Lattice simplices of maximal dimension with a given degree

Akihiro Higashitani (Kyoto Sangyo University)

Einstein Workshop on Lattice Polytopes at Berlin

12-16 Dec. 2016

Contents

- 1. Introduction to Cayley Conjecture and Nill's bound
- 2. Correspondence between lattice simplices and **finite abelian groups** (Johannes' talk)
- 3. The case d + 1 = 4s 1 and Cayley Conjecture
- 4. The case d + 1 = f(2s) and Cayley Conjecture

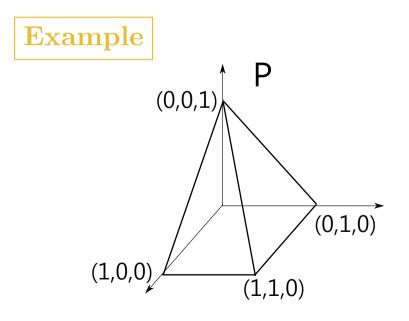
(j.w.w. K. Kashiwabara)

1.1. Introduction to Cayley Conjecture

Let $P \subset \mathbb{R}^d$ be a **lattice polytope**, i.e., P is a convex polytope whose vertices are the points in \mathbb{Z}^d .

 P° : the interior of $P \quad \dim P = d$

- $\operatorname{codeg}(P) := \min\{k : kP^\circ \cap \mathbb{Z}^d \neq \emptyset\}$
- $\deg(P) := d + 1 \operatorname{codeg}(P)$



$$codeg(P) = 3$$
$$deg(P) = 3 + 1 - 3 = 1$$

Why do we say $\deg(P)$ degree of P?

Remark For a lattice polytope $P \subset \mathbb{R}^d$, we consider the **Ehrhart series** $\sum_{n\geq 0} |nP \cap \mathbb{Z}^d| t^n$. Then this becomes a rational function of the form

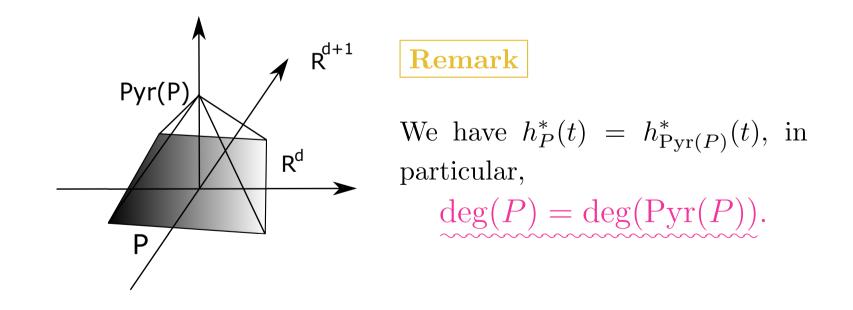
$$\sum_{n \ge 0} |nP \cap \mathbb{Z}^d| t^n = \frac{h_P^*(t)}{(1-t)^{d+1}},$$

where $h_P^*(t)$ is a polynomial in t. We say that $h_P^*(t)$ is the h^* -polynomial of P.

(the degree of $h^*(t)$) = deg(P).

For a lattice polytope $P \subset \mathbb{R}^d$, a **lattice pyramid** over P is defined by

 $\operatorname{Pyr}(P) := \operatorname{conv}(\{(\alpha, 0) \in \mathbb{R}^{d+1} : \alpha \in P\} \cup \{(0, \dots, 0, 1)\}) \subset \mathbb{R}^{d+1}.$ Then dim(Pyr(P)) = dim P + 1. In particular, those are not unimod. equiv., however...



Motivation

We want to know Cayley structure of lattice polytopes.

Cayley Polytope

• $P_0, P_1, \ldots, P_\ell \subset \mathbb{R}^d$: lattice polytopes

 $P_0 * P_1 * \cdots * P_{\ell} := \operatorname{conv}((P_0 \times \mathbf{0}) \cup (P_1 \times \mathbf{e}_1) \cup \cdots \cup (P_{\ell} \times \mathbf{e}_{\ell})) \subset \mathbb{R}^{d+\ell}$

We say $P_0 * \cdots * P_\ell$ is a **Cayley polytope**.

• For a lattice polytope $P \subset \mathbb{R}^{d+\ell}$, when there exist $P_0, P_1, \ldots, P_\ell \subset \mathbb{R}^d$ s.t. $P \cong P_0 * \cdots * P_\ell$, we say $P_0 * \cdots * P_\ell$ is a **Cayley decomposition** of P.

