Lattice simplices of maximal dimension with a given degree

Akihiro Higashitani (Kyoto Sangyo University)

Einstein Workshop on Lattice Polytopes at Berlin

12-16 Dec. 2016

Contents

1. Introduction to Cayley Conjecture and Nill's bound
2. Correspondence between lattice simplices and finite abelian
groups (Johannes' talk)
3. The case $d+1=4 s-1$ and Cayley Conjecture
4. The case $d+1=f(2 s)$ and Cayley Conjecture
(j.w.w. K. Kashiwabara)

1.1. Introduction to Cayley Conjecture

Let $P \subset \mathbb{R}^{d}$ be a lattice polytope, i.e., P is a convex polytope whose vertices are the points in \mathbb{Z}^{d}.
P° : the interior of $P \quad \operatorname{dim} P=d$

- $\operatorname{codeg}(P):=\min \left\{k: k P^{\circ} \cap \mathbb{Z}^{d} \neq \emptyset\right\}$
- $\operatorname{deg}(P):=d+1-\operatorname{codeg}(P)$

Example

$$
\begin{aligned}
& \operatorname{codeg}(P)=3 \\
& \operatorname{deg}(P)=3+1-3=1
\end{aligned}
$$

Why do we say $\operatorname{deg}(P)$ degree of P ?

Remark For a lattice polytope $P \subset \mathbb{R}^{d}$, we consider the Ehrhart series $\sum_{n \geq 0}\left|n P \cap \mathbb{Z}^{d}\right| t^{n}$. Then this becomes a rational function of the form

$$
\sum_{n \geq 0}\left|n P \cap \mathbb{Z}^{d}\right| t^{n}=\frac{h_{P}^{*}(t)}{(1-t)^{d+1}}
$$

where $h_{P}^{*}(t)$ is a polynomial in t. We say that $h_{P}^{*}(t)$ is the h^{*}-polynomial of P.
(the degree of $\left.h^{*}(t)\right)=\operatorname{deg}(P)$.

For a lattice polytope $P \subset \mathbb{R}^{d}$, a lattice pyramid over P is defined by
$\operatorname{Pyr}(P):=\operatorname{conv}\left(\left\{(\alpha, 0) \in \mathbb{R}^{d+1}: \alpha \in P\right\} \cup\{(0, \ldots, 0,1)\}\right) \subset \mathbb{R}^{d+1}$.
Then $\operatorname{dim}(\operatorname{Pyr}(P))=\operatorname{dim} P+1$. In particular, those are not unimod. equiv., however...

Remark

We have $h_{P}^{*}(t)=h_{\operatorname{Pyr}(P)}^{*}(t)$, in particular,

$$
\operatorname{deg}(P)=\operatorname{deg}(\operatorname{Pyr}(P))
$$

Motivation

We want to know Cayley structure of lattice polytopes.

Cayley Polytope

- $P_{0}, P_{1}, \ldots, P_{\ell} \subset \mathbb{R}^{d}$: lattice polytopes

$$
P_{0} * P_{1} * \cdots * P_{\ell}:=\operatorname{conv}\left(\left(P_{0} \times \mathbf{0}\right) \cup\left(P_{1} \times \mathbf{e}_{1}\right) \cup \cdots \cup\left(P_{\ell} \times \mathbf{e}_{\ell}\right)\right) \subset \mathbb{R}^{d+\ell}
$$

We say $P_{0} * \cdots * P_{\ell}$ is a Cayley polytope.

- For a lattice polytope $P \subset \mathbb{R}^{d+\ell}$, when there exist $P_{0}, P_{1}, \ldots, P_{\ell} \subset \mathbb{R}^{d}$ s.t. $P \cong P_{0} * \cdots * P_{\ell}$, we say $P_{0} * \cdots * P_{\ell}$ is a Cayley decomposition of P.
- For a lattice polytope P, let

$$
C(P):=\max \left(\left\{\ell+1: \exists P_{0}, \ldots, \exists P_{\ell} \text { s.t. } P \cong P_{0} * \cdots * P_{\ell}\right\}\right)
$$

(Strong) Cayley Conjecture (Dickenstein-Nill '12)

Let P be a lattice polytope of dimension d with degree s.

$$
d>2 s \Longrightarrow C(P) \geq d+1-2 s
$$

(Weak) Cayley Conjecture

Let P be a lattice polytope of dimension d with degree s.

$$
d>2 s \Longrightarrow C(P) \geq 2
$$

namely, P can be just decomposed into at least two polytopes.

