Lattice Simplices of Bounded Degree Einstein Workshop on Lattice Polytopes 2016

Johannes Hofscheier
Otto-von-Guericke-Universität Magdeburg
joint with Akihiro Higashitani

Tuesday 13 December 2016

Basic Definitions

- Lattice polytope: $P=\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right) \subseteq \mathbb{R}^{d}$ where $\mathbf{v}_{i} \in \mathbb{Z}^{d}$.

- Ehrhart polynomial: $L_{P}(k):=\left|k P \cap \mathbb{Z}^{d}\right|\left(k \in \mathbb{Z}_{\geq 0}\right)$.
- h^{*}-polynomial: $\sum_{k \geq 0} L_{P}(k) t^{k}=\frac{h_{P}^{*}(t)}{(1-t)^{d+1}}$ for $h_{P}^{*} \in \mathbb{Z}_{\geq 0}[t]$.
- degree of $P: \operatorname{deg}(P)=\operatorname{deg} h_{P}^{*}(t)$.

Question A

What are the polynomials which can be interpreted as the h^{*}-polynomial of a lattice polytope?

Linear Polynomials

$$
P=[0, a] \subseteq \mathbb{R}(a \in \mathbb{Z})
$$

$$
L_{P}(0)=1
$$

Linear Polynomials

$$
P=[0, a] \subseteq \mathbb{R}(a \in \mathbb{Z})
$$

$$
L_{P}(0)=1, L_{P}(1)=a+1
$$

Linear Polynomials

$$
P=[0, a] \subseteq \mathbb{R}(a \in \mathbb{Z})
$$

$$
L_{P}(0)=1, L_{P}(1)=a+1, L_{P}(2)=2 a+1
$$

Linear Polynomials

$$
P=[0, a] \subseteq \mathbb{R}(a \in \mathbb{Z})
$$

$$
L_{P}(0)=1, L_{P}(1)=a+1, L_{P}(2)=2 a+1, L_{P}(3)=3 a+1, \ldots
$$

Linear Polynomials

$$
P=[0, a] \subseteq \mathbb{R}(a \in \mathbb{Z})
$$

$$
\begin{aligned}
& L_{P}(0)=1, L_{P}(1)=a+1, L_{P}(2)=2 a+1, L_{P}(3)=3 a+1, \ldots \\
& \Rightarrow L_{P}(k)=k a+1
\end{aligned}
$$

$$
\begin{aligned}
\sum_{k \geq 0}(k a+1) t^{k} & =a \sum_{k \geq 0} k t^{k}+\sum_{k \geq 0} t^{k}=a \frac{t}{(1-t)^{2}}+\frac{1}{1-t} \\
& =\frac{(a-1) t+1}{(1-t)^{2}} \quad \Rightarrow h_{P}^{*}(t)=(a-1) t+1 .
\end{aligned}
$$

Degree 1
All lin. polynomials $1+a t \in \mathbb{Z}_{\geq 0}^{2}[t]$ can be interpreted as h^{*}-vectors.

Quadratic Polynomials

Degree 2[Henk \& Tagami, Treutlein]
All polynomials $1+a_{1} t+a_{2} t^{2} \in \mathbb{Z}_{\geq 0}[t]$ with

$$
a_{1} \leq \begin{cases}7 & \text { if } a_{2}=1 \\ 3 a_{2}+3 & \text { if } a_{2} \geq 2\end{cases}
$$

can be interpreted as h^{*}-polynomials.
(Need polytopes up to dimension 3.)

Simpler Question

Question B

What are the h^{*}-polynomials coming from lattice simplices?

Question B: Degree 1

All lin. polynomials $1+a t \in \mathbb{Z}_{\geq 0}[t]$ can be interpreted as h^{*}-polynomials of lattice simplices.

Question B: Degree 2

Interpret $h^{*}=1+a_{1} t+a_{2} t^{2} \in \mathbb{Z}_{\geq 0}[t]$ as point in the positive orthant $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{R}_{\geq 0}^{2}$.
$\mathcal{M}:=\left\{\mathbf{a} \in \mathbb{Z}_{\geq 0}^{2}: h_{P}^{*}(t)=1+a_{1} t+a_{2} t^{2}\right.$ for lattice triangle $\left.P \subseteq \mathbb{R}^{2}\right\}$

Proposition[H.,Nill,Oeberg]

There is a family $\left(\sigma_{i}\right)_{i \in \mathbb{Z} \geq 0}$ of affine cones $\sigma_{i} \subseteq \mathbb{R}_{\geq 0}^{2}$ such that $\mathcal{M} \cap \sigma_{i}^{\circ}=\emptyset$ for all i.