• For a lattice polytope P, let

 $C(P) := \max(\{\ell+1 : \exists P_0, \dots, \exists P_\ell \text{ s.t.} P \cong P_0 \ast \cdots \ast P_\ell\}).$

(Strong) Cayley Conjecture (Dickenstein-Nill '12) Let P be a lattice polytope of dimension d with degree s. $d > 2s \Longrightarrow C(P) \ge d + 1 - 2s.$

(Weak) Cayley Conjecture

Let P be a lattice polytope of dimension d with degree s.

 $d > 2s \Longrightarrow C(P) \ge 2,$

namely, P can be just decomposed into at least two polytopes.

Strong Cayley conjecture is true if

- P : smooth (Dickenstein–Nill '10)
- P : Gorenstein (DiRocco–Haase–Nill–Paffenholz '13)
- some class of (0, 1)-polytopes? (work in progress)

Theorem (Haase–Nill–Payne '09)

Let P be a lattice polytope of dimension d with degree s.

$$d > (s^2 + 19s - 4)/2 \Longrightarrow C(P) \ge d + 1 - (s^2 + 19s - 4)/2$$

Remark

∃ **counterexample** (appear later) for **strong** Cayley Conjecture The existence of counterexample for **weak** Cayley Conjecture might be still open.

 \longrightarrow I want to know C(P) in order to give its "sharp" bound. I expect the bound of C(P) can be given like d + 1 - (linear of s).

1.2. (modified) Nill's bound

On the other hand, the following theorem is known:

For
$$m \in \mathbb{Z}_{>0}$$
, let $f(m) = \sum_{\ell=0}^{\infty} \left\lfloor \frac{m}{2^{\ell}} \right\rfloor$.

Theorem (Nill 2008, H. 2016)

P: lattice **simplex** of dimension d with degree s

P is **NOT** a lattice pyramid $\Longrightarrow d+1 \le f(2s) \le 4s-1$

Moreover, f(2s) is sharp but f(2s) < 4s - 1 in general. (Explain later more precisely.)

Thus, it is natural to study the following problem:

Problem

Give a complete characterization of lattice simplices of dimension d with degree s satisfying d + 1 = f(2s).

Remark

- A complete characterization of lattice polytopes of degree 1 which are not lattice pyramids was given by Batyrev–Nill (2007).
- A complete characterization of lattice simplices of degree 2 which are not lattice pyramids was given by H.–Hofscheier (2016+).

2. Correspondence between lattice simplices and finite abelian groups

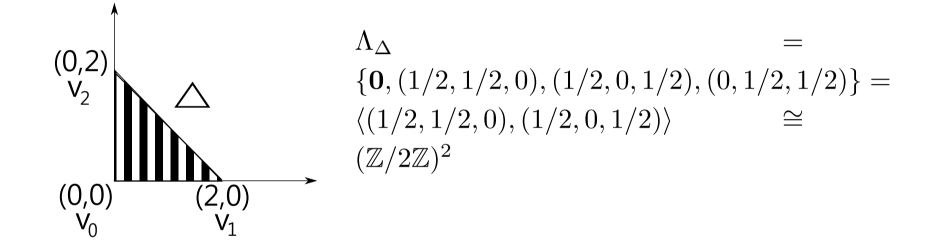
We will review the correspondence between **unimodular** equvalence classes of lattice simplices and finite abelian groups.

 $\Delta \subset \mathbb{R}^d$: lattice simplex of dimension d

 $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_d \in \mathbb{Z}^d$: vertices of Δ

$$\Lambda_{\Delta} = \left\{ (x_0, x_1, \dots, x_d) \in (\mathbb{R}/\mathbb{Z})^{d+1} : \sum_{i=0}^d x_i \mathbf{v}_i \in \mathbb{Z}^d \text{ and } \sum_{i=0}^d x_i \in \mathbb{Z} \right\}$$

Example



 Λ_{Δ} forms a finite abelian group.

In this way, from a lattice simplex Δ , we can construct a finite abelian subgroup Λ_{Δ} of $(\mathbb{R}/\mathbb{Z})^{d+1}$.

