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Johann Radon & Helge Tverberg:

PARTITIONING SETS OF POINTS FOR CONVEX HULLS TO
INTERSECT.



Theorem (J. Radon 1920, H. Tverberg, 1966)

Let X = {a1, . . . , an} be points in Rd . If the number of points
satisfies n > (d + 1)(m − 1), then they can be partitioned into m
disjoint parts A1, . . . ,Am in such a way that the m convex hulls
convA1, . . . , convAm have a point in common.

Remark This constant is best possible.



The Z-Tverberg numbers

Definition
The Z-Tverberg number TZd (m) is the smallest positive integer
such that every set of TZd (m) distinct integer lattice points, has a
partition of the set into m sets A1,A2, . . . ,Am such that the
intersection of their convex hulls contains at least one point of Zd .

I Theorem ( Eckhoff/ Jamison/Doignon 2000) The integer
m-Tverberg number satisfies

2d(m − 1) < TZd (m) ≤ (m − 1)(d + 1)2d − d − 2,

I for the plane with m = 3 is TZ2(3) = 9.

I Compare to the Tverberg over the real numbers which is 7.
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Integer Radon numbers
Special case m = 2: an integer Radon partition is a bipartition
(S ,T ) of a set of integer points such that the convex hulls of S
and T have at least one integer point in common.

Question: How many points does one need to guarantee the
existence of an integer Radon Partition? e.g., what is the value
of TZd (2)?

I Theorem ( S. Onn 1991) The integer Radon number satisfies

5 · 2d−2 + 1 ≤ TZd (2) ≤ d(2d − 1) + 3.

I for d = 2 is TZd (2) = 6.
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S-Tverberg numbers

Definition
Given a set S ⊂ Rd , the S m-Tverberg number TS(m) (if it exists)
is the smallest positive integer such that among any TS(m)
distinct points in S ⊆ Rd , there is a partition of them into m sets
A1,A2, . . . ,Am such that the intersection of their convex hulls
contains some point of S .

NOTE: Original Tverberg numbers are for S = Rd .

NOTE: When S is discrete we can also speak of a quantitative S-
Tverberg numbers.
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The quantitative Z-Tverberg number

Definition
The quantitative Z-Tverberg number TZ(m, k) is the smallest
positive integer such that any set with TZ(m, k) distinct points in
Zd ⊆ Rd , can be partitioned m subsets A1,A2, . . . ,Am where the
intersection of their convex hulls contains at least k points of Zd .



Interesting Examples of S ⊂ Rd

I A natural (non-discrete) is S = Rp × Zq.

I Let L be a lattice in Rd and L1, . . . , Lp sublattices of L. Set
S = L \ (L1 ∪ · · · ∪ Lp).

I Let S = Primes × Primes
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OUR RESULTS



Improved Z-Tverberg numbers

Corollary (DL, La Haye, Rolnick, Soberón, 2015)

The following bound on the Tverberg number exist:

TZd (m) ≤ (m − 1)d2d + 1.



Discrete quantitative Z-Tverberg

Corollary (DL, La Haye, Rolnick, Soberón, 2015)

Let c(d , k) = d2(k + 1)/3e2d − 2d2(k + 1)/3e+ 2.

The quantitative Z-Tverberg number TZ(m, k) over the integer
lattice Zd is bounded by

TZd (m, k) ≤ c(d , k)(m − 1)kd + k .



S-Tverberg number for interesting families

Corollary

The following Tverberg numbers TS(m) exist and are bounded as
follows:

1. When S = Zd−a × Ra, we have
TS(m) ≤ (m − 1)d(2d−a(a + 1)) + 1.

2. Let L be a lattice in Rd of rank r and let L1, . . . , Lp be p
sublattices of L. Call S = L \ (L1 ∪ · · · ∪ Lp) the difference of
lattices. The quantitative Tverberg number satisfies

TS(m, k) ≤
(
2p+1k + 1

)r
(m − 1)kd + k .

EXAMPLE Let L′, L′′ be sublattices of a lattice L ⊂ Rd , then, if
S = L \ (L′ ∪ L′′), the Tverberg number satisfies
TS(m) ≤ 6(m − 1)d2d + 1.
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KEY IDEAS



HELLY’s THEOREM (1914)

Given a finite family H of convex sets in Rd . If every d+1 of its
elements have a common intersection point, then all elements in H
has a non-empty intersection.

For S ⊆ Rd let KS = {S ∩ K : K ⊆ Rd is convex}. The S-Helly
number h(S) is the smallest natural number satisfying

∀i1, . . . , ih(S) ∈ [m] : Fi1 ∩ · · · ∩ Fih(S) 6= ∅ =⇒ F1 ∩ · · · ∩ Fm 6= ∅
(1)

for all m ∈ N and F1, . . . ,Fm ∈ KS . Else h(S) :=∞.
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Integer Helly theorem

Jean-Paul Doignon (1973)

DOIGNON’S theorem
Given a finite collection D of convex sets in Rd , the sets in D have
a common point with integer coordinates if every 2d of its
elements do.



Mixed Integer version of Helly’s theorem

Hoffman (1979) Averkov & Weismantel (2012)

Theorem
Given a finite collection D of convex sets in Zd−k × Rk , if every
2d−k(k + 1) of its elements contain a mixed integer point in the
intersection, then all the sets in D have a common point with
mixed integer coordinates.



CENTRAL POINT THEOREMS

I There exist a point p in such that no matter which line one
traces passing through p leaves at least 1

3 of the area of the
body in each side!



