The Finiteness Threshold Width of Lattice Polytopes

Jan Hofmann

FU Berlin
December 15, 2016

All of this is joint work with

Mónica

Christian

Paco

The finiteness threshold width of lattice polytopes arXiv:1607.00798

Classifying lattice polytopes

Some known classifications:

- reflexive polytopes up to dimension 4 [KS09]

Classifying lattice polytopes

Some known classifications:

- reflexive polytopes up to dimension 4 [KS09]

■ smooth reflexive polytopes up to dimension 9 [Ob07,LP08]

Classifying lattice polytopes

Some known classifications:

- reflexive polytopes up to dimension 4 [KS09]

■ smooth reflexive polytopes up to dimension 9 [Ob07,LP08]

- canonical 3-polytopes [Kas10]

Classifying lattice polytopes

Some known classifications:

- reflexive polytopes up to dimension 4 [KS09]
- smooth reflexive polytopes up to dimension 9 [Ob07,LP08]
- canonical 3-polytopes [Kas10]
- hollow 3-polytopes [AWW11,AKW15]

Classifying lattice polytopes

Some known classifications:

- reflexive polytopes up to dimension 4 [KS09]
- smooth reflexive polytopes up to dimension 9 [Ob07,LP08]
- canonical 3-polytopes [Kas10]
- hollow 3-polytopes [AWW11,AKW15]

Definition: Equivalent polytopes

Two lattice polytopes P and P^{\prime} are called unimodularly equivalent, if there is a lattice-preserving affine isomorphism mapping them onto each other, i.e. $P^{\prime}=A P+b$, with $A \in G L_{d}(\mathbb{Z}), b \in \mathbb{Z}^{d}$.

Classifying lattice polytopes

Some known classifications:

- reflexive polytopes up to dimension 4 [KS09]
- smooth reflexive polytopes up to dimension 9 [Ob07,LP08]
- canonical 3-polytopes [Kas10]
- hollow 3-polytopes [AWW11,AKW15]

Definition: Equivalent polytopes

Two lattice polytopes P and P^{\prime} are called unimodularly equivalent, if there is a lattice-preserving affine isomorphism mapping them onto each other, i.e. $P^{\prime}=A P+b$, with $A \in G L_{d}(\mathbb{Z}), b \in \mathbb{Z}^{d}$.

- Finitely many lattice polytopes $:=$ finitely many up to the above equivalence relation

Classifying lattice polytopes

Naive approach: Enumerate by dimension and size $\left(\left|P \cap \mathbb{Z}^{d}\right|\right)$ of P

- $d=1$ works great:

Classifying lattice polytopes

Naive approach: Enumerate by dimension and size ($n:=\left|P \cap \mathbb{Z}^{d}\right|$) of P - $d=2$ also works:

Classifying lattice polytopes

Naive approach: Enumerate by dimension and size ($n:=\left|P \cap \mathbb{Z}^{d}\right|$) of P - $d=2$ also works:

Classifying lattice polytopes

Naive approach: Enumerate by dimension and size ($n:=\left|P \cap \mathbb{Z}^{d}\right|$) of P - $d=2$ also works:

Works thanks to:
■ Pick's Theorem, $\operatorname{vol}(P)=2 i+b-2$

Classifying lattice polytopes

Naive approach: Enumerate by dimension and size ($n:=\left|P \cap \mathbb{Z}^{d}\right|$) of P - $d=2$ also works:

Works thanks to:
■ Pick's Theorem, $\operatorname{vol}(P)=2 i+b-2 \Longrightarrow \operatorname{vol}(P) \leq 2 n-5$

Classifying lattice polytopes

Naive approach: Enumerate by dimension and size ($n:=\left|P \cap \mathbb{Z}^{d}\right|$) of P - $d=2$ also works:

Works thanks to:
■ Pick's Theorem, $\operatorname{vol}(P)=2 i+b-2 \Longrightarrow \operatorname{vol}(P) \leq 2 n-5$

- Every full-dimensional polytope contains a standard simplex.

