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Lattice points of a polytope

A (convex) polytope is a bounded solution set of a finite system of
linear inequalities, or is the convex hull of a finite set of points.

An integral polytope is a polytope whose vertices are all lattice points.
i.e., points with integer coordinates.

Definition

For any polytope P ⊂ Rd and positive integer m ∈ N, the mth dilation
of P is mP = {mx : x ∈ P}. We define

i(P,m) = |mP ∩ Zd |

to be the number of lattice points in the mP.
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Example

P 3P

In this example we can see that i(P,m) = (m + 1)2
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Theorem of Ehrhart (on integral polytopes)

Figure: Eugene Ehrhart.

Theorem[Ehrhart]

Let P be a d-dimensional integral polytope. Then i(P,m) is a
polynomial in m of degree d .
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The h∗ or δ vector.

Therefore, we call i(P,m) the Ehrhart polynomial of P.

We study its
coefficients. ... however, there is another popular point of view.
The fact that i(P,m) is a polynomial with integer values at integer
points suggests other forms of expanding it.

An alternative basis

We can write:

i(P,m) = h∗0(P)

(
m + d

d

)
+ h∗1(P)

(
m + d − 1

d

)
+ · · ·+ h∗d (P)

(
m
d

)
.
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More on the the h∗ or δ vector.

The vector (h∗0 ,h
∗
1 , · · · ,h∗d ) has many good properties.

Theorem(Stanley)

For any lattice polytope P, h∗i (P) is nonnegative integer.

Additionally it has an algebraic meaning.
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Back to coefficients of Ehrhart polynomials

What is known?
1 The leading coefficient of i(P,m) is the volume vol(P) of P.
2 The second coefficient equals 1/2 of the sum of the normalized

volumes of each facet.
3 The constant term of i(P,m) is always 1.

No simple forms known for other coefficients for general polytopes.

Warning

It is NOT even true that all the coefficients are positive.

For example, for the polytope P with vertices
(0,0,0), (1,0,0), (0,1,0) and (1,1,13), its Ehrhart polynomial is

i(P,n) =
13
6

n3 + n2−1
6

n + 1.
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General philosophy.

They are related to volumes.
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Ehrhart Positivity

Main Definition.

We say an integral polytope is Ehrhart positive (or just positive for this
talk) if it has positive coefficients in its Ehrhart polynomial.

In the literature, different techniques have been used to proved
positivity.
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Example I

Polytope: Standard
simplex.

Reason: Explicit
verification.
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Standard simplex.

In the case of

∆d = {x ∈ Rd+1 : x1 + x2 + · · ·+ xd+1 = 1, xi ≥ 0},

It can be computed that its Ehrhart polynomial is(
m + d

d

)
.

(Notice how simple this h∗ vector is). More explicitly we have(
m + d

d

)
=

(m + d)(m + d − 1) · · · (m + 1)

d !

which expands positively in powers of m.
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Hypersimplices.

In the case of

∆d+1,k = conv{x ∈ {0,1}d+1 : x1 + x2 + · · ·+ xd+1 = k},

it can be computed that its Ehrhart polynomial is

d+1∑
i=0

(
d + 1

i

)(
d + 1 + mk − (m + 1)i − 1

d

)
(−1)i

Not clear if the coefficients are positive.
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Example II

Polytope: Crosspolytope

Reason: Roots have
negative real part.
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Crosspolytope.

In the case of the crosspolytope:

♦d = conv{±ei : 1 ≤ i ≤ d},

It can be computed that its Ehrhart polynomial is

d∑
k=0

2k
(

d
k

)(
m
k

)
,

which is not clear if it expands positively in powers of m.
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Crosspolytope.

However

, according to EC1, Exercise 4.61(b), every zero of the
Ehrhart polynomial has real part −1/2. Thus it is a product of factors

(n + 1/2) or (n + 1/2 + ia)(n + 1/2− ia) = n2 + n + 1/4 + a2,

where a is real, so positivity follows.

What are the roots about?

This opens more questions.
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Birkhoff Poytope
The following is the graph (Beck-DeLoera-Pfeifle-Stanley) of zeros for
the Birkhoff polytope of 8× 8 doubly stochastic matrices.
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Example III

Polytope: Zonotopes.