S-Helly numbers

Lemma (Hoffman (1979), Averkov & Weismantel)

Assume S ⊂ Rd is discrete, then the Helly number of S, h(S), is
equal to the following two numbers:

1. The supremum f (S) of the number of facets of an
S-facet-polytope.

2. The supremum g(S) of the number of vertices of an
S-vertex-polytope.

NOTE With Deborah Oliveros, Edgardo Roldán-Pensado we
obtained several S-Helly numbers.



MAIN THEOREM

S-Tverberg number must exists when the
S-Helly number exists!!

Theorem
Suppose that S ⊆ Rd is such that h(S) exists. (In particular, S
need not be discrete.) Then, the S-Tverberg number exists too
and satisfies

TS(m) ≤ (m − 1)d · h(S) + 1.
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Sketch of proof of S-Tverberg
I An central point theorem for S : Let A ⊆ S be a set with at

least (m− 1)dh(S) + 1 points. Then there exist a point p ∈ S
such that every closed halfspace p ∈ H+ satisfies
|H+ ∪ S | ≥ (m − 1)d + 1.

I Consider the family of convex sets

F = {F |F ⊂ A, |F | = (m − 1)d(h(S)− 1) + 1} .

I For any G subfamily of F with cardinality h(S) the number of
points in A \ F for any F ∈ F is

(m − 1)dh(S) + 1− (m − 1)d(h(S)− 1)− 1 = (m − 1)d .

The number of points in A \
⋃
G is at most (m − 1)dh(S).

I Since this is less than |A|,
⋂
G must contain an element of S .

By the definition of h(S),
⋂
F contains a point p in S .

I This is the desired p. Otherwise, there would be at least
(m − 1)d(h(S)− 1) + 1 in its complement.

I That would contradict the fact that every set in F contains p.



I Claim We can find m disjoint (simplicial) subsets
A1,A2, . . . ,Am of A that contain p.

I Suppose we have constructed A1,A2, . . . ,Aj for some j < m,
and each of them is a simplex that contains p in its relative
interior.

I If the convex hull of Sj = S \ (A1 ∪ · · · ∪ Aj) contains p, then
we can find a simplex Aj+1 that contains p in its relative
interior. Otherwise, there is a hyperplane H that contains p
that leaves Sj in one of its open half-spaces.

I Then H+ ∩ Sj = ∅. However, since |H+ ∩ Ai | ≤ d ,

(m−1)d ≥ jd ≥ |H+∩A1|+· · ·+|H+∩Aj | = |H+∩S | ≥ (m−1)d+1,

a contradiction.



QUANTITATIVE CONVEXITY



Circa October 2014....we began working on



A Quantitative Integer-Helly theorem

Theorem (Iskander Aliev, JDL, Quentin Louveaux, 2013)

I For d, k non-negative integers, there exists a constant
c(d , k), determined by k and dimension d, such that

For any finite family (Xi )i∈Λ of convex sets in Rd , if

|
⋂
i∈Λ

Xi ∩ Zd | = k,

then there is a subfamily, of size no more than c(d , k), with
exactly the same integer points in its intersection.

I For d, k non-negative integers

c(d , k) ≤ d2(k + 1)/3e2d − 2d2(k + 1)/3e+ 2



Discrete quantitative S-Tverberg

Given S ⊂ Rd , let hS(k) be the smallest integer t such that
whenever finitely many convex sets have exactly k common points
in S, there exist at most t of these sets that already have exactly k
common points in S .

Theorem
Let S ⊆ Rd be discrete set with finite quantitative Helly number
hS(k). Let m, k be integers with m, k ≥ 1. Then, we have

TS(m, k) ≤ hS(k)(m − 1)kd + k .



Quantitative S-Helly numbers
We generalized Hoffman’s theorem to provide a way to bound the
quantitative S-Helly

Definition
A set P ⊂ S is k-hollow with respect to S if∣∣(conv(P) \ V (conv(P))) ∩ S

∣∣ < k ,

where V (K ) is the vertex set of K .

Lemma
Let S ⊂ Rd be a discrete set. The quantitative S Helly number is
bounded above by the cardinality of the largest k-hollow set with
respect to S.

Lemma
Let L be a lattice in Rd of rank r and let L1, . . . , Lp be p
sublattices of L. Call S = L \ (L1 ∪ · · · ∪ Lp) the difference of
lattices. The quantitative S-Helly number hS(k) exists and is
bounded above by

(
2p+1k + 1

)r
.



Improvements

I Chestnut et al. 2015 improved our theorem, for fixed d , to
c(d , k) = O(k(loglogk)(logk)−1/3 ) and gave lower bound
c(d , k) = Ω(k(n−1)/(n+1))

I Averkov et al. 2016 gave have a different new combinatorial
description of HS(k) in terms of polytopes with vertices in S .
Consequences:

I They strengthen our bound of c(d , k) by a constant factor
I For fix d showed that c(d , k) = Θ(k(d−1)/(d+1)) holds.
I Determined the exact values of c(d , k) for all k ≤ 4.



Upcoming work

Theorem (DL, Nabil Mustafa, Frédéric Meunier)

The integer m-Tverberg number in the plane equals
TZ2(m) ≤ 4m− 3 + k, where k is the smallest non-negative integer
that makes the number of points congruent with zero modulo m,
thus for m > 3, this is the same as 4m.

Doignon (unpublished) There is point set with TZ2(m) > 4m− 4

Coming up in 2017: Integer Tverberg and stochastic
optimization!

OPEN PROBLEM: What is the exact value for 11 ≤ TZ3(2) ≤ 17
(K. Bezdek + A. Blokhuis 2003)?

OPEN PROBLEM: Find better upper bounds, lower bounds!

OPEN PROBLEM: Algorithms to find integer Tverberg partitions.

OPEN PROBLEM: Is there a Helly number for S = (PRIMES)2?



THANK YOU!
DANKE!
GRACIAS!
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