Classifying lattice polytopes

Naive approach: Enumerate by dimension and size $\left(n:=\left|P \cap \mathbb{Z}^{d}\right|\right)$ of P

- $d=3$ fails miserably:

Classifying lattice polytopes

Naive approach: Enumerate by dimension and size ($n:=\left|P \cap \mathbb{Z}^{d}\right|$) of P

- $d=3$ fails miserably:

Reeve tetrahedra:

$$
\begin{gathered}
T_{r}:=\operatorname{conv}\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & r
\end{array}\right) \\
\left.\operatorname{vol}\left(T_{r}\right)=r \Longrightarrow \begin{array}{c|}
n
\end{array}\right] \begin{array}{l}
4
\end{array}
\end{gathered}
$$

Rescue in dimension 3

Theorem[BS16a]
For each size n all but finitely many lattice 3-polytopes have width 1 .

Rescue in dimension 3

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1 .

Definition: (lattice) width of a polytope
The width of a lattice polytope P with respect to a linear functional $\ell \in\left(\mathbb{R}^{d}\right)^{*}$ is defined as

$$
\operatorname{width}_{\ell}(P):=\max _{p, q \in P}|\ell \cdot p-\ell \cdot q|
$$

and the (lattice) width of P is the minimum such width $\ell_{\ell}(P)$ where ℓ ranges over non-zero integer functionals:

$$
\text { width }(P):=\min _{\ell \in\left(\mathbb{Z}^{d}\right)^{*} \backslash\{0\}} \text { width }_{\ell}(P) .
$$

Width examples

width $(P)=1$
width $(P)=1$
width $(P)=2$

Width quiz

$$
\text { width }(P)=?
$$

Width quiz

$$
\text { width }(P)=?
$$

- For more complicated examples, use polymake (\$P->LATTICE_WIDTH).

Enumerating lattice 3-polytopes

Theorem[BS16a]
For each size n all but finitely many lattice 3 -polytopes have width 1 .

Enumerating lattice 3-polytopes

Theorem[BS16a]

For each size n all but finitely many lattice 3 -polytopes have width 1 .

\# vertices	4	5	6	7	8	9	10	total
size 5	9	0	-	-	-	-	-	9
size 6	36	40	0	-	-	-	-	76
size 7	103	296	97	0	-	-	-	496
size 8	193	1195	1140	147	0	-	-	2675
size 9	282	2853	5920	2491	152	0	-	11698
size 10	478	5985	18505	16384	3575	108	0	45035
size 11	619	11432	48103	64256	28570	3425	59	156464

Tabelle: Lattice 3-polytopes of width larger than one and size ≤ 11, classified according to their size and number of vertices.

Enumerating lattice 3-polytopes

Theorem[BS16a]

For each size n all but finitely many lattice 3-polytopes have width 1 .

\# vertices	4	5	6	7	8	9	10	total
size 5	9	0	-	-	-	-	-	9
size 6	36	40	0	-	-	-	-	76
size 7	103	296	97	0	-	-	-	496
size 8	193	1195	1140	147	0	-	-	2675
size 9	282	2853	5920	2491	152	0	-	11698
size 10	478	5985	18505	16384	3575	108	0	45035
size 11	619	11432	48103	64256	28570	3425	59	156464

Tabelle: Lattice 3-polytopes of width larger than one and size ≤ 11, classified according to their size and number of vertices.

■ How about the general case?

The finiteness threshold width

Definition: Finiteness threshold width
For each d and each $n \geq d+1$, denote by $w^{\infty}(d, n) \in \mathbb{N} \cup\{\infty\}$ the minimal width $W \geq 0$ such that there exist only finitely many lattice d-polytopes of size n and width $>W$.
Let $w^{\infty}(d):=\sup _{n \in \mathbb{N}} w^{\infty}(d, n)$.

The finiteness threshold width

Definition: Finiteness threshold width

For each d and each $n \geq d+1$, denote by $w^{\infty}(d, n) \in \mathbb{N} \cup\{\infty\}$ the minimal width $W \geq 0$ such that there exist only finitely many lattice d-polytopes of size n and width $>W$.
Let $w^{\infty}(d):=\sup _{n \in \mathbb{N}} w^{\infty}(d, n)$.

■ $w^{\infty}(1)=w^{\infty}(2)=0$

The finiteness threshold width

Definition: Finiteness threshold width

For each d and each $n \geq d+1$, denote by $w^{\infty}(d, n) \in \mathbb{N} \cup\{\infty\}$ the minimal width $W \geq 0$ such that there exist only finitely many lattice d-polytopes of size n and width $>W$.
Let $w^{\infty}(d):=\sup _{n \in \mathbb{N}} w^{\infty}(d, n)$.