Strong Cayley conjecture is true if

- P : smooth (Dickenstein-Nill '10)
- P : Gorenstein (DiRocco-Haase-Nill-Paffenholz '13)
- some class of $(0,1)$-polytopes? (work in progress)

Theorem (Haase-Nill-Payne '09)

Let P be a lattice polytope of dimension d with degree s.

$$
d>\left(s^{2}+19 s-4\right) / 2 \Longrightarrow C(P) \geq d+1-\left(s^{2}+19 s-4\right) / 2
$$

Remark

\exists counterexample (appear later) for strong Cayley Conjecture The existence of counterexample for weak Cayley Conjecture might be still open.
\longrightarrow I want to know $C(P)$ in order to give its "sharp" bound. I expect the bound of $C(P)$ can be given like $d+1$-(linear of s).

1.2. (modified) Nill's bound

On the other hand, the following theorem is known:
For $m \in \mathbb{Z}_{>0}$, let $f(m)=\sum_{\ell=0}^{\infty}\left\lfloor\frac{m}{2^{\ell}}\right\rfloor$.
Theorem (Nill 2008, H. 2016)
P : lattice simplex of dimension d with degree s
P is NOT a lattice pyramid $\Longrightarrow d+1 \leq f(2 s) \leq 4 s-1$
Moreover, $f(2 s)$ is sharp but $f(2 s)<4 s-1$ in general. (Explain later more precisely.)

Thus, it is natural to study the following problem:

Problem

Give a complete characterization of lattice simplices of dimension d with degree s satisfying $d+1=f(2 s)$.

Remark

- A complete characterization of lattice polytopes of degree 1 which are not lattice pyramids was given by Batyrev-Nill (2007).
- A complete characterization of lattice simplices of degree 2 which are not lattice pyramids was given by H.-Hofscheier (2016+).

2. Correspondence between lattice simplices and finite abelian groups

We will review the correspondence between unimodular equvalence classes of lattice simplices and finite abelian groups.
$\Delta \subset \mathbb{R}^{d}$: lattice simplex of dimension d
$\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{d} \in \mathbb{Z}^{d}:$ vertices of Δ

$$
\Lambda_{\Delta}=\left\{\left(x_{0}, x_{1}, \ldots, x_{d}\right) \in(\mathbb{R} / \mathbb{Z})^{d+1}: \sum_{i=0}^{d} x_{i} \mathbf{v}_{i} \in \mathbb{Z}^{d} \text { and } \sum_{i=0}^{d} x_{i} \in \mathbb{Z}\right\}
$$

Example

Λ_{Δ} forms a finite abelian group.

In this way, from a lattice simplex Δ, we can construct a finite abelian subgroup Λ_{Δ} of $(\mathbb{R} / \mathbb{Z})^{d+1}$.

FACTS

$($ the volume of $\Delta) \cdot d!=\left(\right.$ the order of $\left.\Lambda_{\Delta}\right)$
$\operatorname{deg}(\Delta)=\max \left\{\sum_{i=0}^{d} x_{i} \in \mathbb{Z}_{\geq 0}:\left(x_{0}, \ldots, x_{d}\right) \in \Lambda_{\Delta}, 0 \leq x_{i}<1\right\}$
Δ is NOT a lattice pyramid $\Longleftrightarrow 0 \leq \forall i \leq d, \exists \mathbf{x} \in \Lambda_{\Delta}$ s.t. $x_{i} \neq 0$

On the other hand, from a finite abelian subgroup
$\Lambda \subset(\mathbb{R} / \mathbb{Z})^{d+1}$ s.t.
the sum of entries of each element in Λ is an integer.(*)
we can construct a lattice simplex of $\operatorname{dim} d$.

Correspondence (Batyrev-Hofscheier '13) $\{$ lattice simplices of $\operatorname{dim} d\} /($ unimod. equiv.) $\stackrel{1: 1}{\longleftrightarrow}$
$\left\{\right.$ fin. abel. subgroups $\Lambda \subset(\mathbb{R} / \mathbb{Z})^{d+1}$ with $\left.(*)\right\} /$ (permute of coord.)