FACTS
(the volume of
$$\Delta$$
)· d ! = (the order of Λ_{Δ})
 $\deg(\Delta) = \max\left\{\sum_{i=0}^{d} x_i \in \mathbb{Z}_{\geq 0} : (x_0, \dots, x_d) \in \Lambda_{\Delta}, 0 \leq x_i < 1\right\}$
 Δ is NOT a lattice pyramid $\iff 0 \leq \forall i \leq d, \exists \mathbf{x} \in \Lambda_{\Delta} \text{ s.t. } x_i \neq 0$

On the other hand, from a finite abelian subgroup $\Lambda \subset (\mathbb{R}/\mathbb{Z})^{d+1}$ s.t.

the sum of entries of each element in Λ is an integer. $\cdots\cdots (*)$

we can construct a lattice simplex of dim d.

$$\begin{array}{c} \hline & \textbf{Correspondence} \text{ (Batyrev-Hofscheier '13)} \\ & \{ \textbf{lattice simplices of dim } d \} / (\textbf{unimod. equiv.}) \\ & \stackrel{1:1}{\leftarrow} \\ & \{ \textbf{fin. abel. subgroups } \Lambda \subset (\mathbb{R}/\mathbb{Z})^{d+1} \textbf{ with } (*) \} / \\ & (\textbf{permute of coord.}) \end{array}$$

Remark

- d+1 (dimension of Δ) $\longleftrightarrow \Lambda_{\Delta} \subset (\mathbb{R}/\mathbb{Z})^{d+1}$
- $s \text{ (degree of } \Delta) \longleftrightarrow \mathbf{maximum of entry sums} \text{ of } \Lambda_{\Delta}$

NOT a lattice pyramid $\longleftrightarrow 0 \leq \forall i \leq d, \exists \mathbf{x} \in \Lambda_{\Delta} \text{ s.t. } x_i \neq 0$

3. The case d + 1 = 4s - 1

For a lattice simplex Δ of dim d with deg s, we have $d+1 \leq f(2s) \leq 4s-1.$

Our Goal

Give a complete characterization of lattice simplices of dimension d with degree s satisfying d + 1 = f(2s).

First, we consider the case d + 1 = 4s - 1, which automatically implies d + 1 = f(2s).

Binary Simplex Codes

$C \subset (\mathbb{Z}/2\mathbb{Z})^{d+1}$: binary simplex code

 \iff Binary simplex code is a binary code generated by the row vectors of the matrix H(d+1)

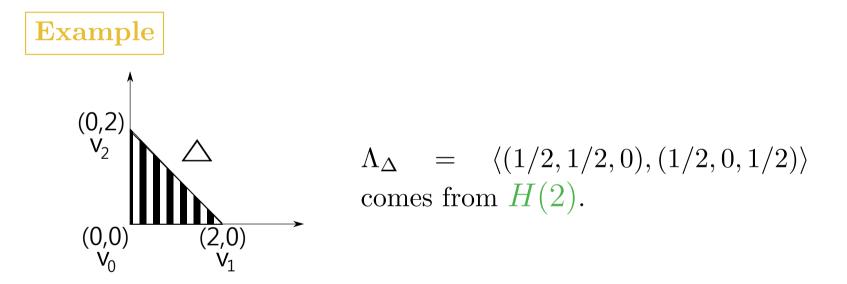
{column vectors of H(d+1)} = {^T($a_1, ..., a_{d+1}$) $\neq 0 : a_i \in \{0, 1\}$ }

Example

$$H(2) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad H(3) = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

binary simplex code \iff a dual code of Hamming code

We can identify a binary code $C \subset \mathbb{F}_2^{d+1}$ as a finite abelian subgroup $\Lambda \subset \{0, 1/2\}^{d+1}$. We may replace $0 \in \mathbb{F}_2 \longleftrightarrow 0 \in \{0, 1/2\} \subset \mathbb{R}/\mathbb{Z}$ and $1 \in \mathbb{F}_2 \longleftrightarrow 1/2 \in \{0, 1/2\} \subset \mathbb{R}/\mathbb{Z}$.



By Batyrev–Nill (2007), we know that this triangle is a **unique** lattice simplex of dim 2 with deg 1 s.t. d + 1 = 4s - 1.

Theorem (H. '16)

 Δ : lattice simplex of dim d with deg s satisfying d + 1 = 4s - 1Then $s = 2^r$ for some $r \in \mathbb{Z}_{\geq 0}$ and Λ_{Δ} comes from **binary simplex codes**.

Proposition (H. '16) $r \in \mathbb{Z}_{\geq 0}$ $\Delta(r)$: lattice simplex of dim d with deg $s = 2^r$ s.t. d + 1 = 4s - 1Then $C(\Delta(r)) = \frac{4s - 1}{3} = \frac{d + 1}{3}$.