Reason: Formula for them.
One of the few examples in which the formula is explicit on the coefficients.
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Zonotopes.

Definition

The Minkowski sum of vectors

Z(v1, · · · , vk ) = v1 + v2 + · · ·+ vk .

The Ehrhart polynomial

i(Z(v1, · · · , vk ),m) = admd + ad−1md−1 + · · · a0m0,

has a coefficient by coefficient interpretation.
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Zonotopes.

Theorem(Stanley)

In the above expression, ai is equal to (absolute value of) the greatest
common divisor (g.c.d.) of all i × i minors of the matrix

M =

 · · ·
v1 v2 · · · vk

· · ·


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Zonotopes.

This includes the unit cube [0,1]d which has Ehrhart polynomial

i(�d ,m) = (m + 1)d .

And also the regular permutohedron

Πn =
∑

1≤i<j≤n+1

[ei ,ej ],

= conv{
(
σ(1), σ(2), · · · , σ(n + 1)

)
∈ Rn+1 : σ ∈ Sn+1}.
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Permutohedron.

Figure: A permutohedron in dimension 3.

The Ehrhart polynomial is 1 + 6m + 15m2 + 16m3.

Federico Castillo UC Davis

Ehrhart Positivity



Example IV

Polytope: Cyclic polytopes.

Reason: Higher integrality
conditions.
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Cyclic polytopes.

Consider the moment map m : R→ Rd that sends

x 7→ (x , x2, · · · , xd ).

The convex hull of any(!) n points on that curve is what is called a
cyclic polytope C(n,d).

Ehrhart Polynomial.

Fu Liu proved that under certain integrality conditions, the coefficient
of tk in the Ehrhart polynomal of P is given by the volume of the
projection that forgets the last k coordinates.
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Not a combinatorial property

Theorem (Liu)

For any polytope P there is a polytope P ′ with the same face lattice
and Ehrhart positivity.
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Plus many unknowns.

Other polytopes have been observed to be positive.
CRY (Chan-Robbins-Yuen).
Tesler matrices (Mezaros-Morales-Rhoades).
Birkhoff polytopes (Beck-DeLoera-Pfeifle-Stanley).
Matroid polytopes (De Loera - Haws- Koeppe).

Also:

Littlewood Richardson

Ronald King conjecture that the stretch littlewood richardson
coefficients ctν

tλ,tµ are polynomials in N[t ]. This polynomials are known
to be Ehrhart polynomials.
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General approach?

“Though it be madness, yet there’s
method in’t...” Hamlet, Act II.
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Method in the madness.

Coming from the theory of toric varieties, we have

Definition

A McMullen formula is a function α such that

|P ∩ Zd | =
∑
F⊆P

α(F ,P)nvol(F ).

where the sum is over all faces and α depends locally on F and P.
More precisely, it is defined on the normal cone of F in P.

McMullen proved the existence of such α in a nonconstructive and
nonunique way.
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Constructions

There are at least three different constructions
1 Pommersheim-Thomas. Need to choose a flag of subspaces.
2 Berline-Vergne. No choices, invariant under On(Z). This is what

we use.
3 Schurmann-Ring. Need to choose a fundamental cell.
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Example

Berline-Vergne

Pommersheim-Thomas

Schurmann-Ring

5
12

9
20

1
2

5
12

1
4

1
4

3
10

1
6

1
4

McMullen Formula:

|P ∩ Z| = (Area of P) + 1
2 (Perimeter of P) + 1.

The way one gets the +1 is different.
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Refinement of positivity.

This gives expressions for the coefficients.

|nP ∩ Zd | =
∑

F⊂nP

α(F ,nP)nvol(F )

=
∑
F⊂P

α(F ,P)nvol(F )ndim(F )

We see that

Coefficient

The coefficient of nk is
∑

F :dim(F )=k

α(P,F )vol(F ).

As long as all α are positive, then the coefficients will be positive.
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Main properties.

The important facts about the Berline-Vergne construction are
It exists.
Symmetric under rearranging coordinates.
It is a valuation.

We exploit these.
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A refined conjecture.

We pose the following.

Conjecture.

The regular permutohedron is (Berline-Vergne) α positive.

We care because this imply Ehrhart positivity for a family of polytopes.

Proposition.

