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Classifying lattice polytopes

Some known classifications:
reflexive polytopes up to dimension 4 [KS09]

smooth reflexive polytopes up to dimension 9 [Ob07,LP08]
canonical 3-polytopes [Kas10]
hollow 3-polytopes [AWW11,AKW15]

Definition: Equivalent polytopes

Two lattice polytopes P and P ′ are called unimodularly equivalent, if there
is a lattice-preserving affine isomorphism mapping them onto each other,
i.e. P ′ = AP + b, with A ∈ GLd(Z), b ∈ Zd .

Finitely many lattice polytopes := finitely many up to the above
equivalence relation
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Classifying lattice polytopes

Naive approach: Enumerate by dimension and size (|P ∩ Zd |) of P
d = 1 works great:

|P ∩ Zd | # different polytopes
2 1
3 1
4 1
...

...

,
,

,
...
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Classifying lattice polytopes

Naive approach: Enumerate by dimension and size (n := |P ∩ Zd |) of P
d = 2 also works:

n # different polytopes
3 1
4 3
5 6
...

...

,

,. . .

Works thanks to:
Pick’s Theorem, vol(P) = 2i + b − 2 =⇒ vol(P) ≤ 2n − 5
Every full-dimensional polytope contains a standard simplex.
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Classifying lattice polytopes

Naive approach: Enumerate by dimension and size (n := |P ∩ Zd |) of P
d = 3 fails miserably:

Reeve tetrahedra:

Tr := conv

0 1 0 1
0 0 1 1
0 0 0 r


vol(Tr ) = r =⇒ n # P

4 ∞
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Rescue in dimension 3

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1.

Definition: (lattice) width of a polytope

The width of a lattice polytope P with respect to a linear functional
` ∈ (Rd)∗ is defined as

width`(P) := max
p,q∈P

|` · p − ` · q| ,

and the (lattice) width of P is the minimum such width`(P) where ` ranges
over non-zero integer functionals:

width(P) := min
`∈(Zd )∗\{0}

width`(P).
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Width examples

width(P) = 1

width(P) = 1

width(P) = 2

Jan Hofmann (FU Berlin) The Finiteness Threshold Width December 15, 2016



Width quiz

width(P) = ?

For more complicated examples, use polymake
($P->LATTICE_WIDTH).
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Enumerating lattice 3-polytopes

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1.

# vertices 4 5 6 7 8 9 10 total
size 5 9 0 − − − − − 9
size 6 36 40 0 − − − − 76
size 7 103 296 97 0 − − − 496
size 8 193 1195 1140 147 0 − − 2675
size 9 282 2853 5920 2491 152 0 − 11698
size 10 478 5985 18505 16384 3575 108 0 45035
size 11 619 11432 48103 64256 28570 3425 59 156464

Tabelle: Lattice 3-polytopes of width larger than one and size ≤ 11, classified
according to their size and number of vertices.

How about the general case?
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The finiteness threshold width

Definition: Finiteness threshold width
For each d and each n ≥ d + 1, denote by w∞(d , n) ∈ N ∪ {∞} the
minimal width W ≥ 0 such that there exist only finitely many lattice
d-polytopes of size n and width >W .
Let w∞(d) := supn∈N w∞(d , n).

w∞(1) = w∞(2) = 0
w∞(3) = 1
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The finiteness threshold width

Theorem

w∞(d) <∞

Theorem

w∞(4) = 2

wH(d − 2) ≤ w∞(d) ≤ wH(d − 1)

Definitions: Hollow polytopes, empty polytopes, wH(d) & wE (d)

We say a lattice polytope is hollow, if P ∩ Zd ⊆ δP . We say it is empty, if
P ∩ Zd = vert(P).
We denote by wH(d) and wE (d) the maximum widths of hollow and empty
lattice d-polytopes, respectively.
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The finiteness threshold width

Theorem

w∞(d) <∞

Theorem

w∞(4) = 2

Corollary

There are only finitely many empty 4-simplices of width larger than two.

This Corollary was proclaimed in [BBBK11], but the proof has a gap.
Full classification of those polytopes was presented this week on a
great poster by Óscar
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The finiteness threshold width – is finite

Theorem

w∞(d) <∞

w∞(d) ≤ wH(d − 1) ≤ O(d
3
2 ) by the flatness theorem [KL88]
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Known values

d wE (d − 1) wH(d − 2) w∞(d) wH(d − 1)
1 − − 0 −
2 1 − 0 1
3 1 1 1 2
4 1 2 2 3
5 ≥ 4 3 ≥ 4 ≥ 4

In particular wH(2) = 2 ≤ w∞(4) ≤ 3 = wH(3).

wH(2) = 2
wH(3) = 3 [AWW11,AKW15]
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How do hollow polytopes enter the picture?