Remark

$d+1($ dimension of $\Delta) \longleftrightarrow \Lambda_{\Delta} \subset(\mathbb{R} / \mathbb{Z})^{d+1}$
$s($ degree of $\Delta) \longleftrightarrow$ maximum of entry sums of Λ_{Δ} NOT a lattice pyramid $\longleftrightarrow 0 \leq \forall i \leq d, \exists \mathrm{x} \in \Lambda_{\Delta}$ s.t. $x_{i} \neq 0$

3. The case $d+1=4 s-1$

Recall For a lattice simplex Δ of $\operatorname{dim} d$ with $\operatorname{deg} s$, we have

$$
d+1 \leq f(2 s) \leq 4 s-1
$$

Give a complete characterization of lattice simplices of dimension d with degree s satisfying $d+1=f(2 s)$.

First, we consider the case $d+1=4 s-1$, which automatically implies $d+1=f(2 s)$.

Binary Simplex Codes

$C \subset(\mathbb{Z} / 2 \mathbb{Z})^{d+1}$: binary simplex code
\Longleftrightarrow Binary simplex code is a binary code generated by the row vectors of the matrix $H(d+1)$ $\{$ column vectors of $H(d+1)\}=\left\{{ }^{T}\left(a_{1}, \ldots, a_{d+1}\right) \neq \mathbf{0}: a_{i} \in\{0,1\}\right\}$

Example

$$
H(2)=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \quad H(3)=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

binary simplex code \Longleftrightarrow a dual code of Hamming code

We can identify a binary code $C \subset \mathbb{F}_{2}^{d+1}$ as a finite abelian subgroup $\Lambda \subset\{0,1 / 2\}^{d+1}$. We may replace $0 \in \mathbb{F}_{2} \longleftrightarrow 0 \in\{0,1 / 2\} \subset \mathbb{R} / \mathbb{Z}$ and $1 \in \mathbb{F}_{2} \longleftrightarrow 1 / 2 \in\{0,1 / 2\} \subset \mathbb{R} / \mathbb{Z}$.

Example

$$
\Lambda_{\Delta}=\langle(1 / 2,1 / 2,0),(1 / 2,0,1 / 2)\rangle
$$

$$
\text { comes from } H(2)
$$

By Batyrev-Nill (2007), we know that this triangle is a unique lattice simplex of $\operatorname{dim} 2$ with $\operatorname{deg} 1$ s.t. $d+1=4 s-1$.

Theorem (H. '16)

Δ : lattice simplex of $\operatorname{dim} d$ with deg s satisfying $d+1=4 s-1$
Then $s=2^{r}$ for some $r \in \mathbb{Z}_{\geq 0}$ and
Λ_{Δ} comes from binary simplex codes.
Proposition (H. '16) $\quad r \in \mathbb{Z}_{\geq 0}$
$\Delta(r)$: lattice simplex of $\operatorname{dim} d$ with $\operatorname{deg} s=2^{r}$ s.t. $d+1=4 s-1$
Then $C(\Delta(r))=\frac{4 s-1}{3}=\frac{d+1}{3}$.
We can see that $\Delta(r)$ becomes a counterexample for Strong Cayley Conjecture if $r \geq 1$.

The following looks strange and unnatural...

—Question (Modified Strong Cayley Conjecture?)

Let P be a lattice polytope of dimension d with degree s.

$$
d>\frac{8 s-2}{3} \Longrightarrow C(P) \geq d+1-\frac{8 s-2}{3} ?
$$

$\Delta(r)$ satisfies this conjecture for any $r \geq 0$.

Remark $\Delta(r)$ is the "most extremal" among the simplices Δ of $\operatorname{dim} d$ with $\operatorname{deg} s$ s.t. $d+1=f(2 s)$.
\longrightarrow MSSC is always true for any simplices?

4. The case $d+1=f(2 s)$ (j.w.w. K. Kashiwabara)

Recall For a lattice simplex Δ of $\operatorname{dim} d$ with $\operatorname{deg} s$, we have

$$
d+1 \leq f(2 s) \leq 4 s-1
$$

We want to give a complete characterization of lattice simplices of $\operatorname{dim} d$ with $\operatorname{deg} s$ satisfying $d+1=f(2 s)$ and compute $C(\Delta)$ (for checking MSCC).