- $w^{\infty}(1)=w^{\infty}(2)=0$
- $w^{\infty}(3)=1$

The finiteness threshold width

Theorem

$$
w^{\infty}(d)<\infty
$$

The finiteness threshold width

$$
\begin{aligned}
& \text { Theorem } \\
& w^{\infty}(d)<\infty
\end{aligned}
$$

Theorem
$w^{\infty}(4)=2$

The finiteness threshold width

$$
\begin{gathered}
\text { Theorem } \\
w^{\infty}(d)<\infty \\
\quad w^{\infty}(4)=2 \\
\square w_{H}(d-2) \leq w^{\infty}(d) \leq w_{H}(d-1)
\end{gathered}
$$

The finiteness threshold width

$$
\begin{aligned}
& \text { Theorem } \\
& w^{\infty}(d)<\infty
\end{aligned}
$$

$$
\square w_{H}(d-2) \leq w^{\infty}(d) \leq w_{H}(d-1)
$$

Definitions: Hollow polytopes, empty polytopes, $w_{H}(d) \& w_{E}(d)$
We say a lattice polytope is hollow, if $P \cap \mathbb{Z}^{d} \subseteq \delta P$. We say it is empty, if $P \cap \mathbb{Z}^{d}=\operatorname{vert}(P)$.
We denote by $w_{H}(d)$ and $w_{E}(d)$ the maximum widths of hollow and empty lattice d-polytopes, respectively.

The finiteness threshold width

$$
\begin{aligned}
& \text { Theorem } \\
& w^{\infty}(d)<\infty
\end{aligned}
$$

Corollary

There are only finitely many empty 4-simplices of width larger than two.

The finiteness threshold width

$$
\begin{aligned}
& \text { Theorem } \\
& w^{\infty}(d)<\infty
\end{aligned}
$$

Corollary

There are only finitely many empty 4-simplices of width larger than two.

- This Corollary was proclaimed in [BBBK11], but the proof has a gap.

The finiteness threshold width

$$
\begin{aligned}
& \text { Theorem } \\
& w^{\infty}(d)<\infty
\end{aligned}
$$

Corollary

There are only finitely many empty 4-simplices of width larger than two.

- This Corollary was proclaimed in [BBBK11], but the proof has a gap.

■ Full classification of those polytopes was presented this week on a great poster by Óscar

The finiteness threshold width - is finite

Theorem

$$
w^{\infty}(d)<\infty
$$

The finiteness threshold width - is finite

Theorem

$$
w^{\infty}(d)<\infty
$$

- $w^{\infty}(d) \leq w_{H}(d-1)$

The finiteness threshold width - is finite

Theorem

$$
w^{\infty}(d)<\infty
$$

- $w^{\infty}(d) \leq w_{H}(d-1) \leq O\left(d^{\frac{3}{2}}\right)$ by the flatness theorem [KL88]

Known values

d	$w_{E}(d-1)$	$w_{H}(d-2)$	$w^{\infty}(d)$	$w_{H}(d-1)$
1	-	-	0	-
2	1	-	0	1
3	1	1	1	2
4	1	2	2	3
5	≥ 4	3	≥ 4	≥ 4

Known values

d	$w_{E}(d-1)$	$w_{H}(d-2)$	$w^{\infty}(d)$	$w_{H}(d-1)$
1	-	-	0	-
2	1	-	0	1
3	1	1	1	2
4	1	2	2	3
5	≥ 4	3	≥ 4	≥ 4

In particular $w_{H}(2)=2 \leq w^{\infty}(4) \leq 3=w_{H}(3)$.

Known values

d	$w_{E}(d-1)$	$w_{H}(d-2)$	$w^{\infty}(d)$	$w_{H}(d-1)$
1	-	-	0	-
2	1	-	0	1
3	1	1	1	2
4	1	2	2	3
5	≥ 4	3	≥ 4	≥ 4

In particular $w_{H}(2)=2 \leq w^{\infty}(4) \leq 3=w_{H}(3)$.

- $w_{H}(2)=2 .$.