Question B: Degree 2

Simplices of given degree

Question C

What are the simplices of a given degree (any dimension)? Idea: Question $\mathrm{C} \Rightarrow$ Question B.

Alg. Geometer are interested in

$$
\begin{aligned}
M_{g, n}= & \{\text { smooth proj. curves } C \text { of genus } g \text { with } n \\
& \text { distinct marked points }\} / \sim
\end{aligned}
$$

Alg. Geometer are interested in

$$
\begin{aligned}
M_{g, n}= & \{\text { smooth proj. curves } C \text { of genus } g \text { with } n \\
& \text { distinct marked points }\} / \sim
\end{aligned}
$$

Completeness is a desirable property. For a (possible) compactification, relax the smoothness condition
$\bar{M}_{g, n}=\{$ proj. connected nodal curves C of genus g with n distinct, nonsing. marked points with a stability condition\}/ ~

"Moduli" of Lattice Simplices

We are interested in
$M_{0, s}=\{$ lattice simplices Δ of deg. s with marked vertices $\} / \sim$
Here " \sim " means: "up to affine unimodular transformations".

"Moduli" of Lattice Simplices

We are interested in
$M_{0, s}=\{$ lattice simplices Δ of deg. s with marked vertices $\} / \sim$
Here " \sim " means: "up to affine unimodular transformations". "genus 0 " as a simplex is homeomorphic to a sphere.

"Moduli" of Lattice Simplices

We are interested in
$M_{0, s}=\{$ lattice simplices Δ of deg. s with marked vertices $\} / \sim$
Here " \sim " means: "up to affine unimodular transformations".
"genus 0" as a simplex is homeomorphic to a sphere.
Question
What could be $\bar{M}_{0, s}$?

[^0][^1]Usually: $\Delta=\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}\right) \subseteq \mathbb{R}^{d} d$-dimensional lattice simplex if $\mathbf{v}_{i} \in \mathbb{Z}^{d}$ (aff. indep.)

- Lattice stays the same: \mathbb{Z}^{d}.
- Vertices change: $\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}$.

Usually: $\Delta=\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}\right) \subseteq \mathbb{R}^{d} d$-dimensional lattice simplex if $\mathbf{v}_{i} \in \mathbb{Z}^{d}$ (aff. indep.)

- Lattice stays the same: \mathbb{Z}^{d}.
- Vertices change: $\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}$.

Idea

Let's do it vice versa.

- Lattice changes: Λ.
- Vertices stay the same: What is a good choice?

Lattice of a Lattice Simplex

From now on: $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d} \in \mathbb{R}^{d}$ standard basis vectors.
All vertices should be "equivalent" \rightsquigarrow bad choice: $\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$.
Better choice: $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d+1} \in \mathbb{R}^{d+1}$ (Dimension increases by 1).

Lattice of a Lattice Simplex

$\Delta=\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}\right) \subseteq \mathbb{R}^{d} d$-dimensional lattice simplex. Cone over Δ

$$
C=\operatorname{cone}(\{1\} \times \Delta) \subseteq \mathbb{R}^{d+1}
$$

Exists unique linear iso. $\varphi: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d+1}$ with $\left(1, \mathbf{v}_{i}\right) \mapsto \mathbf{e}_{i}$.