The above conjecture implies that Generalized Permutohedra are
positive.

This would expand on previous results from Postnikov, and a
conjecture of De Loera-Haws-Koeppe stating that matroid polytopes
are positive.
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Partial results.

We’ve checked the conjecture in the cases:
1 The linear term (corresponding to edges) in dimensions up to

100.
2 The third and fourth coefficients.
3 Up to dimension 6.
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Regular permutohedra revisited.

Figure: A permutohedron in dimension 3.

For example, α(v ,Π3) = 1
24 for any vertex. Since they are all

symmetric and they add up to 1.
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A deformation.

Figure: Truncated octahedron
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A deformation.

Figure: Truncated octahedron
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Computing with the properties.
Note that we have just two types of edges (with normalized volume
1). From the permutohedron we get

24α1 + 12α2 = 6.

Now looking at the octhaedron, the alpha values are the same, since
the normal cones didn’t change. In this case we get

12α2 = 7/3

This information is enough to conclude that

α1 = 11/72
α2 = 14/72

Remark.

We did not use the explicit construction at all, just existence and
properties. This line of thought is the one we generalize.
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Main result.

We have a combinatorial formula for the α values of faces of regular
permutohedra. This formula involves mixed Ehrhart coefficients of
hypersimplices. The takeaway from this is

Uniqueness theorem.

Any McMullen formula that is symmetric under the coordinates is
uniquely determined on the faces of permutohedra.

Which leads to the question.

Question.

Is Berline and Vergne the only construction that satisfies additivity
and symmetry?
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Warning

We want to remark that it is not true that zonotopes are BV α
positive, even though they are Ehrhart positive.
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A bit about the formula

Let P1, · · · ,Pm be a list of polytopes of dimension n, then

Mixed Valuations

The expression Lat(w1P1 + · · ·+ wmPm) is a polynomial on the wi
variables. The coefficients are called mixed Ehrhart coefficients.

On the top degree we have the mixed volumes. Volumes are always
positive and mixed volumes are too, although this is not clear from the
above definition.
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Permutohedra

We define a permutohedron for any vector
x) = (x1, · · · , xn+1) ∈ Rn+1. Let’s assume x1 ≤ · · · ≤ xn+1.

Perm(x) := conv{
(

xσ(1), xσ(2), · · · , xσ(n+1)

)
∈ Rn+1 : σ ∈ Sn+1}.

If we define wi := xi+1 − xi , for i = 1, · · · ,n, then

Perm(x) = w1∆1,n+1 + w2∆2,n+1 + · · ·+ wn∆n,n+1.

So the number of integer points depends polynomially on the
parameters wi .These parameters are the lenghts of the edges in
Perm(x).
For instance, the coefficient of w1w2 is, by definition,

2!MLat2(∆1,n+1,∆2,n+1)
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Formula

Roughly

What we have looks like

α(F ,P) = A× B.

Where A is some combinatorial expression, evidently positive.
And B is one (depending of F ) mixed Ehrhart coefficient of
hypersimplices.

In particular, our conjecture is equivalent to the positivity of such
coefficients. It is not even clear if hypersimplices themselves (without
any mixing) are Ehrhart positive.
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Example

An instance of the formula looks like:

A facet in Π3

Formula would say it is equal to

2 · 2
24

2!MLat2(∆1,4,∆3,4).

where M stands for mixed and Lat2 is the quadratic coefficient of
Ehrhart polynomial.

Remark: The value at facets is always 1
2 .

This mixed valuations can be evaluated in the usual alternating form.
We can check if the above expression is right. Let’s do it!
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Example

i (∆14 + ∆34, t) =
10
3

t3 + 5t2 +
11
3

t + 1,

i (∆14, t) =
1
6

t3 + t2 +
11
6

t + 1,

i (∆34, t) =
1
6

t3 + t2 +
11
6

t + 1.

Therefore,

2!MLat2(∆1,4,∆3,4) =5− 1− 1 = 3

So we get
2 · 2
24

2!MLat2(∆1,4,∆3,4) =
4

24
· 3 =

1
2
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Further direction.

Some observations lead to the very natural question:

Sum of positives.

If P and Q are positive, is it true that P + Q is positive?
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Thank you!
Gracias!
Danke!
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