We can see that $\Delta(r)$ becomes a counterexample for **Strong** Cayley Conjecture if $r \ge 1$. The following looks strange and unnatural...

Question (Modified Strong Cayley Conjecture?) Let P be a lattice polytope of dimension d with degree s. $d > \frac{8s-2}{3} \Longrightarrow C(P) \ge d+1 - \frac{8s-2}{3}?$

 $\Delta(r)$ satisfies this conjecture for any $r \ge 0$.

Remark $\Delta(r)$ is the "most extremal" among the simplices Δ of dim d with deg s s.t. d + 1 = f(2s).

 \longrightarrow MSSC is always true for any simplices?

4. The case d + 1 = f(2s) (j.w.w. K. Kashiwabara)

Recall For a lattice simplex Δ of dim d with deg s, we have $d+1 \leq f(2s) \leq 4s-1$.

We want to give a complete characterization of lattice simplices of dim d with deg s satisfying d + 1 = f(2s) and compute $C(\Delta)$ (for checking MSCC).

By the way what is
$$f(m) = \sum_{\ell=0}^{\infty} \left\lfloor \frac{m}{2^{\ell}} \right\rfloor$$
 ??

Example

$$f(2) = 2 + 1, \quad f(3) = 3 + 1 = 4,$$

$$f(4) = 4 + 2 + 1, \quad f(5) = 5 + 2 + 1, \quad f(6) = 6 + 3 + 1, \quad f(7) = 7 + 3 + 1,$$

$$f(8) = 8 + 4 + 2 + 1, \quad f(9) = 9 + 4 + 2 + 1 \dots$$

Proposition

 $f(m) = 2m - (\sharp \text{ of 1's for the binary expansion of } m)$ In particular, f(m) = 2m - 1 if and only if m is a **power of** 2.

Theorem (again) (H. '16)

 Δ : lattice simplex of dim d with deg s satisfying d + 1 = 4s - 1Then $\underline{s} = 2^r$ for some $r \in \mathbb{Z}_{\geq 0}$ (obvious from above Prop) and Λ_{Δ} comes from **binary simplex codes**.

In particular, $\Lambda_{\Delta} \subset \{0, 1/2\}^{d+1}$.

Theorem Let Δ be a lattice simplex Δ of dim d with deg s s.t. d+1 = f(2s). $\implies \Lambda_{\Delta} \subset \{0, 1/2\}^{d+1}$ **Proposition** (H.-Kashiwabara) Let Δ be a lattice simplex of dim d with deg s s.t. d + 1 = f(2s). Let $2s = 2^{r_1} + \cdots + 2^{r_p}$ be the binary expansion of m, where $r_1 > \cdots > r_p \ge 1$. Then

$$r_1 + 1 \le (\sharp \text{ of generators of } \Lambda_{\Delta}) \le \sum_{i=1}^p r_i + p.$$

Theorem (H.-Kashiwabara) For $s \in \mathbb{Z}_{\geq 0}$, let $p = (\sharp \text{ of "1" in the binary expansiont of } 2s)$

Let Δ be a lattice simplex of dim d with deg s s.t. d + 1 = f(2s). Assume Λ_{Δ} is generated by $(\lfloor \log_2 s \rfloor + 2)$ elements.

Then Λ_{Δ} is **uniquely determined** $\iff p = 1$ or 2.

Theorem (H.-Kashiwabara) Let $2s = 2^r + 2^{r'}$ for some $r > r' \ge 1$. Let Δ be a lattice simplex of dim d with deg s s.t. d + 1 = f(2s) = 4s - 2. Assume Λ_{Δ} is generated by (r + 1) elements.

Then Λ_{Δ} comes from the binary code generated by the row vectors of the $(r+1) \times (4s-2)$ matrix (H(r+1) H(r'+1)).

Example
$$(H(3) H(2)) = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Theorem For any $s \ge 2$, there exists a lattice simplex Δ of dim d with deg s s.t. d + 1 = f(2s) satisfying $C(\Delta) < d + 1 - 2s$, i.e., \exists counterexamples of **original SCC** for $\forall s \ge 2$.

Theorem Let Δ br a lattice simplex of dim d with deg s s.t. d+1=f(2s). Then Δ always satisfies **modified SCC**.

Future Work (in progress)

- Prove Modified Strong Cayley Conjecture for all lattice simplices. \longrightarrow all lattice polytopes?
- Characterize when a lattice polytope satisfies **original SCC**? (some classes of (0, 1)-polytopes)

Danke schön. ありがとうございます。