By the way $\ldots \ldots$ what is $f(m)=\sum_{\ell=0}^{\infty}\left\lfloor\frac{m}{2^{\ell}}\right\rfloor ? ?$

Example

$$
\begin{aligned}
& f(2)=2+1, \quad f(3)=3+1=4 \\
& f(4)=4+2+1, \quad f(5)=5+2+1, \quad f(6)=6+3+1, \quad f(7)=7+3+1 \\
& f(8)=8+4+2+1, \quad f(9)=9+4+2+1 \ldots \ldots
\end{aligned}
$$

Proposition

$f(m)=2 m-(\sharp$ of 1 's for the binary expansion of $m)$
In particular, $f(m)=2 m-1$ if and only if m is a power of 2 .

Theorem (again) (H. '16)

Δ : lattice simplex of $\operatorname{dim} d$ with deg s satisfying $d+1=4 s-1$
Then $s=2^{r}$ for some $r \in \mathbb{Z}_{\geq 0}$ (obvious from above Prop) and Λ_{Δ} comes from binary simplex codes.
In particular, $\Lambda_{\Delta} \subset\{0,1 / 2\}^{d+1}$.

Theoren Let Δ be a lattice simplex Δ of $\operatorname{dim} d$ with $\operatorname{deg} s$ s.t. $d+1=f(2 s)$.

$$
\Longrightarrow \Lambda_{\Delta} \subset\{0,1 / 2\}^{d+1}
$$

Proposition (H.-Kashiwabara) Let Δ be a lattice simplex of $\operatorname{dim} d$ with $\operatorname{deg} s$ s.t. $d+1=f(2 s)$. Let $2 s=2^{r_{1}}+\cdots+2^{r_{p}}$ be the binary expansion of m, where $r_{1}>\cdots>r_{p} \geq 1$. Then

$$
r_{1}+1 \leq\left(\sharp \text { of generators of } \Lambda_{\Delta}\right) \leq \sum_{i=1}^{p} r_{i}+p .
$$

Theorem (H.-Kashiwabara) For $s \in \mathbb{Z}_{\geq 0}$, let

$$
p=(\sharp \text { of " } 1 \text { " in the binary expansiont of } 2 s)
$$

Let Δ be a lattice simplex of $\operatorname{dim} d$ with deg s s.t. $d+1=f(2 s)$.
Assume Λ_{Δ} is generated by $\left(\left\lfloor\log _{2} s\right\rfloor+2\right)$ elements.
Then Λ_{Δ} is uniquely determined $\Longleftrightarrow p=1$ or 2 .

Theorem (H.-Kashiwabara) Let $2 s=2^{r}+2^{r^{\prime}}$ for some $r>r^{\prime} \geq 1$. Let Δ be a lattice simplex of $\operatorname{dim} d$ with $\operatorname{deg} s$ s.t.
$d+1=f(2 s)=4 s-2$. Assume Λ_{Δ} is generated by $(r+1)$ elements.

Then Λ_{Δ} comes from the binary code generated by the row vectors of the $(r+1) \times(4 s-2)$ matrix $\left(H(r+1) H\left(r^{\prime}+1\right)\right)$.

Example $(H(3) H(2))=\left(\begin{array}{llllllllll}1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right)$

Theorem For any $s \geq 2$, there exists a lattice simplex Δ of $\operatorname{dim} d$ with deg s s.t. $d+1=f(2 s)$ satisfying $C(\Delta)<d+1-2 s$, i.e., \exists counterexamples of original SCC for $\forall s \geq 2$.

Theorem Let Δ br a lattice simplex of $\operatorname{dim} d$ with $\operatorname{deg} s$ s.t. $d+1=f(2 s)$. Then Δ always satisfies modified SCC.

Future Work (in progress)

- Prove Modified Strong Cayley Conjecture for all lattice simplices. \longrightarrow all lattice polytopes?
- Characterize when a lattice polytope satisfies original SCC? (some classes of (0,1)-polytopes)

Danke schön．

ありがとうございます。