Known values

d	$w_{E}(d-1)$	$w_{H}(d-2)$	$w^{\infty}(d)$	$w_{H}(d-1)$
1	-	-	0	-
2	1	-	0	1
3	1	1	1	2
4	1	2	2	3
5	≥ 4	3	≥ 4	≥ 4

In particular $w_{H}(2)=2 \leq w^{\infty}(4) \leq 3=w_{H}(3)$.
$\square w_{H}(2)=2$.

- $w_{H}(3)=3$ [AWW11,AKW15]

How do hollow polytopes enter the picture?

■ How do d-polytopes of size n look like?

How do hollow polytopes enter the picture?

■ How do d-polytopes of size n look like?
■ Non-hollow P have bounded volume. [He83]
■ Only finitely many P of bounded volume. [LZ91]

How do hollow polytopes enter the picture?

- How do d-polytopes of size n look like?

■ Non-hollow P have bounded volume. [He83]
■ Only finitely many P of bounded volume. [LZ91]
\Longrightarrow All but f. m. d-polytopes of size n are hollow.

How do hollow polytopes enter the picture?

- How do d-polytopes of size n look like?

■ Non-hollow P have bounded volume. [He83]
■ Only finitely many P of bounded volume. [LZ91]
\Longrightarrow All but f. m. d-polytopes of size n are hollow.

- All but f.m. hollow d-polytopes project onto a hollow ($d-1$)-polytope.[NZ11]

How do hollow polytopes enter the picture?

- How do d-polytopes of size n look like?

■ Non-hollow P have bounded volume. [He83]
■ Only finitely many P of bounded volume. [LZ91] \Longrightarrow All but f. m. d-polytopes of size n are hollow.

- All but f.m. hollow d-polytopes project onto a hollow ($d-1$)-polytope.[NZ11]

Lemma

Let $d<n \in \mathbb{N}$. All but finitely many lattice d-polytopes of size bounded by n are hollow. Furthermore, all but finitely many of the hollow d-polytopes admit a projection to some hollow lattice $(d-1)$-polytope.

How do hollow polytopes enter the picture?

- How do d-polytopes of size n look like?

■ Non-hollow P have bounded volume. [He83]
■ Only finitely many P of bounded volume. [LZ91] \Longrightarrow All but f. m. d-polytopes of size n are hollow.

- All but f.m. hollow d-polytopes project onto a hollow ($d-1$)-polytope.[NZ11]

Lemma

Let $d<n \in \mathbb{N}$. All but finitely many lattice d-polytopes of size bounded by n are hollow. Furthermore, all but finitely many of the hollow d-polytopes admit a projection to some hollow lattice $(d-1)$-polytope.

$$
\Longrightarrow w^{\infty}(d) \leq w_{H}(d-1)
$$

Lifts of bounded size

Lemma

Let $d<n \in \mathbb{N}$. All but finitely many lattice d-polytopes of size bounded by n are hollow. Furthermore, all but finitely many of the hollow d-polytopes admit a projection to some hollow lattice $(d-1)$-polytope.

Lifts of bounded size

Lemma

Let $d<n \in \mathbb{N}$. All but finitely many lattice d-polytopes of size bounded by n are hollow. Furthermore, all but finitely many of the hollow d-polytopes admit a projection to some hollow lattice ($d-1$)-polytope.

Definition: Lift of a polytope

We say that a (lattice) polytope P is a lift of a (lattice) $(d-1)$-polytope Q if there is a (lattice) projection π with $\pi(P)=Q$. Without loss of generality, we will typically assume $\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}$ to be the map that forgets the last coordinate.
Two lifts $\pi_{1}: P_{1} \rightarrow Q$ and $\pi_{2}: P_{2} \rightarrow Q$ are equivalent if there is a unimodular equivalence $f: P_{1} \rightarrow P_{2}$ with $\pi_{2} \circ f=\pi_{1}$.

Lifts of bounded size

Theorem
Let $Q \subset \mathbb{R}^{d-1}$ be a lattice $(d-1)$-polytope of width W. Then all lifts $P \subset \mathbb{R}^{d}$ of Q have width $\leq W$. All but finitely many of them have width $=W$.

Lifts of bounded size

Theorem

Let $Q \subset \mathbb{R}^{d-1}$ be a lattice $(d-1)$-polytope of width W. Then all lifts $P \subset \mathbb{R}^{d}$ of Q have width $\leq W$. All but finitely many of them have width $=W$.