- $\varphi(\Delta)=\operatorname{conv}\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{d+1}\right)$
- $\Lambda_{\Delta}:=\varphi\left(\mathbb{Z}^{d+1}\right) \subseteq \mathbb{R}^{d}$ lattice

Example

$\Delta=\operatorname{conv}\left(\mathbf{0}, 2 \mathbf{e}_{1}, 2 \mathbf{e}_{2}\right) \subseteq \mathbb{R}^{2}$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2
\end{array}\right)}_{\varphi}\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\Lambda_{\Delta}=\mathbb{Z}^{3}+\mathbb{Z}\left(\begin{array}{c}
\frac{-1}{2} \\
\frac{1}{2} \\
0
\end{array}\right)+\mathbb{Z}\left(\begin{array}{c}
\frac{-1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right)
$$

Example

$\Delta=\operatorname{conv}\left(\mathbf{0}, 2 \mathbf{e}_{1}, 2 \mathbf{e}_{2}\right) \subseteq \mathbb{R}^{2}$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2
\end{array}\right)}_{\varphi}\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\Lambda_{\Delta}=\mathbb{Z}^{3}+\mathbb{Z}\left(\begin{array}{c}
\frac{-1}{2} \\
\frac{1}{2} \\
0
\end{array}\right)+\mathbb{Z}\left(\begin{array}{c}
\frac{-1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right) \rightsquigarrow \text { short: }\left(\begin{array}{ccc}
-1 / 2 & 1 / 2 & 0 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right)
$$

Properties of Λ_{Δ}

Proposition

$\Delta=\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}\right) \subseteq \mathbb{R}^{d} d$-dim. lattice simplex. $\varphi: \mathbb{R}^{d+1} \mapsto \mathbb{R}^{d+1} ; \varphi\left(1, \mathbf{v}_{i}\right)=\mathbf{e}_{i} . \Lambda_{\Delta}=\varphi\left(\mathbb{Z}^{d+1}\right)$.
(1) $\mathbb{Z}^{d+1} \subseteq \Lambda_{\Delta}$
(2) $\Lambda_{\Delta} \subseteq\left\{\mathrm{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} \in \mathbb{Z}\right\}$.

Properties of Λ_{Δ}

Proposition

$\Delta=\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}\right) \subseteq \mathbb{R}^{d} d$-dim. lattice simplex.
$\varphi: \mathbb{R}^{d+1} \mapsto \mathbb{R}^{d+1} ; \varphi\left(1, \mathbf{v}_{i}\right)=\mathbf{e}_{i} . \Lambda_{\Delta}=\varphi\left(\mathbb{Z}^{d+1}\right)$.
(1) $\mathbb{Z}^{d+1} \subseteq \Lambda_{\Delta}$
(2) $\Lambda_{\Delta} \subseteq\left\{\mathbf{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} \in \mathbb{Z}\right\}$.

Idea of Proof:
(1) $\mathbf{v}_{i} \in \mathbb{Z}^{d} \Rightarrow \mathbb{Z}^{d+1} \subseteq \Lambda_{\Delta}$

Correspondence

Definition

A lattice $\Lambda_{\Delta} \subseteq \mathbb{R}^{d+1}$ we call simplicial if
(1) $\mathbb{Z}^{d+1} \subseteq \Lambda_{\Delta}$.
(2) $\Lambda_{\Delta} \subseteq\left\{\mathbf{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} \in \mathbb{Z}\right\}$.

Correspondence

Definition

A lattice $\Lambda_{\Delta} \subseteq \mathbb{R}^{d+1}$ we call simplicial if
(1) $\mathbb{Z}^{d+1} \subseteq \Lambda_{\Delta}$.
(2) $\Lambda_{\Delta} \subseteq\left\{\mathbf{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} \in \mathbb{Z}\right\}$.

Theorem

The assignment $\Delta \mapsto \Lambda_{\Delta}$ induces a bijection

$$
\left\{\begin{array}{l}
d \text {-dim. lattice sim- } \\
\text { plices } \Delta \subseteq \mathbb{R}^{d}
\end{array}\right\} / \sim_{1} \leftrightarrow\left\{\begin{array}{l}
\text { simplicial lattices } \\
\Lambda \subseteq \mathbb{R}^{d+1}
\end{array}\right\} / \sim_{2}
$$

(1) $\sim_{1}=$ up to affine unimodular equivalence
(2) $\sim_{2}=$ up to permutation of the coordinates

Chabauty Topology

$$
\begin{aligned}
\mathscr{C} \ell & :=\{C \subseteq X \text { closed subgroup }\} \\
X & :=\left\{\mathrm{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} \in \mathbb{Z}\right\} \subseteq \mathbb{R}^{d+1} \text { closed subgp. }
\end{aligned}
$$

Chabauty Topology

$\mathscr{C l}:=\{C \subseteq X$ closed subgroup $\}$
$X:=\left\{\mathbf{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} \in \mathbb{Z}\right\} \subseteq \mathbb{R}^{d+1}$ closed subgp.
Chabauty topology
Basis of neighborhoods of $C \in \mathscr{C l}$

$$
\mathcal{N}_{K, U}(C)
$$

where $K \subseteq X$ compact and $U \subseteq X$ open with $0 \in U$.

