$a(d,k) = |\{\sigma \in S_d: \operatorname{des} \sigma = k\}|$$

The Eulerian polynomial is

$$A(d,t) = \sum_{k=0}^{d-1} a(d,k)t^k$$

Example:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3$$

123 132 213 231 312 321

$$A(3,t) = 1 + 4t + t^2$$

Theorem (Frobenius '10)

For all $d \ge 1$ the Eulerian polynomial A(d, t) has only real roots.

*h**-polynomials

For every lattice polytope $P \subset \mathbb{R}^d$ let $E_P(n) = |nP \cap \mathbb{Z}^d|$ be the Ehrhart polynomial of P. The h^* -polynomial $h^*(P)(t)$ of P is defined by

$$\sum_{n\geq 0} E_P(n) t^n = \frac{h^*(P)(t)}{(1-t)^{\dim P+1}}$$

Half-open unimodular simplices

For a unimodular *d*-simplex Δ with facets F_1, \ldots, F_{d+1}

$$E_{\Delta}(n) = {n+d \choose d} \Rightarrow h^*(\Delta)(t) = 1$$

More generally, for $0 \le i \le d$

$$E_{\Delta \smallsetminus \bigcup_{k=1}^{i} F_{k}}(n) = \binom{n+d-i}{d} \Rightarrow h^{*}(\Delta)(t) = t^{i}$$

Unit cubes

Partition of unit cube $C^d = [0,1]^d$

$$C^{d} = \bigcup_{\sigma \in S_{d}} \{ \mathbf{x} \in C^{d} : x_{\sigma(1)} \le x_{\sigma(2)} \le \dots \le x_{\sigma(d)} \}$$

Unit cubes

Partition of unit cube $C^d = [0,1]^d$

$$C^{d} = \bigoplus_{\sigma \in S_{d}} \{ \mathbf{x} \in C^{d} : x_{\sigma(1)} \le x_{\sigma(2)} \le \dots \le x_{\sigma(d)}, \\ x_{\sigma(i)} < x_{\sigma(i+1)}, \text{ if } i \text{ descent of } \sigma \}$$

Unit cubes

Partition of unit cube $C^d = [0,1]^d$

$$C^{d} = \bigoplus_{\sigma \in S_{d}} \{ \mathbf{x} \in C^{d} : x_{\sigma(1)} \le x_{\sigma(2)} \le \dots \le x_{\sigma(d)}, \\ x_{\sigma(i)} < x_{\sigma(i+1)}, \text{ if } i \text{ descent of } \sigma \}$$

$$h^*(C^d)(t) = \sum_{\sigma \in S_d} t^{des\sigma} = A(d,t)$$

Refined Eulerian polynomials

For every $j \in [d]$ we define the *j*-Eulerian numbers

$$a_j(d,k) = |\{\sigma \in S_d: \operatorname{des} \sigma = k, \sigma(1) = j\}|$$

and the *j*-Eulerian polynomial

$$A_j(d,k) = \sum_{k=0}^{d-1} a_j(d,k) t^k$$

Example: d = 4, j = 2

2134 **2**143 **2**314 2341 2413 2431

 $A(3,t) = 4t + 2t^2$

Refined Eulerian polynomials

Lemma (Brenti, Welker '08) For all $d \ge 1$ and all $1 \le j \le d + 1$

$$A_j(d+1,t) = \sum_{k< i} tA_k(d,t) + \sum_{k\geq i} A_k(d,t).$$

Thus, $A_{d+1} = G \cdot A_d$, where

$$A_{d} = (A_{1}(d, t), \dots, A_{d}(d, t))^{T} \text{ and } \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ t & 1 & 1 & \cdots & 1 \\ t & t & 1 & \cdots & 1 \\ \vdots & \vdots & & & \vdots \\ t & t & \cdots & t & t \end{pmatrix}$$

Theorem (Brenti, Welker '08, Savage, Visontai '15) For all $1 \le j \le d$ the *j*-Eulerian polynomial $A_j(d, t)$ is real-rooted.

Half-open unit cubes

Partition of half-open unit cube $C_j^d = [0,1]^d \setminus \{x_1 = 0, \dots, x_j = 0\}$

$$\begin{array}{rcl} C_j^d &=& \displaystyle \biguplus_{\sigma \in S_d} \big\{ \mathbf{x} \in C_j^d {:} x_{\sigma(1)} \leq x_{\sigma(2)} \leq \cdots \leq x_{\sigma(d)}, \\ & & \quad x_{\sigma(i)} < x_{\sigma(i+1)}, \mbox{ if } i \mbox{ descent of } \sigma \big\} \end{array}$$

Refined Eulerian numbers

Claim:

$$\{\sigma \in S_d: \operatorname{des}_j \sigma = k\} \cong \{\sigma \in S_{d+1}: \operatorname{des} \sigma = k, \sigma(1) = j+1\}$$

Proof by example: d = 5, j = 3

 $24351 \ \mapsto \ 424351 \mapsto 425361$

Theorem (Beck, J., McCullough '16)

$$h^*(C_j^d)(t) = A_{j+1}(d+1,t).$$

Half-open parallelepipeds

For $v_1, \ldots, v_d \in \mathbb{Z}^d$ linear independent and $I \subseteq [d]$

Half-open parallelepipeds and zonotopes

For $K \subseteq [d]$ we denote

$$b(K) = |\operatorname{relint}(\Diamond(\{v_i\}_{i \in K}) \cap \mathbb{Z}^d)|$$

Theorem (Beck, J., McCullough '16+)

$$h^*\left(\Phi_I(v_1,\ldots,v_d)\right)(t)=\sum_{K\subseteq [d]}b(K)A_{|I\cup K|+1}(d+1,t).$$

In particular, the h^{*}-vector of every half-open parallelepiped is real-rooted.

