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1.1. Introduction to Cayley Conjecture

Let P ⊂ Rd be a lattice polytope, i.e., P is a convex polytope
whose vertices are the points in Zd.

P ◦ : the interior of P dimP = d

• codeg(P ) := min{k : kP ◦ ∩ Zd 6= ∅}
• deg(P ) := d + 1 − codeg(P )

Example

(1,0,0)

(0,1,0)

(0,0,1)
P

(1,1,0)

codeg(P ) = 3
deg(P ) = 3 + 1 − 3 = 1
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Why do we say deg(P ) degree of P?

Remark For a lattice polytope P ⊂ Rd, we consider the

Ehrhart series
∑

n≥0 |nP ∩ Zd|tn. Then this becomes a rational

function of the form∑
n≥0

|nP ∩ Zd|tn =
h∗

P (t)

(1 − t)d+1
,

where h∗
P (t) is a polynomial in t. We say that h∗

P (t) is the
h∗-polynomial of P .

(the degree of h∗(t)) = deg(P ).
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For a lattice polytope P ⊂ Rd, a lattice pyramid over P is

defined by

Pyr(P ) := conv({(α, 0) ∈ Rd+1 : α ∈ P}∪{(0, . . . , 0, 1)}) ⊂ Rd+1.

Then dim(Pyr(P )) = dim P + 1. In particular, those are not
unimod. equiv., however...

Rd

R
d+1

P

Pyr(P)

Remark

We have h∗
P (t) = h∗

Pyr(P )(t), in
particular,

deg(P ) = deg(Pyr(P ))
:::::::::::::::::::::::::

.
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Motivation
We want to know Cayley structure of lattice polytopes.

Cayley Polytope¶ ³
• P0, P1, . . . , P` ⊂ Rd : lattice polytopes

P0∗P1∗· · ·∗P` := conv((P0×0)∪(P1×e1)∪· · ·∪(P`×e`)) ⊂ Rd+`

We say P0 ∗ · · · ∗ P` is a Cayley polytope.
• For a lattice polytope P ⊂ Rd+`, when there exist
P0, P1, . . . , P` ⊂ Rd s.t. P ∼= P0 ∗ · · · ∗ P`, we say P0 ∗ · · · ∗ P` is
a Cayley decomposition of P .

• For a lattice polytope P , let

C(P ) := max({`+1 : ∃P0, . . . , ∃P` s.t.P ∼= P0∗· · ·∗P`}).µ ´
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(Strong) Cayley Conjecture (Dickenstein–Nill ’12)¶ ³
Let P be a lattice polytope of dimension d with degree s.

d > 2s =⇒ C(P ) ≥ d + 1 − 2s.µ ´
(Weak) Cayley Conjecture¶ ³

Let P be a lattice polytope of dimension d with degree s.

d > 2s =⇒ C(P ) ≥ 2,

namely, P can be just decomposed into at least two polytopes.µ ´
Strong Cayley conjecture is true if
• P : smooth (Dickenstein–Nill ’10)
• P : Gorenstein (DiRocco–Haase–Nill–Paffenholz ’13)
• some class of (0, 1)-polytopes? (work in progress)
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Theorem (Haase–Nill–Payne ’09)

Let P be a lattice polytope of dimension d with degree s.

d > (s2 + 19s − 4)/2 =⇒ C(P ) ≥ d + 1 − (s2 + 19s − 4)/2

Remark

∃ counterexample (appear later) for strong Cayley Conjecture
The existence of counterexample for weak Cayley Conjecture
might be still open.

−→ I want to know C(P ) in order to give its “sharp” bound. I
expect the bound of C(P ) can be given like d + 1−(linear of s).
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1.2. (modified) Nill’s bound

On the other hand, the following theorem is known:

For m ∈ Z>0, let f(m) =
∞∑

`=0

⌊m

2`

⌋
.

Theorem (Nill 2008, H. 2016)

P : lattice simplex of dimension d with degree s

P is NOT a lattice pyramid =⇒ d+1 ≤ f(2s) ≤ 4s− 1

Moreover, f(2s) is sharp but f(2s) < 4s − 1 in general. (Explain
later more precisely.)
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Thus, it is natural to study the following problem:

Problem¶ ³
Give a complete characterization of lattice simplices of
dimension d with degree s satisfying

:::::::::::::::
d + 1 = f(2s).µ ´

Remark

• A complete characterization of lattice polytopes of degree 1
which are not lattice pyramids was given by Batyrev–Nill
(2007).

