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Johann Radon & Helge Tverberg:

DT Rouee..

PARTITIONING SETS OF POINTS FOR CONVEX HULLS TO
INTERSECT.




Theorem (J. Radon 1920, H. Tverberg, 1966)

Let X = {a1,...,an} be points in RY. If the number of points
satisfies n > (d + 1)(m — 1), then they can be partitioned into m
disjoint parts A1, ...,Am in such a way that the m convex hulls
conv Ay, ...,conv Ay, have a point in common.

Remark This constant is best possible.



The Z-Tverberg numbers

Definition

The Z-Tverberg number T z4(m) is the smallest positive integer
such that every set of T,q4(m) distinct integer lattice points, has a
partition of the set into m sets Ay, Ay, ..., An such that the
intersection of their convex hulls contains at least one point of Z9.



The Z-Tverberg numbers

Definition

The Z-Tverberg number T z4(m) is the smallest positive integer
such that every set of T,q4(m) distinct integer lattice points, has a
partition of the set into m sets Ay, Ay, ..., An such that the
intersection of their convex hulls contains at least one point of Z9.

» Theorem ( Eckhoff/ Jamison/Doignon 2000) The integer
m-Tverberg number satisfies
29(m —1) < Tya(m) < (m—1)(d +1)2¢ —d — 2,

» for the plane with m = 3 is T72(3) = 9.
» Compare to the Tverberg over the real numbers which is 7.



Integer Radon numbers
Special case m = 2: an integer Radon partition is a bipartition
(S, T) of a set of integer points such that the convex hulls of S
and T have at least one integer point in common.

Question: How many points does one need to guarantee the
existence of an integer Radon Partition? e.g., what is the value
of Tzd(z)?



Integer Radon numbers
Special case m = 2: an integer Radon partition is a bipartition
(S, T) of a set of integer points such that the convex hulls of S
and T have at least one integer point in common.

Question: How many points does one need to guarantee the
existence of an integer Radon Partition? e.g., what is the value
of Tzd(z)?
» Theorem (' S. Onn 1991) The integer Radon number satisfies
5.2972 4 1 < Tpe(2) < d(29 — 1) + 3.

» for d =2 is Ty4(2) = 6.




S-Tverberg numbers

Definition

Given a set S C R, the S m-Tverberg number Ts(m) (if it exists)
is the smallest positive integer such that among any Ts(m)
distinct points in S C RY, there is a partition of them into m sets
A1,As, ..., Ay such that the intersection of their convex hulls
contains some point of S.



S-Tverberg numbers

Definition

Given a set S C R, the S m-Tverberg number Ts(m) (if it exists)
is the smallest positive integer such that among any Ts(m)
distinct points in S C RY, there is a partition of them into m sets
A1,As, ..., Ay such that the intersection of their convex hulls
contains some point of S.

NOTE: Original Tverberg numbers are for S = RY.

NOTE: When S is discrete we can also speak of a quantitative S-
Tverberg numbers.



The quantitative Z-Tverberg number

Definition

The quantitative Z-Tverberg number Tyz(m, k) is the smallest
positive integer such that any set with Tz(m, k) distinct points in
79 C RY, can be partitioned m subsets A;, A, ..., A, where the
intersection of their convex hulls contains at least k points of Z¢.



Interesting Examples of S C R¢

» A natural (non-discrete) is S = RP x Z9.

E
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» Let L be a lattice in R and L4, ..., L, sublattices of L. Set
S=L\(LU---ULp).



Interesting Examples of S C R¢

» A natural (non-discrete) is S = RP x Z9.

E

» Let L be a lattice in R and L4, ..., L, sublattices of L. Set
S=L\(LU---ULp).

oooooooooooooo

» Let S = Primes X Primes




OUR RESULTS



Improved Z-Tverberg numbers

Corollary (DL, La Haye, Rolnick, Soberén, 2015)

The following bound on the Tverberg number exist:

Tya(m) < (m—1)d2? + 1.



Discrete quantitative Z-Tverberg

Corollary (DL, La Haye, Rolnick, Soberén, 2015)
Let c(d, k) = [2(k +1)/3]2¢9 — 2[2(k +1)/3] + 2.

The quantitative Z- Tverberg number Tz(m, k) over the integer
lattice Z9 is bounded by

Tya(m, k) < c(d, k)(m — 1)kd + k.