Chabauty Topology

$\mathscr{C l}:=\{C \subseteq X$ closed subgroup $\}$
$X:=\left\{\mathbf{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} \in \mathbb{Z}\right\} \subseteq \mathbb{R}^{d+1}$ closed subgp.
Chabauty topology
Basis of neighborhoods of $C \in \mathscr{C l}$

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C} \ell: C \cap K \subseteq D+U
$$

$$
\} .
$$

where $K \subseteq X$ compact and $U \subseteq X$ open with $0 \in U$.

Chabauty Topology

$\mathscr{C l}:=\{C \subseteq X$ closed subgroup $\}$
$X:=\left\{\mathbf{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} \in \mathbb{Z}\right\} \subseteq \mathbb{R}^{d+1}$ closed subgp.
Chabauty topology
Basis of neighborhoods of $C \in \mathscr{C l}$

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C} \ell: C \cap K \subseteq D+U, D \cap K \subseteq C+U\}
$$

where $K \subseteq X$ compact and $U \subseteq X$ open with $0 \in U$.

Chabauty Topology

$K \subseteq X$ compact, $U \subseteq X$ open with $0 \in U$.

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C l}: C \cap K \subseteq D+U, D \cap K \subseteq C+U\}
$$

${ }^{\circ} C$
$\circ \circ \circ \circ \circ$

Chabauty Topology

$K \subseteq X$ compact, $U \subseteq X$ open with $0 \in U$.

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C} \ell: C \cap K \subseteq D+U, D \cap K \subseteq C+U\}
$$

${ }^{\circ} C$

- D

Chabauty Topology

$K \subseteq X$ compact, $U \subseteq X$ open with $0 \in U$.

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C} \ell: C \cap K \subseteq D+U, D \cap K \subseteq C+U\}
$$

Chabauty Topology

$K \subseteq X$ compact, $U \subseteq X$ open with $0 \in U$.

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C \ell}: C \cap K \subseteq D+U, D \cap K \subseteq C+U\}
$$

Chabauty Topology

$K \subseteq X$ compact, $U \subseteq X$ open with $0 \in U$.

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C} \ell: C \cap K \subseteq D+U, D \cap K \subseteq C+U\}
$$

$$
\begin{gathered}
C \cap K \subseteq D+U \\
\text { धם }
\end{gathered}
$$

Chabauty Topology

$K \subseteq X$ compact, $U \subseteq X$ open with $0 \in U$.

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C} \ell: C \cap K \subseteq D+U, D \cap K \subseteq C+U\}
$$

Chabauty Topology

$K \subseteq X$ compact, $U \subseteq X$ open with $0 \in U$.

$$
\mathcal{N}_{K, U}(C)=\{D \in \mathscr{C \ell}: C \cap K \subseteq D+U, D \cap K \subseteq C+U\}
$$

Simplicial Lattices

Proposition

- $\mathscr{C}:=\left\{C \in \mathscr{C} \ell: \mathbb{Z}^{d+1} \subseteq C\right\} \subseteq \mathscr{C} \ell$ closed
- $\mathcal{D}:=\{C \in \mathscr{C l}$ discrete $\} \subseteq \mathscr{C l}$ open and dense.

In particular $\left\{\Lambda \subseteq \mathbb{R}^{d+1}\right.$ simplicial lattice $\}=\mathcal{D} \cap \mathscr{C} \subseteq \mathscr{C} \ell$ is locally closed.