Zonotopes

Theorem (Beck, J., McCullough '16)

The h*-polynomial of every lattice zonotope is real-rooted.

Theorem (Beck, J., McCullough '16)

Let $d \ge 1$. Then the convex hull of the set of all h^* -polynomials of lattice zonotopes/parallelepipeds equals

$$A_1(d+1,t) + \mathbb{R}_{\geq 0}A_2(d+1,t) + \cdots + \mathbb{R}_{\geq 0}A_{d+1}(d+1,t).$$

Dilated lattice polytopes

Dilation operator

For $f \in \mathbb{R}[\![t]\!]$ and an integer $r \ge 1$ there are uniquely determined $f_0, \ldots, f_{r-1} \in \mathbb{R}[\![t]\!]$ such that

$$f(t) = f_0(t^r) + tf_1(t^r) + \dots + t^{r-1}f_{r-1}(t^r).$$

For $0 \le i \le r - 1$ we define

$$f^{\langle r,i\rangle} = f_i.$$

Example: r = 2

$$1 + 3t + 5t^2 + 7t^3 + t^5$$

Then

$$f_0 = 1 + 5t \qquad f_1 = 3 + 7t + t^2$$

In particular, for all lattice polytopes P and all integers $r \ge 1$

$$\sum_{n\geq 0} \mathbb{E}_{rP}(n) t^n = \left(\sum_{n\geq 0} \mathbb{E}_{P}(n)(n) t^n \right)^{\langle r, 0 \rangle}$$

 h^* -polynomials of dilated polytopes

Lemma (Beck, Stapledon '10)

Let P be a d-dimensional lattice polytope and $r \ge 1$. Then

$$h^{*}(rP)(t) = (h^{*}(P)(t)(1 + t + \dots + t^{r-1})^{d})^{(r,0)}$$

Equivalently,

$$h^{*}(rP)(t) = h^{\langle r,0\rangle} a_{d}^{\langle r,0\rangle} + t \left(h^{\langle r,1\rangle} a_{d}^{\langle r,r-1\rangle} + \dots + h^{\langle r,r-1\rangle} a_{d}^{\langle r,1\rangle} \right),$$

where

$$a_d^{\langle r,i\rangle}(t) \coloneqq \left((1+t+\cdots+t^{r-1})^d \right)^{\langle r,i\rangle}$$

for all $r \ge 1$ and all $0 \le i \le r - 1$.

Another operator preserving interlacing...

Proposition (Fisk '08)

Let f be a polynomial such that $f^{(r,r-1)}, \ldots, f^{(r,1)}, f^{(r,0)}$ is an interlacing sequence. Let

$$g(t) = (1 + t + \dots + t^{r-1})f(t).$$

Then also $g^{\langle r,r-1 \rangle}, \ldots, g^{\langle r,1 \rangle}, g^{\langle r,0 \rangle}$ is an interlacing sequence. Observation:

$$\begin{pmatrix} g^{\langle r,r-1 \rangle} \\ \vdots \\ g^{\langle r,1 \rangle} \\ g^{\langle r,0 \rangle} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ t & 1 & 1 & \cdots & 1 \\ t & t & 1 & \cdots & 1 \\ \vdots & \vdots & & \ddots & \vdots \\ t & t & \cdots & t & 1 \end{pmatrix} \begin{pmatrix} f^{\langle r,r-1 \rangle} \\ \vdots \\ f^{\langle r,1 \rangle} \\ f^{\langle r,0 \rangle} \end{pmatrix}$$

Corollary

The polynomials $a_d^{\langle r,r-1\rangle}(t), \ldots, a_d^{\langle r,1\rangle}(t), a_d^{\langle r,0\rangle}(t)$ form an interlacing sequence of polynomials.

Putting the pieces together...

For all d-dimensional lattice polytopes P

$$h^{*}(rP)(t) = h^{\langle r,0\rangle} a_{d}^{\langle r,0\rangle} + t \left(h^{\langle r,1\rangle} a_{d}^{\langle r,r-1\rangle} + \dots + h^{\langle r,r-1\rangle} a_{d}^{\langle r,1\rangle} \right)$$

Key observation: For $r > \deg h^*(P)(t)$

$$h^{\langle r,i\rangle} = h_i \ge 0 !$$

Theorem (J. '16)

Let P be a d-dimensional lattice polytope. Then $h^*(rP)(t)$ has only real roots whenever $r \ge \deg h^*(P)(t)$.

Concluding remarks

- Crucial: Coefficients of h*-polynomial are nonnegative. Other applications
 - Combinatorial positive valuations
 - Hilbert series of Cohen-Macaulay domains
- Bounds are optimal
 - ▶ For Ehrhart polynomials: Only for deg $h^*(P)(t) \le \frac{d+1}{2}$ (using result by Batyrev and Hofscheier '10)

Concluding remarks

- Crucial: Coefficients of h*-polynomial are nonnegative. Other applications
 - Combinatorial positive valuations
 - Hilbert series of Cohen-Macaulay domains
- Bounds are optimal
 - For Ehrhart polynomials: Only for deg h^{*}(P)(t) ≤ d+1/2 (using result by Batyrev and Hofscheier '10)

Matthias Beck, Katharina Jochemko, Emily McCullough: h*-polynomials of zonotopes, http://arxiv.org/abs/1609.08596.

Katharina Jochemko: On the real-rootedness of the Veronese construction for rational formal power series, http://arxiv.org/abs/1602.09139.

Thank you