S-Tverberg number for interesting families

Corollary
The following Tverberg numbers Ts(m) exist and are bounded as
follows:

1. When S =792 x R?, we have
Ts(m) < (m—1)d(2972(a+ 1)) + 1.



S-Tverberg number for interesting families

Corollary
The following Tverberg numbers Ts(m) exist and are bounded as

follows:
1. When S = 7972 x R?, we have
Ts(m) < (m—1)d(2972(a+ 1)) + 1.
2. Let L be a lattice in RY of rank r and let Ly, ..., L, be p

sublattices of L. Call S = L\ (LyU---U L) the difference of
lattices. The quantitative Tverberg number satisfies

Ts(m, k) < (2P71k +1)" (m — 1)kd + k.



S-Tverberg number for interesting families

Corollary
The following Tverberg numbers Ts(m) exist and are bounded as

follows:
1. When S = 7972 x R?, we have
Ts(m) < (m—1)d(2972(a+ 1)) + 1.
2. Let L be a lattice in RY of rank r and let Ly, ..., L, be p

sublattices of L. Call S = L\ (LyU---U L) the difference of
lattices. The quantitative Tverberg number satisfies

Ts(m, k) < (2P71k +1)" (m — 1)kd + k.
EXAMPLE Let L', " be sublattices of a lattice L C RY, then, if

S=1L\(LUL"), the Tverberg number satisfies
Ts(m) < 6(m —1)d29 + 1.



KEY IDEAS



HELLY's THEOREM (1914)

Given a finite family H of convex sets in RY. If every d+1 of its
elements have a common intersection point, then all elements in H
has a non-empty intersection.

0 an




HELLY's THEOREM (1914)
Given a finite family H of convex sets in RY. If every d+1 of its
elements have a common intersection point, then all elements in H
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For SCRY let Ks = {SNK: K CR?is convex}. The S-Helly
number h(S) is the smallest natural number satisfying

Vil,...,ih(s)e[m]:F,-lﬂ---ﬂF,-h(s);é(Z) - Flﬂ---ﬂFm;é(Z)
(1)

forall me Nand Fi,...,Fy, € Ks. Else h(S) := 0.



Integer Helly theorem

Jean-Paul Doignon (1973)

DOIGNON'S theorem

Given a finite collection D of convex sets in R9, the sets in D have
a common point with integer coordinates if every 29 of its
elements do.



Mixed Integer version of Helly's theorem

Hoffman (1979) Averkov & Weismantel (2012)

Theorem

Given a finite collection D of convex sets in Z9~% x R¥, if every
29=K(k + 1) of its elements contain a mixed integer point in the
intersection, then all the sets in D have a common point with
mixed integer coordinates.



CENTRAL POINT THEOREMS

> There exist a point p in such that no matter which line one
traces passing through p leaves at least % of the area of the
body in each side!



S-Helly numbers

Lemma (Hoffman (1979), Averkov & Weismantel)
Assume S C R is discrete, then the Helly number of S, h(S), is
equal to the following two numbers:
1. The supremum f(S) of the number of facets of an
S-facet-polytope.
2. The supremum g(S) of the number of vertices of an
S-vertex-polytope.

NOTE With Deborah Oliveros, Edgardo Roldan-Pensado we
obtained several S-Helly numbers.



MAIN THEOREM

S-Tverberg number must exists when the
S-Helly number exists!!



MAIN THEOREM

S-Tverberg number must exists when the
S-Helly number exists!!

Theorem

Suppose that S C R s such that h(S) exists. (In particular, S
need not be discrete.) Then, the S-Tverberg number exists too
and satisfies

Ts(m) < (m—1)d- h(S) + 1.



Sketch of proof of S-Tverberg

>

An central point theorem for S: Let A C S be a set with at
least (m — 1)dh(S) + 1 points. Then there exist a point p € S
such that every closed halfspace p € H™ satisfies

|[HFUS| > (m—1)d+1.

Consider the family of convex sets

F ={FIF CAI|F|=(m-1)d(h(S) - 1) +1}.

For any G subfamily of F with cardinality h(S) the number of
points in A\ F for any F € F is

(m—1)dh(S) + 1 — (m— 1)d(h(S) — 1) — 1 = (m — 1)d.