Definition

Degree $\operatorname{deg}(C)$ of $C \in \mathscr{C}$:

$$
\operatorname{deg}(C):=\max \left\{\sum_{i=1}^{d+1} x_{i}:\left(x_{1}, \ldots, x_{d+1}\right) \in C \cap\left[0,1\left[^{d+1}\right\}\right.\right.
$$

Proposition

For $\Delta \subseteq \mathbb{R}^{d}$ a d-dim. lattice simplex, we have $\operatorname{deg}\left(\Lambda_{\Delta}\right)=\operatorname{deg}(\Delta)$.

Clearly: $M_{0, s}=M_{0, \leq s} \backslash M_{0, \leq s-1}$.
$\bar{M}_{0, \leq s}$ turns out to have better topological properties.

The Moduli Space

Clearly: $M_{0, s}=M_{0, \leq s} \backslash M_{0, \leq s-1}$.
$\bar{M}_{0, \leq s}$ turns out to have better topological properties.

Proposition

$\bar{M}_{0, \leq s}(d):=\{C \in \mathscr{C}: \operatorname{deg}(C) \leq s\} \subseteq \mathscr{C}$ closed.

Proposition

The assignment $\Delta \mapsto \Lambda_{\Delta}$ induces a bijection between the d-dim. lattice simplices with $\operatorname{deg}(\Delta) \leq s$ and $\bar{M}_{0, \leq s}(d) \cap \mathcal{D}$.

Definition

Let $\Delta \subseteq \mathbb{R}^{d}$ be a lattice polytope. Lattice pyramid over Δ :

$$
\operatorname{conv}\left(\Delta \times\{0\}, \mathbf{e}_{d+1}\right) \subseteq \mathbb{R}^{d+1}
$$

Lattice Pyramids

Definition

Let $\Delta \subseteq \mathbb{R}^{d}$ be a lattice polytope. Lattice pyramid over Δ :

$$
\operatorname{conv}\left(\Delta \times\{0\}, \mathbf{e}_{d+1}\right) \subseteq \mathbb{R}^{d+1}
$$

$\Delta=\operatorname{conv}\left(\pm \mathbf{e}_{1} \pm \mathbf{e}_{2}\right) \subseteq \mathbb{R}^{2}$

Lattice Pyramids

Definition

Let $\Delta \subseteq \mathbb{R}^{d}$ be a lattice polytope. Lattice pyramid over Δ :

$$
\operatorname{conv}\left(\Delta \times\{0\}, \mathbf{e}_{d+1}\right) \subseteq \mathbb{R}^{d+1}
$$

$$
\Delta=\operatorname{conv}\left(\pm \mathbf{e}_{1} \pm \mathbf{e}_{2}\right) \subseteq \mathbb{R}^{2}
$$

Lattice Pyramids

Definition

Let $\Delta \subseteq \mathbb{R}^{d}$ be a lattice polytope. Lattice pyramid over Δ :

$$
\operatorname{conv}\left(\Delta \times\{0\}, \mathbf{e}_{d+1}\right) \subseteq \mathbb{R}^{d+1}
$$

$$
\Delta=\operatorname{conv}\left(\pm \mathbf{e}_{1} \pm \mathbf{e}_{2}\right) \subseteq \mathbb{R}^{2}
$$

Simplices of given Degree

Proposition

The d-dim. lattice simplex $\Delta \subseteq \mathbb{R}^{d}$ is a lattice pyramid iff $\pi_{i}\left(\Lambda_{\Delta}\right)=\mathbb{Z}$ where $\pi_{i}: \mathbb{R}^{d+1} \rightarrow \mathbb{R} ; \mathbf{x} \mapsto x_{i}$ for $i=1, \ldots, d+1$.

Theorem[Nill]
Let $\Delta \subseteq \mathbb{R}^{d}$ be a d-dim. lattice simplex. If $d \geq 4 \operatorname{deg}(\Delta)-1$, then Δ is a lattice pyramid.

Corollary
$\bar{M}_{0, \leq s} \subseteq \mathcal{P}\left(\mathbb{R}^{4 s-1}\right)$ (power set).

Proposition [Chabauty]

X locally compact $\Rightarrow \mathscr{C} \ell$ is compact.
In particular $\bar{M}_{0, \leq s} \subseteq \mathscr{C l}$ compact.
Partial ordering on $\mathscr{C \ell}: C \leq D: \Leftrightarrow C \subseteq D \quad(C, D \in \mathscr{C} \ell)$.