How do d-polytopes of size n look like?

Non-hollow P have bounded volume. [He83]
Only finitely many P of bounded volume. [LZ91]
=⇒ All but f. m. d-polytopes of size n are hollow.
All but f.m. hollow d-polytopes project onto a hollow
(d − 1)-polytope.[NZ11]

Lemma
Let d < n ∈ N. All but finitely many lattice d-polytopes of size bounded by
n are hollow. Furthermore, all but finitely many of the hollow d-polytopes
admit a projection to some hollow lattice (d − 1)-polytope.

=⇒ w∞(d) ≤ wH(d − 1)
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Lifts of bounded size

Lemma
Let d < n ∈ N. All but finitely many lattice d-polytopes of size bounded by
n are hollow. Furthermore, all but finitely many of the hollow d-polytopes
admit a projection to some hollow lattice (d − 1)-polytope.

Definition: Lift of a polytope

We say that a (lattice) polytope P is a lift of a (lattice) (d − 1)-polytope
Q if there is a (lattice) projection π with π(P) = Q. Without loss of
generality, we will typically assume π : Rd → Rd−1 to be the map that
forgets the last coordinate.
Two lifts π1 : P1 → Q and π2 : P2 → Q are equivalent if there is a
unimodular equivalence f : P1 → P2 with π2 ◦ f = π1.
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Lifts of bounded size

Theorem
Let Q ⊂ Rd−1 be a lattice (d − 1)-polytope of width W . Then all lifts
P ⊂ Rd of Q have width ≤W . All but finitely many of them have width
= W .

Look at (d − 1)-polytope P and find
conditions for P to have finitely many lifts.
conditions for P to have infinitely many lifts.

Theorem
For all d ≥ 3, w∞(d) equals the maximum width of a lattice
(d − 1)-polytope Q that admits infinitely many lifts of bounded size.
Moreover, Q is hollow.
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The case d = 4

Theorem

w∞(4) = 2

There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]
Compute their width with polymake ( our algorithm is in version 3.0. )
5 out of the 12 have width 3.
All their subpolytopes have width at most 2.
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The case d = 4

Theorem

w∞(4) = 2

M4,6 M4,4 M4,2

M ′
4,4 M5,4 M5,2 M6,2

Figure 1: The Z3-maximal integral lattice-free polytopes with lattice width two. For
further reference, the polytopes are labeled by a pair of indices (i, j), where i is the
number of facets and j the lattice diameter (defined at the end of the introduction).

Figure 2: The Z3-maximal integral lattice-free polytopes with lattice width three.

Proof strategy

In the proof of Theorem 1, we use a classification of all Z2-maximal polytopes in P(1
2Zd).

This is provided in Section 2. Every such polytope is contained in an R2-maximal lattice-
free convex set L in the plane and its vertices then have to be contained in L ∩ 1

2Z2. We
give a slightly extended version of the well-known classification of R2-maximal lattice-free
convex sets L which allows us to enumerate all Z2-maximal lattice-free 1

2Z2-polyhedra.
We then turn to integral Z3-maximal lattice-free polyhedra in dimension three. We

4

Abbildung: The five hollow 3-polytopes of width three

To show: These polytopes have only f.m. lifts of bounded size.
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Polytopes with finitely many lifts of bounded size

Lemma
Let Q be a lattice pyramid with basis F and apex v . If F has finitely many
lifts of bounded size, then so does Q.

Proof:
It is enough to look at tight lifts, where a lift is called tight if there is
a bijection between the vertices of P and Q.

Any tight lift of Q is of the form P(F̃ , h) := conv(F̃ ∪ {ṽ}), where F̃
is a tight lift of F and ṽ = (v , h) is a point in the fiber of v .
Let m be the distance of v to F .
P(F̃ , h) is equivalent to P(F̃ , h +m) for all h ∈ Z.
Hence there are at most m − 1 values of h that give non-equivalent
tight liftings P(F̃ , h), for any fixed F̃ .
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Polytopes with finitely many lifts of bounded size

Lemma
Let Q be a lattice pyramid with basis F and apex v . If F has finitely many
lifts of bounded size, then so does Q.

Corollary

Lattice simplices have finitely many lifts of bounded size.

True by an inductive argument, as 1-simplices have only finitely many
lifts.
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