The number of points in A\ [JG is at most (m — 1)dh(S).
Since this is less than |A|, ()G must contain an element of S.
By the definition of h(S), (| F contains a point p in S.

This is the desired p. Otherwise, there would be at least
(m—1)d(h(S) — 1) + 1 in its complement.

That would contradict the fact that every set in F contains p.



Claim We can find m disjoint (simplicial) subsets

A1, Ao, ..., Ay of A that contain p.

Suppose we have constructed Ap, Ay, ..., A; for some j < m,
and each of them is a simplex that contains p in its relative
interior.

If the convex hull of S; = S\ (A1 U---UA;/) contains p, then
we can find a simplex A;;; that contains p in its relative
interior. Otherwise, there is a hyperplane H that contains p
that leaves S; in one of its open half-spaces.

Then HT N S; = 0. However, since [HT NA;| < d,

(m—1)d > jd > |HTNA1|+ - -+|HTNAj| = |[HTNS| > (m—1)d+1,

a contradiction.



QUANTITATIVE CONVEXITY



Circa October 2014....we began working on
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A Quantitative Integer-Helly theorem

Theorem (Iskander Aliev, JDL, Quentin Louveaux, 2013)

» For d, k non-negative integers, there exists a constant
c(d, k), determined by k and dimension d, such that

For any finite family (X;)icn of convex sets in RY, if

() XNz =k,
ien

then there is a subfamily, of size no more than c(d, k), with
exactly the same integer points in its intersection.

» For d, k non-negative integers

c(d, k) < [2(k +1)/3129 — 2[2(k 4+ 1)/3] + 2



Discrete quantitative S-Tverberg

Given S C RY, let hs(k) be the smallest integer t such that
whenever finitely many convex sets have exactly k common points
in S, there exist at most t of these sets that already have exactly k
common points in S.

Theorem
Let S C RY be discrete set with finite quantitative Helly number
hs(k). Let m, k be integers with m, k > 1. Then, we have

Ts(m, k) < hs(k)(m — 1)kd + k.



Quantitative S-Helly numbers
We generalized Hoffman's theorem to provide a way to bound the
quantitative S-Helly
Definition
A set P C S is k-hollow with respect to S if

|(conv(P) \ V(conv(P))) N S| < k,

where V(K) is the vertex set of K.

Lemma

Let S C RY be a discrete set. The quantitative S Helly number is
bounded above by the cardinality of the largest k-hollow set with
respect to S.

Lemma

Let L be a lattice in RY of rank r and let Ly, ..., L, be p
sublattices of L. Call S =L\ (L1 U---U L) the difference of
lattices. The quantitative S-Helly number hs(k) exists and is
bounded above by (2p+1k + 1)r.



Improvements

» Chestnut et al. 2015 improved our theorem, for fixed d, to
c(d, k) = O(k(loglogk)(logk)~/3 ) and gave lower bound
c(d, k) = Q(k(r—1/(n+1))

> Averkov et al. 2016 gave have a different new combinatorial
description of Hg(k) in terms of polytopes with vertices in S.
Consequences:

» They strengthen our bound of ¢(d, k) by a constant factor

> For fix d showed that c(d, k) = ©(k{4=1)/(d+1)) holds.
» Determined the exact values of ¢(d, k) for all k < 4.



Upcoming work

Theorem (DL, Nabil Mustafa, Frédéric Meunier)

The integer m-Tverberg number in the plane equals

Tz2(m) < 4m — 3+ k, where k is the smallest non-negative integer
that makes the number of points congruent with zero modulo m,
thus for m > 3, this is the same as 4m.

Doignon (unpublished) There is point set with Tz2(m) > 4m — 4

Coming up in 2017: Integer Tverberg and stochastic
optimization!

OPEN PROBLEM: What is the exact value for 11 < Ty3(2) < 17
(K. Bezdek + A. Blokhuis 2003)7

OPEN PROBLEM: Find better upper bounds, lower bounds!
OPEN PROBLEM: Algorithms to find integer Tverberg partitions.
OPEN PROBLEM: Is there a Helly number for S = (PRIMES)??



THANK YOU!
DANKE!
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	 Tverberg-style theorems over lattices and other discrete sets
	Key ideas for S-Tverberg theorems
	Quantitative S-Tverberg theorems