Theorem

The set of maximal elements in $\bar{M}_{0, \leq s}$ is finite.

Set $\mathcal{M}:=\left\{C \in \bar{M}_{0, \leq s}\right.$ maximal $\}$.

Set $\mathcal{M}:=\left\{C \in \bar{M}_{0, \leq s}\right.$ maximal $\}$. Assume $|\mathcal{M}|=\infty$.

Idea of Proof

Set $\mathcal{M}:=\left\{C \in \bar{M}_{0, \leq s}\right.$ maximal $\}$.
Assume $|\mathcal{M}|=\infty . \bar{M}_{0, \leq s}$ compact $\Rightarrow \mathcal{M}$ has a limit point, say $C_{0} \in \bar{M}_{0, \leq s}$

Set $\mathcal{M}:=\left\{C \in \bar{M}_{0, \leq s}\right.$ maximal $\}$.
Assume $|\mathcal{M}|=\infty . \bar{M}_{0, \leq s}$ compact $\Rightarrow \mathcal{M}$ has a limit point, say $C_{0} \in \bar{M}_{0, \leq s}$, i. e., there is a sequence $\left(C_{n}\right)_{n \in \mathbb{Z}_{>0}} \subseteq \mathcal{M}$ with $C_{n} \neq C_{0}$ for all n and $C_{n} \rightarrow C_{0}$.

Set $\mathcal{M}:=\left\{C \in \bar{M}_{0, \underline{\leq}}\right.$ maximal $\}$.
Assume $|\mathcal{M}|=\infty . \bar{M}_{0, \leq s}$ compact $\Rightarrow \mathcal{M}$ has a limit point, say $C_{0} \in \bar{M}_{0, \leq s}$, i. e., there is a sequence $\left(C_{n}\right)_{n \in \mathbb{Z}_{>0}} \subseteq \mathcal{M}$ with $C_{n} \neq C_{0}$ for all n and $C_{n} \rightarrow C_{0}$.

Chabauty-Pontryagin Duality[Cornulier]

The duality map

$$
\begin{aligned}
& *:\left\{\text { cl. subgrp. } \subseteq \mathbb{R}^{d+1}\right\} \rightarrow\left\{\text { cl. subgrp. } \subseteq \mathbb{R}^{d+1}\right\} \\
& \qquad C \mapsto C^{*}:=\left\{\mathrm{x} \in \mathbb{R}^{d+1}: \sum_{i=1}^{d+1} x_{i} y_{i} \in \mathbb{Z} \forall \mathbf{y} \in C\right\}
\end{aligned}
$$

is an involutory homeomorphism.

Idea of Proof (continued)

Hence $C_{n}^{*} \rightarrow C_{0}^{*}$.

Idea of Proof (continued)

Hence $C_{n}^{*} \rightarrow C_{0}^{*}$.
$C_{i}^{*} \subseteq \mathbb{Z}^{d+1}$ for all $i \in \mathbb{Z}_{\geq 0}$

Idea of Proof (continued)

Hence $C_{n}^{*} \rightarrow C_{0}^{*}$.
$C_{i}^{*} \subseteq \mathbb{Z}^{d+1}$ for all $i \in \mathbb{Z}_{\geq 0} \Rightarrow$ for every compact $K \subseteq \mathbb{R}^{d+1}$ there is $N>0$ such that $C_{n}^{*} \cap K=C_{0}^{*} \cap K$ for $n \geq N$.

Idea of Proof (continued)

Hence $C_{n}^{*} \rightarrow C_{0}^{*}$.
$C_{i}^{*} \subseteq \mathbb{Z}^{d+1}$ for all $i \in \mathbb{Z}_{\geq 0} \Rightarrow$ for every compact $K \subseteq \mathbb{R}^{d+1}$ there is $N>0$ such that $C_{n}^{*} \cap K=C_{0}^{*} \cap K$ for $n \geq N$.

For K big enough $C_{0}^{*} \cap K$ contains a basis of C_{0}^{*}.

Idea of Proof (continued)

Hence $C_{n}^{*} \rightarrow C_{0}^{*}$.
$C_{i}^{*} \subseteq \mathbb{Z}^{d+1}$ for all $i \in \mathbb{Z}_{\geq 0} \Rightarrow$ for every compact $K \subseteq \mathbb{R}^{d+1}$ there is $N>0$ such that $C_{n}^{*} \cap K=C_{0}^{*} \cap K$ for $n \geq N$.