Look at $(d-1)$-polytope P and find
■ conditions for P to have finitely many lifts.

Lifts of bounded size

Theorem

Let $Q \subset \mathbb{R}^{d-1}$ be a lattice $(d-1)$-polytope of width W. Then all lifts $P \subset \mathbb{R}^{d}$ of Q have width $\leq W$. All but finitely many of them have width $=W$.

Look at $(d-1)$-polytope P and find

- conditions for P to have finitely many lifts.
- conditions for P to have infinitely many lifts.

Theorem

For all $d \geq 3, w^{\infty}(d)$ equals the maximum width of a lattice ($d-1$)-polytope Q that admits infinitely many lifts of bounded size. Moreover, Q is hollow.

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

- There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

- There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]
- Compute their width with polymake (our algorithm is in version 3.0.)

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

- There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]
- Compute their width with polymake (our algorithm is in version 3.0.)
- 5 out of the 12 have width 3 .

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

- There are 12 maximal hollow lattice 3-polytopes [AWW11,AKW15]
- Compute their width with polymake (our algorithm is in version 3.0.)
- 5 out of the 12 have width 3 .

■ All their subpolytopes have width at most 2.

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

Abbildung: The five hollow 3-polytopes of width three

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

Abbildung: The five hollow 3-polytopes of width three

To show: These polytopes have only f.m. lifts of bounded size.

Polytopes with finitely many lifts of bounded size

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Proof:
■ It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.

Polytopes with finitely many lifts of bounded size

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Proof:
■ It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.

- Any tight lift of Q is of the form $P(\tilde{F}, h):=\operatorname{conv}(\tilde{F} \cup\{\tilde{v}\})$, where \tilde{F} is a tight lift of F and $\tilde{v}=(v, h)$ is a point in the fiber of v.

Polytopes with finitely many lifts of bounded size

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Proof:
■ It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.

- Any tight lift of Q is of the form $P(\tilde{F}, h):=\operatorname{conv}(\tilde{F} \cup\{\tilde{v}\})$, where \tilde{F} is a tight lift of F and $\tilde{v}=(v, h)$ is a point in the fiber of v.
- Let m be the distance of v to F.

Polytopes with finitely many lifts of bounded size

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Proof:
■ It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.

- Any tight lift of Q is of the form $P(\tilde{F}, h):=\operatorname{conv}(\tilde{F} \cup\{\tilde{v}\})$, where \tilde{F} is a tight lift of F and $\tilde{v}=(v, h)$ is a point in the fiber of v.
- Let m be the distance of v to F.
- $P(\tilde{F}, h)$ is equivalent to $P(\tilde{F}, h+m)$ for all $h \in \mathbb{Z}$.

Polytopes with finitely many lifts of bounded size

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Proof:

- It is enough to look at tight lifts, where a lift is called tight if there is a bijection between the vertices of P and Q.
- Any tight lift of Q is of the form $P(\tilde{F}, h):=\operatorname{conv}(\tilde{F} \cup\{\tilde{v}\})$, where \tilde{F} is a tight lift of F and $\tilde{v}=(v, h)$ is a point in the fiber of v.
■ Let m be the distance of v to F.
- $P(\tilde{F}, h)$ is equivalent to $P(\tilde{F}, h+m)$ for all $h \in \mathbb{Z}$.
- Hence there are at most $m-1$ values of h that give non-equivalent tight liftings $P(\tilde{F}, h)$, for any fixed \tilde{F}.

Polytopes with finitely many lifts of bounded size

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Corollary

Lattice simplices have finitely many lifts of bounded size.

Polytopes with finitely many lifts of bounded size

Lemma

Let Q be a lattice pyramid with basis F and apex v. If F has finitely many lifts of bounded size, then so does Q.

Corollary

Lattice simplices have finitely many lifts of bounded size.

- True by an inductive argument, as 1-simplices have only finitely many lifts.

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

Abbildung: The five hollow 3-polytopes of width three

The case $d=4$

Theorem

$$
w^{\infty}(4)=2
$$

Abbildung: The five hollow 3-polytopes of width three

To show: These polytopes have only f.m. lifts of bounded size.

All of this is joint work with

Mónica

Christian

Paco

The finiteness threshold width of lattice polytopes arXiv:1607.00798