• A complete characterization of lattice
::::::::
simplices of degree 2

which are not lattice pyramids was given by H.–Hofscheier
(2016+).
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2. Correspondence between lattice
simplices and finite abelian groups¶ ³

We will review the correspondence between unimodular
equvalence classes of lattice simplices and finite abelian
groups.µ ´

∆ ⊂ Rd : lattice simplex of dimension d

v0,v1, . . . ,vd ∈ Zd : vertices of ∆

Λ∆ =

{
(x0, x1, . . . , xd) ∈ (R/Z)d+1 :

d∑
i=0

xivi ∈ Zd and
d∑

i=0

xi ∈ Z

}
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Example

(2,0)

(0,2)

△

(0,0)
v

v

v0 1

2

Λ∆ =
{0, (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)} =
〈(1/2, 1/2, 0), (1/2, 0, 1/2)〉 ∼=
(Z/2Z)2

Λ∆ forms a finite abelian group.

In this way, from a lattice simplex ∆, we can construct a finite
abelian subgroup Λ∆ of (R/Z)d+1.

12



FACTS
(the volume of ∆)·d! = (the order of Λ∆)

deg(∆) = max
{∑d

i=0 xi ∈ Z≥0 : (x0, . . . , xd) ∈ Λ∆, 0 ≤ xi < 1
}

∆ is NOT a lattice pyramid ⇐⇒ 0 ≤ ∀i ≤ d, ∃x ∈ Λ∆ s.t. xi 6= 0

On the other hand, from a finite abelian subgroup
Λ ⊂ (R/Z)d+1 s.t.

the sum of entries of each element in Λ is an
integer. · · · · · · (∗)

we can construct a lattice simplex of dim d.
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Correspondence (Batyrev–Hofscheier ’13)¶ ³
{lattice simplices of dim d}/(unimod. equiv.)

1:1←→
{fin. abel. subgroups Λ ⊂ (R/Z)d+1 with (∗)}/

(permute of coord.)µ ´
Remark

d + 1 (dimension of ∆) ←→ Λ∆ ⊂ (R/Z)d+1

s (degree of ∆) ←→ maximum of entry sums of Λ∆

NOT a lattice pyramid ←→ 0 ≤ ∀i ≤ d, ∃x ∈ Λ∆ s.t. xi 6= 0
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3. The case d + 1 = 4s − 1

Recall For a lattice simplex ∆ of dim d with deg s, we have

d + 1 ≤ f(2s) ≤ 4s − 1.

Our Goal¶ ³
Give a complete characterization of lattice simplices of
dimension d with degree s satisfying

:::::::::::::::
d + 1 = f(2s).µ ´

First, we consider the case d + 1 = 4s − 1, which automatically
implies d + 1 = f(2s).
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Binary Simplex Codes

C ⊂ (Z/2Z)d+1 : binary simplex code

⇐⇒ Binary simplex code is a binary code generated by the row
vectors of the matrix H(d + 1)

{column vectors of H(d + 1)} = {T (a1, . . . , ad+1) 6= 0 : ai ∈ {0, 1}}

Example

H(2) =

1 1 0

1 0 1

 H(3) =


1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1


binary simplex code ⇐⇒ a dual code of Hamming code
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We can identify a binary code C ⊂ Fd+1
2 as a finite abelian

subgroup Λ ⊂ {0, 1/2}d+1. We may replace

0 ∈ F2 ←→ 0 ∈ {0, 1/2} ⊂ R/Z and 1 ∈ F2 ←→ 1/2 ∈ {0, 1/2} ⊂ R/Z.

Example

(2,0)

(0,2)

△

(0,0)
v

v

v0 1

2 Λ∆ = 〈(1/2, 1/2, 0), (1/2, 0, 1/2)〉
comes from H(2).

By Batyrev–Nill (2007), we know that this triangle is a unique
lattice simplex of dim 2 with deg 1 s.t. d + 1 = 4s − 1.
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Theorem (H. ’16)

∆ : lattice simplex of dim d with deg s satisfying d + 1 = 4s − 1

Then s = 2r for some r ∈ Z≥0 and

Λ∆ comes from binary simplex codes.