For K big enough $C_{0}^{*} \cap K$ contains a basis of C_{0}^{*}.
We obtain $C_{0}^{*} \subseteq C_{n}^{*}$ for $n \gg 0$. So $C_{n} \subsetneq C_{0}$. Contradiction to maximality.

Idea of Proof (continued)

Hence $C_{n}^{*} \rightarrow C_{0}^{*}$.
$C_{i}^{*} \subseteq \mathbb{Z}^{d+1}$ for all $i \in \mathbb{Z}_{\geq 0} \Rightarrow$ for every compact $K \subseteq \mathbb{R}^{d+1}$ there is $N>0$ such that $C_{n}^{*} \cap K=C_{0}^{*} \cap K$ for $n \geq N$.

For K big enough $C_{0}^{*} \cap K$ contains a basis of C_{0}^{*}.
We obtain $C_{0}^{*} \subseteq C_{n}^{*}$ for $n \gg 0$. So $C_{n} \subsetneq C_{0}$. Contradiction to maximality.

Remark

Could be also proved using a result due to Lawrence.

Degree 1

Theorem [Batyrev, Nill]

A lattice simplex of degree ≤ 1 is either

- a lattice pyramid over an interval or
- a lattice pyramid over twice a unimodular simplex.

Corollary

The maximal elements in $\bar{M}_{0, \leq 1} \subseteq \mathcal{P}\left(\mathbb{R}^{3}\right)$ are the following:

$$
\left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & 0 \\
-1
\end{array}\right) \quad \text { and } \quad \mathbb{Z}^{3}+\mathbb{R}\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)=:(\overline{1-10})
$$

Degree 2 case

Recall: $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{q} \in \mathbb{R}^{d+1}$ linearly indep.

$$
\left(\begin{array}{c}
-\mathbf{a}_{1}- \\
\vdots \\
-\mathbf{a}_{p}= \\
-\mathbf{b}_{1}- \\
\vdots \\
-\mathbf{b}_{q}-
\end{array}\right):=\bigoplus_{i=1}^{p} \mathbb{Z} \mathbf{a}_{i} \oplus \bigoplus_{j=1}^{q} \mathbb{R} \mathbf{b}_{j}
$$

Degree 2 case (continued)

Theorem[Higashitani, H.]

The maximal elements in $\bar{M}_{0, \leq 2} \subseteq \mathcal{P}\left(\mathbb{R}^{7}\right)$ are the following:
(1) $\left(\begin{array}{llllll}-1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0\end{array}\right)$
(2) $\left(\begin{array}{rrrrrr}\overline{1}-1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0\end{array}\right)\left(\begin{array}{cccccc}\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \hline 1 & -1 & 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{cccccc}\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \hline 1 & 1 & -2 & 0 & 0 & 0\end{array}\right)+9$ more discr. subgrp.
(3) $\left(\begin{array}{cccccc}0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \hline 1 & -1 & 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{ccccccc}\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0\end{array}\right)\left(\begin{array}{cccccc}\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\end{array}\right)$
$\left(\begin{array}{cccccc}\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0\end{array}\right)$
(4) All other max. subgrp. are discrete and contained in $\frac{1}{2} \mathbb{Z}^{7}$.

Cayley Conjecture

Definition

$\Delta \subseteq \mathbb{R}^{d}$ is a Cayley Polytope of lattice polytopes $\Delta_{1}, \ldots, \Delta_{k} \subseteq \mathbb{R}^{m}$ if $k \geq 2$ and Δ is unimodularly equivalent to $\operatorname{conv}\left(\Delta_{1} \times \mathbf{e}_{1}, \ldots, \Delta_{k} \times \mathbf{e}_{k}\right) \subseteq \mathbb{R}^{m} \times \mathbb{R}^{k}$.

Cayley Conjecture

Definition

$\Delta \subseteq \mathbb{R}^{d}$ is a Cayley Polytope of lattice polytopes $\Delta_{1}, \ldots, \Delta_{k} \subseteq \mathbb{R}^{m}$ if $k \geq 2$ and Δ is unimodularly equivalent to $\operatorname{conv}\left(\Delta_{1} \times \mathbf{e}_{1}, \ldots, \Delta_{k} \times \mathbf{e}_{k}\right) \subseteq \mathbb{R}^{m} \times \mathbb{R}^{k}$.
$\Delta_{1}, \Delta_{2} \subseteq \mathbb{R}$ two (lattice) intervals.

Cayley Conjecture

Definition

$\Delta \subseteq \mathbb{R}^{d}$ is a Cayley Polytope of lattice polytopes $\Delta_{1}, \ldots, \Delta_{k} \subseteq \mathbb{R}^{m}$ if $k \geq 2$ and Δ is unimodularly equivalent to $\operatorname{conv}\left(\Delta_{1} \times \mathbf{e}_{1}, \ldots, \Delta_{k} \times \mathbf{e}_{k}\right) \subseteq \mathbb{R}^{m} \times \mathbb{R}^{k}$.
$\Delta_{1}, \Delta_{2} \subseteq \mathbb{R}$ two (lattice) intervals.

Cayley Conjecture

Definition

$\Delta \subseteq \mathbb{R}^{d}$ is a Cayley Polytope of lattice polytopes $\Delta_{1}, \ldots, \Delta_{k} \subseteq \mathbb{R}^{m}$ if $k \geq 2$ and Δ is unimodularly equivalent to $\operatorname{conv}\left(\Delta_{1} \times \mathbf{e}_{1}, \ldots, \Delta_{k} \times \mathbf{e}_{k}\right) \subseteq \mathbb{R}^{m} \times \mathbb{R}^{k}$.
$\Delta_{1}, \Delta_{2} \subseteq \mathbb{R}$ two (lattice) intervals.

Cayley Conjecture

Definition

$\Delta \subseteq \mathbb{R}^{d}$ is a Cayley Polytope of lattice polytopes $\Delta_{1}, \ldots, \Delta_{k} \subseteq \mathbb{R}^{m}$ if $k \geq 2$ and Δ is unimodularly equivalent to $\operatorname{conv}\left(\Delta_{1} \times \mathbf{e}_{1}, \ldots, \Delta_{k} \times \mathbf{e}_{k}\right) \subseteq \mathbb{R}^{m} \times \mathbb{R}^{k}$.
$\Delta_{1}, \Delta_{2} \subseteq \mathbb{R}$ two (lattice) intervals.

Cayley Conjecture

"Weak" Cayley Conjecture[Dickenstein, Nill]
A d-dim. lattice polytpe with degree s is a Cayley polytope, if $d>2 s$.

Proposition[Higashitani,H.]

The "Weak" Cayley Conjecture holds for degree 2 simplices.

Proposition

Let $\Lambda \in \mathscr{C} \cap \mathcal{D} \subseteq \mathbb{R}^{d+1}$. Λ corresponds to a Cayley polytope iff there is a proper subset $I \subsetneq\{1, \ldots, d+1\}$ such that $f_{I}(\Lambda) \subseteq \mathbb{Z}$ where $f_{I}: \Lambda \rightarrow \mathbb{R} ; \mathbf{x} \mapsto \sum_{i \in I} x_{i}$.

Need to consider dim. at least 5, i. e., the max. subgrp. satisfy $\Lambda \subseteq \frac{1}{2} \mathbb{Z}^{7}$.

Example (6-dim.):
$\left(\begin{array}{lllllll}\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2}\end{array}\right)$ for instance $I=\{1,2,3,4\}$.

Not realizable h^{*}-vectors

Not realizable h^{*}-vectors

Not realizable h^{*}-vectors

Thank you!

[^0]: Usually: $\Delta=\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}\right) \subseteq \mathbb{R}^{d} d$-dimensional lattice simplex if $\mathbf{v}_{i} \in \mathbb{Z}^{d}$ (aff. indep.)

[^1]: Usually: $\Delta=\operatorname{conv}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{d+1}\right) \subseteq \mathbb{R}^{d} d$-dimensional lattice simplex if $\mathbf{v}_{i} \in \mathbb{Z}^{d}$ (aff. indep.)

 - Lattice stays the same: \mathbb{Z}^{d}.