Proposition (H. ’16) r ∈ Z≥0

∆(r) : lattice simplex of dim d with deg s = 2r s.t. d + 1 = 4s − 1

Then C(∆(r)) =
4s − 1

3
=

d + 1

3
.¶ ³

We can see that ∆(r) becomes a counterexample for Strong
Cayley Conjecture if r ≥ 1.µ ´
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The following looks strange and unnatural...

Question (Modified Strong Cayley Conjecture?)¶ ³
Let P be a lattice polytope of dimension d with degree s.

d >
8s − 2

3
=⇒ C(P ) ≥ d + 1 − 8s − 2

3
?µ ´

∆(r) satisfies this conjecture for any r ≥ 0.

Remark ∆(r) is the “most extremal” among the simplices ∆
of dim d with deg s s.t. d + 1 = f(2s).

−→ MSSC is always true for any simplices?
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4. The case d + 1 = f(2s) (j.w.w. K. Kashiwabara)

Recall For a lattice simplex ∆ of dim d with deg s, we have
d + 1 ≤ f(2s) ≤ 4s − 1.

We want to give a complete characterization of lattice simplices of
dim d with deg s satisfying d + 1 = f(2s) and compute C(∆)
(for checking MSCC).

By the way . . . . . . what is f(m) =
∞∑

`=0

⌊m

2`

⌋
??

Example

f(2) = 2 + 1, f(3) = 3 + 1 = 4,

f(4) = 4 + 2 + 1, f(5) = 5 + 2 + 1, f(6) = 6 + 3 + 1, f(7) = 7 + 3 + 1,

f(8) = 8 + 4 + 2 + 1, f(9) = 9 + 4 + 2 + 1 . . . . . .
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Proposition

f(m) = 2m − (] of 1’s for the binary expansion of m)

In particular, f(m) = 2m − 1 if and only if m is a power of 2.

Theorem (again) (H. ’16)

∆ : lattice simplex of dim d with deg s satisfying d + 1 = 4s − 1

Then
::::::
s = 2r for some r ∈ Z≥0 (obvious from above Prop) and Λ∆

comes from binary simplex codes.

In particular, Λ∆ ⊂ {0, 1/2}d+1.

Theorem Let ∆ be a lattice simplex ∆ of dim d with deg s

s.t. d + 1 = f(2s).

=⇒ Λ∆ ⊂ {0, 1/2}d+1
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Proposition (H.-Kashiwabara) Let ∆ be a lattice simplex of

dim d with deg s s.t. d + 1 = f(2s). Let 2s = 2r1 + · · · + 2rp be the

binary expansion of m, where r1 > · · · > rp ≥ 1. Then

r1 + 1 ≤ (] of generators of Λ∆) ≤
p∑

i=1

ri + p.

Theorem (H.-Kashiwabara) For s ∈ Z≥0, let

p = (] of “1” in the binary expansiont of 2s)

Let ∆ be a lattice simplex of dim d with deg s s.t. d + 1 = f(2s).
Assume Λ∆ is generated by (blog2 sc + 2) elements.

Then Λ∆ is uniquely determined ⇐⇒ p = 1 or 2.
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Theorem (H.-Kashiwabara) Let 2s = 2r + 2r′
for some

r > r′ ≥ 1. Let ∆ be a lattice simplex of dim d with deg s s.t.
d + 1 = f(2s) = 4s − 2. Assume Λ∆ is generated by (r + 1)
elements.

Then Λ∆ comes from the binary code generated by the row vectors
of the (r + 1) × (4s − 2) matrix (H(r + 1) H(r′ + 1)).

Example (H(3) H(2)) =


1 1 1 0 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1

1 0 1 1 0 0 1 0 0 0


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Theorem For any s ≥ 2, there exists a lattice simplex ∆ of
dim d with deg s s.t. d + 1 = f(2s) satisfying C(∆) < d + 1 − 2s,
i.e., ∃ counterexamples of original SCC for ∀s ≥ 2.

Theorem Let ∆ br a lattice simplex of dim d with deg s s.t.
d + 1 = f(2s). Then ∆ always satisfies modified SCC.
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Future Work (in progress)

• Prove Modified Strong Cayley Conjecture for all
lattice simplices. −→ all lattice polytopes?

• Characterize when a lattice polytope satisfies original SCC?
(some classes of (0, 1)-polytopes)
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Danke schön.

ありがとうございます。
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